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ABSTRACT

Spiking neural networks (SNNs) are emerging as a promising energy-efficient
alternative to traditional artificial neural networks (ANNs) due to their spike-driven
paradigm. However, recent research in the SNN domain has mainly focused
on enhancing accuracy by designing large-scale Transformer structures, which
typically rely on substantial computational resources, limiting their deployment on
resource-constrained devices. To overcome this challenge, we propose a quantized
spike-driven Transformer baseline (QSD-Transformer), which achieves reduced
resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-
Transformer often suffers from severe performance degradation. In this paper, we
first conduct empirical analysis and find that the bimodal distribution of quantized
spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID)
during quantization, causing significant performance degradation. To mitigate
this issue, we take inspiration from mutual information entropy and propose a
bi-level optimization strategy to rectify the information distribution in Q-SDSA.
Specifically, at the lower level, we introduce an information-enhanced LIF to rectify
the information distribution in Q-SDSA. At the upper level, we propose a fine-
grained distillation scheme for the QSD-Transformer to align the distribution in
Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization
strategy, the QSD-Transformer can attain enhanced energy efficiency without
sacrificing its high-performance advantage. We validate the QSD-Transformer on
various visual tasks, and experimental results indicate that our method achieves
state-of-the-art results in the SNN domain. For instance, when compared to the
prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-
1 accuracy, accompanied by significant reductions of 6.0× and 8.1× in power
consumption and model size, respectively.

1 INTRODUCTION

Spiking neural networks (SNNs) have emerged as a promising approach for realizing energy-efficient
computational intelligence due to their high biological plausibility (Maass, 1997), sparse spike-driven
communication (Roy et al., 2019), and low power consumption on neuromorphic hardware (Davies
et al., 2018; Pei et al., 2019; Merolla et al., 2014). Within SNNs, the spiking neuron transmits
information via sparse binary spikes, where the binary value of 0 denotes neural quiescence and the
value of 1 signifies a spiking event (Shrestha & Orchard, 2018; Eshraghian et al., 2023). The unique
spike-driven nature is key to achieving low power consumption, where only a subset of spiking
neurons are activated to perform sparse synaptic accumulation (AC) (Yao et al., 2023a;b). However,
despite their high energy efficiency, the application of SNNs is constrained by their low task accuracy.

Numerous researchers have made great efforts to improve the performance and expand the application
scenarios of SNNs. Building upon the success of Vision Transformers (ViT) (Dosovitskiy et al.,
2020; Touvron et al., 2021; Yu et al., 2023), researchers naturally combined SNNs with Transformers,
resulting in significant performance improvements on ImageNet benchmark (Zhou et al., 2023b;a;
2024b;a) and diverse application scenarios (Zhang et al., 2022b;c; Lv et al., 2023). Despite their
commendable performance, these studies come at the cost of massive model parameters and high
computational complexity. For instance, Spikformer v2 (Zhou et al., 2024d) achieves an accuracy
of 82.4% on the ImageNet dataset, having 173M parameters, necessitating 1384MB memory, and
requiring 28.4G synapse-operations per second for inference. This places significant demands on
the storage and computational capabilities of neuromorphic chips, thereby limiting their deployment
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(a) Quantized Spike-driven Self-attention.
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Figure 1: Overview of the QSD-Transformer. (a) Proposed quantized spike-driven self-attention (Q-
SDSA) module, where the membrane potential is rectified and then sent to the information-enhanced
LIF (IE-LIF) neuron. (b) Proposed IE-LIF spiking neuron model, which utilizes the multi-bit spike
during training while the binary spike during inference. (c) Proposed fine-grained distillation scheme.

on edge devices. Therefore, there is an urgent need for a low-bit and high-performance Spike-based
Transformer.

