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Abstract

Clustering is a crucial task in the fields of Optimization and Machine Learning, with the
ability of grouping similar data points together being of particular importance. In this
paper, we propose a novel non-parametric algorithm that performs Global Clustering and
Anomaly Detection in an unsupervised manner. Our algorithm is both effective and effi-
cient, requiring no prior assumptions or domain knowledge to be applied. It features two
modes that utilize the distance from the dataset’s center for clustering data points together.
The first mode splits the dataset into global clusters where each cluster signifies proxim-
ity from the center. The second mode employs a threshold value for splitting the points
into outliers and inliers. We evaluate our proposal against other prominent methods using
synthetic and real datasets. Our experiments demonstrate that the proposed algorithm
achieves state-of-the-art performance with minimum computational cost.

1. Introduction
We begin our work by defining a vector x = (x1, x2, ... , xd) to be a data point in the d-
dimensional Euclidean space x ∈ Rd drawn iid from an unknown distribution X. Here,
the pdf of the distribution is also unknown, hence the probability of assuming a particular
point. In the context of outlier detection, a supervised clustering algorithm such as KNN
would generally perform well for a set of data X = {(x1, y1), (x2, y2), ... , (xN , yN )} with
known labels y ∈ {0, 1}, due to its ability to predict labels based on neighboring points.
However, in unsupervised clustering the labels are now latent with X being defined as
X = {(x1, •), (x2, •), ... , (xN , •)}, and splitting the data globally means that each point
belongs to a cluster that is yet to be observed. Therefore, each point needs to be assigned
to a particular cluster with center c ∈ C where C = {c1, c2, ...., cK} and K being a fixed
quantity defined by the user. In our work we assume a non-binary classification of anomalies,
and we aim to generate the set C consisting of K global centers, and assign each point to
the nearest cluster. Global clusters and the distance from their centers are defined in the
next sections. For each point x ∈ X the probability mass function of belonging to a cluster
from {c1, c2, .... , cK} is defined by

∑K
k=1 P (ck|x) = 1 where P (ck|x) needs to be estimated.

From a probabilistic standpoint is difficult to estimate:

P (ck|x) =
P (x|ck)P (ck)

P (c1)P (x|c1)+ . . . .+P (cK)P (x|cK) =
P (x|ck)P (ck)∑K
k=1 P (ck)P (x|ck)

since a distributional

assumption would have to be made, and even so, the probability of observing a particular
cluster is still unknown. We can however approximate P (ck|x) with a function that assigns
the point to the closest cluster-center, i.e.: P (ck|x) := f(x|C) = argminc∈C{d(x, c)} with
d(·) representing a distance measure.
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2. Background
Gaussian Mixture Models (GMM), leverage a set of data points {xi}Ni=1, assuming they arise
from a mixture of K Gaussian components. When the model parameters θ = (πk, {µk,

∑
k})

for each cluster are known, the most probable cluster for a data point x can be estimated
by c = argmaxk P (ck|x, θ) ∝ argmaxk P (ck|θ)P (x|ck, θ), using the Expectation Maximiza-
tion (EM) algorithm. K-means MacQueen et al. (1967) is an iterative clustering algo-
rithm that partitions a dataset, aiming to assign a point x to the closest cluster center,
i.e.: c = argmink∥x − µk∥2, where µk represents the cluster center, given by the mean

µk = 1
Nck

∑Nck
i=1 xi of within-cluster points.Unsupervised, density-based clustering algo-

rithms are designed to identify dense regions in data. DBSCAN - Ester et al. (1996) is
governed by two hyperparameters epsilon (ϵ) and MinPts, and is able to form a den-
sity if the conditions of Maximality (∀x, x′ : if x ∈ c and x′ is density reachable from
x => x′ ∈ c) and Connectivity (∀x, x′ ∈ c : x is density-connected to x′) hold true
w.r.t. to ϵ and MinPts values. LOF - Breunig et al. (2000) improves density-based clus-
tering by quantifying the degree that each point is isolated from the surrounding den-

sities, s.t. LRD(x) = 1/(

∑
x′∈Nk(x)dk(x,x′)

|Nk(x)| ). LOF introduced the Outlier Factor score,

LOF (x) =
∑

x′∈Nk(x)
LRDk(x′)
LRDk(x)

