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Abstract—This paper describes CBGT-Net, a neural network
model inspired by the cortico-basal ganglia-thalamic (CBGT)
circuits found in mammalian brains. Unlike traditional neural
network models, which either generate an output for each
provided input, or an output after a fixed sequence of inputs, the
CBGT-Net learns to produce an output after a sufficient criteria
for evidence is achieved from a stream of observed data. For
each observation, the CBGT-Net generates a vector that explicitly
represents the amount of evidence the observation provides for
each potential decision, accumulates the evidence over time, and
generates a decision when the accumulated evidence exceeds a
pre-defined threshold. We evaluate the proposed model on two
image classification tasks, where models need to predict image
categories based on a stream of small patches extracted from the
image. We show that the CBGT-Net provides improved accuracy
and robustness compared to models trained to classify from a
single patch, and models leveraging an LSTM layer to classify
from a fixed sequence length of patches.

Index Terms—cortico-basal ganglia-thalamic circuit, neural
network, neuro-mimicry, data stream

I. INTRODUCTION

Significant strides in deep learning have led to remark-
able advancements across various domains such as image
classification, natural language comprehension, and decision-
making [[1]]. The success of such methods arises from multi-
layered architectures capable of learning feature mappings at
increasing levels of abstraction from large datasets. Despite the
success of deep learning, models are trained in an end-to-end
manner and generally produce an output for every provided
input. Generated output may be incorrect—often with a high
level of confidence—with minimal perturbation to the in-
put [2], and traditional neural network models are not designed
to consider when a single input is insufficient for inference
purposes. For instance, traditional image classification models
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generate a category for a single image without the ability
to consider additional viewpoints, while policies learned for
control are designed to generate an action regardless of how
complete or noisy the observation is.

In contrast, models of decision-making in primate brains
have been developed where decisions are made based on the
integration of noisy information over time [3]. In these models,
evidence for a response is accumulated until a requisite amount
is reached, explaining response accuracy and timing. Specifi-
cally, the cortico-basal ganglia-thalamic (CBGT) circuits in the
brain have been shown to play a role in action selection [4]],
[5]], including describing means of evidence accumulation for
and response criteria of competing actions [6]]. In essence, this
circuitry deliberates over potential actions based on a stream of
noisy or incomplete information from multiple cortical areas.

Inspired by the evidence accumulation aspect of primate
decision-making, our research aims to develop and evaluate
a neuromimetic model of the CBGT circuit in mammalian
brains. We believe such a model would provide several de-
sired features in autonomous decision-making—in addition to
potentially improved model accuracy, the deliberation process
of the model is transparent, allowing for better interpretability
during human-autonomy collaborations. Building on our prior
proof-of-concept work in this area [7]], we present a CBGT-
inspired neural network architectureE] and evaluate its ability
to learn to integrate noisy information, as well as determine
the effect of varying evidence criterion, in complex domains
(i.e., vision-based tasks). We demonstrate that the proposed
model is able to perform classification tasks using a stream of
incomplete information more accurately than models trained to
classify based on a single observation, and also generally out-
performs LSTM-based sequential models in terms of accuracy
and data efficiency. Additionally, our model’s performance is
robust to decreasing information in observations, compared to
the LSTM models. Finally, our model is designed to make
decisions based on acquiring a sufficient amount of evidence,
as opposed to a fixed amount of time, which is easily adjusted
during deployment using a simple decision threshold level.

This paper is organized as follows: Section [lI] describes
relevant work related to our approach; Section provides
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a brief description of the CBGT circuit in mammalian brains;
Section describes the architecture and training approach
for our model; Section |V| and [VI| describes our evaluation and
results. Section provides discussion and future work.