Numerous efforts have been made to compress and accelerate neural networks on edge computing
devices, e.g., pruning (Han et al., 2015; Shen et al., 2023), quantization (Qin et al., 2021; Deng et al.,
2023), and knowledge distillation (Hinton et al., 2015; Xu et al., 2023). Among these, quantization is
particularly suitable for hardware deployment as it can reduce the bit-width of network parameters and
activations, enabling efficient inference. The post-training quantization (PTQ) approach (Jacob et al.,
2018) calculates quantization parameters directly based on pre-trained full-precision models, which
may limit the model’s performance to a suboptimal level without fine-tuning. In particular, the model
obtained from this approach may suffer from dramatic performance drops when quantized to ultra-low
bits (e.g., 2, 4 bit). In contrast to PTQ, Quantization-Aware Training (QAT) (Krishnamoorthi, 2018)
performs quantization during the learning process and generally achieves great performance with high
compression ratios. However, in the field of SNNs, research on QAT methods has primarily focused
on convolutional neural networks (CNNs), with low-bit Spikformer remaining largely unexplored.

In this paper, we first construct a quantized spike-driven Transformer (QSD-Transformer) baseline
(Yao et al., 2023a), which directly quantizes 32-bit weights to low bit-width during training. Despite
exhibiting significant energy efficiency, this simple method can lead to severe performance degra-
dation. Through detailed analysis of the baseline, we reveal that quantizing the attention module
will reduce the representation capability of the self-attention maps, which is defined as the spiking
information distortion (SID) problem. This is the main reason for the performance degradation. To
address this issue, we propose a bi-level optimization strategy for the baseline, aiming at rectifying
the distribution in quantized spike-driven self-attention maps (Q-SDSA) from both the neuron and
network levels. The overview of the QSD-Transformer is shown in Fig. 1 and our main contributions
can be summarized as:
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• We construct a lightweight spike-driven Transformer baseline through quantization, called
QSD-Transformer. The QSD-Transformer quantizes the synaptic weights from a 32-bit
to a low-bit representation (typically 2, 3, and, 4 bits), leading to reduced model size and
significant energy efficiency advantages.

• We reveal that the proposed baseline suffers from performance degradation due to the SID
problem in Q-SDSA. Inspired by information entropy, we propose a bi-level optimization
strategy to solve this issue. This strategy introduces an information-enhanced LIF and a fine-
grained distillation to rectify the distribution of Q-SDSA, leading to enhanced performance.

• We validate the QSD-Transformer on various visual tasks, e.g., classification, object detec-
tion, semantic segmentation, and transfer learning. Experimental results indicate that our
method outperforms existing spiking Vision Transformers by a substantial margin, while
also boasting a compact model size and extremely low power consumption.

2 RELATED WORKS

Spiking vision transformer. Spikformer (Zhou et al., 2023b) pioneered direct training with a pure
SNN architecture, introducing a linear self-attention mechanism that eliminates multiplication by
activating Query, Key, and Value with spiking neurons and replacing softmax with spiking neurons.
Its successor (Zhou et al., 2024d) integrated masked image modeling (He et al., 2022), achieving an
82.25% accuracy on ImageNet with 172 M parameters, the highest among SNNs. SpikingResformer
(Shi et al., 2024) introduces a novel spike self-attention mechanism along with a judicious scaling
approach, enabling effective extraction of local features. However, none of these models preserved
the spike-driven nature until the spike-driven Transformer (Yao et al., 2023b), which introduces the
sparse addition to self-attention using only masking operations. Its successor (Yao et al., 2023a)
focused on the meta-design of the spiking vision Transformer, including architecture, spike-driven
self-attention, shortcut connections, etc. The proposed spike-driven Transformer v2 (Yao et al., 2023a)
set up direct training SNN backbone for improving performance across tasks like image classification,
segmentation, and object detection, hinting at impacts on neuromorphic chip design. Hence, in this
study, we adopt the pure addition spike-driven Transformer v2 for quantization baseline.

