
In-Context Fully Decentralized Cooperative
Multi-Agent Reinforcement Learning

Chao Li12 Bingkun Bao13∗ Yang Gao45
1 School of Computer Science, Nanjing University of Posts and Telecommunications

2 State Key Laboratory of Tibetan Intelligence 3 Peng Cheng Laboratory
4 School of Intelligent Science and Technology, Nanjing University

5 State Key Laboratory for Novel Software Technology, Nanjing University
chaoli@njupt.edu.cn, bingkunbao@njupt.edu.cn, gaoy@nju.edu.cn

Abstract

In this paper, we consider fully decentralized cooperative multi-agent reinforcement
learning, where each agent has access only to the states, its local actions, and the
shared rewards. The absence of information about other agents’ actions typically
leads to the non-stationarity problem during per-agent value function updates, and
the relative overgeneralization issue during value function estimation. However,
existing works fail to address both issues simultaneously, as they lack the capability
to model the agents’ joint policy in a fully decentralized setting. To overcome this
limitation, we propose a simple yet effective method named Return-Aware Context
(RAC). RAC formalizes the dynamically changing task, as locally perceived by each
agent, as a contextual Markov Decision Process (MDP), and addresses both non-
stationarity and relative overgeneralization through return-aware context modeling.
Specifically, the contextual MDP attributes the non-stationary local dynamics of
each agent to switches between contexts, each corresponding to a distinct joint
policy. Then, based on the assumption that the joint policy changes only between
episodes, RAC distinguishes different joint policies by the training episodic return
and constructs contexts using discretized episodic return values. Accordingly, RAC
learns a context-based value function for each agent to address the non-stationarity
issue during value function updates. For value function estimation, an individual
optimistic marginal value is constructed to encourage the selection of optimal joint
actions, thereby mitigating the relative overgeneralization problem. Experimentally,
we evaluate RAC on various cooperative tasks (including matrix game, predator
and prey, and SMAC), and its significant performance validates its effectiveness.

1 Introduction

In recent years, cooperative multi-agent reinforcement learning (MARL) has witnessed great advances
in both algorithms (e.g., value decomposition [1–4] and multi-agent policy gradient [5–8] methods)
and applications (e.g., autonomous vehicles [9], urban traffic management [10], and vaccine alloca-
tion [11]). Most of these advances heavily rely on the centralized training (often with decentralized
execution) paradigm, where global information, particularly the joint actions of all agents, is available
during training. However, direct access to other agents’ actions is often unattainable in real-world
settings, such as industrial scenarios where multiple robots from different companies may withhold
action information due to privacy concerns or limited communication capabilities. In such cases,
the fully decentralized learning becomes essential, where each agent learns solely from its local
experiences, without access to the actions of other agents, during both training and execution.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

However, developing efficient coordinated policies under the fully decentralized learning paradigm is
challenging, as the lack of access to other agents’ actions typically leads to non-stationarity during
per-agent value function updates and relative overgeneralization during value function estimation. In
detail, since treating other agents as part of the environment, the local task dynamics perceived by
each decentralized agent becomes non-stationary due to the evolving policies of other agents. This
non-stationarity undermines the convergence of value function updates and is further exacerbated by
experience replay [12]. In addition, the value estimations of each agent’s local actions may be biased
by other agents’ exploratory or sub-optimal action selections, hindering agents from selecting optimal
joint actions, a problem known as relative overgeneralization [13]. Consequently, fully decentralized
learning often suffers from low efficiency and sub-optimal solutions, limiting efficient coordination.

Accordingly, we divide existing value-based MARL approaches into two major categories. The first
category of works [1, 2, 14–16] primarily focuses on the non-stationarity issue. These methods either
directly access other agents’ actions, design multi-agent importance sampling weights, fingerprints,
or ideal transition probabilities to ensure stationary transitions, or adopt alternating policy updates
among agents to maintain stationary policy updates. The second category [3, 4, 17–22] mainly targets
the relative overgeneralization issue, typically by rectifying the factored global action value function
or employing optimistic or lenient value updates to facilitate the selection of optimal joint actions.
Although both issues stem from the inaccessibility of other agents’ actions, current fully decentralized
MARL methods typically address either the non-stationarity issue or the relative overgeneralization
problem in isolation, due to their inability to model the agents’ joint policy in a fully decentralized
setting. As a result, they fall short of simultaneously resolving both challenges.

To overcome this limitation, we propose a simple yet effective method named Return-Aware Context
(RAC). RAC formalizes the dynamically changing task locally perceived by each agent as a contextual
Markov Decision Process (MDP) [23], and tackles non-stationarity and relative overgeneralization
from a context modeling perspective. Specifically, under the contextual MDP, RAC attributes each
agent’s non-stationary local task dynamics to switches between contexts, each corresponding to a
distinct joint policy. Subsequently, to enable fully decentralized modeling of agents’ joint policies,
RAC leverages training episodic returns to differentiate among different joint policies, constructing
context representations using discretized episodic return values. This return-aware modeling operates
under the assumption that joint policy changes occur only between episodes, an assumption commonly
adopted in existing MARL methods, where all agents update their policies at the end of each episode.
Accordingly, RAC learns a context-based value function for each agent to address the non-stationarity
problem during value function updates. For value function estimation, RAC derives an individual
optimistic marginal value regarding all possible contexts for each agent. This guides agents toward
selecting optimal joint actions and effectively mitigates the relative overgeneralization problem.

Empirically, we evaluate RAC against multiple baselines across various cooperative tasks, including
matrix game, predator and prey, and StarCraft Multi-Agent Challenge (SMAC) [24]. The experimental
results show that RAC achieves superior performance in both learning efficiency and final outcomes,
demonstrating its effectiveness in enhancing fully decentralized cooperative policy learning.

2 Related Work

In this section, we review current value-based MARL methods, dividing them into two categories:
those addressing the non-stationarity problem and those tackling the relative overgeneralization issue.

The first category of works addresses the non-stationarity problem by promoting stationary transitions
or stabilizing policy updates. Specifically, canonical value decomposition methods such as VDN [1]
and QMIX [2] assume direct access to agents’ joint actions to achieve stationary transitions. However,
these methods often suffer from relative overgeneralization due to the representational limitation of the
factored global action value function [25]. For independent Q-learning (IQL) [26] agents, the multi-
agent importance sampling technique [14] assumes access to other agents’ policies and constructs
importance weights to decay obsolete data during experience replay. Multi-agent Fingerprints [14]
employ other agents’ training iteration numbers or exploration rates to estimate their policies, and
augment per-agent local transitions with these estimates. However, such direct access to other agents’
information is typically impractical. I2Q [16] avoids this limitation by constructing stationary ideal
transitions by selecting the next state with the highest QSS value [27], enabling IQL agents to learn
optimal joint policies in a fully decentralized manner. In comparison to I2Q, which addresses both

2

non-stationarity and relative overgeneralization by shaping ideal state transitions, this work aims for a
novel return-aware perspective to tackle both issues. In addition, to ensure stationary policy updates,
MA2QL [15] enforces sequential policy updates among IQL agents, where each agent updates its
policy while keeping the others fixed. Although this strategy alleviates non-stationarity, it often leads
to low learning efficiency due to limited parallelism in policy updates.

