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ABSTRACT

Large Language Models (LLMs) trained with reinforcement learning and verifi-
able rewards have achieved strong results on complex reasoning tasks. Recent
work extends this paradigm to a multi-agent setting, where a meta-thinking agent
proposes plans and monitors progress while a reasoning agent executes subtasks
through sequential conversational turns. Despite promising performance, we iden-
tify a critical limitation: lazy agent behavior, in which one agent dominates while
the other contributes little, undermining collaboration and collapsing the setup to
an ineffective single agent. In this paper, we first provide a theoretical analysis
showing why lazy behavior naturally arises in multi-agent reasoning. We then
introduce a stable and efficient method for measuring causal influence, helping
mitigate this issue. Finally, as collaboration intensifies, the reasoning agent risks
getting lost in multi-turn interactions and trapped by previous noisy responses.
To counter this, we propose a verifiable reward mechanism that encourages de-
liberation by allowing the reasoning agent to discard noisy outputs, consolidate
instructions, and restart its reasoning process when necessary. Extensive experi-
ments demonstrate that our framework alleviates lazy agent behavior and unlocks
the full potential of multi-agent framework for complex reasoning tasks.

1 INTRODUCTION

Recent advances in prompting and training have markedly improved the multi-step reasoning abil-
ities of large language models (LLMs) (Wei et al., 2022; Kojima et al., 2022; Wang et al., 2022;
Zhang et al., 2022; Ton et al., 2024; Yeo et al., 2025; Zhu et al., 2025; Chowdhury & Caragea,
2025; Mukherjee et al., 2025; Balcan et al., 2025). Techniques such as chain-of-thought prompting
(Wei et al., 2022; Kojima et al., 2022) and structured methods like Tree-of-Thoughts and Graph-
of-Thoughts (Yao et al., 2023; Besta et al., 2024) expand the space for deliberation. Building on
this, Large Reasoning Models (LRMs) trained with supervised and reinforcement learning using
verifiable rewards achieve strong performance on math, code, and planning tasks (Jaech et al., 2024;
Guo et al., 2025a; Comanici et al., 2025; Plaat et al., 2024; Huang & Chang, 2022; Zhang et al.,
2023b; Li et al., 2025b; Chen et al., 2025). More recently, multi-agent frameworks enable LLMs
with specialized roles to collaborate via planning, delegation, and debate, echoing human team dy-
namics (Li et al., 2023; Wu et al., 2024a; Chen et al., 2023; Du et al., 2023; Yuan & Xie). Likewise,
single-agent multi-turn interaction settings have gained attention as another path to enhance reason-
ing (Wan et al., 2025; Shi et al., 2025; Wei et al., 2025; Zhou et al., 2025; Li et al., 2025c; Lu et al.,
2025; Wang et al., 2025; Zhang et al., 2025a; Zeng et al., 2025; Jin et al., 2025).

To support multi-agent and multi-turn reinforcement learning, multi-turn Group Relative Policy Op-
timization (GRPO) (Wan et al., 2025; Shi et al., 2025; Wei et al., 2025) and its variants (Guo et al.,
2025b; Zhang et al., 2025c; Ning et al., 2025; Xue et al., 2025) compute advantages and importance
ratios at the turn level, enabling finer-grained optimization and more precise credit assignment.
Building on this foundation, ReMA (Wan et al., 2025) introduces a multi-agent LLM reasoning
framework with two specialized roles: a meta-thinking agent, which decomposes tasks, sets inter-
mediate goals, and adapts based on feedback, and a reasoning agent, which performs step-by-step
computations and proofs before returning intermediate results. The agents alternate sequentially, but
since only a final outcome reward is available, ReMA computes a group advantage following GRPO
(Shao et al., 2024) and uniformly assigns this trajectory-level signal to every turn in the rollout.
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Despite its effectiveness, we empirically find that ReMA suffers from a critical issue of lazy agents:
one of the agents contributes only trivially to the multi-agent system. Although this phenomenon has
been widely acknowledged in traditional multi-agent reinforcement learning under sparse-reward
settings (Sunehag et al., 2018; Foerster et al., 2018; Castellini et al., 2022; Jaques et al., 2019; Wang
et al., 2020; Liu et al., 2023), prior work has primarily focused on scenarios where multiple agents
act simultaneously. In contrast, our findings are surprising because agents in our setting act se-
quentially. An early agent’s trivial action not only fails to contribute but also shapes the state for
subsequent agents. As later decisions depend on this evolving state, a lazy action can misguide the
reasoning trajectory and compound its negative influence. Intuitively, such interdependence across
turns should discourage laziness, especially as overall performance improves during training. How-
ever, contrary to this expectation, we find that ReMA-trained reasoning agents still adopt shortcut
behaviors. As shown in Section 4, our case study reveals that reasoning agents often contribute
only trivially, typically by summarizing or copying the meta-thinking agent’s responses without
genuine questioning or reflection. As a result, the meta-thinking agent ends up carrying almost the
entire reasoning process. Our causal-effect experiments further show that while both agents ini-
tially contribute substantially when initialized from the base model, the reasoning agent’s influence
diminishes markedly as training progresses, leaving the meta-thinking agent dominant.

The critical issue of lazy agents in multi-agent systems risks collapsing the entire system into a
single agent, thereby limiting the potential benefits of collaboration in improving performance. In
this paper, we propose Multi-Agent Meta-Reasoning Done Right (Dr. MAMR). We begin with
a theoretical analysis of multi-turn GRPO to investigate the root cause of lazy agent behavior and
identify a key bias in its loss formulation: the normalization term, intended to prevent sequence-level
bias toward longer rollouts, inadvertently drives the model to prefer continuations that minimize the
number of turns given the same prefix. As a result, agents are implicitly incentivized to complete
reasoning with fewer interactions, often bypassing collaborative reflection or correction, and over
time, this dynamic gives rise to lazy agents that contribute little to the reasoning process. Our
theoretical insight not only explains the emergence of lazy agents but also sheds light on future
work in designing objectives for multi-turn reinforcement learning.

While correcting the loss formulation partially mitigates the problem, it does not eliminate it. To
further address this issue, we propose measuring the causal influence (Bogdan et al., 2025) of each
reasoning step on subsequent process. A challenge arises in online training: the policy generates
only a single continuation per step, so the estimated influence reflects just one trajectory. In contrast,
considering multiple continuations would show how the step contributes across diverse trajectories,
providing a more reliable estimate of its overall contribution and mitigating potential bias intro-
duced by phrasing (Pavlick & Callison-Burch, 2016; McCoy et al., 2019; Merrick & Taly, 2020; Li
et al., 2024), but such resampling is computationally prohibitive in online RL. Inspired by Feng et al.
(2025); Li et al. (2021), we introduce a Shapley-inspired causal influence method. Instead of eval-
uating each step in isolation, we group semantically similar steps across rollouts and average their
influence scores. This avoids additional sampling and produces robust estimates during training.

As lazy behavior diminishes and agents engage more productively, interaction frequency increases.
However, as Laban et al. (2025) show, LLMs in multi-turn settings often overcommit to incomplete
early context, making premature assumptions. A similar risk arises here: the meta-thinking agent
acts like a user providing incremental instructions, while the reasoning agent may become misled by
its own earlier outputs, as confirmed in Sec. 5.3. To overcome this, we propose training the reason-
ing agent to adaptively discard its prior outputs, re-aggregate instructions, and restart reasoning when
needed. To accurately credit such restart behavior, we design a novel verifiable reward mechanism.
Building on this, we assign step-level credit by aggregating outcome reward, causal influence, and
restart signals. Extensive experiments demonstrate that our method effectively mitigates lazy-agent
behavior and unlocks the potential of multi-agent frameworks for complex reasoning.

Overall, our contributions are as follows: (1) We identify a critical issue of lazy agents in multi-
agent reasoning frameworks and provide a theoretical analysis of multi-turn GRPO to explain its
underlying cause. (2) We propose a Shapley-inspired method for measuring causal influence at the
step level, further mitigating the lazy agent problem. (3) As agents engage in more frequent collab-
oration, we design a novel verifiable reward mechanism for restart behavior, enabling the reasoning
agent to recover from noisy intermediate steps and avoid getting lost in prolonged interactions,
thereby pushing the performance boundary of multi-agent LLMs on complex reasoning tasks.
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2 RELATED WORK

Multi-Agent RL. Multi-agent RL (MARL) studies how agents coordinate to maximize collective
rewards, with credit assignment as a central challenge. Classical approaches include value decom-
position (Sunehag et al., 2018), counterfactual baselines (Foerster et al., 2018), regression-based
rewards (Castellini et al., 2022), role-based coordination (Wang et al., 2020), and model-based in-
fluence estimation (Liu et al., 2023). With LLM agents, MARL has been adapted for multi-turn
reasoning and dialogue, e.g., turn-level credit assignment (Zeng et al., 2025), critic-driven step-
wise rewards (Zhou et al., 2025), communication-efficient training (Liao et al., 2025), addressing
coarse reward traps (Wang et al., 2025), and framing LLM collaboration via MAGRPO (Liu et al.,
2025a). A persistent issue is lazy agents, motivating causal influence estimation (Bogdan et al.,
2025; Nguyen et al., 2025; Liu et al., 2024b) to enable finer-grained credit assignment.