Model compression. Numerous compression techniques have been explored to compress large-scale
SNNs, including: (1) Pruning (Han et al., 2015; Kusupati et al., 2020; Savarese et al., 2020) in SNNs
generally draw on traditional pruning methods from ANNs to suit the spatial and temporal domains
(Chen et al., 2022; Shi et al., 2023; Shen et al., 2024). While successful on simpler datasets and
shallow networks, achieving high performance becomes more challenging with complex datasets and
deeper networks. (2) Knowledge distillation (Hinton et al., 2015; Guo et al., 2023; Touvron et al.,
2021) involves the transfer of knowledge from large-scale ANNs or SNNs to smaller-scale SNNs,
aiming to compress models and reduce energy consumption. However, these methods (Takuya et al.,
2021; Tran et al., 2022; Xu et al., 2023) often distill only the final output of the model, leading to
incomplete knowledge transfer and suboptimal performance in SNNs. (3) Quantization (Jacob et al.,
2018; Krishnamoorthi, 2018), particularly for hardware deployment, is advantageous as it reduces
the bit-width of network parameters and activations, enabling efficient inference. Recent research
on quantization methods (Stromatias et al., 2015; Deng et al., 2023; Kheradpisheh et al., 2022)
for SNNs has predominantly focused on weight binarization within Conv-based architectures. For
instance, Deng et al. (Deng et al., 2023) utilized QAT (Krishnamoorthi, 2018; Jacob et al., 2018) to
reduce the weight size of Conv-based SNN, which demonstrated high compression performance with
acceptable accuracy loss on recognition tasks. Despite the significant potential of QAT in reducing the
memory and computational costs of Conv-based SNN (Deng et al., 2023), directly applying QAT on
Spikformer leads to poor performance. The core challenge is the significant distribution discrepancy
between the binary spike patterns and the normal distribution in the self-attention of Spikformer and
ANN Transformer, which causes severe information distortion, leading to performance degradation.

3 PRELIMINARY

In this section, we first introduce the spiking neuron model. Then, we construct a quantized spike-
driven Transformer (QSD-Transformer) baseline, which quantizes the synaptic weight from 32-bit to
low bit-width, thereby demonstrating significant energy efficiency advantages.
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Spiking neuron model. In this paper, we choose the widely-employed iterative Leaky Integrate-
and-Fire (LIF) model (Wu et al., 2018; Guo et al., 2024), which can be described by the following
mathematical equations:

vℓ[t] = hℓ[t− 1] + f(wℓ,xℓ−1[t− 1]), (1)

sℓ[t] = Θ(vℓ[t]− ϑ), (2)

hℓ[t] = τvℓ[t]− sℓ[t], (3)

where τ is the time constant, t is the time step, wℓ is the weight matrix of layer ℓ, f(·) is the
operation that stands for convolution (Conv) or fully connected (FC), x is the input, and Θ(·) denotes
the Heaviside step function. When the membrane potential v exceeds the firing threshold ϑ, the
LIF neuron will trigger a spike s; otherwise, it remains inactive. After spike emission, the neuron
invokes the reset mechanism, where the soft reset function is employed. h is the membrane potential
following the reset function. For the backpropagation of this neuron, we outline it in Appendix ??.

QSD-Transformer baseline. We select the purely spike-driven Transformer v2 (SD-Transformer v2)
(Yao et al., 2023a) to perform quantization, and the LSQ (Bhalgat et al., 2020) method is employed
to quantize the 32-bit weights to low bit-width (e.g., 2, 3, 4 bits). The quantization function is defined
as:

Q(w) =

⌊
clip

{
w

αw
,−2b−1, 2b−1−1

}⌉
, ŵ = αwQ(w), (4)

where w is the 32-bit weight, b is the bit assigned to the quantized weight (i.e., Q(w)), and αw is the
scaling factor used to mitigate the quantization error. Moreover, clip{x, a, b} confines x within range
[a, b], and ⌊·⌉ denotes the rounding operator. These two operations make the quantization function
non-differentiable, so we adopt the straight-through estimator (STE) (Bengio et al., 2013) to assist the
gradient backpropagation. Eq. 4 is performed for all weight layers in the baseline model. Building
upon this, the calculation for a certain layer ℓ ∈ {FC,Conv} in our baseline is expressed as:

Qℓ(x) = ŵ · SN (x) = αwQ(w) · SN (x). (5)