The second category of works tackles the relative overgeneralization issue by rectifying the factored
global action value function, or updating per-agent local value functions in an optimistic or lenient
manner. Specifically, for value decomposition methods, weighted QMIX [17] places more weights on
potentially optimal joint actions to exclusively recover correct value functions for them. QTRAN [3]
and QPLEX [4] introduce additional terms to correct the discrepancy between the learned factored
global action value function and the true joint ones. For fully decentralized IQL agents, distributed Q-
learning [18] employs an optimistic decentralized value function, where each agent assumes that other
agents always select their cooperative actions. This optimism encourages agents to identify and select
local cooperative actions, thus addressing the relative overgeneralization issue. However, being highly
optimistic makes distributed Q-learning vulnerable to stochasticity. Hysteretic Q-learning [19, 20]
avoids high optimism by utilizing two learning rates to update per-agent value functions with positive
and negative temporal difference errors respectively. Lenient learning [21, 22] shifts from optimistic
value estimations to normal value estimations using decreasing lenience. Although promising, the
neglect of non-stationarity often limits these approaches from efficient policy learning in practice.

In summary, existing fully decentralized MARL methods face challenges in simultaneously addressing
both non-stationarity and relative overgeneralization issues, due to their inability to model the agents’
joint action or policy in a fully decentralized setting. To overcome this limitation, this work proposes
to formalize per-agent local task dynamics by the contextual MDP, and then introduces return-aware
context modeling to tackle both issues, thereby effectively enhancing fully decentralized learning.

3 Preliminary

In this section, we present the multi-agent task addressed by this work, and review the non-stationarity
and relative overgeneralization problems in decentralized learning, along with the contextual MDP.

3.1 Multi-Agent Markov Decision Process

We consider a fully cooperative task that can be modeled as an Multi-agent Markov Decision Process
(MMDP) ⟨N,S,A, P,R, γ⟩, where N = {1, 2, . . . , n} represents the agent set and S denotes the
state space. A = A1 × A2 × . . . × An is the joint action space and Ai denotes the local action
space of agent i ∈ N . At each time step t, each agent i observes the state st ∈ S and selects its
local action ait using its policy πi(ait|st). Based on all agents’ joint action at = (a1t , a

2
t , . . . , a

n
t), the

environment transits to the next state st+1 according to the state transition function P (st+1|st,at)
and provides all agents with the shared reward rt based on the reward function R(st,at). The goal of
all agents is to learn the optimal joint policy π∗ = (π1,∗, π2,∗, . . . , πn,∗) that maximizes the expected
cumulative return Eπ,P [

∑∞
t=0 γ

trt], where γ is a discount factor. Additionally, we also evaluate our
approach under the partially observable setting, as detailed in Sec. 5 and Appendix A.

We consider the fully decentralized learning, where each agent i observes only the state st, its local
action ait, and the shared reward rt. From the perspective of each agent i, the perceived task can be
modeled as an Markov Decision Process (MDP) ⟨S,Ai, P i, Ri, γ⟩ with dynamics defined below:

P i(st+1|st, ait) =
∑

a−i
t

π−i(a−i
t |st)P (st+1|st,at),

Ri(st, a
i
t) =

∑
a−i
t

π−i(a−i
t |st)R(st,at),

(1)

where π−i and a−i
t denote the joint policy and the joint action of all other agents −i except agent i.

Non-Stationarity. Eq. (1) illustrates that each agent i’s local task dynamics, represented by P i and
Ri, depends on the joint policy π−i of other agents −i. As these agents continuously update their
policies, the per-agent local task dynamics becomes non-stationary. Furthermore, when employing
off-policy experience replay, the sampled transitions from the replay buffer can be viewed as following
P i and Ri with respect to the average joint policy π̄−i of other agents −i over the course of training.
This non-stationarity disrupts the convergence guarantee of each agent i’s value function updates.

3

Relative Overgeneralization. Due to the lack of access to other agents’ actions, the value estimations
of per-agent local cooperative actions may be biased by other agents’ exploratory or sub-optimal action
selections and thus lead to sub-optimal joint actions, a problem known as relative overgeneralization.

Specifically, the local value function Qi(st, a
i
t) of each decentralized agent i can be regarded as a

projection of the joint action value function Q(st, a
i
t, a

−i
t). IQL follows an average-based projection:

Qi,π(st, a
i
t) =

∑
a−i
t

π−i(a−i
t |st)Qπ(st, a

i
t, a

−i
t), (2)

where Qπ(st, a
i
t, a

−i
t) is the joint action value function under a given joint policy π = (πi, π−i). It is

obvious that the average-based projection is easily affected by other agents’ sub-optimal actions and
suffers from the relative overgeneralization. In contrast, the optimistic projection is defined below:

Qi,opt(st, a
i
t) = maxa−i

t
Q∗(st, a

i
t, a

−i
t), (3)

where Q∗(st, a
i
t, a

−i
t) represents the joint action value function of an optimal joint policy π∗. The

optimistic projection assumes that other agents −i always select their cooperative local actions, thus
eliminating the impact of other agents’ non-cooperation. Hysteretic Q-learning directly approximates
Qi,opt(st, a

i
t) by an optimistic value update. In contrast, our approach estimates it using an optimistic

marginal value derived from a context-based value function. We detail this distinction in Appendix. B.

3.2 Contextual Markov Decision Process

A contextual MDP is defined as a tuple ⟨C, S, A,M(c)⟩, where C denotes the context space, S is the
state space, and A is the action space. The function M(c) maps each context c ∈ C to a specific MDP
⟨S,A, Pc, Rc, γ⟩, thereby defining a family of MDPs that share the same state and action spaces but
differ in their transition dynamics and reward functions. In this work, we use the contextual MDP to
model each agent’s varying local task dynamics, which is determined by other agents’ joint policies.

4 Methodology

In this section, we provide a detailed explanation of our method, Return-Aware Context (RAC). We
begin by introducing the task formalization based on contextual MDP, and then delve into the process
of modeling contexts using the training episodic return. Subsequently, for each decentralized agent,
we propose to learn a context-based value function and derive an individual optimistic marginal value
aimed at selecting the optimal joint actions. Finally, we summarize the overall learning procedure.

4.1 Task Formalization

As detailed in Sec. 3.1, from the perspective of each agent i, the perceived task can be modeled as an
MDP ⟨S,Ai, P i, Ri, γ⟩, where the state transition dynamics P i and reward function Ri depend on
the joint policy π−i of the other agents −i. For all possible π−i, the local task experienced by agent i
can be further decomposed into a family of MDPs that share the same state and action spaces but
differ in their transition and reward functions, each conditioned on a specific π−i. By associating
each context c ∈ C with a corresponding π−i, we propose to formalize the local task of agent i as a
contextual MDP, which is defined as follows:

⟨C, S, Ai,M(c)⟩, whereM(c) : c→ ⟨S,Ai, P i
c , R

i
c, γ⟩, (4)

where S is the state space and Ai is agent i’s local action space. The dynamics P i
c(st+1|st, ait, c) and

Ri
c(st, a

i
t, c) are explicitly conditioned on the context c ∈ C, each corresponding to a unique π−i.