LLM reasoning. Large Language Models (LLMs) excel across diverse NLP tasks (Brown et al.,
2020; Chowdhery et al., 2023; Du et al., 2022; Dubey et al., 2024; Wenzek et al., 2019). Chain-
of-thought prompting improves reasoning by eliciting intermediate steps (Wei et al., 2022; Kojima
et al., 2022; Nye et al., 2021), while extensions like Tree-of-Thoughts and Graph-of-Thoughts en-
able structured, non-linear reasoning (Yao et al., 2023; Besta et al., 2024). These advances motivate
Large Reasoning Models (LRMs) (Guo et al., 2025a; Achiam et al., 2023; Grattafiori et al., 2024;
Xu et al., 2023; Zhou et al., 2022; Wu et al., 2024b; Qi et al., 2024; Chae et al., 2024), which com-
bine supervised fine-tuning and reinforcement learning to achieve state-of-the-art results on math,
coding, and planning (Jaech et al., 2024; Guo et al., 2025a; Comanici et al., 2025; Yang et al., 2024a;
2025; Lightman et al., 2023; Wang et al., 2023). Beyond single-model reasoners, multi-agent frame-
works leverage role assignment, orchestration, and debate to coordinate specialized LLM agents for
complex tasks (Li et al., 2023; Wu et al., 2024a; Chen et al., 2023; Du et al., 2023; Yuan & Xie).

A detailed review of related work on MARL, hierarchical RL and LLM reasoning is in Appendix A.

3 BACKGROUND

ReMA (Wan et al., 2025) models reasoning as a multi-turn meta-thinking process defined as:

x
meta-thinking−−−−−−−→

πh

m1
reasoning−−−−−→

πl

y1
meta-thinking−−−−−−−→

πh

m2
reasoning−−−−−→

πl

y2 . . .
reasoning−−−−−→

πl

yT , (1)

where T is the number of turns. The high-level policy πh (meta-thinking agent) generates meta-
level thoughts mt from the input x and history {m,y}<t, while the low-level policy πl (reasoning
agent) produces token-level outputs yt under the guidance of mt. To improve training efficiency,
both agents share the same model weights θ but are distinguished by role-specific system prompts
Sh and Sl: πh = πθ(· | Sh, ·), πl = πθ(· | Sl, ·).
Multi-turn GRPO (Wan et al., 2025; Wei et al., 2025; Shi et al., 2025) extends GRPO (Guo et al.,
2025a) to support end-to-end multi-turn tasks such as mathematical reasoning (Wan et al., 2025)
and web-based agent decision-making (Wei et al., 2025). A key innovation is the introduction of a
turn-level importance ratio, enabling fine-grained credit assignment across dialogue turns.

Specifically, given the dataset D and G trajectories for each question, the objective is defined as:
J (θ) = E(x,y∗)∼D, {(mi,yi)}Gi=1∼πθold

(·|x) 1

G

G∑
i=1

1

Ti

Ti∑
t=1

1

|yi,t|

|yi,t|∑
j=1

(
min

(
ri,t(θ)Âi,t,j , clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t,j

)
− β DKL(πθ∥πref)

) ,

(2)
where yi,t,j denotes the j-th token at turn t in trajectory i, Âi,t,j is the token-level advantage and
1
Ti

is a normalization to avoid bias toward rollouts with more turns. The turn-level importance ratio
ri,t(θ) is computed as:

ri,t(θ) =
1

|yi,t|

|yi,t|∑
j=1

πθ

(
yi,t,j | x, {mi,·,yi,·}<t,mi,t,yi,t,<j

)
πθold

(
yi,t,j | x, {mi,·,yi,·}<t,mi,t,yi,t,<j

) , (3)

which aggregates token-level likelihood ratios within each reasoning turn. Similar variants of Eq. 2
were also proposed in (Guo et al., 2025b; Zhang et al., 2025c; Ning et al., 2025; Xue et al., 2025).
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Let's start by considering 
the total number of 
letters and any 
repetitions […] The 
number of distinct 
arrangements is: 2520

[FINISH]

The word "ELLIPSE" consists of 7 
letters: E, L, L, I, P, S, E […] the number 
of distinct arrangements is: 1260

To determine the number of ways to arrange 
the letters of the word "ELLIPSE” […] Let's start 
by counting the letters. How many letters are 
there in the word "ELLIPSE"? And which letters 
are repeated?

Great job walking through the calculation! Let's 
summarize: […] Answer: 1260. [FINISH]

\\boxed{1260}\\boxed{2520}

[ ]

Question: Determine the number of ways 
to arrange the letters of the word ELLIPSE

…

Q 𝑠̃2 …

𝑠̃3 …

CI Group Comp.

Meta thinking agent

CI

Group 
Comp.

…Q

𝑠̃2 𝑠̃3𝑠̃1

𝑠̃1

Reasoning agent Attention mask

CI

CI

CI

(a) Comparison of reasoning process (Lazy vs. Non-Lazy)

(b) Shapley-inspired causal influence 

(c) Verifiable reward for <restart>

<restart>

Figure 1: (a) Case study on lazy agents (full process in Appendix D); (b–c) our proposed modules.

4 THE LAZY AGENT ISSUE IN MULTI-AGENT LLM REASONING

In this section, we present empirical evidence of the lazy-agent problem in the multi-agent frame-
work ReMA (Wan et al., 2025). As illustrated in Fig. 1(a), the reasoning agent often outputs blanks
at intermediate steps, shifting the burden to the meta-thinking agent and ultimately leading to in-
correct answers. By contrast, when both agents actively contribute, collaboration yields correct
solutions. To quantify laziness, we measure the causal influence of an agent’s actions by adapting
the attention-suppression method from Bogdan et al. (2025). Let st denote an action taken by either
agent. We suppress all attention (across layers and heads) to the tokens corresponding to st and
define the influence on the subsequent action st+1 as the KL divergence between the model’s logits
with and without suppression. Intuitively, a small divergence indicates that the agent’s step has little
impact on subsequent reasoning and thus reflects lazy behavior, whereas a large divergence shows
that the step substantially shapes the reasoning process. See Appendix C.1 for experimental details.
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Figure 2: Causal effect comparison. Performance on MATH500 under different configurations: (a)
75.0, (b) 74.4, (c) 75.6, and (d) 78.4.

To examine whether the lazy-agent issue arises from the ReMA framework, we compare causal in-
fluence under three settings: (1) untrained agents initialized from the base model, (2) agents trained
with ReMA, and (3) agents trained with ReMA but prompted with instructions discouraging trivial
responses (details in Appendix C.1). The results are shown in Fig. 2(a–c). (1) Compared to the
untrained baseline, the reasoning agent in the standard ReMA setting contributes substantially less
than the meta-thinking agent, revealing clear lazy-agent behavior. This imbalance coincides with
a performance drop from 75.0 to 74.4 on MATH500 despite training. (2) Adding a prompt to en-
courage non-trivial responses narrows the causal-effect gap and improves performance from 74.4
to 75.6. However, the reasoning agent still shows weaker influence than in the baseline, and the
modest 0.6-point gain suggests reliance on shortcuts rather than meaningful reasoning. In summary,
ReMA is prone to producing lazy agents. While prompt engineering can partially mitigate the issue,
it does not fully resolve it. This underscores the need for more robust methods, particularly in online
reinforcement learning, to ensure balanced agent contributions.
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5 DR. MAMR: MULTI-AGENT META-REASONING DONE RIGHT

5.1 THEORETICAL ANALYSIS ON THE EMERGENCE OF LAZY AGENT

Our preliminary experiments in Sec. 4 reveal the critical issue of lazy agents in advanced multi-
agent reasoning frameworks. In this section, we provide a theoretical analysis of why such behavior
emerges, even when the overall system performance appears to improve. Following GRPO (Shao
et al., 2024) and DAPO (Yu et al., 2025), multi-turn GRPO (Wan et al., 2025; Wei et al., 2025)
introduces a normalization term to reduce sequence-level bias toward longer rollouts. As shown in
Eq. 2, the objective includes a factor 1

Ti
that averages the turn-level advantages across each trajectory.

However, we find that this normalization introduces a structural bias: given the same context, if two
alternative actions produce trajectories with equal final reward but different numbers of turns, the
model favors the action leading to fewer turns. To illustrate, we consider the reasoning agent as an
example and present the following theory:

Theorem 1 Let gt(τ) = 1
T (τ) Zt(τ) be the gradient contribution at turn t for trajectory τ with

Zt(τ) ≜ 1
|yt|

∑|yt|
j=1 rt(θ) Ât,j ∇θ log πθ(yt,j | x,m≤t, y<t, yt,<j) . Consider two continuations

from the same prefix: a short trajectory τS with horizon TS and a long trajectory τL with horizon
TL > TS, leading to the same final reward. Define κ ≜ ∥Zt(τ

L)∥
∥Zt(τS)∥ . If κ < TL

TS
, then ∥gt(τS)∥

∥gt(τL)∥ > 1.

This theorem shows that unless the aggregated contribution Zt(τ
L) is at least TL

TS
times larger than

Zt(τ
S), the gradient update favors the trajectory with fewer turns. Importantly, this holds whether

the advantages are both positive or both negative: in the latter case, although both trajectories are
discouraged, the shorter one is penalized less. Consequently, the model is biased toward actions
that reduce the number of turns, even if longer trajectories are equally rewarding. Empirically, our
results in Appendix F show that reasoning processes with lazy-agent behavior (e.g., producing empty
outputs or simply summarizing) consistently involve fewer turns than those without lazy agents at
the initial training stages, which are critical in shaping policy behavior. Together, our theorem
and empirical findings explain the emergence of lazy-agent behavior: the normalization bias steers
optimization toward trajectories with fewer turns, and reasoning processes exhibiting lazy behavior
naturally produce shorter trajectories, thereby receiving preferential reinforcement during training.
We emphasize that our analysis is distinct from Dr.GRPO (Liu et al., 2025b), which examines token-
level normalization. Their work removes length normalization to prevent the policy from favoring
shorter correct answers or unnecessarily long incorrect ones. Furthermore, since the number of
turns T is far smaller than the number of tokens, the resulting bias in our setting is substantially
more pronounced.