II. RELATED WORK

In the field of neuroscience, computational models of basal
ganglia circuitry have been used to explore aspects of decision
making in dynamic environments and its role in reinforcement
learning. For instance, competition between neural pathways
in the basal ganglia has been proposed as a model of action
uncertainty [8] and for describing exploration-exploitation
tradeoffs in volatile environments [9]. While previous research
has showcased the basal ganglia’s involvement in different
facets of decision-making, the existing models predominantly
investigate the biological dimensions of decision-making, such
as response time. In contrast, our focus lies in developing
models tailored for machine learning tasks with inspiration
drawn from neuroscience.

In the area of deep neural networks, confidence-aware
learning aims to not only accurately perform some inference
task (e.g., image classification), but to also assign a confidence
score to each inference. In [10], a correctness ranking loss
is utilized to ordinally rank training examples and produce
a confidence score for classification tasks. In [11]], training
loss is augmented with a distance loss to encourage clustering
of training examples in an embedding space; post-training,
the distance of a novel data point to the nearest neighbor
of the training data in the embedding space is leveraged
as a confidence score. While such confidence scores are
analogous to our usage of evidence, these approaches aim to
generate confidence scores of a single prediction, while in our
approach, the evidence encoder learns to produce a value akin
to confidence when learning with a stream of data.

Our prior exploration into developing a CBGT-inspired
network [7] demonstrates a proof-of-concept network capable
of learning decision thresholds and very simple encoders; in
this paper, we extend this effort to learn encoders for more
complex data streams (e.g., images), demonstrate that our
approach is agnostic to encoding layers, and utilize a more
effective supervised training approach.

III. CORTICO-BASAL GANGLIA THALAMIC CIRCUIT

The network architecture presented in this paper is inspired
by CBGT circuits in mammalian brains, and the role they
play in decision making and evidence accumulation [4]-[6].
Corticostriatal connections provide pathways for projection
from the functional areas of the cortex—including the sensori-
motor, associative, and limbic areas—to the striatum. For each
potential action (i.e., motor neuron activation), two pathways
exist in the basal ganglia that facilitate or suppress the action
in the thalamus: Direct (“Go”) pathways inhibit the globus
pallidus internus (GPi), which in turn causes disinhibition of
the thalamus and facilitation of the action corresponding to
the circuit; Indirect (“NoGo”) pathways inhibit the globus

pallidus externus (GPe), which in turn disinhibits the GPi and
suppresses the circuit’s action.

In the context of the described structure, the information
used for decision-making is generated in the cortex, which in
turn increases or decreases the total activation of the “Go”
and “NoGo” pathways for each action. Action selection for a
given action is based on the relative activation of the “Go”
and “NoGo” pathways—actions with a higher differential
between the “Go” and “NoGo” pathways are more likely to be
performed. In essence, the basal ganglia facilitates actions with
a probability proportional to the activation difference between
the “Go” and “NoGo” pathways. An action is performed once
the activation difference for the action exceeds some criteria.
Tonic dopamine levels in the brain increase the excitability
of the “Go” pathways and decrease the excitability of the
“NoGo” pathways, which influences the overall criteria for
action selection, as well as reaction time.

IV. TECHNICAL APPROACH
A. Network Architecture

In this section, we describe a neural network model, referred
to as CBGT-Net, whose functionality aims to be analogous
to the functionality of CBGT circuits in mammalian brains,
as described in Section [l Unlike traditional feed-forward
networks, this model is designed to perform inference tasks
based on a stream of observations, as opposed to a single input.
In contrast to recurrent architectures, which maintain arbitrary
latent embeddings as an internal state, the model maintains
the total evidence accumulated over time in support of each
possible decision. We note that the inference task described
here differs from inference tasks performed by recurrent neural
networks on sequential data: recurrent models generate a
decision at a fixed point in time, or at the end of a sequence
of known length; the inference task here requires the model to
make a decision at an arbitrary point in time, in the presence
a (hypothetically) unending stream of data.

The model accepts as input a stream of observations at
discrete time steps, denoted o;, from an environment (see
Section [V-A)). At each time step, the model produces a pair of
outputs: an output vector, y;, corresponding to the inference
task, and a binary decision variable, d;, indicating if the model
has accumulated sufficient evidence to make a decision. The
output of the model should only be considered meaningful at
the first time step that the decision variable indicates that the
evidence criteria is satisfied, denoted as t4. Thus, while the
model generates a pair of outputs at each time step, only the
decision at the first changepoint is considered meaningful.