Within the contextual MDP formalization, when each agent operates in a fully decentralized manner,
the task dynamics is determined by an underlying context, which is inherently tied to other agents’
current joint policy. When an agent encounters different contexts at different time steps, the same
state and local action may result in different next states and rewards. Consequently, the lack of context
information prevents agent i from fully capturing the task dynamics, leading to the non-stationarity.

This contextual MDP formalization attributes non-stationarity to switches between contexts, and pro-
vides a principled framework to address this challenge by explicit context modeling. The context can
be instantiated as either an estimate of other agents’ current joint policy or a real-time representation

4

𝑠1 𝑠2 𝑠𝑡
…

𝑎1
𝑖

𝑠𝑡+1

𝑟1

𝑎𝑡
𝑖

𝑟𝑡

𝑐1 𝑐𝑡

Time step tTime step 1

Case 1:
Context changes between time steps.

𝑠𝑡 𝑠𝑡+1 𝑠𝑡

𝑎𝑡
𝑖

𝑠𝑡+1

𝑟𝑡

𝑎𝑡
𝑖

𝑟𝑡

𝑐1 𝑐𝑒

Episode eEpisode 1

Case 2:
Context changes between episodes.

Figure 1: Two cases of context changes. Case 1 refers to the scenario where other agents update their
joint policy at every time step or every few time steps. For example, in the left plot, the dynamics is
determined by c1 at time step 1 and by ct at time step t. Case 2 refers to the scenario where agents
update policies only between episodes; for instance, c1 persists throughout episode 1 and ce persists
until the termination of episode e, as shown in the right plot. Empty and solid circles respectively
represent observable and unobservable stochastic variables.

of the current local task dynamics distribution. By augmenting per-agent state-local-action pair with
the inferred context, the resulting transitions become stationary, thereby enabling efficient learning.

The frequency of context changes determines the degree of non-stationarity. As illustrated in Fig. 1,
we define two cases: (1) Context changes between time steps, where other agents update their joint
policy every (several) time steps, leading to significant non-stationarity; and (2) Context changes
between episodes, where agents keep their policies fixed within each episode and update them only
between episodes, resulting in moderate non-stationarity. The latter case is widely adopted by existing
MARL methods. In this work, we take a step toward explicitly modeling contexts within it.

4.2 Context Modeling and Usage

Based on case (2) that agents update their policies only between episodes, we propose to represent all
agents’ fixed joint policy within each episode by the training episodic return. Given a local episodic
trajectory τ i = (s0, a

i
0, r0, s1, a

i
1, r1, s2, . . . , sH) of agent i, its generation probability is defined as:

p(τ i) = p(s0)

H−1∏
t=0

πi(ait|st)π−i(a−i
t |st)︸ ︷︷ ︸

1⃝
P (st+1|st,at)R(st,at)︸ ︷︷ ︸

2⃝
, (5)

where term 1⃝ represents all agents’ joint policy and term 2⃝ that contains both the state transition
probability P (st+1|st,at) and reward emission probability R(st,at) is entirely determined by the
environment. For fixed joint policy during each episode, the generated local trajectory can be viewed
as a Monte Carlo sampling of all possible trajectories induced by this joint policy under the stochastic
or deterministic environment. The associated episodic return implicitly represents the agents’ joint
policy in the return space. For joint policies that generate similar local trajectories for each agent, the
episodic returns will provide them with nearby representations, and vice versa.

Accordingly, we use the episodic return R(τ i) of per-agent local trajectory τ i to estimate the agents’
current joint policy π = (πi, π−i), and refer to it as the context. Although each agent’s local task
dynamics solely depends on other agents’ joint policy π−i, achieving a fully decentralized estimation
of π−i is intractable in practice and we instead turn to directly estimate π using the episodic return
R(τ i). This enables fully decentralization and greater scalability, eliminating the need for each agent
i to separately estimate other agents −i’ policies. We empirically demonstrate that estimating π
effectively mitigates the non-stationarity issue, as discussed in Sec. 5.

Specifically, during training, each agent respectively calculates the episodic returns for sampled local
trajectories. To avoid too many continuous values, we discretize the training episodic return into m
intervals. Each interval κ covers a range of [Rmax−Rmin

m × κ, Rmax−Rmin

m × (κ+ 1)), where Rmax

and Rmin respectively denote the maximum and minimum episodic returns. For a training episodic

5

return R(τ i), the corresponding interval index κ can be calculated as follows:

κ = ⌊ R(τ i)
Rmax−Rmin

m

⌋, (6)

where ⌊·⌋ is the floor function and κ is enforced to be an integer between 0 and m− 1.

Context-Based Value Function. We use the one-hot encoding cκ of κ as the context of trajectory τ i,
and learn a value function Qi(st, cκ, a

i
t) for each agent i, which is conditioned on the state, the local

action and the context. Based on the augmented transition (st, a
i
t, cκ, rt, st+1), the Qi is updated by:

LC(θ
i) = E(st,ai

t,cκ,rt,st+1)∼Di

[
(rt + γmaxai

t+1
Qi(st+1, cκ, a

i
t+1)−Qi(st, cκ, a

i
t))

2
]
, (7)

where θi denotes the parameters of Qi and we sample batches of trajectories from agent i’s replay
buffer Di to conduct the update. cκ enables both stationary transitions and value function updates.

Individual Optimistic Marginal Value. There are still two issues during value estimation: (1) The
relative overgeneralization limits agents from identifying and selecting their local cooperative actions;
and (2) Each agent can not select actions using the context-based value function within the episode,
where the context based on episodic return is available only when the episode terminates. To address
these two issues, we propose the individual optimistic marginal value as defined below:

ϕi(st, a
i
t) = maxcκ∈C Q

i(st, cκ, a
i
t), (8)

where we shape marginal value functions of per-agent local actions using the corresponding maximum
context-based value estimations across all possible contexts. Eq. (8) adheres to an optimistic belief
that other agents always select their optimal cooperative actions, and thus the individual optimistic
marginal value regarding per-agent local action ait can reach the optimal value maxcκ∈C Q

i(st, cκ, a
i
t).

The individual optimistic marginal value discards the effect caused by exploratory or sub-optimal
action selections of other agents, and accordingly enables each agent to select its local cooperative
action, addressing the relative overgeneralization issue and leading to the optimal joint policy.

4.3 Overall Learning Procedure

Based on the learned individual optimistic marginal value, each agent i can select its local cooperative
action by argmaxai

t
ϕi(st, a

i
t) = argmaxai

t
maxcκ∈C Q

i(st, cκ, a
i
t). However, accurately learning

the context-based value function necessitates a comprehensive coverage across the entire return space,
which is unavailable during the early training process and leads to sub-optimal outcomes. To address
this issue, we separately learn a value function Qi

S(st, a
i
t) and update it by the following TD loss:

LTD(σ
i) = E(st,ai

t,rt,st+1)∼Di

[
(rt + γmaxai

t+1
Qi

S(st+1, a
i
t+1)−Qi

S(st, a
i
t))

2
]
, (9)

where σi denotes the parameters of Qi
S. We make each agent select actions based on its Qi

S(st, a
i
t) to

generate informative transitions during the early training process, and accordingly enable an efficient
update of Qi(st, cκ, a

i
t) following Eq. (7). Furthermore, we propose an auxiliary supervision loss:
Lsup(σ

i) = E(st,ai
t,rt,st+1)∼Di [DKL[π

i(·|st)||πi
S(·|st))]], (10)

where πi(·|st) and πi
S(·|st) respectively denote the Boltzmann policy with respect to ϕi(st, a

i
t) and

Qi
S(st, a

i
t), which are defined as follows:

πi(ait|st) =
exp(ϕi(st, a

i
t))∑

ai∈Ai exp(ϕi(st, ai))
, πi

S(a
i
t|st) =

exp(Qi
S(st, a

i
t))∑

ai∈Ai exp(Qi
S(st, a

i))
. (11)

The intuition behind Eq. (10) is that each agent’s πi is capable of addressing both non-stationarity
and relative overgeneralization, and we make the decision policy πi

S to imitate it. As a result, we
update Qi

S(st, a
i
t) using the loss LS(σ

i) = LTD(σ
i) + βLsup(σ

i), where β is a scaling factor.