/|Nk(x)|, whereas LRD denotes the local reachability den-

sity, and Nk(x) refers to the k-nearest neighbors of x. The One-Class SVM Schölkopf et al.
(1999) is a binary classification algorithm that generates a decision boundary around the
majority of the data, identifying outliers as deviations from this boundary. Mathematically,
oSVM aims to solve the optimization problem: argminw,b,ξ

1
2∥w∥

2 + 1
vN

∑N
i=1 ξi − b subject

to the constraints wTϕ(xi) ≥ b− ξi and ξi ≥ 0, where ϕ(·) represents the RBF kernel and ξi
a slack variable for margin formulation. Isolation Forests - Liu et al. (2008) leverage binary
tree structures to isolate anomalies by recursively partitioning the data space. They employ
an anomaly score S(x) = 2E(h(x)

c(N) where E(h(x)) is the expected path of x in a tree, and

c(N) a normalization constant.

2.1. Defintions
Existing distance-based algorithms assign points to local clusters based on the distance
from their centroids. In the case of global clustering, the center needs to be in a single fixed
location, for measuring the topological distance of each point in the data space.

Definition 1 - Global Center: The center of a dataset is given by the set of average
values of each dimension: x̄ = {x̄j}dj=1.

Definition 2 - Global Clustering: Given a set of global clusters centers C =
{c1, c2, ... , CK} a point can be assigned to a cluster based on the minimum distance from
the clusters’ center, i.e.: cx = argminc∈C{d(x, c)}.

Definition 3 - Global Outliers: A point x is classified as an inlier if ∥x − x̄∥2 ≤ q
where q is the threshold distance for a point to be considered an inlier.

3. Global Unsupervised (GU)-Clustering

In the context of Global Clustering, a point x can be topologically located from the dataset’s

center with some finite distance. Here we are interested in generating synthetic labels y ∈ R
∀ x ∈ X which indicate the proximity of each point from the center. Specifically using (3.1)

as a distance measure,
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yi = ∥xi − x̄∥2 =

√√√√ d∑
j=1

(
x
(j)
i − x̄j

)2

(3.1)

we measure the global distance of each point from the center. This process generates the
vector Y , a univariate distribution of point-distances. This distribution results from the
fitting step of our proposal, as outlined in Algorithm 1.

Algorithm 1: Point-Distance from Global Center

Data: Input: X ∈ RN×d

Initialize distance vector Y = (0, 0, ... , 0) ∀ x ∈ X
for j ← 1 to d do

Y = Y + (Xj − X̄j)
2

end
Y ← Y 0.5

Furthermore, by utilizing the quantile discrepancy we can empirically measure the vari-
ability between a data point and a certain quantile. The vector of distances Y from (3.1),
results in a univariate random variable defined on the real line R with a strictly monotoni-
cally increasing CDF such that q(θ) = F−1

Y (θ) = inf{y : FY (y) ≥ θ} where θ ∈ [0, 1] is a
percentile and q(θ) its corresponding quantile.

3.1. Outlier Detection

For performing outlier detection we can use the quantile discrepancy, and determine the
value of q(θ) that minimizes the following variability measure:

θ

∫
y>q(θ)

|y − q(θ)| d

dy
FY (y) + (1− θ)

∫
y<q(θ)

|y − q(1− θ)| d

dy
FY (y) (3.1.1)

Equation (3.1.1) can be evaluated empirically, and provides a practical measure for quanti-
fying the spread of the distribution at certain quantiles, by:

var(Y ) =

∑N
i=1 I(yi > q(θ))∑N

i=1 I(yi)

N∑
i=1

θ |yi− q(θ)| +
∑N

i=1 I(yi ≤ q(θ))∑N
i=1 I(yi)

N∑
i=1

(1−θ) |yi− q(1−θ)|

(3.1.2)

where θ denotes the weight assigned to each quantile. Optimizing equation (3.1.2), we can

determine the value of θ that leads to the best separation between inliers and outliers based

on the corresponding quantile. However, it may not be feasible to solve equation (3.1.2)

analytically, and numerical optimization methods such as projected gradient descent are

necessary (since θ is constrained within the range [0,1]).

The quantile discrepancy for a single point can be mapped as f : R2 → {0, 1}, where

f(y, q(θ)) = I(y > q(θ)) and for the vector of distances Y :

Y = f(Y, q(θ)) := I(Y > q(θ)) (3.1.3)

where q(θ) denotes the threshold distance for a point to be considered an inlier. Thus,
we generate binary labels y ∈ {0, 1} to detect outliers based on their distance from the
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global center. Points that exceed a certain threshold distance are classified as outliers,
while the remaining points are considered inliers.