For this paper, we explore the task of classifying observation
streams, thus the output vector is interpreted as the probability
distribution over possible categories. Figure [I] shows the
basic structure of the model and the interaction of its core
components—Evidence Encoder, Evidence Accumulator, and
Decision Threshold Module—each of which is detailed below.

The Evidence Encoder, Ey is a parameterized model re-
sponsible for mapping observations at each time step t, called
0;, to an evidence vector, e;,
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Fig. 1: Main components of the CBGT-Net architecture.
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where 6 represents the parameters of the evidence encoder.
The evidence encoder may be an arbitrary neural network
model suitable for the modality of the observation data (e.g.,
convolutional neural network for images); we constrain its de-
sign to generate an output whose dimensionality and semantic
interpretation are consistent with the available decisions. For
example, for classification tasks, each decision category can
have a single corresponding element in the evidence vector e;.

The Evidence Accumulator consists of a vector correspond-
ing to the total evidence accumulated since the beginning of
the input stream, ag,

A = A1 + € (2)

with ag assumed to be 0. In addition, the accumulated
evidence is mapped to the output vector using a suitable
mapping function. For classification tasks, this simply involves
calculating the softmax over the accumulated values
o _ _ eap(a;’) 3
Zj:l exp(a;’’)

where (i) corresponds to the i'" element of a vector, and
K is the number of decision categories.

The Decision Threshold module is a component that is
used to determine if the required evidence criterion has been
satisfied and generates the decision variable, d;. For this paper,
this module is defined by a fixed threshold parameter, 7. For
each time step, the decision variable is true if and only if at
least one element in the evidence accumulator exceeds this
threshold,

{true if 3¢ where agi) >T
dt = (4)
false otherwise

If the threshold is not exceeded, the model ingests additional
data, allowing for additional evidence before making a choice.

At the initial instance when d; becomes true, signifying
the first time the threshold is crossed, the model makes a
prediction by selecting the category associated with the highest
value in the Evidence Accumulator’s output vector y;.
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Fig. 2: Example episode from CIFAR-10 environment: a
sequence of three patches from an image in the “dog” category.
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V. EVALUATION
A. Environments

To evaluate the described approach, we developed a set of
environments to generate streams of information for use as
input to the model, where individual streams are conditioned
on a target category. Environments were constructed around
publicly available datasets used for image classification.

We denote a single stream of information generated by
the environment as an episode. At the beginning of a given
episode, the environment selects an image at random from
the dataset and its corresponding target category. At each
time step, the environment extracts a square patch of pixels
from the environment at a random location in the image. The
extracted patch is zero-padded to produce an image with the
same dimensionality as the original dataset, and in such a
manner that the patch is centered on the image. This approach
ensures that the qualitative amount of information present in
a single observation in the episode can be controlled (through
the size of the patch), and positional information regarding the
observation is removed (through centering of the patch). The
task of the model is to infer the target category of the selected
image based on the stream of observations.

We constructed environments based on two image datasets:

1) MNIST Environment: The MNIST dataset [12]], [13]
consists of images of handwritten digits, with ten target
categories corresponding to each digit (i.e., 0 — 9). Each
image is greyscale and 28x28 pixels in size and contains a
single handwritten digit. The dataset contains a total of 60,000
training images and 10,000 test images. Using this dataset, we
constructed environments which generated patches of size 5x5,
8x8, 10x10, 12x12, 16x16, 20x20.

2) CIFAR-10 Environment: The CIFAR-10 dataset [14]
consists of 50,000 color images in training data and 10,000
color images for testing. Each image is 32x32 pixels in size.
The ten image categories are airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. The environments
which were constructed using this dataset generated patches
of size 5x5, 8x8, 10x10, 12x12, 16x16, 20x20.