As presented in Algorithm 1, the learning procedure of RAC is as follows. We begin by initializing
Qi, Qi

S for each agent i ∈ N . During each episode, each agent i selects its local action based on Qi
S

and the local episode data is stored into its replay buffer Di. For agents with ϵ-greedy policy, we keep
ϵ fixed during each episode and decrease it between episodes, which is adopted by PyMARL [24] by
default. This approach enables fixed policy within each episode, and is consistent with the proposed
case (2) (context changes between episodes). During training, for each agent i, we sample batches of
episodes from Di, and construct the context cκ for each episodic trajectory τ i based on the episodic
return R(τ i). Finally, we calculate the loss functions LC(θ

i),LS(σ
i), and update all components by

gradient descent. The entire procedure continues until the maximum training episode is reached.

6

Algorithm 1: Return-Aware Context (RAC)
1 Initialize necessary hyper-parameters
2 foreach agent i ∈ N do
3 Initialize parameters θi, σi of Qi, Qi

S

4 if the maximum training episode is not reached then
5 for Each episode do
6 foreach time step t do
7 foreach agent i ∈ N do
8 Select its local action ait based on Qi

S(st, a
i
t)

9 Store each agent i’s episode into its replay buffer Di

10 Decrease ϵ for each agent if using ϵ-greedy policy
11 if train then
12 foreach agent i ∈ N do
13 Sample batches of episodes from Di

14 Calcualte R(τ i) for each episodic trajectory τ i

15 Construct κ, cκ based on Eq. (6)
16 Calculate LC(θ

i),LS(σ
i) based on Eq. (7), (9), (10)

17 Update all components with gradient descent

5 Experiment

In this section, we design experiments to answer the following two questions: (1) Can RAC benefit
fully decentralized learning by addressing both non-stationarity and relative overgeneralization? (See
Sec. 5.1) (2) If so, which component contributes the most to its performance gain? (See Sec. 5.2)

For question (1), we compare RAC against fully decentralized baselines, IQL [26], Hysteretic Q-
learning [19], and I2Q [16], on Matrix Game, Predator and Prey, and StarCraft Multi-Agent Challenge
(SMAC). For question (2), we conduct ablation studies to assess the effect of each component of RAC.
All results are illustrated with the median performance and the standard error across five random
seeds. More details about experimental setups and hyper-parameters can be found in Appendix C.

A1
A2

a1 a2 a3

a1 8 -12 -12
a2 -12 6 0
a3 -12 0 6

(a) Payoff matrix.

A1
κ

0 1 2 3

a1(7.99) −12 XXX−5.8 XX2.42 7.99
a2(6.02) −11 0.04 6.02 XXX−5.2
a3(5.94) −11 0.03 5.94 XXX−4.1

(b) Q1(s, cκ, a) and ϕ1(s, a).

A2
κ

0 1 2 3

a1(7.99) −11 XXX−6.0 XX2.27 7.99
a2(6.01) −11 0.02 6.01 XXX−5.2
a3(5.94) −12 0.04 5.94 XXX−3.8

(c) Q2(s, cκ, a) and ϕ2(s, a).

Table 1: The payoff matrix and value functions learned by RAC. We define 4 episodic return intervals:
[−12, 0), [0, 6), [6, 8), [8,+∞). The context-based value functions Q1(s, cκ, a) and Q2(s, cκ, a) for
all contexts κ are presented in (b) and (c). The individual optimistic marginal values, ϕ1(s, a) and
ϕ2(s, a), appear in the first column. Qi(s, cκ, a) with unattainable κ is marked by

XXXXXQi(s, cκ, a).

5.1 Comparison Result

Matrix Game. We begin by evaluating all algorithms on a didactic matrix game shown in Tab. 1a,
where two agents must select the optimal joint action (a1, a1) to achieve the best reward. However,
each agent maintains higher value estimations of its local actions a2 and a3 when others uniformly
select actions, thereby leading to relative overgeneralization where (a2, a2) and (a3, a3) are preferred.

Fig. 2 shows the comparison results in the matrix game. One can observe that IQL struggle in the
sub-optimal joint actions with 6 rewards, which demonstrates that the average-based value projection
is susceptible to the relative overgeneralization issue. In contrast, RAC maintains an optimistic value
estimation and accordingly excludes the effects caused by other agents’ sub-optimal actions. This
enables an efficient selection of the optimal joint action with the best reward 8. This also applies to

7

0 1 2 3 4 5
Time Steps 1e4

0

2

4

6

8

Te
st

 R
et

ur
n

Matrix Game

RAC (ours)
IQL
Hysteretic-Q
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

−40

−20

0

20

40

Te
st

 R
et

ur
n

Predator and Prey

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

Te
st

 W
in

 R
at

es

5m_vs_6m

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

Te
st

 W
in

 R
at

es

10m_vs_11m

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

2s3z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.1

0.2

0.3

Te
st

 W
in

 R
at

es

3s5z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

3s_vs_4z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

Te
st

 W
in

 R
at

es

3s_vs_5z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

2s_vs_1sc

RAC (ours) IQL Hysteretic-Q I2Q

Figure 2: Comparison results in the matrix game, predator and prey, and seven SMAC maps.

the Hysteretic Q-learning, which follows an optimistic value update and demonstrates efficiency in
simple tasks. When facing with complex tasks, such optimistic value update heavily suffers from the
overestimation and non-stationarity issues, leading to poor performance. We validate this insight in
subsequent comparisons. Similarly, I2Q shapes ideal transitions, which implicitly assume that other
agents select cooperative policies, and learning policies on them leads to the optimal joint actions.

Furthermore, we analyze the learned context-based value functions and per-agent individual optimistic
marginal values. As shown in Tab. 1b and Tab. 1c, for agents 1 and 2, the context-based value functions
can accurately approximate the rewards of all joint actions, thus validating the efficiency of episodic
return-aware context in representing the agents’ joint policy and action. Additionally, the individual
optimistic marginal value of each agent’s local action adheres to the optimistic property, and equals
the highest rewards when other agents select their cooperative actions. By enforcing per-agent value
function to imitate it using Eq. (10), the selection of agents’ optimal joint actions is achieved.