Algorithm 2: Global Outlier Detection

Data: Vector of distances Y = (y1, y2, ... , yN ), q
Y ← I(Y > q)

3.2. Global Clustering

For global clustering the same approach is adjusted for measuring the variability between a
data point and K quantiles. Particularly, we aim to minimize the variability measure based
on the number of chosen clusters K. Equation (3.1.1) can now be expressed as:

K−1∑
k=1

(1−
K∑
j=1
j ̸=k

θj)

∫ q(θk+1)

y≥q(θk)
|y − q(θk)|

d

dy
FY (y) dy (3.2.1)

Evaluating the integral, the overall variability of Y can be measured by:

var(Y ) =
K−1∑
k=1

(1−
K∑
j=1
j ̸=k

θj) |q(θk+1)− q(θk)| P (q(θk) ≤ Y ≤ q(θk+1)) (3.2.2)

Equation (3.2.2) can be optimized to determine the optimal number of clusters that
best split a dataset. Future work aims to explore techniques such as reducing in-cluster
variability (similar to the elbow method in k-means), or using gradient descent for finding
the optimal value of K. For measuring the overall variability of a single point:

K−1∑
k=1

(1−
K∑
j=1
j ̸=k

θj) |q(θk+1)− y| (3.2.3)

Following, we can estimate K cluster centers by splitting Y into K quantiles, where the

value of each quantile represents the center of each cluster.

C = {c1, c2, ... , cK} := {q(θ1), q(θ2), ... , q(θK)}

and for measuring the distance from each quantile (cluster-center):

{(1−
K∑
j=1
j ̸=k

θj) |ck − y|} ∀ ck ∈ C (3.2.4)

Assuming a choice of equally spaced percentiles, we can omit the weights of each
quantile, and the cluster for each point in Y can be determined based on the shortest
distance from each cluster-center, such that:

cx = argmin
k∈{1,..,K}

{|ck − y|} (3.2.5)

Thus, we can assign the points to the closest cluster by measuring the distance from
each cluster-center. Measuring the absolute distance from the center of each cluster, we are
now able to group points from both ends of the data space, and permit them to be in the
same cluster. A practical implementation of Global Clustering is presented in Algorithm 3.4



GUC: Unsupervised non-parametric Global Clustering and Anomaly Detection

Algorithm 3: Assigning Points to K Global Clusters

Data: Vector of distances Y = (y1, y2, ... , yN ), K
Calculate K quantiles from Y
Y ← argmink abs((q1, q2, ..., qK)− Y )

4. Experiments and Results

4.1. Global Clustering in Synthetic Datasets

The proposed notion of Global Clustering is applied to low-dimensional synthetic datasets
for visual inspection. Common metrics used to evaluate the quality of an unsupervised
clustering algorithms, such as the silhouette coefficient and Dunn’s index are not applicable
in global clustering since they measure the distance from within-cluster points. Therefore
we measure the average distance of the points of each cluster from the dataset’s center, 1

Nc1

Nc1∑
i=1

yi,
1

Nc2

Nc2∑
i=1

yi, ... ... ,
1

NcK

NcK∑
i=1

yi

 (4.1)

where Yi as defined by equation (3.1). This allows us to perform global clustering and
quantify the rank of each point as an outlier.

4.1.1. Synthetic Dataset 1. single-mode density with 2 dimensions

Cluster K-Means DSCAN GMM GU-Clustering

1 0.3289 0.3653 0.4896 0.0695
2 0.3167 0.1610 0.374 0.1911
3 0.3429 0.2614 0.2742 0.3261
4 0.3977 0.1733 0.2806 0.5341

Table 1: Average distance from the global center

Figure 1: For the algorithms that allow cluster selection K was set to 4. DBSCAN generated a
large number of clusters and does not produce meaningful results for either local or global
clustering. GMM and K-Means split the data into 4 local clusters.
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4.2. Outlier Detection

Although unsupervised anomaly detection does not utilize any label information, in this
context they are needed for evaluation and comparison. For outlier detection, the rank of
the anomalies should be considered. Specifically, each point should be ranked as being an
outlier compared against the other data points that comprise the dataset. For evaluating
predictive capabilities, the F1 score is employed due to the inherent class imbalance of
outlier prediction datasets.