5.2 SHAPLEY-INSPIRED CAUSAL INFLUENCE

To mitigate the optimization bias in multi-turn GRPO, we first remove the 1
Ti

normalization in Eq. 2,
which alleviates but does not fully eliminate the lazy-agent issue as indicated in ablation study (Sec.
6.5). Addressing this problem requires measuring the causal influence of each step during online
training. In practice, however, the policy generates only a single continuation per step, so influence
must be inferred from one trajectory. This creates two challenges: (1) it offers only a limited view
of how a step shapes the reasoning process (Xu et al., 2025), and (2) it biases causal influence
toward specific phrasings rather than underlying ideas (Pavlick & Callison-Burch, 2016; McCoy
et al., 2019; Merrick & Taly, 2020; Li et al., 2024). Analogous to Shapley values (Li et al., 2021),
which attribute contributions by averaging marginal effects across all coalitions, step-level causal
influence in multi-agent RL should reflect average contributions across possible continuations rather
than a single path. Directly computing such Shapley-style values, however, is infeasible because it
would require extensive resampling during online RL. To make this tractable, we propose a stable
Shapley-inspired causal influence measure.

We flatten each trajectory into a sequence si,1, si,2, . . . , si,2T , where si,2t−1 = mi,t (meta-thinking)
and si,2t = yi,t (reasoning). Each step si,t is treated as an anchor step, for which we form a group
of semantically similar steps:

GS(si,t) = { sj,t′ | sj,t′ ≈ si,t, 1 ≤ j ≤ N, 1 ≤ t′ ≤ 2Tj },

5
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Figure 3: Performance gap between ReMA+ and ReMA across 8 benchmarks. Left: Pass@1. Right:
Pass@16. Darker colors represent more difficult benchmarks.

where ≈ denotes semantic similarity. Similarity can be easily measured through semantic distance
(see Appendix B), ensuring that steps within the same group express a comparable idea. For each
step sj,t′ ∈ GS(si,t), we measure its one-step causal influence on the next step. Let h≤t′ be the local
history up to and including step t′, and h

(j)\t′
≤t′ the masked history with sj,t′ removed. We compare

the probability of the next output under the full and masked histories:

p
(j,t′)
full = πθ(sj,t′+1 | h(j)

≤t′), p
(j,t′)
mask = πθ(sj,t′+1 | h(j)\t′

≤t′ ), ∆ℓj,t′ ≜ log p
(j,t′)
mask − log p

(j,t′)
full .

(4)
Finally, the Shapley-inspired causal influence of an anchor step si,t is the average across its group:

CI(si,t) =
1

|GS(si,t)|
∑

(j,t′) : sj,t′∈GS(si,t)

∆ℓj,t′ . (5)

Our method ensures reliable causal influence estimation by: (1) averaging the impact of semantically
similar steps across rollouts to obtain a stable estimate of an idea’s overall contribution, and (2)
aggregating different phrasings of the same idea to reduce wording bias in influence estimates.

5.3 REASONING AGENT DELIBERATION FOR MULTI-TURN INTERACTIONS

As each agent contributes more actively, the number of dialogue turns between the meta-thinking
and reasoning agents increases. However, prior work shows that longer multi-turn interactions can
degrade performance: Laban et al. (2025) compare LLMs in (1) a single-turn setting where the
full task is given in one prompt, and (2) a multi-turn setting where the task is decomposed into
incremental prompts. They report consistent performance drops in the multi-turn condition, likely
because LLMs overcommit to underspecified early context and struggle to recover from initial errors.
These findings imply that while multi-agent collaboration can enrich reasoning, it also heightens
vulnerability to error propagation when intermediate turns introduce ambiguity. If we view the
meta-thinking agent as a user providing step-by-step instructions, then more interactions risk the
reasoning agent becoming “lost” in dialogue, as observed by Laban et al. (2025). To mitigate this,
we hypothesize that allowing the reasoning agent to discard prior responses, aggregate the meta-
thinking prompts, and restart reasoning would be beneficial.

To validate this assumption, we conduct preliminary experiments following the ReMA framework
to obtain a meta-thinking agent and a reasoning agent. We then compare the standard ReMA frame-
work with a modified variant, ReMA+, where the reasoning agent is guided by a refined system
prompt that enables it to adaptively discard its previous outputs when necessary. The full prompt de-
sign and additional details are provided in Appendix C.2. In this experiment, we modify the system
prompt only at inference time. Effectiveness is evaluated by (i) the performance gap in validation
accuracy between ReMA+ and ReMA. Results across eight benchmarks are shown in Fig. 3. From
the figure, we observe: (1) Without explicit training for deliberation, ReMA+ consistently matches
or outperforms ReMA, with gains of about 8% on AMC23 and Olympiad under Pass@1, and 7%
on AIME24 and AIME25 under Pass@16. (2) Even under Pass@16, which gives both frameworks
ample chances to succeed, ReMA+ outperforms ReMA on 6 of 8 benchmarks—demonstrating that
while LLMs have this capacity, explicit prompting is required for consistent behavior. (3) The per-
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formance gap widens as benchmark difficulty and the number of turns increase, highlighting the
value of adaptive deliberation in extended multi-agent interactions.

Building on these observations, we design a method that trains the reasoning agent to adaptively dis-
card its previous outputs to improve the likelihood of producing a correct final answer. Specifically,
we introduce a control token, <restart>, which instructs the agent to discard prior responses,
consolidate the instructions, and begin a fresh attempt. To assess the benefit of this mechanism,
we develop a novel verifiable criterion that measures how discarding history affects the model’s
probability of generating the correct final output.

Verifiable Reward for Restart. Consider the i-th rollout where the reasoning agent outputs
<restart> at turn t. In this case, we mask all reasoning-agent outputs that occur strictly be-
fore t: Y(i)

<2t ≜ {sj,k | k < 2t, k mod 2 = 0}, and define the causal influence of the restart action
on the final reasoning step y

(i)
T = si,2T as

∆ℓi,t ≜ log πθ(si,2T | h(i)\Y(i)
<2t

≤2T ) − log πθ(si,2T | h(i)
≤2T ). (6)

We define a binary outcome reward zi as +1 if the final answer y
(i)
T is correct, and −1 if it is

incorrect. The restart reward is then

rrestart
i,t =


+1, if (zi = +1 ∧ ∆ℓi,t > 0) or (zi = −1 ∧ ∆ℓi,t < 0),

−1, if (zi = +1 ∧ ∆ℓi,t < 0) or (zi = −1 ∧ ∆ℓi,t > 0),

0, if ∆ℓi,t = 0.

(7)

This reward provides a verifiable signal of whether the restart improves or worsens the model’s
belief in the final output. If the final answer is correct (zi = +1), the restart is rewarded when
masking prior reasoning increases confidence (∆ℓi,t > 0); otherwise it is penalized. The converse
holds when the final answer is incorrect (zi = −1).

Aggregated Step-Level Advantage. Let CI(si,t) (Eq. 5) denote the Shapley-inspired causal influ-
ence for step t in rollout i, and let rrestarti,t be the verifiable restart reward (Eq. 7), defaulting to 0 if
no <restart> is issued. For normalization, each signal x is first rescaled to x̃ ∈ [−1, 1] using
min–max scaling (details in Appendix B), and then standardized across all rollouts with mean µX̃

and standard deviation σX̃ by ZX(x) ≜
x̃−µ

X̃

σ
X̃

. We apply this procedure to obtain the normalized

causal signal C̃i,t = Z{CI}
(
CI(si,t)

)
and restart signal R̃i,t = Z{rrestart}

(
rrestarti,t

)
. The overall

step-level advantage is then defined as a weighted combination:

Astep
i,t = Ãi,t + α C̃i,t + β R̃i,t, (8)

where Ãi,t is the normalized outcome-based advantage, and α, β are tunable hyperparameters. The
training objective for Dr. MAMR builds on Eq. 2, removing the 1

T normalization and replacing the
advantage function with Eq. 8. See implementation details in Appendix B.

6 EXPERIMENTS

6.1 EXPERIMENT SETTINGS

Dataset and Benchmarks: We conduct experiments on mathematical reasoning by training models
on DeepScaleR dataset (Luo et al., 2025). The optimized agents are then evaluated across seven
benchmarks: MATH500 (Lightman et al., 2023), GSM8K (Cobbe et al., 2021), AIME , AMC23
(Jia LI, 2024) , GaoKao2023En (Zhang et al., 2023a), Minerva Math (Lewkowycz et al., 2022), and
OlympiadBench (He et al., 2024). See implementation details in Appendix B.

Baselines and Models: We compare Dr.MAMR against three baselines: (1) GRPO (Guo et al.,
2025a), where the base model is trained with vanilla GRPO in a single-agent setting; (2) VRP
(CoT) (Wan et al., 2025), where the base model is prompted step by step to operate within the
meta-thinking and reasoning framework; and (3) ReMA (Wan et al., 2025), a multi-agent meta-
reasoning framework trained with multi-turn GRPO. We conduct training and evaluation on the
Qwen2.5 family, using the 3B, 7B, and 14B Instruct models (Team, 2024).