Predator and Prey. We further test all methods in the predator and prey, a partially observable task
featured by relative overgeneralization. We control 8 predators to capture 8 preys, and a +10 reward is
issued when two predators simultaneously capture a prey otherwise -2 is emitted for solitary hunting.

As depicted in Fig. 2, IQL suffers from the relative overgeneralization issue, and fails to learn effective
policies, leading to 0 reward. While Hysteretic Q-learning succeeds in learning cooperative policies
to achieve +40 rewards, its poor performance suggests the overestimation and non-stationarity issues
caused by the optimistic value update. In contrast, RAC maintains standard Bellman update of the
context-based value function, and solely derives optimistic value estimations regarding it to calculate
the individual optimistic marginal value. Therefore, RAC exhibits notable strengths in terms of both
learning efficiency and asymptotic performance. I2Q fails to learn effective policies and struggles in
0 reward. We hypothesis that the accurate approximation to QSS value is hardly achieved in partially
observable setting, hindering I2Q from shaping ideal transitions and learning cooperative policies.

SMAC. To validate the scalability of RAC in more complex tasks, we compare it against baselines on
seven SMAC maps (i.e., 2s3z, 3s5z, 3s_vs_4z, 3s_vs_5z, 5m_vs_6m, 10m_vs_11m, and 2s_vs_1sc).
The results, illustrated in Fig. 2, show that Hysteretic Q-learning performs the worst across all maps
due to the overestimation and non-stationarity caused by its optimistic value update. These two issues

8

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

−40

−20

0

20

40

Te
st

 R
et

ur
n

(a) Predator and Prey

m=5
m=10
m=15

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

Te
st

 W
in

 R
at

es

(d) 5m_vs_6m
m=5
m=10
m=15

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

−40

−20

0

20

40

Te
st

 R
et

ur
n

(b) Predator and Prey

β= 0.01
β= 0.1

β= 1.0
β= 10.0

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

Te
st

 W
in

 R
at

es

(e) 5m_vs_6m
β= 0.01
β= 0.1

β= 1.0
β= 10.0

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

−40

−20

0

20

40

Te
st

 R
et

ur
n

(c) Predator and Prey

RAC
RAC_w_ϕ i

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

Te
st

 W
in

 R
at

es

(f) 5m_vs_6m
RAC
RAC_w_ϕ i

Figure 3: Ablation studies regarding m and β of RAC in the predator and prey and 5m_vs_6m.

are exacerbated in complex tasks and hinder learning efficiency. In contrast, while IQL achieves com-
petitive performance on most maps, RAC significantly outperforms it on 5m_vs_6m, 10m_vs_11m,
3s5z, and 3s_vs_4z, demonstrating its effectiveness in addressing both non-stationarity and relative
overgeneralization in fully decentralized learning. On the remaining maps (2s3z, 3s_vs_5z, and
2s_vs_1sc), RAC performs comparably to IQL. We hypothesis that these maps pose fewer challenges
from non-stationarity and relative overgeneralization, and thus the benefit brought by RAC is not
obvious. I2Q surpasses RAC on 2s3z and 3s5z, indicating that shaping ideal transitions enhances fully
decentralized cooperative policy learning. However, I2Q shows inconsistent performance, performing
comparably or worse on other maps. This discrepancy may be attributed to its inability of accurately
estimating QSS values under partial observability, limiting its adaptability to certain maps.

5.2 Ablation Study

To examine the impact of m and β on RAC’s performance, we set m to 5, 10, 15 and β to 0.01, 0.1,
1.0, 10.0, which serve as multiple baselines. Additionally, we introduce RAC_w_ϕi, a variant where
the use of Qi

S is excluded, and each agent i selects actions solely based on ϕi. This baseline allows us
to evaluate the effect of separately learning Qi

S. As depicted in Fig. 3 (c), in the predator and prey task,
RAC_w_ϕi performs similarly to RAC, demonstrating that Qi and ϕi can be efficiently learned across
the entire return space in simple tasks. As a result, as shown in Fig. 3 (a) and (b), increasing m leads to
finer partitioning of the episodic return, enabling ϕi to be learned more accurately. Moreover, RAC’s
approach of making Qi

S imitate ϕi enhances its ability to learn cooperative policies, particularly as
β increases. However, in more complex tasks like 5m_vs_6m, a comprehensive coverage over the
entire return space is hardly achieved during early training, making it difficult to efficiently learn both
Qi and ϕi. Consequently, RAC_w_ϕi, which relies only on ϕi for action selection, fails to learn a
cooperative policy, as shown by its poor performance in Fig. 3 (f). In such scenario, an appropriate
selection of m and β is necessitated for balancing the TD loss (Eq. (9)) and the supervision loss
(Eq. (10)) of Qi

S. As depicted in Fig. 3 (d) and (e), RAC with m=10 and β=0.01 yields the best
performance, and these settings are adopted as the default for most SMAC maps.

6 Discussion

In this section, we provide a complementary discussion on three aspects of RAC: (1) its performance
compared with MARL methods under the centralized training with decentralized execution paradigm;
(2) its flexibility with respect to major components; and (3) its computational complexity analysis.

Empirical Assessment. We compare RAC with two representative baselines, QMIX [2] and VDN [1].
As shown in Fig. 4 in Appendix C.4, RAC significantly outperforms both QMIX and VDN on the
matrix game and the predator and prey tasks, where both QMIX and VDN suffer from sub-optimal
policies due to their representational limitations regarding the learned factored global action value

9

function [25]. On multiple SMAC maps, RAC exhibits superior performance in comparison to fully
decentralized baselines but underperforms relative to QMIX and VDN. We attribute this to RAC’s
limited ability to handle partial observability and to adequately cover the whole return space.

Flexibility Analysis. The context-based value function Qi necessitates comprehensive coverage of
the return space for efficient updates. When only Qi is learned, during the early training process,
coordinated behaviors are limited, and the achieved returns tend to fall within a low-value region
(i.e., small values of cκ). Consequently, when computing the individual optimistic marginal value
ϕi(st, a

i
t) = maxcκ∈C Q

i(st, cκ, a
i
t), ϕ

i(st, a
i
t) tends to approximate Qi(st, cκ, a

i
t) associated with

small cκ, which in turn corresponds to sub-optimal actions yielding low episodic returns.

For complex tasks such as SMAC maps, we empirically find that separately learning Qi
S(st, a

i
t) and

optimizing it with the TD loss and the supervision loss lead to satisfactory performance. Importantly,
we clarify that the inclusion of Qi

S is not a unique choice, and other alternatives are viable. In the
context of SMAC maps, the ability of Qi

S to aid in return-space coverage can be attributed to two main
factors: (1) the competitive performance of vanilla IQL, which makes Qi

S a reasonable candidate for
generating informative transitions; and (2) the incorporation of additional supervision signals, such as
the proposed supervision loss, through which Qi helps guide Qi

S in identifying and selecting agents’
local cooperative actions, improving its effectiveness in facilitating exploration and learning.

From perspective (1), Qi
S could be replaced by other MARL methods that demonstrate competitive

performance. From perspective (2), its exploration capability could be further enhanced by incorpo-
rating intrinsic objectives (e.g., curiosity-based rewards) or alternative supervision signals derived
from Qi to promote broader or more targeted exploration and facilitate cooperative action selection.