Here, SN (·) represents the spiking neuron layer, which converts the floating-point input x into the
binary spike. Hence, the QSD-Transformer employs binary spike activities and low bit-width weights
for Conv and FC operations. This replaces the original computationally intensive operations, leading
to significant energy efficiency improvements. Following Eq. 5, the quantization for the spike-driven
self-attention (Q-SDSA) can be further described as:

q = QConv1(x),k = QConv2(x),v = QConv3(x), Q-SDSA(q,k,v) = SN ((qsk
T
s )vs), (6)

where, qs = SN (q), and ks, vs are obtained in the same way. It can be observed from Eq. 6 that
our Q-SDSA module reduces the computational number by the linear attention mechanism with
O(ND2), where N is the token numbers and D is the channel dimensions. However, quantizing the
attention module will diminish its representation capacity, leading to performance degradation. In the
next section, we will provide a detailed explanation of this issue and propose methods to address it.

4 METHOD

In this section, we first reveal that the performance degradation of our baseline is due to the limited
representational capacity of Q-SDSA. Inspired by information entropy theory, we propose a bi-level
optimization strategy to address this issue. At the lower level, we introduce the information-enhanced
leaky integrate-and-fire (IE-LIF) neuron, which maximizes information entropy by adjusting the spike
distribution. At the upper level, we present the fine-grained distillation scheme, which minimizes
conditional entropy by aligning the information of Q-SDSA with that of ANNs.

4.1 PERFORMANCE DEGRADATION ANALYSIS

Despite its efficiency advantages, the QSD-Transformer baseline suffers from performance degra-
dation, as shown in Fig. 2 (a) (All quantized). In contrast, the quantized ANN Transformer can
balance both efficiency and performance (Wu et al., 2022). Hence, we quantize each module of
the architecture, i.e., FC, Conv, and Attention, to identify which one has the biggest impact on
performance degradation.

4
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Figure 2: (a) Accuracy of quantizing different modules in the SD-Transformer v2 and its same ANN
Transformer. (b) The distribution of the attention module (blue shadow), and the probability density
function curve of normal distribution (red line). Experiments are conducted on ImageNet, and 3
layers in SD-Transformer v2 and its same ANN Transformer are selected for illustration.

We illustrate the ablation results in Fig. 2 (a), where all weights are quantized to 4-bit. Obviously, the
attention layer in SNNs is highly sensitive to quantization, but it is not observed in ANNs. This is
attributed to the different information distributions in the self-attention map, as depicted in Fig. 2
(b). It can be observed that the information within Q-SDSA displays a bimodal distribution, whereas
the information in ANN adheres to a normal distribution. Due to the utilization of both low-bit
weights and binary spikes, the information representation capability of the Q-SDSA is severely
limited compared to that of ANNs. We define it as the spike information distortion (SID) problem.

To solve the SID issue, we draw on the quantized Transformer in the ANN domain (Liu et al.,
2021) that has struck a good balance between efficiency and performance by maintaining the noraml
distribution of activity. This prompts us to adjust the information distribution in the Q-SDSA to match
that of ANNs. To achieve this, we take inspiration from the information entropy theory (Paninski,
2003) and formulate it as the mutual information entropy maximization problem.

Definition 1. Addressing the performance degradation of the QSD-Transformer baseline is equivalent
to maximizing the mutual information entropy between it and the quantized Transformer in ANNs.
The optimization goal for the QSD-Transformer is defined below.

max
θS

I(pS ;pA) = H(pS)−H(pS |pA), (7)

where pS and pA are the attention score value in SNN and ANN respectively, and θS is the parameters
of the QSD-Transformer. However, directly optimizing Eq. 7 is challenging, so we regard it as a
bi-level optimization problem (Colson et al., 2007; Sinha et al., 2017). It is achieved by minimizing
the conditional information entropy H(pS |pA) and maximizing the information entropy H(pS),
which is defined as:

min
θS

H(pS⋆

|pA), s. t. pS⋆

= argmax
pS

H(pS). (8)

To accomplish it, we first propose the information-enhanced LIF (IE-LIF) neuron, aiming to maximize
the information entropy pS⋆

at the lower level. We further introduce a fine-grained distillation (FGD)
scheme, aiming to minimize the conditional entropy H(pS |pA) at the upper level.