7
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6.2 RESULTS ON SEVEN BENCHMARKS

Question 1: How does Dr. MAMR perform in reasoning tasks compared to baselines?

Table 1 reports pass@1 performance across seven benchmarks using 7B and 14B base models. (See
Appendix H.7 for 3B results). From the results, we observe the following: (1) ReMA consistently
underperforms compared to single-agent GRPO, highlighting the severity of the lazy agent issue
and its detrimental effect on multi-agent performance. (2) Dr. MAMR consistently outperforms
single-agent GRPO across all base models. Notably, the performance gain increases with larger
base models that exhibit stronger instruction-following capabilities. This suggests that mitigating
the lazy agent problem enables effective collaboration between agents and leads to better outcomes.
This also points to a promising direction: improving the instruction-following ability of base models,
which supports more effective communication and collaboration between agents, can in turn lead to
better overall system performance. (3) Our Dr. MAMR elevates the multi-agent system baseline
from performing worse than single-agent GRPO to clearly outperforming it, demonstrating the
potential of multi-agent frameworks in solving complex reasoning tasks when carefully designed.

Table 1: Performance on math benchmarks.

Model Benchmark GRPO VRP (CoT) ReMA Dr. MAMR (Ours)

Qwen2.5
-7B
-Instruct

MATH500 75.50 75.00 74.40 78.60
GSM8K 90.50 92.04 90.60 92.12
AIME24 16.67 6.67 13.33 20.00
AMC23 55.00 47.50 50.00 62.50

Gaokao2023en 64.60 56.62 57.92 65.20
Minerva Math 34.70 35.66 34.93 38.24

Olympiad Bench 48.60 38.22 42.58 52.34
Average 55.08 50.24 51.97 58.43

Qwen2.5
-14B
-Instruct

MATH500 80.60 78.40 79.20 80.40
GSM8K 94.50 92.87 93.59 93.69
AIME24 16.67 10.00 13.33 26.67
AMC23 60.00 55.00 60.00 67.50

Gaokao2023en 64.90 66.23 67.53 69.09
Minerva Math 41.50 38.60 41.91 43.02

Olympiad Bench 48.20 46.78 45.12 57.03
Average 58.05 55.41 57.24 62.49

6.3 TRAINING CURVES

Question 2: How does the causal influence of agents evolve during training?

In this section, we present a case study on the 7B model, examining how the causal influence of the
meta-thinking agent and the reasoning agent evolves during training under our Dr. MAMR frame-
work, compared to ReMA. We report the results in Fig. 4 (a). From the figure, we observe: (1)
Under ReMA, the reasoning agent’s causal influence initially increases slightly at the beginning of
training but then steadily decreases, eventually approaching zero, while the meta-thinking agent’s
influence grows significantly as it comes to dominate the reasoning process. This indicates that naive
multi-turn GRPO risks collapsing the system into an effective single-agent setup, losing the benefits
of collaboration. (2) In contrast, under Dr. MAMR, the reasoning agent’s influence steadily in-
creases, while the meta-thinking agent also grow consistently, indicating that both agents contribute
meaningfully. This balanced collaboration explains why Dr. MAMR achieves superior performance
across diverse reasoning tasks compared to ReMA.

Question 3: How does Dr. MAMR stabilize multi-agent RL compared to the baseline?

Training stability is a key challenge in multi-agent RL. Thus, we compare the training curves and
report mean rewards of Dr. MAMR and ReMA on the training data, with results for the 7B model

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60 80
Steps

0

2

4
M

ea
n 

Ca
us

al
 In

flu
en

ce

ReMA
Meta-Thinking
Reasoning

0 20 40 60 80
Steps

0.0

0.5

1.0

1.5

2.0

2.5
Dr. MAMR (Ours)

Meta-Thinking
Reasoning

(a) CI over training (normalized by turns).

0 50 100 150 200
Steps

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n 
Re

wa
rd

ReMA
Dr. MAMR

(b) Training Curve.

1 8 16 32 64
Number of Samples K

10

20

30

40

Ac
cu

ra
cy

 (%
)

AIME25
Dr. MAMR
ReMA

(c) Pass@K Performance.

Figure 4: Results on causal influence, training stability, and pass@K.

shown in Fig. 4(b) and additional 3B results provided in Appendix H.8. From the figure, we observe
that after 50 steps, Dr. MAMR achieves clearly superior performance. After 150 steps, ReMA
collapses with its reward dropping to zero, whereas Dr. MAMR maintains stable training throughout.
This demonstrates the benefit of addressing the lazy-agent issue for stabilizing multi-agent RL.

6.4 SCALING ON PASS@K

Question 4. How does Dr. MAMR perform when scaling to pass@K?

We examine test-time scaling (Muennighoff et al., 2025; Zhang et al., 2025a) by comparing the
pass@K performance of Dr. MAMR and ReMA, which measures whether the correct solution ap-
pears within the best result of K independent attempts. Results on the most challenging benchmark,
AIME25, are presented in Fig. 4(c), with additional benchmarks reported in Appendix H.10. The
figure shows that the performance gap between Dr. MAMR and ReMA widens as K increases,
highlighting Dr. MAMR’s strength in tackling difficult tasks.

6.5 ABLATION STUDY

Question 5. How does each component contribute to reasoning performance?

We compare the full model against three variants: (1) w/o Normalization Debias (w/o ND), which
retains the turn-level normalization from ReMA; (2) w/o Shapley-inspired causal influence (w/o CI);
and (3) w/o Restart Behavior (w/o RB). We train these variants and report their benchmark perfor-
mance in Table 6. From the table, we observe: (1) Dropping either normalization or causal influence
causes clear performance drops, showing their complementary role in discouraging shortcuts and
promoting balanced contributions. (2) Removing restart behavior also degrades performance across
benchmarks, though less severely, highlighting its value in enabling recovery from mistakes and
sustaining stable reasoning. We provide a case study on restart behavior in Appendix H.9.

Table 2: Ablation study on the 7B model.

Variant AIME24 AMC23 Gaokao2023en Olympiad Bench

Dr.MAMR 20.00 62.50 65.20 52.34
w/o ND 13.33 55.00 63.64 47.85
w/o CI 13.33 52.50 63.38 45.31
w/o RB 16.67 57.50 63.90 50.58

7 CONCLUSION

We identify the issue of lazy agents in multi-agent LLM reasoning and trace the issue to the loss
structure of multi-turn GRPO. To address it, we introduce a Shapley-inspired causal influence mea-
sure and a verifiable reward for restart behavior. Experiments across diverse benchmarks demon-
strate that Dr. MAMR effectively mitigates lazy behavior and surpasses strong single- and multi-
agent baselines, unlocking the potential of multi-agent frameworks for complex reasoning tasks.

9
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A DETAILED RELATED WORKS

A.1 MULTI-AGENT RL

Multi-agent RL addresses how multiple agents coordinate in a shared environment to maximize
collective performance, with a central challenge being credit assignment: determining each agent’s
contribution to the overall reward. Classical solutions include value decomposition (VDN; Sunehag
et al., 2018), counterfactual baselines (COMA; Foerster et al., 2018), regression-based reward func-
tions with default-action substitution (Dr.Reinforce; Castellini et al., 2022), social influence estima-
tion via KL divergence (Jaques et al., 2019), role-based coordination through role networks (Wang
et al., 2020), and model-based transition prediction to measure influence (Liu et al., 2023). With the
advent of large language model (LLM) agents, MARL techniques have been extended to multi-turn
reasoning and cooperative dialogue: turn-level credit assignment to reduce misattributed rewards
(Zeng et al., 2025), SWEET-RL for critic-driven step-wise rewards (Zhou et al., 2025), MARFT for
alleviating agent inactivity and communication inefficiency (Liao et al., 2025), RAGEN for address-
ing the “Echo Trap” caused by coarse reward signals (Wang et al., 2025), and MAGRPO for framing
LLM collaboration as cooperative MARL with tailored reward design (Liu et al., 2025a). A persis-
tent challenge across both classical and LLM-based MARL is the emergence of lazy agents that
contribute little while relying on others. Recent work therefore explores causal influence estimation
(Bogdan et al., 2025; Nguyen et al., 2025; Liu et al., 2024b), introducing methods such as black-
box resampling and attention suppression to quantify how an agent’s utterance shapes subsequent
decisions, thereby enabling finer-grained credit assignment and mitigating agent inactivity.