Dataset Robust Covariance oSVM iForest LOF GU-Clustering

b-cancer 0.794 0.603 0.795 0.846 0.988
pen-global 0.601 0.660 0.750 0.706 0.945
letter 0.557 0.544 0.509 0.701 0.469
speech 0.5 0.505 0.508 0.517 0.492
sattelite 0.756 0.679 0.783 0.601 0.993
pen-local 0.5 0.5 0.5 0.5 0.5
annthyroid 0.672 0.502 0.527 0.492 0.482
shuttle 0.846 0.731 0.978 0.516 0.927
aloi 0.498 0.517 0.5 0.563 0.605
kdd99 0.502 0.665 0.761 0.501 0.839

Table 2: Comparison of the discriminative performance of each outlier detection algorithm. GU-
Clustering performs well, yielding the highest AUC score (higher is better) in 5 of the 10
datasets that were used in this comparison.

Dataset Robust Covariance oSVM iForest LOF GU-Clustering

b-cancer 0.978 0.972 0.989 0.992 0.988
pen-global 0.842 0.924 0.944 0.935 0.942
letter 0.896 0.942 0.939 0.963 0.967
speech 0.967 0.976 0.984 0.984 0.991
sattelite 0.986 0.991 0.994 0.988 0.993
pen-local 0.997 0.997 0.999 0.999 0.999
annthyroid 0.954 0.964 0.966 0.963 0.981
shuttle 0.989 0.990 0.999 0.982 0.991
aloi 0.941 0.971 0.970 0.974 0.985
kdd99 0.997 0.999 0.999 0.998 0.999

Table 3: Comparison of the predictive performance of each outlier detection algorithm. In terms of
F1 score (higher is better) GU-clustering performs the best by either leading the results
or being a close second.

The most prominent algorithms for outlier detection are compared against our proposal
for measuring their performance. All of their hyperparameters were left at default with
the contamination parameter set as the outlier percentage from Table 6 for achieving the
best possible performance. For GU-Clustering, the hyperparameter q was set to 0.999. The
value at q signifies the threshold distance for points to be classified as inliers. Preprocessing
included applying a min-max transformation so the scale of all dimensions was between
[0,1]. No other operations were performed with the datasets as presented by Goldstein and
Uchida (2016), with further details provided in Appendix A.
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5. Conclusions
Clustering is a critical process that aims to uncover the underlying structure of a set of
data, which in turn can be harnessed to improve various aspects of optimization in Machine
Learning. Despite its importance, past work in this area has not fully explored the potential
of global clustering. In turn, we addresses the limitations of the current solutions by provid-
ing a novel and effective framework for both global clustering and anomaly detection. Using
quantiles to split the distribution into K regions, each point is assigned to the value of the
closest quantile (defined as the cluster center in the global clustering mode) or classified as
an outlier if it exceeds the cutoff distance (outlier detection mode). Our proposal achieves
state-of-the-art performance, is computationally efficient, has no underlying assumptions
and can be applied to a wide range of datasets.
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Appendix A. Datasets

The following datasets as presented by Goldstein et.al. Goldstein and Uchida (2016), are
used for comparative evaluation of unsupervised anomaly detection algorithms. These
datasets come from various domains and they differ in size, outlier percentage, and di-
mensionality, offering a broad evaluation spectrum.

Dataset Size Dimensions Outliers Percentage

b-cancer - Lichman et al. (2013) 367 30 10 2.72%
pen-global - Lichman et al. (2013) 809 16 90 11.12%
letter - Lichman et al. (2013) 1,600 32 100 6.25%
speech - Brümmer et al. (2012) 3,686 400 61 1.65%
sattelite - Lichman et al. (2013) 5,100 36 75 1.47%
per-local - Lichman et al. (2013) 6,724 16 10 0.15%
ann-thyroid - Lichman et al. (2013) 6,916 21 250 3.61%
shuttle - Lichman et al. (2013) 46,464 9 878 1.89%
aloi - Geusebroek et al. (2005) 50,000 27 1,508 3.02%
kdd99 - Lichman et al. (2013) 620,098 29 1,052 0.17%

Table 4: Datasets for Benchmarking

Appendix B. Evaluation of Computational Performance

We now review the computational performance of the algorithms that are most prevalent in
unsupervised clustering and are featured in this work, both for global clustering, and outlier
detection. GU-Clustering operates in two modes, a Global Clustering mode, and a Global
Anomaly Detection mode. It is designed to be simple to implement, yet highly effective
and efficient. Since the data are stored in contiguous blocks of memory, it allows to perform
component-wise operations. Component-wise operations are computationally efficient, and
allow for vectorized operations, rather than looping over each element of the data structure
individually.