Complexity Analysis. The computational complexity of RAC comprises two main components:

(a) In terms of the context-based value function Qi, its inputs include both states and contexts, and
the outputs correspond to the value estimates of all possible local actions of agent i. Its input space
scales linearly with the dimension (or number) of contexts, and deep neural networks can generalize
well across such space. The number of its output is only |Ai|, where Ai is agent i’s local action space.

(b) In terms of the individual optimistic marginal value ϕi, when we set the number of contexts m
too large, the enumeration of all possible contexts typically leads to high computational complexity.
A promising approach is to use sampling-based derivation-free heuristic search methods, such as the
Cross-Entropy Method (CEM) [28], to approximate the maxima. Specifically, we iteratively draw
a batch of Nc random context samples from a candidate distribution Dk, e.g., a Gaussian, at each
iteration k. The best M < Nc samples (with the highest context-based value estimates) are then used
to fit a new Gaussian distribution Dk+1, and this process repeats K times. Although sampling-based
approximation can efficiently reduce the complexity caused by exhaustive search over an enormous
context space and make RAC more tractable when m is too large, maintaining multiple sampling
processes and performing iterative updates of the Gaussian distribution add additional complexity.

7 Conclusion

For fully decentralized cooperative MARL, this paper presents RAC to address both non-stationarity
and relative overgeneralization issues in a unified framework. RAC formalizes the local task dynamics
of each agent as a contextual MDP, and constructs contexts using discretized episodic return values.
Consequently, RAC learns a context-based value function for each agent to enable stationary policy
updates, and derives an individual optimistic marginal value to facilitate the selection of optimal joint
action. Extensive experiments across various cooperative tasks demonstrate its effectiveness.

Limitation and Future Work. Despite its strengths, there are three critical limitations that warrant
further exploration. First, RAC necessitates comprehensive coverage of the entire return space, and
learning a separate decentralized value function performs poorly in complex tasks. This limitation
could be addressed by combining RAC with efficient coordinated exploration techniques. Second,
RAC currently relies on manual discretization of prior episodic return bounds to construct contexts,
which limits adaptability and introduces high variance. To address this issue, we intend to explore
adaptive context modeling techniques and alternative context representations. Third, RAC currently
focuses only on the scenario where context changes between episodes (case (2)). To address case (1),
where context changes between time steps, we plan to construct contexts by modeling the local task
dynamics distribution over different time intervals. We leave these directions as our future work.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China (No.62506172,
No.62325206, No.62192783, No.62532003), the Key Research and Development Program of Jiangsu
Province (No.BE2023016-4), the Jiangsu Science and Technology Major Project (No.BG2024031),
the Natural Science Foundation of Jiangsu Province (No.BK20250658), and the Natural Science
Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommuni-
cations (No.NY225026). What’s more, the authors greatly thank all anonymous reviewers for their
valuable comments, which significantly contribute to improving the quality and clarity of this work.

References
[1] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,

Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[2] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

[3] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International conference on machine learning, pages 5887–5896. PMLR, 2019.

[4] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

[5] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

[6] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[7] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

[8] Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang.
Heterogeneous-agent reinforcement learning. Journal of Machine Learning Research, 25(32):
1–67, 2024.

[9] Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan Zhang,
Montgomery Alban, Iman Fadakar, Zheng Chen, et al. Smarts: An open-source scalable
multi-agent rl training school for autonomous driving. In Conference on robot learning, pages
264–285. PMLR, 2021.

[10] Xiaoqiang Wang, Liangjun Ke, Zhimin Qiao, and Xinghua Chai. Large-scale traffic signal
control using a novel multiagent reinforcement learning. IEEE transactions on cybernetics, 51
(1):174–187, 2020.

[11] Qianyue Hao, Wenzhen Huang, Tao Feng, Jian Yuan, and Yong Li. Gat-mf: Graph attention
mean field for very large scale multi-agent reinforcement learning. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 685–697, 2023.

[12] Jiechuan Jiang, Kefan Su, and Zongqing Lu. Fully decentralized cooperative multi-agent
reinforcement learning: A survey. arXiv preprint arXiv:2401.04934, 2024.

[13] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Independent reinforce-
ment learners in cooperative markov games: a survey regarding coordination problems. The
Knowledge Engineering Review, 27(1):1–31, 2012.

11

[14] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr,
Pushmeet Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent
reinforcement learning. In International conference on machine learning, pages 1146–1155.
PMLR, 2017.

[15] Kefan Su, Siyuan Zhou, Jiechuan Jiang, Chuang Gan, Xiangjun Wang, and Zongqing Lu. Multi-
agent alternate q-learning. In Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems, pages 1791–1799, 2024.

[16] Jiechuan Jiang and Zongqing Lu. I2q: A fully decentralized q-learning algorithm. Advances in
Neural Information Processing Systems, 35:20469–20481, 2022.

[17] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances
in neural information processing systems, 33:10199–10210, 2020.

[18] Martin Lauer and Martin A Riedmiller. An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. In Proceedings of the seventeenth international conference on
machine learning, pages 535–542, 2000.

[19] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an
algorithm for decentralized reinforcement learning in cooperative multi-agent teams. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 64–69. IEEE,
2007.

[20] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In
International Conference on Machine Learning, pages 2681–2690. PMLR, 2017.

[21] Liviu Panait, Keith Sullivan, and Sean Luke. Lenient learners in cooperative multiagent systems.
In Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, pages 801–803, 2006.

[22] Ermo Wei and Sean Luke. Lenient learning in independent-learner stochastic cooperative games.
Journal of Machine Learning Research, 17(84):1–42, 2016.

[23] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

[24] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nan-
tas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

[25] Tarun Gupta, Anuj Mahajan, Bei Peng, Wendelin Böhmer, and Shimon Whiteson. Uneven:
Universal value exploration for multi-agent reinforcement learning. In International Conference
on Machine Learning, pages 3930–3941. PMLR, 2021.

[26] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the tenth international conference on machine learning, pages 330–337, 1993.

[27] Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien
Ecoffet, Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep
deterministic dynamics gradients. In International Conference on Machine Learning, pages
2825–2835. PMLR, 2020.

[28] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss existing limitations and future works in Sec. 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

13

Justification: This work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide both algorithmic and experimental details in Appendix C.3. What’s
more, the source code is available in the supplementary materials. Together, these resources
ensure the reproducibility of the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code of our algorithm in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details can be found in Appendix C.3 and the source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are illustrated with the median performance and standard errors
over five random seeds, as depicted in all figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Sec. C.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work fully complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work has no societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not present such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We build our algorithm and baselines upon the PyMARL [24] framework, and
have appropriately cited the corresponding paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include the codebase of RAC in the supplemental material, and provide a
README regarding its usage.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLM exclusively for polishing the writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Partially Observable Setting

Task Formalization. A partially observable cooperative multi-agent task where agents make decision
in a fully decentralized manner is usually formalized as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP), which is denoted by a tuple ⟨N,S,A, P,R,O,Z, γ⟩. Dec-POMDP
differs from MMDP in that each agent solely has access to its local observation rather than the state. At
each time step t, each agent i receives its local observation oit ∈ Zi ∈ Z based on its local observation
function Oi(oit|st) ∈ O, where Zi denotes agent i’s observation space. Z and O represent all agents’
joint observation space and joint observation function, respectively. The partial observability limits
agents from fully perceiving the states, thereby exacerbating the non-stationarity. To deal with the
partial observability challenge, each agent i conditions its local policy πi(ait|τ it) and local value
function Qi(τ it , a

i
t) on its local action-observation history τ it = (oi0, a

i
0, o

i
1, a

i
1, . . . , a

i
t−1, o

i
t).