A.2 HIERARCHICAL RL

Hierarchical multi-agent systems coordinate cooperation by assigning high-level controllers to de-
compose tasks for lower-level workers, a design shown to improve scalability, robustness, and long-
horizon reasoning. (Yu et al., 2024) introduce a manager–analyst paradigm for structured decompo-
sition, while Chain-of-Agents (CoA) leverages chained communication to approximate hierarchical
coordination with greater flexibility (Zhang et al., 2024). Empirical studies further demonstrate that
boss–worker hierarchies outperform flat or linear structures under failure conditions (Huang et al.,
2024). Memory-oriented approaches, exemplified by Tracing Hierarchical Memory for Multi-Agent
Systems, highlight how layered storage and retrieval mechanisms enable adaptive long-horizon col-
laboration (Zhang et al., 2025b). On the planning side, Hierarchical Planning for Complex Tasks
with Knowledge-Graph RAG and Symbolic Verification integrates structured decomposition with
formal verification (Cornelio et al., 2025). More explicit architectures, such as HMAW and ReAc-
Tree, explore CEO–Manager–Worker hierarchies or adaptive tree structures for general task allo-
cation (Liu et al., 2024c; Choi et al., 2025). Hierarchical reinforcement learning (HRL) organizes
control as high-level planning over subgoals with low-level execution, enabling agents to operate
over long horizons via temporal abstraction and reusable skills. Early neural HRL emphasized
top-down goal setting—e.g., high-level goal embeddings steering a low-level policy (Vezhnevets
et al., 2017) and quickly expanded toward unsupervised skill discovery to populate the low-level
option set (Bagaria & Konidaris, 2019). Beyond purely reactive control, symbolic reasoning has
been fused with HRL to support plan construction and revision (Yamamoto et al., 2018). Recent
advances improve the reliability and interpretability of options themselves: programmatic, human-
readable sub-policies selected by the high-level planner enhance generalization to longer tasks (Lin
et al., 2024), while theoretically grounded supervision clarifies how limited human feedback can be
efficiently allocated across hierarchical levels in goal-conditioned settings (Yan & Lipton, 2024).
Complementary lines strengthen the low level: disentangling unsupervised skill discovery yields
cleaner building blocks (Hu et al., 2024), and integrating imperfect expert priors improves multi-
agent coordination under hierarchical control (Liu et al., 2024a).

A.3 LLM REASONING

Large Language Models (LLMs) have demonstrated strong performance across a wide range of nat-
ural language tasks (Brown et al., 2020; Chowdhery et al., 2023; Du et al., 2022; Dubey et al., 2024;
Wenzek et al., 2019). Early research found that prompting models to reason step by step, an approach
known as chain-of-thought (CoT) prompting, can significantly improve performance on arithmetic,
commonsense, and symbolic reasoning tasks by eliciting intermediate reasoning steps (Wei et al.,
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2022; Kojima et al., 2022; Nye et al., 2021). Building on this, researchers have explored non-linear
reasoning structures. For example, Tree-of-Thoughts (ToT) organizes candidate reasoning paths into
a search tree with lookahead capabilities, while Graph-of-Thoughts (GoT) generalizes reasoning to
arbitrary graphs of “thought” nodes and edges, expanding the space for structured deliberation (Yao
et al., 2023; Besta et al., 2024). These advances have inspired the development of Large Reasoning
Models (LRMs), models explicitly trained for multi-step reasoning (Guo et al., 2025a; Achiam et al.,
2023; Grattafiori et al., 2024; Xu et al., 2023; Zhou et al., 2022; Wu et al., 2024b; Qi et al., 2024;
Chae et al., 2024). Typically, LRMs undergo supervised fine-tuning followed by a reinforcement
learning stage, and have achieved state-of-the-art results on challenging tasks such as math, coding,
and task planning (Jaech et al., 2024; Guo et al., 2025a; Comanici et al., 2025; Yang et al., 2024a;
2025; Lightman et al., 2023; Wang et al., 2023). The success of strong single-model reasoners has
also spurred multi-agent approaches, where complex tasks are decomposed and coordinated among
specialized LLM agents via role assignment, orchestration, and debate, mirroring human teamwork
(Li et al., 2023; Wu et al., 2024a; Chen et al., 2023; Du et al., 2023; Yuan & Xie).

B IMPLEMENTATION DETAILS

B.1 TRAINING OBJECTIVE OF DR. MAMR

The training objective for Dr. MAMR builds on Eq. 2 with two key modifications: (i) we remove
the 1

Ti
normalization over the number of turns, and (ii) we replace the step-level advantage with the

weighted formulation in Eq. 8. The resulting objective is defined as follows:

JDr. MAMR(θ) = E(x,y∗)∼D, {(mi,yi)}G
i=1∼πθold

(·|x)[
1

G

G∑
i=1

Ti∑
t=1

1

|yi,t|

|yi,t|∑
j=1

(
min

(
ri,t(θ)A

step
i,t , clip(ri,t(θ), 1− ϵ, 1 + ϵ)Astep

i,t

)
− β DKL(πθ∥πref)

)]
,

(9)
where the step-level advantage is given by Eq. 8:

Astep
i,t = Ãi,t + αC̃i,t + βR̃i,t.

B.2 TRAINING ON DEEPSCALER

We conduct all experiments using the Verl RL framework (Sheng et al., 2024). Given the substantial
computational cost, we fix the hyperparameters at α = β = 0.1 across all experiments, as this
setting provides stable performance. We use bfloat16 precision for training, with a batch size of 128
and 128 sampled rollouts per training step.

B.3 SHAPLEY-INSPIRED CAUSAL INFLUENCE

To group semantically similar steps for causal influence estimation, we use Qwen2.5-0.5B 1 as the
embedding model. Each step si,t in a trajectory is encoded into a dense vector representation, and
semantic similarity between steps is measured using cosine similarity. For each anchor step, we form
a group GS(si,t) by including all steps whose embeddings have cosine similarity of at least 0.9 with
the anchor. This threshold ensures that only highly similar steps—those expressing essentially the
same idea, regardless of minor wording differences—are grouped together.

B.4 COLD START FOR META-THINK AND REASONING

For the experiments in Table 1, we adopt RL-from-base since the Qwen2.5B-Instruct family (Team,
2024) demonstrates strong instruction-following capability. Moreover, as shown in ReMA (Wan
et al., 2025), the performance gap between RL-from-base and RL-from-SFT is marginal.

1https://huggingface.co/Qwen/Qwen2.5-0.5B
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B.5 COLD START FOR RESTART BEHAVIOR

However, it is difficult for the base model to exhibit restart behavior directly. To address this, we
collect expert data and apply supervised fine-tuning (SFT) to the base model. Specifically, build-
ing on the meta-thinking and reasoning datasets collected by ReMA (Wan et al., 2025; Ye et al.,
2025), we use GPT-4o (Hurst et al., 2024) to adversarially insert a few steps of noisy reasoning,
followed by a restart, in order to simulate scenarios where the reasoning agent becomes lost in the
conversation and the restart behavior enables recovery. For supervised fine-tuning, we use the Lla-
maFactory codebase, training the model for 3 epochs with a learning rate of 1e-5, a cosine learning
rate scheduler, and a batch size of 8. We employ DeepSpeed ZeRO-2 for distributed training.

C MORE EXPERIMENTAL DETAILS

C.1 PRELIMINARY EXPERIMENTS ON CAUSAL INFLUENCE

C.1.1 EXPERIMENTAL SETUP

We follow the setting in (Wan et al., 2025) and train models on 7.5k training samples in MATH
(Hendrycks et al., 2021) and test on datasets: GSM8K (Cobbe et al., 2021), AIME242, AMC233,
GaoKao2023En (Zhang et al., 2023a), Minerva Math (Lewkowycz et al., 2022), and Olympiad
Bench (He et al., 2024). We generate reasoning processes on the evaluation benchmark and subse-
quently measure the causal influence of each response following the descriptin in Sec. 4.

C.1.2 PROMPTS

System Prompts for Meta-Think and Reasoning Agents of ReMA

META-THINK AGENT SYSTEM PROMPT
You are a meta-think agent that represents human high-level thinking processes. When solving a
question, you will have a discussion with a human. Each time, think about what to do next. For
example:

• Exploring multiple angles and approaches

• Breaking down the solution into clear steps

• Continuously reflecting on intermediate results honestly and adapting your strategy as you
progress

• Backtracking when necessary

• Requesting exploration of multiple solutions individually

• Finally, confirm the answer with the tag [FINISH]

REASONING AGENT SYSTEM PROMPT
Please reason step by step following the given instruction. When asked to finalize your answer, put
your answer within \boxed{}.

2https://huggingface.co/datasets/AI-MO/aimo-validation-aime
3https://huggingface.co/datasets/AI-MO/aimo-validation-amc
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Refined System Prompts for Meta-Think and Reasoning Agents

META-THINK AGENT SYSTEM PROMPT
You are a meta-think agent that represents human high-level think process. When solving a question,
you will have a discussion with the human, and each time you will think about what to do next. For
example:

• Exploring multiple angles and approaches

• Breaking down the solution into clear steps

• Continuously reflecting on intermediate results honestly and adapting your strategy as you
progress

• Backtracking when necessary

• Requesting exploration of multiple solutions individually

• Finally, confirm the answer with the tag [FINISH].

Please do not focus on completing the task by calculating the final answer; that step will be handled
by a separate reasoning agent.

REASONING AGENT SYSTEM PROMPT
You are a reasoning agent that follows structured problem-solving instructions step by step. Your goals
are:

• Follow the given instruction precisely.

• Reason step by step toward a solution.

• Avoid producing empty or blank outputs at any step.

• If uncertain, provide your best reasoning and partial answer rather than outputting nothing.

• Always provide a meaningful and non-empty response, even during intermediate steps.

• When you receive the signal [FINISH], finalize your answer and place it within
\boxed{}.

• If unable to finalize, explain why and still output your best available answer within
\boxed{}.

Remember: You must never produce trivial outputs.

C.2 PRELIMINARY EXPERIMENTS ON HOW DELIBERATION HELPS MULTI-TURN REASONING

In this section, we provide additional details about the preliminary experiments referenced in
Sec. 5.3, which demonstrate that deliberation can enhance performance in multi-turn reasoning
tasks.

We adopt the experimental setup outlined in Sec. C.1.1 to train both the meta-thinking agent and the
reasoning agent using the original ReMA framework (Wan et al., 2025). To evaluate the impact of
deliberation, we introduce a variant of ReMA at inference time by modifying the system prompt of
the reasoning agent as follows:
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System Prompt for Reasoning Agent of ReMA+

Please reason step by step. When asked to finalize your answer, place your result within
\boxed{}.