Algorithm Run time complexity

K-means O(nKdi)
GMM O(nKd3)

FMCD (RC) O(nlog(n))
DBSCAN O(nlog(n))

LOF O(n2) +O(nlog(n))
oSVM O(n2)
iForest O(n)

GU-Clustering O(d)

Table 5: Run Time Complexity of featured unsupervised clustering algorithms

Although there are various implementations of the algorithms that are presented above,
we review the variants used for benchmarking our proposal. Generally, algorithms that use
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covariance matrices to uncover the relationships between points tend to be slow, since a run
time complexity of O(n3) is required for computing the covariance matrix, and cannot be
applied efficiently to large datasets. Despite that, it is worth mentioning that in the case
of oSVM, the run time complexity reduces to O(n2) when the contamination parameter is
provided. FMCD (Robust Covariance) is more efficient since it uses a sample of the dataset
for estimating the covariance matrix. Traditional K-means needs to sum the distance for
d dimensions, for n points, and check for K clusters if the point can be included. Usually,
it takes a number of i iterations to converge to the optimal result. Depending on the
implementation of the algorithm this can be reduced to a time complexity of O(nKi).
iForest is the most efficient among the competing algorithms operating in linear time for
the evaluation of each point. DBSCAN and LOF also operate in a polynomial run time
complexity, for visiting every neighboring region and testing each point as a candidate for
that region. LOF however, does default to a higher run time complexity, since it needs to
compute the score for each data point and work out the upper/lower bounds for its minpts
parameter. GU-Clustering is by far the most efficient algorithm since all its operations
are performed component-wise, and requires only d iterations for fitting the model. In the
evaluation process, the run time complexity is reduced to O(K) for the global clustering
mode and O(1) for the outlier detection mode.

Dataset Robust Cov. oSVM iForest LOF GU-Clustering

b-cancer 0.13s 0.00s 0.31s 0.02s 0.00s
pen-global 1.12s 0.02s 0.34s 0.02s 0.00s
letter 2.37s 0.06s 0.39s 0.12s 0.00s
speech 65.9s 0.46s 2.58s 0.54s 0.01s
sattelite 5.58s 0.13s 0.77s 0.63s 0.00s
pen-local 4.67s 0.09s 0.81s 1.24s 0.00s
annthyroid 1.18s 0.41s 0.80s 1.16s 0.00s
shuttle 21.9s 5.90s 3.61s 5.09s 0.01s
aloi 11.5s 22.4s 5.25s 36.7s 0.01s
kdd99 161s 0.79hrs 50.9s 2.13hrs 0.14s

Table 6: Computational performance comparison of the algorithms evaluated in section 4.2. The
experiments were conducted on a Google Colab environment with an Intel Xeon(R) CPU
(1 core @ 2.2 GHz) and 12 GB of memory. GU-Clustering is more frugal on resources and
significantly more efficient in terms of computational time.
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Appendix C. Visual Inspection with Prominent Anomaly Detection
Algorithms

Figure 2: This application is an extension of scikit-learn’s section of comparing outliers for anomaly
detection Pedregosa et al. (2011). The datasets contain one or two modes (regions of high
density) to illustrate the ability of the algorithms to cope with multimodal data. For each
dataset, 15% of samples are generated as random uniform noise. This proportion is the
value given to the nu parameter of the oSVM and the contamination parameter of the
other outlier detection algorithms. The decision boundaries between inliers and outliers
are displayed in black except for LOF and GU-Clustering as they do not have a predict
method to be applied to new data. All algorithms parameters were hand-picked by the
authors for achieving the best results. GU-Clustering effectively detects global outliers,
as seen in the figure above, providing a new perspective to outlier detection. Similar to
the results from the previous sections, the outliers detected focus on the global position
of the points rather than outliers belonging to specific densities. Similar to LOF, GU-
Clustering does not need to be fitted to a dataset before classifying new points, thus
offering the possibility of detecting outliers in real time. Furthermore, GU-Clustering
does not require prior knowledge of the contamination fraction and can achieve state-of-
the-art performance using a default value for q.
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