Extension to Dec-POMDP. To extend RAC to Dec-POMDP, we learn a context-based value function
Qi(τ it , cκ, a

i
t) for each agent i, and update it using the loss function defined as follows:

LC(θ
i) = E(oit,a

i
t,cκ,rt,o

i
t+1)∼Di

[
(rt + γmaxai

t+1
Qi(τ it+1, cκ, a

i
t+1)−Qi(τ it , cκ, a

i
t))

2
]
, (12)

and the individual optimistic marginal value is derived as follows:

ϕi(τ it , a
i
t) = maxcκ∈C Q

i(τ it , cκ, a
i
t). (13)

Furthermore, we condition the separately learned value function Qi
S(τ

i
t , a

i
t) on each agent i’s τ it . The

corresponding TD loss is defined as follows:

LTD(σ
i) = E(oit,a

i
t,rt,o

i
t+1)∼Di

[
(rt + γmaxai

t+1
Qi

S(τ
i
t+1, a

i
t+1)−Qi

S(τ
i
t , a

i
t))

2
]
, (14)

and the auxiliary supervision loss is defined below:

Lsup(σ
i) = E(oit,a

i
t,rt,o

i
t+1)∼Di [DKL[π

i(·|τ it)||πi
S(·|τ it))]], (15)

where πi(·|τ it) and πi
S(·|τ it) respectively denote the Boltzmann policy with respect to ϕi(τ it , a

i
t) and

Qi
S(τ

i
t , a

i
t), which are defined as follows:

πi(ait|τ it) =
exp(ϕi(τ it , a

i
t))∑

ai∈Ai exp(ϕi(τ it , a
i))

, πi
S(a

i
t|τ it) =

exp(Qi
S(τ

i
t , a

i
t))∑

ai∈Ai exp(Qi
S(τ

i
t , a

i))
. (16)

Empirical Validation. In Sec. 5, we evaluate RAC on the predator and prey and seven SMAC maps,
which are featured by the partially observable challenge. The results demonstrate that RAC yields
superior performance on these tasks, validating its effectiveness in solving partially observable tasks.

B The Distinction Clarification

For each agent i, the decentralized value function Qi(st, a
i
t) can be regarded as a projection of the

true joint action value function Q(st, a
i
t, a

−i
t). IQL adheres to an average-based projection as below:

Qi,π(st, a
i
t) =

∑
a−i
t

π−i(a−i
t |st)Qπ(st, a

i
t, a

−i
t), (17)

where Qπ(st, a
i
t, a

−i
t) is the joint action value function under a given joint policy π = (πi, π−i). It is

obvious that the average-based projection is easily affected by other agents’ sub-optimal actions and
suffers from the relative overgeneralization. In contrast, the optimistic projection is defined below:

Qi,opt(st, a
i
t) = maxa−i

t
Q∗(st, a

i
t, a

−i
t), (18)

where Q∗(st, a
i
t, a

−i
t) represents the joint action value function of an optimal joint policy π∗. The

optimistic projection assumes that other agents −i always select their cooperative local actions, thus
eliminating the impact of other agents’ non-cooperation. As a result, each agent i can identify and
select its local cooperative action based on Qi,opt(st, a

i
t), leading to the optimal joint policy.

Hysteretic Q-learning. Hysteretic Q-learning directly approximates Qi,opt(st, a
i
t) by Qi(st, a

i
t),

which is updated based on an optimistic value update below:

Qi(st, a
i
t)←

{
Qi(st, a

i
t) + δit if δit ≥ 0

Qi(st, a
i
t) + βδit else

, (19)

20

Table 2: Descriptions of maps used in this work.

Name Ally Units Enemy Units Type

2s_vs_1sc 2 Stalkers 1 Spine Crawler Asymmetric & Homogeneous

2s3z 2 Stalkers, 2 Stalkers, Symmetric & Heterogeneous3 Zealots 3 Zealots

3s5z 3 Stalkers, 3 Stalkers, Symmetric & Heterogeneous5 Zealots 5 Zealots
3s_vs_4z 3 Stalkers 4 Zealots Asymmetric & Homogeneous
3s_vs_5z 3 Stalkers 5 Zealots Asymmetric & Homogeneous

5m_vs_6m 5 Marines 6 Marines Asymmetric & Homogeneous
10m_vs_11m 10 Marines 11 Marines Asymmetric & Homogeneous

where β < 1 is a complement factor and δit denotes the temporal difference error (TD-error). It is
defined as follows:

δit = rt + γmax
ai
t+1

Qi(st+1, a
i
t+1)︸ ︷︷ ︸

learning target

−Qi(st, a
i
t).

(20)

Although Distributed Q-learning theoretically demonstrates that Qi(st, a
i
t) with the optimistic value

update converges to the optimal joint policy, the entire update process (Eq. (19)) solely relies on
the decentralized value function Qi(st, a

i
t). When facing with complex tasks where multiple agents

strongly influence each other, a fully decentralized value update often leads to instability and poor
convergence. Furthermore, Hysteretic Q-learning with function approximators (particularly the deep
neural networks) is susceptible to the overestimation issue, resulting in sub-optimal solutions. The
poor performance of Hysteretic Q-learning empirically validates this insight.

Return-Aware Context (RAC). In contrast, RAC decomposes the learning of Qi,opt(st, a
i
t) into

two distinct sub-processes. The first is that we learn a context-based value function Qi(st, cκ, a
i
t).

The context cκ represents the agents’ joint policy and thus Qi(st, cκ, a
i
t) approximates the true joint

action value function Q(st, a
i
t, a

−i
t), as empirically demonstrated by experiments in the matrix game.

Furthermore, the contexts enable stationary value updates of Qi(st, cκ, a
i
t). Based on the Bellman

update, Qi(st, cκ, a
i
t) finally converges to Q∗(st, a

i
t, a

−i
t).

The second is that we derive the individual optimistic marginal value ϕi(st, a
i
t) based on ϕi(st, a

i
t) =

maxcκ∈C Q
i(st, cκ, a

i
t). Consequently, as Qi(st, cκ, a

i
t) converges to Q∗(st, a

i
t, a

−i
t) following a

stationary value update, ϕi(st, a
i
t) approaches Qi,opt(st, a

i
t).

By implementing these two sub-processes, we ensure the stationary approximation of Qi,opt(st, a
i
t)

by ϕi(st, a
i
t) = maxcκ∈C Q

i(st, cκ, a
i
t). In comparison to Hysteretic Q-learning, the context-based

value function of RAC is free from the non-stationarity and overestimation issues. The superior
performance of RAC across various cooperative tasks further validates its effectiveness in enhancing
fully decentralized cooperative policy learning.