Deliberation Instruction
If your previous reasoning is based on assumptions that are contradicted or made incomplete
by new instructions, you must explicitly output:
<restart>
Reason: <One-sentence justification>

Rethinking Rules for New Information
1. Upon receiving new information, re-evaluate all prior assumptions, steps, and con-

clusions.
2. If the new information invalidates or alters your earlier reasoning, clearly acknowl-

edge this and issue a <restart>.
3. Do not simply add new information to prior reasoning — verify that the existing

logic still holds.
4. Ask clarifying questions only if essential information is missing and further rea-

soning is blocked.
5. If you revise your reasoning due to new information, explicitly state:

"Given this new information, I need to revise my
approach."

D CASE STUDY ON LAZY BEHAVIOR

Case Study

[Question]
Determine the number of ways to arrange the letters of the word ’ELLIPSE’. [Groundtruth: 1260]

ReMA

Meta-thinking:
Let’s start by considering the total number of letters and any repetitions. The word ELLIPSE
has 7 letters, with L repeated twice. To find the number of distinct arrangements, we use the
formula for permutations of a multiset:

n!

n1! · n2! · . . . · nk!

For ELLIPSE: - n = 7 - L appears 2 times - E, I, P, S each appear once

7!

2!
=

5040

2
= 2520

Reasoning:

Meta-thinking:

[FINISH]

Reasoning:
2520
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Dr. MAMR

Meta-thinking:
To determine the number of ways to arrange the letters of the word ”ELLIPSE”, we need to
consider the total number of letters and any repetitions of letters.
1. First, let’s count the total number of letters and identify any repeated letters.
2. Then, we’ll use the formula for permutations of a multiset.
Let’s start by counting the letters. How many letters are there in the word ”ELLIPSE”? And
which letters are repeated?
Reasoning:
The word ”ELLIPSE” consists of 7 letters: E, L, L, I, P, S, E. We can see that the letter ’E’
is repeated twice, and the letter ’L’ is also repeated twice. The other letters, I, P, and S, each
appear once. To determine the number of distinct arrangements of these letters, we use the
formula for permutations of a multiset:

n!

n1! · n2! · . . . · nk!

For the word ”ELLIPSE”: - n = 7 - ’E’ occurs 2 times, ’L’ occurs 2 times, others occur
once

7!

2! · 2! · 1! · 1! · 1!
=

5040

4
= 1260

1260

Meta-thinking:
Great job walking through the calculation! Let’s summarize:

• 7 letters in total
• ’E’ and ’L’ both appear twice
• Used multiset formula correctly

• Answer: 1260

E PROOFS

Following Eq.2, ReMA’s training objective (per batch) is:

J (θ) = E

[
1

G

G∑
i=1

1

Ti

Ti∑
t=1

1

|yi,t|

|yi,t|∑
j=1

(min{ui,t,j , vi,t,j} − β DKL(πθ ∥πref))

]
, (10)

where

ui,t,j = ri,t(θ) Âi,t,j , (11)

vi,t,j = clip(ri,t(θ), 1−ϵ, 1+ϵ) Âi,t,j . (12)

Turn-level importance ratio:

ri,t(θ) =
1

|yi,t|

|yi,t|∑
j′=1

πθ(yi,t,j′ | ci,t,j′)
πθold(yi,t,j′ | ci,t,j′)︸ ︷︷ ︸

=: ri,t,j′ (θ)

, (13)

where the context is:
ci,t,j′ := (xi, {mi,·, yi,·}<t,mi,t, yi,t,<j′).

We derive the turn-t contribution for a fixed trajectory i, i.e.,

Li,t(θ) :=
1

Ti
· 1

|yi,t|

|yi,t|∑
j=1

min{ui,t,j , vi,t,j} −
β

Ti
· 1

|yi,t|

|yi,t|∑
j=1

DKL (πθ(· | ci,t,j) ∥πref(· | ci,t,j)) .

(14)
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Without considering the KL divergence and clipping,

Li,t(θ) =
1

Ti
· 1

|yi,t|
∑
j

ri,t(θ) Âi,t,j =
1

Ti
· Āi,t · ri,t(θ), (15)

where

Āi,t :=
1

|yi,t|

|yi,t|∑
j=1

Âi,t,j . (16)

Compute the gradient:

∇θri,t(θ) = ∇θ

 1

|yi,t|

|yi,t|∑
j′=1

ri,t,j′(θ)



=
1

|yi,t|

|yi,t|∑
j′=1

∇θ

(
πθ(yi,t,j′ | ci,t,j′)
πθold(yi,t,j′ | ci,t,j′)

)

=
1

|yi,t|

|yi,t|∑
j′=1

1

πθold(yi,t,j′ | ci,t,j′)
∇θπθ(yi,t,j′ | ci,t,j′)

=
1

|yi,t|

|yi,t|∑
j′=1

πθ(yi,t,j′ | ci,t,j′)
πθold(yi,t,j′ | ci,t,j′)

∇θ log πθ(yi,t,j′ | ci,t,j′)

=
1

|yi,t|

|yi,t|∑
j′=1

ri,t,j′(θ)∇θ log πθ(yi,t,j′ | ci,t,j′).

(17)

Therefore, the exact per-turn gradient (no clipping, no KL) is:

∇θLi,t(θ) =
1

Ti
· Āi,t ·

 1

|yi,t|

|yi,t|∑
j′=1

ri,t,j′(θ)∇θ log πθ(yi,t,j′ | ci,t,j′)

 (18)

We define the aggregated turn-t stochastic contribution as

Zt(τ) ≜
1

|yt|

|yt|∑
j=1

rt(θ) Ât,j ∇θ log πθ(yt,j | x,m≤t, y<t, yt,<j) . (19)

Then the ReMA gradient contribution at turn t is

gt(τ) =
1

T (τ)
Zt(τ). (20)

Let

κ ≜
∥Zt(τ

L)∥
∥Zt(τS)∥

.

Then the relative gradient magnitude satisfies

∥gt(τS)∥
∥gt(τL)∥

=
TL

TS
· 1
κ
.

In particular, if κ < TL

TS
, then

∥gt(τS)∥
∥gt(τL)∥

> 1.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F PRELIMINARY EXPERIMENTS FOR THEORETICAL ANALYSIS

We present preliminary results on the mean number of turns in the reasoning process for cases with
empty outputs and trivially copy the other’s response (i.e., reasoning process exhibiting lazy-agent
behavior) and those without empty outputs (i.e., reasoning process without lazy agents). We report
results from the first 20 training steps, as this initial stage is critical in shaping the agent’s behavior.
As shown in Fig. 5, the number of turns for reasoning process exhibiting lazy-agent behavior is
consistently smaller than that of non-lazy agents.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Training Steps

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
ea

n 
Tu

rn
s

w/ Empty Reasoning
w/o Empty Reasoning (Score=1)
w/o Empty Reasoning (Score=0)

Figure 5: Mean number of turns comparing reasoning processes w/ and w/o lazy-agent behavior.

G PROCESS REWARD FAILS TO MITIGATE THE LAZY AGENT ISSUE

In this section, we present experimental results showing that using a process reward model to as-
sign credit at each turn fails to mitigate the lazy agent issue in ReMA. We follow the experimental
setup described in Section C.1, and adopt Qwen/Qwen2.5-Math-PRM-7B4 as the process re-
ward model (PRM). We revise Eq. 3 as follows:

ri,t(θ) = ri,t(θ) + ai,t, (21)

where ai,t denotes the process reward for the t-th turn in the i-th rollout, provided by the PRM.

The training curve of this approach is shown in Fig. 6. As observed, the model collapses rapidly
after only 30 training steps. We attribute this to reward hacking, a well-known failure mode in RLHF
settings, as documented in prior work (Zhang et al., 2025d; Gao et al., 2023; Yang et al., 2024b; Li
et al., 2025a).

H ADDITIONAL EXPERIMENT RESULTS

H.1 RESULTS ON ADDITIONAL MODEL FAMILY

In this section, following the experimental setup described in Sec. 6.1, we conduct experiments
using two base models: Meta-Llama-3-8B-Instruct5 and Llama-3.1-8B-Instruct6 . We compare our
proposed Dr. MAMR framework against ReMA and the single-agent GRPO baseline. The results
are summarized in Table 3.

Across both Llama base models—which overall exhibit lower raw performance than the Qwen2.5
series—we consistently observe that Dr. MAMR yields substantial improvements over both ReMA
and GRPO. This demonstrates that the benefits of our multi-agent meta-reasoning framework persist
even with weaker base models, highlighting its robustness and general applicability.

4Qwen/Qwen2.5-Math-PRM-7B
5meta-llama/Meta-Llama-3-8B-Instruct
6meta-llama/Meta-Llama-3.1-8B-Instruct
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Figure 6: Training curve of ReMA with process reward assigned for each turn.

Table 3: Performance on math reasoning benchmarks (Llama family).