B. Evidence Encoders

For evaluation, we utilized existing network architectures as
evidence encoders in the CBGT-Net. For experiments involv-
ing the MNIST Environment, we utilized Lenet-5 [13]] as the
evidence encoding network. Lenet-5 is a convolutional neural
network consisting of seven total layers—two convolutional



layers interleaved with two subsampling layers, followed by
two fully connected layers and a softmax classification layer.

For experiments involving the CIFAR-10 Environment, we
utilized a ResNet style residual architecture [15[]. The model
consists of an initial convolutional layer and batch norm
layer, followed by six “blocks” of two convolutional layers,
followed by a fully connected layer, an average pooling layer,
and softmax classification layer. Each block in the model is
designed to maintain the size of the generated feature map
and includes a shortcut connection from the input of the
block to the output so that each block learns to compute a
residual, rather than general, mapping from input to output.
Additionally, the network downsamples the size of the feature
map after every pair of blocks.

C. Baselines

For each experiment, we compare our approach with multi-
ple baselines. As with the CBGT-Net, all baseline models are
trained to minimize the cross-entropy loss given in Equation [3

1) Single Patch Evidence Encoder: For each experiment,
we train the evidence encoder used in the CBGT-Net to predict
the target category of an image from a single patch. This
baseline serves as a benchmark for evaluating the encoder’s
capability to independently classify individual data patches.
Furthermore, it helps us assess how effectively the model’s
accuracy improves when evidence is accumulated from mul-
tiple observed patches.

2) LSTM Model: For each experiment, we train a model
in which the output of the evidence encoder is connected
to a Long Short Term Memory (LSTM) layer [16]]. The
LSTM layer has ten memory cells and is provided with
a sequence of evidence encoder outputs from observations
from the environment. Models were trained on sequences of
varying length, in order to compare model performance with
the CBGT-Net’s decision times at each decision threshold.The
model outputs the predicted category at the final time step.

D. Training Details

For training purposes, we utilize the cross-entropy between
the output vector of the CBGT-Net and the target category at
the decision time, ¢4, as the objective function to minimize,

Lo = —log(y(") )

where T is the index of the target category to be classified.

For each experiment, models were trained using Adam
to optimize model parameters [17]. Learning rate for the
optimizer was set to le-3, and a batch size of 512 episodes
per training epoch was used for all experiments.

E. Evaluation Measures

To evaluate our models, we calculate the accuracy, average
decision time, and the number of training episodes required.
Accuracy measures the percentage of correct predictions the
model makes when tested with a batch of episodes. Average
decision time, on the other hand, quantifies the average number
of steps taken before the model reaches a decision. In simpler

terms, average decision time measures how much input data
the model needs to see before making a confident prediction
i.e. before it crosses the predefined threshold.

For each model and environment, we calculated the number
of training examples required for the model to converge. Dur-
ing training, validation accuracy was calculated after every two
training epochs (i.e., after training with 1,024 episodes). We
performed exponential smoothing on the validation accuracy,
with a smoothing factor of @ = 0.995. The normalized root
mean standard deviation (NRMSD, i.e., standard deviation
normalized to the mean) of the validation accuracy was
calculated at each step using a window over the previous 100
steps. Training is considered converged when the NRMSD is
below an empirically determined threshold of 0.0015.

VI. RESULTS

Figures |3 and [4| compare the performance of the CBGT-Net
and baseline models for MNIST and CIFAR-10 Environments,
respectively. Each figure compares the inference accuracy
of the models based on the amount of information in each
observation (i.e., patch size), and the number of observations
made. For the CBGT-Net results, markers indicate the average
decision time for decision thresholds in the range of 1 to 5;
results for LSTM models were extracted from models trained
with a sequence length comparable to the CBGT-Net decision
times. Additionally, the accuracy of evidence encoders trained
to categorize a single patch is provided for each case.