C Experimental Details

C.1 Environments

Matrix Game. Matrix game is a simple two-agent cooperative stage game where two agents must
select the optimal joint action (a1, a1) to receive the best reward 8. In addition to the optimal joint
action (a1, a1), there are two sub-optimal joint actions (a2, a2) and (a3, a3) that lead to 6 rewards.
For each decentralized agent, when the other agent selects the action uniformly, the sub-optimal local
actions a2 and a3 may be preferred over the optimal ones a1, leading to the relative overgeneralization.

Predator and Prey. Predator and prey is a partially observable multi-agent task involving 8 predators
and 8 preys. When a predator solely tries to capture a prey, a −2 punishment is emitted. In contrast,
when two predators cooperate to capture a prey simultaneously, they receive +10 reward.

SMAC. The StarCraft Multi-Agent Challenge (SMAC) serves as a widely used benchmark in which
a set of challenging maps is provided. These maps require cooperative MARL algorithms to make

21

Table 3: Challenges faced by all algorithms.
Algorithm Non-stationarity Relative Overgeneralization

IQL ! !

Hysteretic Q-learning ! %

I2Q % %

decentralized control for allied units against build-in AI enemies and achieve high win rates. In this
paper, we choose seven maps including 5m_vs_6m, 10m_vs_11m, 2s3z, 3s5z, 3s_vs_4z, 3s_vs_5z,
and 2s_vs_1sc to evaluate our algorithm. Details regarding these maps can be found in Tab. 2.

C.2 Baselines

We compare RAC with several baselines, namely IQL, Hysteretic Q-learning, and I2Q, as presented
in Tab. 3. Below is a brief introduction to each algorithm.

IQL. IQL learns a decentralized Qi(st, a
i
t) for each agent i, and updates it using the standard TD loss.

However, since IQL ignores the actions and policies of other agents, it suffers from non-stationarity
during value function updates. Moreover, the Qi(st, a

i
t) learned by IQL is an average-based projection

of the true joint action value function, leading to the issue of relative overgeneralization.

Hysteretic Q-learning. In this algorithm, each agent i learns an optimistic projection Qi,opt(st, a
i
t)

based on the optimistic value update paradigm (Eq. (19)). Such optimistic belief assumes that other
agents always select their cooperative actions, thus eliminating the negative effects caused by other
agents’ sub-optimal actions and addressing the relative overgeneralization issue.

I2Q. I2Q addresses both non-stationarity and relative overgeneralization by shaping ideal transitions,
which are constructed by selecting next states with the highest QSS value. These ideal transitions
implicitly assume that other agents follow cooperative policies. By learning from such transitions,
I2Q guides IQL agents toward optimal cooperative policies.

C.3 Experimental Setups

We implement all algorithms based on the PyMARL framework. For I2Q, we adopt its official source
code along with the recommended hyper-parameters to conduct experiments on both predator and
prey and SMAC maps. For the matrix game, we directly report I2Q’s results from the original paper.

For IQL, we use the original implementation provided in PyMARL. For Hysteretic Q-learning, we
set β=0.01 for the matrix game. For the predator and prey and SMAC maps, we set β=0.01, 0.1, 0.3,
0.5, and 0.7, and run multiple seeds using β that yields the best performance.

For our proposed algorithm RAC, the architecture of Qi
S is kept consistent with Qi of IQL. It consists

of a hidden layer (64 units, ReLU activation), a GRU module, and a linear layer (64 units) that outputs
the Q values of all local actions. For Qi(st, cκ, a

i
t), we provide two kinds of implementations: (1)

Normal-Net. This architecture contains a hidden layer (64 units, ReLU activation), a GRU module,
and a linear layer (64 units). The final linear layer takes the hidden states and contexts as inputs, and
outputs the Q values of all local actions. (2) Hyper-Net. It is comprised by a hidden layer (of 64 units,
ReLU activation), a GRU module, and a linear layer (of 64 units). The weights and biases of the final
linear layer are generated by two separate hyper-networks, which take the context as input.

For the matrix game and predator and prey tasks, we instantiate Qi(st, cκ, a
i
t) using the Hyper-Net

architecture. For the SMAC maps, we use the Normal-Net to implement Qi(st, cκ, a
i
t). Empirically,

we find these configurations work well. All other settings (e.g., learning rate, batch size) are kept
consistent across all algorithms.

The hyper-parameters of RAC across all tasks are provided in Tab. 4. In particular, m denotes
the number of episodic return intervals, while β is a scaling factor balancing the TD loss and the
supervision loss of Qi

S. Tepsilon denotes the anneal time steps of ϵ when ϵ-greedy policy is used for
exploration. Tmax represents the total number of training time steps, and Nmax is the size of the
replay buffer. Nbatch represents the size of sampled batches per training. α is the learning rate and γ

22

0 1 2 3 4 5
Time Steps 1e4

0

2

4

6

8

Te
st

 R
et

ur
n

Matrix Game

RAC (ours)
IQL
Hysteretic-Q

QMIX
VDN
I2Q

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

−40

−20

0

20

40

Te
st

 R
et

ur
n

Predator and Prey

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

5m_vs_6m

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

10m_vs_11m

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

2s3z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

3s5z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

3s_vs_4z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

3s_vs_5z

0.0 0.5 1.0 1.5 2.0
Time Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 W
in

 R
at

es

2s_vs_1sc

RAC (ours) IQL Hysteretic-Q I2Q QMIX VDN

Figure 4: Complementary comparison results of RAC against QMIX and VDN.

Table 4: Hyper-parameters of RAC across all tasks.

Tasks m β Tepsilon Tmax Nmax Nbatch Optimizer α γ ϵmax ϵmin

matrix game 4 10.0 50k 50000

5000 32 RMSprop 0.0005 0.99 1.0 0.05

predator and prey 15 1.0 50k 1000000
2s_vs_1sc 10 0.01 50k 2050000

2s3z 10 0.01 50k 2050000
3s5z 10 0.01 50k 2050000

3s_vs_4z 5 0.01 50k 2050000
3s_vs_5z 10 0.001 50k 2050000

5m_vs_6m 10 0.01 50k 2050000
10m_vs_11m 10 0.01 50k 2050000

is the discounted factor. We decrease ϵ from ϵmax to ϵmin within Tepsilon time steps. In addition, we
utilize RMSprop technique to update all networks of RAC using gradient descent.

C.4 Complementary Comparison

To further evaluate the performance gap between RAC and MARL methods under the centralized
training with decentralized execution (CTDE) paradigm, we compare RAC against two representative
CTDE-based baselines, QMIX and VDN. The comparison results are presented in Fig. 4.

C.5 Computational Cost

We run all experiments under five different random seeds, and plot the mean/std in all figures. The
experiments are carried out on a server, which comprises a AMD EPYC 7542 32-Core Processor
CPU, 504GB RAM, and 8 NVIDIA GeForce RTX 4090 D GPUs.

23

	Introduction
	Related Work
	Preliminary
	Multi-Agent Markov Decision Process
	Contextual Markov Decision Process

	Methodology
	Task Formalization
	Context Modeling and Usage
	Overall Learning Procedure

	Experiment
	Comparison Result
	Ablation Study

	Discussion
	Conclusion
	Partially Observable Setting
	The Distinction Clarification
	Experimental Details
	Environments
	Baselines
	Experimental Setups
	Complementary Comparison
	Computational Cost