Model Benchmark GRPO ReMA Dr. MAMR

Llama3-8B-Instruct

MATH500 40.4 33.80 43.20
GSM8K 82.79 79.38 83.47
AIME24 0.00 0.00 3.33
AMC23 25.00 22.50 32.50
Gaokao2023en 29.87 28.57 32.49
Minerva Math 17.28 13.97 22.06
Olympiad Bench 10.52 8.89 16.30
Average 29.4 26.73 33.34

Llama3.1-8B-Instruct

MATH500 55.20 53.20 58.60
GSM8K 88.32 87.26 90.22
AIME24 10.00 6.67 13.33
AMC23 27.50 20.00 30.50
Gaokao2023en 44.94 37.14 48.95
Minerva Math 32.35 28.31 36.77
Olympiad Bench 16.44 19.56 22.67
Average 39.25 36.97 43.01

H.2 HYPERPARAMETER ANALYSIS

In this section, we analyze the sensitivity of Dr. MAMR to its two hyperparameters: the weight
for the causal-influence reward (α) and the weight for the restart-behavior reward (β). Following
the experimental setup in Sec. 6.1, we conduct two sets of experiments: (1) Fix α = 0.1 and vary
β ∈ {0.1, 0.3, 0.5}. (2) Fix β = 0.1 and vary α ∈ {0.1, 0.3, 0.5}. The results are shown in Tables 4
and 5.

(1) Effect of varying β (restart-behavior reward). When β increases from 0.1 to 0.3, Dr. MAMR
maintains very stable average performance (58.43 → 58.16). Even when β is further increased to
0.5, where performance drops to 53.15, Dr. MAMR still outperforms ReMA (51.97) by a clear
margin.

Interpretation. β affects only the reasoning agent’s restart behavior. A moderate value of β (0.1 to
0.3) guides this behavior without disrupting the main optimization process. However, an excessively
large β risks over-encouraging or over-penalizing restarts, which discourages beneficial exploratory
steps and ultimately leads to degraded performance.

(2) Effect of varying α (causal-influence reward). Increasing α from 0.1 to 0.3 yields only a mild
change in performance (58.43 to 56.30). Even at α = 0.5, where the score is 52.77, Dr. MAMR
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maintains performance above the ReMA baseline (51.97), indicating that the method remains robust
across a broad range of α values.

Interpretation. α encourages each agent to take actions that can influence the other’s internal rea-
soning trajectory. When α becomes large, this incentive may occasionally place more emphasis on
cross-agent influence than on improving final reasoning quality. As a result, the overall performance
tends to vary more noticeably with respect to α than to β.

(3) Overall robustness. Across all combinations of α and β, mild hyperparameter choices (e.g.,
α = 0.1 with β = 0.3, or β = 0.1 with α = 0.3) achieve performance comparable to the best
setting of α = 0.1, β = 0.1. Even when the hyperparameters are set to larger values such as 0.5,
Dr. MAMR still surpasses ReMA, as Dr. MAMR addresses the fundamental lazy-agent issue. Over-
all, these results show that Dr. MAMR provides robust improvements without requiring extensive
hyperparameter tuning.

Table 4: Hyperparameter analysis with α = 0.1.

Model Benchmark ReMA Dr. MAMR (β = 0.1) (β = 0.3) (β = 0.5)

Qwen2.5
-7B
-Instruct

MATH500 74.40 78.60 78.80 77.20
GSM8K 90.60 92.12 91.59 86.05
AIME24 13.33 20.00 20.00 16.67
AMC23 50.00 62.50 60.00 52.50

Gaokao2023en 57.92 65.20 66.50 63.12
Minerva Math 34.93 38.24 38.60 34.56

Olympiad Bench 42.58 52.34 51.60 45.04

Average 51.97 58.43 58.16 53.15

Table 5: Hyperparameter analysis with β = 0.1.

Model Benchmark ReMA Dr. MAMR (α = 0.1) (α = 0.3) (α = 0.5)

Qwen2.5
-7B
-Instruct

MATH500 74.40 78.60 77.80 76.80
GSM8K 90.60 92.12 91.18 88.10
AIME24 13.33 20.00 16.67 13.33
AMC23 50.00 62.50 57.50 52.50

Gaokao2023en 57.92 65.20 64.16 62.08
Minerva Math 34.93 38.24 36.77 33.82

Olympiad Bench 42.58 52.34 50.00 42.77

Average 51.97 58.43 56.30 52.77

H.3 MORE ABLATION STUDY

In this section, we provide an extended ablation study to evaluate the contribution of each key
component in Dr. MAMR. Table 6 summarizes the results for the 7B model across several math-
reasoning benchmarks. These ablations are designed specifically to address the reviewer’s questions
regarding (1) the effectiveness of the proposed Shapley-inspired grouping mechanism, (2) the choice
of the cosine-similarity threshold for grouping, and (3) the robustness of the causal-influence (CI)
computation to different embedding models.

(1) Effectiveness of Shapley-inspired grouping:

A core part of Dr. MAMR is the Shapley-inspired semantic grouping, which clusters intermediate
reasoning segments into conceptually meaningful groups before computing causal influence. To
assess its importance, we report a w/o Shapley in CI variant, where grouping is removed and CI is
computed directly on every segment independently. As shown in Table 6, removing Shapley group-
ing worsens performance across all benchmarks (e.g., AIME24: 20.00 → 16.67, AMC23: 62.50
→ 60.00). This confirms that grouping reduces noise in the CI estimates by aggregating semanti-
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cally redundant reasoning segments, and that the Shapley mechanism meaningfully contributes to
the stability and effectiveness of the causal-influence reward.

(2) Varying the semantic-similarity threshold:

Dr. MAMR uses a cosine-similarity threshold of 0.9 to decide whether two reasoning segments
belong to the same group. To evaluate sensitivity to this design choice, we vary the threshold to 0.95
and 0.8. Results in Table 6 show: (1) 0.95 (more restrictive grouping): performance remains similar
or slightly improved on some datasets, indicating that Dr. MAMR is stable when grouping is more
conservative. (2) 0.8 (more aggressive grouping): performance drops more noticeably, suggesting
that overly broad grouping merges semantically distinct segments, which weakens CI’s ability to
identify the truly influential steps.

Overall, Dr. MAMR maintains strong performance for a wide range of thresholds, demonstrat-
ing robustness, but extremely permissive grouping can blur important distinctions in the reasoning
trajectory.

(3) Effect of embedding model used for grouping:

By default, semantic grouping uses Qwen2.5-0.5B embeddings. To test robustness to this choice,
we replace the embeddings with: (1) Qwen2-0.5B, a smaller instruction-tuned model (2) Qwen3-
Embedding-0.6B, a specialized embedding model

As shown in Table 6, the method remains stable across embedding variants. Notably, Qwen3-
Embedding-0.6B improves grouping quality (e.g., Gaokao2023en: 65.20 → 66.49, Olympiad: 52.34
→ 54.52), likely because its representations better capture semantic similarity. These results indi-
cate that CI is robust to embedding model choice, and improvements can be obtained with stronger
embedding encoders.

Table 6: Ablation study on the 7B model.

Variant AIME24 AMC23 Gaokao2023en Olympiad Bench

Dr.MAMR 20.00 62.50 65.20 52.34
w/o ND 13.33 55.00 63.64 47.85
w/o CI 13.33 52.50 63.38 45.31
w/o RB 16.67 57.50 63.90 50.58

w/o Shapley in CI 16.67 60.00 64.42 49.22
w/ Qwen2-0.5B for CI 16.67 60.00 63.12 51.56

w/ Qwen3-Embedding-0.6B for CI 20.00 62.50 66.49 54.52
w/ threshold 0.95 for CI 20.00 60.00 65.71 52.73
w/ threshold 0.8 for CI 16.67 57.50 62.86 50.20

Table 7: Comparison to stronger single-agent RL baseline.

Model Benchmark GRPO DAPO Dr. GRPO GSPO Dr. MAMR

Qwen2.5
-7B
-Instruct

MATH500 75.50 75.80 75.60 76.20 78.60
GSM8K 90.50 93.26 91.13 91.05 92.12
AIME24 16.67 13.33 16.67 16.67 20.00
AMC23 55.00 60.00 52.50 57.50 62.50

Gaokao2023en 64.60 63.64 64.42 65.71 65.20
Minerva Math 34.70 35.60 35.30 37.50 38.24

Olympiad Bench 48.60 49.61 47.07 50.78 52.34

Average 55.08 55.89 54.67 56.49 58.43
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Figure 7: Training dynamics of restart behavior.

H.4 TRAINING DYNAMICS OF RESTART BEHAVIOR

In this section, we provide a detailed analysis of the training dynamics associated with the restart
behavior in Dr. MAMR. Following the experimental setting described in Sec. 6.1, we set α = β =
0.1, use 8 rollouts per prompt, and adopt a batch size of 128. At each global step, we track three
quantities: (1) the mean reward obtained on the training batch, (2) the total number of restart actions
triggered by the reasoning agent, and (3) the average reward assigned to those restart actions. The
results are visualized in Fig. 7.

From the figure, several important patterns emerge. First, as training progresses, the overall mean
reward of Dr. MAMR increases steadily, and the mean reward associated specifically with restart
actions exhibits a similar upward trend. This indicates that the restart reward signal is informative:
it provides consistent and meaningful feedback to the reasoning agent, rather than introducing noise
or instability. The agent learns to exploit the restart mechanism in a way that aligns with improved
task performance.

Second, although the number of restart actions experiences a mild increase during the earliest phase
of training—an expected effect due to the restart reward signal not yet being fully calibrated—this
trend reverses quickly. After approximately 40 training steps, the number of restart actions begins
to decline and eventually stabilizes around step 100. While the restart frequency does decrease,
the reduction is only partial, indicating that the agent is learning to avoid unnecessary or redundant
restarts. Importantly, this stabilization occurs despite the fact that the reward for restart actions
continues to increase. In other words, the positive restart reward does not cause the agent to enter a
degenerate mode where restarts are over-triggered simply to accumulate reward.