In general, the CBGT-Net outperforms both the LSTM
and single patch baselines across decision times, with the
exception that the LSTM models outperform the CBGT-Net
models on the CIFAR-10 Environments with 16x16 and 20x20
patch sizes. For the MNIST Environments, the LSTM models
have roughly the same accuracy as the single patch models,
demonstrating that this model was unable to learn to leverage
the multiple observations to improve performance for this
environment. The CBGT-Net, on the other hand, not only
demonstrates an improvement in performance as sequence
length increases, indicating that the model benefits from addi-
tional evidences to a certain extent, but also shows significant
robustness when each observation’s patch size decreases.

For the CIFAR-10 Environments, the LSTM models demon-
strate the ability to outperform the single patch baseline,
demonstrating its ability to improve its performance with
multiple observations (with the notable exception of the 5x5
patch size environment). For these environments, the CBGT-
Net shows improvement over the single patch models similar
to the MNIST environments; the performance margin between
the CBGT-Net and LSTM models for environments using
smaller patch sizes also demonstrates the CBGT-Net’s im-
proved robustness to reduced information in each observation
when compared to both the LSTM and single patch baselines.

Figure [5] shows the average decision time for the CBGT-
Net for different decision thresholds and patch sizes for the
MNIST Environments and CIFAR-10 Environments. As can
be seen, the required decision time increases as either decision
threshold increases or patch size decreases. For larger patch
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sizes in the MNIST Environments (i.e., 16x16 and 20x20), the
decision time is roughly equivalent to the decision threshold—
this relationship indicates that the generated evidence vector
is, on average, producing a maximum value (i.e., 1) for the
target category, and that a single patch at these sizes is likely
sufficient for categorization purposes.

Figure [6] shows the number of episodes needed for con-
vergence for training the CBGT-Net and LSTM models for
each environment. In all cases, the CBGT-Net required fewer
training episodes than the LSTM model. On average, the
CBGT-Net required 75.4% fewer training episodes than the
LSTM model for the MNIST environments, and 89.4% fewer

episodes for the CIFAR-10 environments. In conclusion, the
CBGT-Net consistently outperforms the LSTM model in terms
of training efficiency across environments.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a neural network architecture based
on cortico-basal ganglia-thalamic circuits found in mammalian
brains and demonstrates its effectiveness in learning inference
tasks from streams of low-information data. We demonstrated
that the model can learn to categorize images based on a
stream of small patches extracted from the image, as well
as specify when it should decide based on the amount of
supporting evidence observed, as opposed to a fixed number of
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observations. The model generally outperforms similar models
that use LSTMs for recurrent connections and is especially
robust to decreasing information presented in each observation.

In addition to improvements in performance and robustness
to low-information observations, the evidence accumulation
component provides for transparent deliberation, which we
believe offers potential benefits in human-autonomy collab-
orations. Specifically, each element in the evidence accumu-
lator corresponds to the model’s current preference towards a
desired decision, and the margin between accumulator values
and decision threshold indicates how imminent a decision may
be, as well as the presence of potential alternative decisions

that have high levels of accumulated evidence.

There are several potential avenues for future development
of the proposed model. Individual components of the model
can be extended in multiple ways. For instance, the accumu-
lator could be extended to incorporate non-linear or temporal
dynamics, such as decay, and specifically where dynamics are
biologically motivated. In the current formulation, we asserted
that the evidence encoder’s dimensionality must match the
number of decision categories; future efforts could explore
utilizing different representations of evidence and adapting the
accumulator accordingly. One significant direction would be to
extend the network to also learn a dynamic decision threshold,
as opposed to utilizing a fixed threshold, based on the training
environment and/or extrinsic observations —ensuring training
stability and a meaningful interpretation of the threshold would
be specific challenges. The evidence accumulation aspect of
the model provides transparency to its deliberation process,
providing the opportunity to explore human understanding,
interaction, and potential intervention with the model. Finally,
we are interested in applying the model as part of a policy
for sequential decision-making tasks, allowing agents to learn
to perform actions based on collected evidence, rather than
reactively to individual observations.
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