This observation is precisely the behavior we aim to achieve: the reasoning agent is not “hacked”
into producing restart tokens blindly. Instead, it learns when a restart is genuinely beneficial based
on the current prompt and the intermediate reasoning trajectory.

Together, these findings provide compelling evidence that the restart mechanism in Dr. MAMR is
both stable and well-behaved. Even when rewarded positively, the model does not collapse into
overuse of restart behavior. Instead, it balances restart decisions in a principled manner, demonstrat-
ing robustness and reliability in practical training conditions.

H.5 RESULTS ON CODE BENCHMARK

To evaluate the generalization capability of Dr. MAMR beyond math reasoning, we conduct ex-
periments on code generation benchmarks. We use the DeepCoder dataset7 for training and adopt
DeepSeek-R1-Distill-Qwen-1.5B as the base model. We compare Dr. MAMR against two base-
lines: the single-agent GRPO and the multi-agent ReMA, evaluating performance on three widely
used code reasoning benchmarks: LiveCodeBench, Codeforces, and HumanEval+. For each bench-
mark, we report pass@k metrics at k ∈ 1, 2, 4, 8.

As shown in Tables 10, 8, and 9, Dr. MAMR consistently outperforms both GRPO and ReMA
across all benchmarks and almost all pass@k settings. On LiveCodeBench, Dr. MAMR achieves a
substantial improvement in pass@1 (19.35%) compared to GRPO (15.77%) and ReMA (15.05%).

7agentica-org/DeepCoder-Preview-Dataset
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Similar gains are observed on HumanEval+ (61.35% vs. 58.28%/57.67%). These results demon-
strate that Dr. MAMR not only excels in math reasoning but also generalizes effectively to complex
code-based reasoning tasks, validating its robustness across diverse domains.

We further visualize the training dynamics of Dr. MAMR compared to ReMA in Figure 8. The
plotted curve reports the mean reward throughout the RL training process. We observe that while
ReMA’s performance quickly plateaus and deteriorates—ultimately collapsing to near-zero val-
ues—Dr. MAMR demonstrates sustained and progressively improving performance. This indicates
that Dr. MAMR enables stable optimization in long-horizon multi-agent reasoning tasks.

Table 8: Comparison on the Codeforces benchmark (pass@k).

Metric GRPO ReMA Dr. MAMR

pass@1 5.88 4.66 6.22
pass@2 8.33 7.35 8.33
pass@4 11.03 11.27 12.25
pass@8 15.44 14.95 15.93

Table 9: Comparison on the HumanEval+ benchmark (pass@k).

Metric GRPO ReMA Dr. MAMR

pass@1 58.28 57.67 61.35
pass@2 69.33 70.55 71.78
pass@4 77.30 76.69 79.14
pass@8 83.44 82.82 84.66

Table 10: Comparison on the LiveCodeBench benchmark (pass@k)

Metric GRPO ReMA Dr. MAMR

pass@1 15.77 15.05 19.35
pass@2 19.35 17.56 22.58
pass@4 25.45 22.22 26.88
pass@8 29.39 24.37 32.26
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Figure 8: Training curves comparison on code dataset.

System Prompts for Meta-Think and Reasoning Agents (Coding)

META-THINK AGENT SYSTEM PROMPT
You are a meta-think agent that represents human high-level thought process when solving coding
problems. You will have a discussion with the reasoning agent. Each time you think about what to do
next, consider:

• Analyzing the problem requirements and constraints carefully

• Breaking down the solution into clear algorithmic steps

• Identifying key data structures and algorithms needed

• Considering edge cases and potential bugs

• Requesting implementation of specific functions or code blocks

• Reviewing intermediate code and suggesting improvements

• Backtracking when the approach doesn’t work

• Finally confirm when the solution is complete with the tag [FINISH]

REASONING AGENT SYSTEM PROMPT
You are a reasoning agent that implements code solutions step by step following the meta-think agent’s
instructions. When writing code:

• Implement the solution clearly and correctly

• Include proper error handling for edge cases

• Use appropriate data structures and algorithms

• Write clean, readable code with proper formatting

• When asked to finalize your answer, put your complete code solution within a markdown
code block using triple backticks (‘‘‘python ... ‘‘‘)

• Make sure your final code is complete and can be executed directly

H.6 TRAINING TIME COMPARISON

We report the per-step training time of Dr. MAMR compared to GRPO, with results shown in
Figure 9. As illustrated in the figure, the training time of Dr. MAMR is generally comparable to that
of the single-agent GRPO baseline.

H.7 RESULTS ACROSS BENCHMARKS ON 3B MODEL

In this section, we present additional pass@1 performance results on the 3B model, as shown in
Table 11. From the table, we observe that our Dr. MAMR consistently outperforms both single-agent
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Figure 9: Per-step training time comparison.

GRPO and ReMA. However, the performance gains are less pronounced on the 7B and 14B models.
We attribute this to their weaker instruction-following capability, which limits the performance upper
bound of the multi-agent system.

Table 11: Performance on math benchmarks with 3B base model.

Model Benchmark GRPO VRP (CoT) ReMA Dr. MAMR (Ours)

Qwen2.5
-3B
-Instruct

MATH500 65.60 65.20 62.60 66.20
GSM8K 85.30 72.02 83.17 85.37
AIME24 13.33 3.33 3.33 16.67
AMC23 40.00 20.00 42.50 50.00

Gaokao2023en 54.30 30.91 52.73 55.33
Minerva Math 31.20 16.91 26.47 32.35

Olympiad Bench 30.20 6.07 27.56 30.57

Average 45.70 30.63 42.62 48.07

H.8 TRAINING CURVE COMPARISON ON THE 3B MODEL

To further examine the training stability of smaller base models, we provide additional experiments
on the 3B model. In this setting, we use MATH as the training dataset to rule out the possibility
that collapse is solely caused by overly difficult data. The training curves reporting mean reward are
shown in Fig. 10.

From the figure, we observe that under the ReMA framework, the 3B model collapses rapidly after
only 20 training steps. In contrast, our Dr. MAMR framework maintains stable progress throughout
training. This highlights how critical the lazy-agent issue becomes when the base model is relatively
weak. Importantly, even with a less capable model, Dr. MAMR is still able to ensure stable training,
underscoring its robustness.

H.9 CASE STUDY ON RESTART BEHAVIOR

In this section, we present a case study on restart behavior, illustrating how restarts help the rea-
soning agent recover from its earlier mistakes. The full reasoning process is shown below. This
case study demonstrates how restart behavior enables the agent to abandon an incomplete reason-
ing trajectory and reinitiate a more systematic approach. By explicitly reconsidering the intersection
points, the agent successfully recovered the correct quadrilateral and computed the ground-truth area
of 4

√
3. Without such a restart, the agent would likely have produced an incorrect or incomplete

solution.
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Figure 10: Training curves of 3B model trained with ReMA and Dr. MAMR.

Case study on restart behavior

[Question] Find the area of the quadrilateral formed by the intersection points of the
parabolas y2 = 3x, y2 = −3x, and the circle x2 + y2 = 4. [Groundtruth: 4

√
3]

Meta-thinking:
To find the area of the quadrilateral formed by the points of intersection between the parabo-
las and the circle, begin by determining the intersection points. Substitute y2 = 3x and
y2 = −3x into x2 + y2 = 4 and work through the feasible solutions.
Reasoning:
For y2 = 3x: x2 + 3x = 4 ⇒ (x + 4)(x − 1) = 0, so x = 1 or −4. But x = −4 gives
y2 = −12. Thus (1,±

√
3).

For y2 = −3x: x2 − 3x = 4 ⇒ (x − 4)(x + 1) = 0, so x = 4 or −1. But x = 4 gives
y2 = −12. Thus (−1,±

√
3).

Meta-thinking:
The feasible intersections suggest four symmetric points on the circle: (1,±

√
3) and

(−1,±
√
3). It’s natural to check the configuration these points form and then evaluate the

area accordingly.
Reasoning:
<restart> Decision: Rethink from scratch. The feasible intersections are: - From y2 =
3x: (1,±

√
3) - From y2 = −3x: (−1,±

√
3)

Thus, four points of intersection: A = (1,
√
3), B = (1,−

√
3), C = (−1,

√
3), D =

(−1,−
√
3).

Meta-thinking:
These points form a rectangle. - Width: |1− (−1)| = 2 - Height: |

√
3− (−

√
3)| = 2

√
3

Area:
Area = 2× 2

√
3 = 4

√
3

[FINISH]
Reasoning:

4
√
3

H.10 SCALING

In this section, we present the full results of test-time scaling on pass@K performance when com-
paring Dr. MAMR with ReMA, as shown in Fig. H.10. We observe that on harder benchmarks such
as AIME24 and OlympiadBench, the performance gap between Dr. MAMR and ReMA widens as
K increases, while on relatively easier benchmarks, Dr. MAMR consistently achieves better per-
formance. These results highlight the strong capability of Dr. MAMR in handling a wide range of
reasoning tasks.
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Figure 11: Pass@K performance.

I THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used to assist in writing and polishing this manuscript.
Specifically, an LLM was employed to improve clarity, refine language, check grammar, and en-
hance overall readability.

The LLM was not involved in ideation, research design, data analysis, or the development of sci-
entific content. All research concepts, methods, and analyses were independently conceived and
conducted by the authors.

The authors take full responsibility for the manuscript’s content, including any text refined with
LLM assistance. All LLM-generated content adheres to ethical standards and does not constitute
plagiarism or scientific misconduct.
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