4.2 INFORMATION-ENHANCED LIF NEURON

As mentioned in Fig. 2 (b), the information in the self-attention map of the QSD-Transformer follows
a binomial distribution, which limits the representational capacity of the attention module. Therefore,
we propose the information-enhanced LIF (IE-LIF) neuron and adjust the information distribution of
Q-SDSA at the lower level, focusing on maximizing the information entropy H(pS).

Proposition 1. Given the SNN Transformer and ANN Transformer models, where the distributions
of the query (q), key (k), and value (v) follow binomial B(r, T ) and normal N (µ, σ) distributions,
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respectively, it is postulated that as the SNN’s time step T tends to infinity, there exist parameters
µ, σ, and r such that the average entropy over time of the SNN’s attention scores H(

∑T
t=1 p

S [t])
equals ANN attention scores’ entropy H(pA).

Proof can be found in Appendix F. According to Proposition 1., within infinite time steps T , the
attention matrix values (e.g., qs,ksvs}) in the QSD-Transformer have the same information repre-
sentation as those in the ANN Transformer. However, numerous time steps T will inevitably lead
to latency and huge energy consumption. Recently, Hao et al. (2023) and Hu et al. (2023) achieved
high-performance conversion by transforming quantized ANNs into SNNs and using fewer time steps.
This prompted us to train directly using multi-bit values. We only need to ensure that inference is
spike-driven. Thus, we propose the concept of IE-LIF, in which Eq. 2 can be written as:

aℓ[t] =
1

b

⌊
clip{vℓ[t], 0, b}

⌉
, (9)

where aℓ[t] is the multi-bit output of IE-LIF, and b represents the maximum integer value emitted
by the IE-LIF, which is equipped with the baseline. Since Eq. 9 is non-differentiable, we employ
the straight-through estimator (STE) (Bengio et al., 2013) to retain the gradient derivation during
backpropagation.

Previous SNNs have utilized multi-bit spikes (integers) (Hao et al., 2024; Ponghiran & Roy, 2022) or
continuous values (Wu et al., 2021) to reduce quantization error, thereby alleviating the shortcomings
of binary spikes. However, this approach raises concerns because it can undermine the inherent
spike-driven characteristics of SNNs. We propose a solution where IE-LIF uses multi-bit values
during the training phase and subsequently converts these values to binary spikes for inference, as
depicted in Figure 1 (c). Moreover, the output xℓ+1[t] of each layer in the SNN is represented as:

xℓ+1[t] = wℓ · aℓ[t] = wℓ ·
T∑

t=1

sℓ[t], (10)

where aℓ[t] represents multi-bit spikes during training with one timestep and is denoted as
{0, 0.25, 0.5, 0.75, 1}T=1, while sℓ[t] represents binary spikes during inference and is extended
to 4 virtual timesteps denoted as {0, 1}T=4, with a maximum integer value b set to 4 in this paper.

With the introduction of IE-LIF, our next step involves low-level optimization to maximize the entropy
of attention scores pS . We first observed that the membrane potentials {qmem,kmem,vmem} in the
IE-LIF model within Q-SDSA approximately follow a normal distribution N (µ, σ) with µ = 0,
as also noted in (Guo et al., 2022a;b). Then we provide the formula for calculating the maximum
information entropy.

Proposition 2. Given a random variable x following a normal distribution N (µ, σ), the information
entropy H(x) achieves its maximum value of 1

2 log 2πeσ
2(x).

Proof can be found in Appendix G. According to Proposition 2., the maximum information entropy of
membrane potential is H(pmem) =

1
2 log 2πeσ

2(pmem), acting as the upper limit for the information
entropy of spike attention scores. Through the application of IE-LIF, the information entropy of spike
attention scores becomes a discrete representation of membrane potential’s information entropy:

H(pS) = −
b∑

k=0

(
G(pmem)δ(pmem − k

b
)

)
· log

(
G(pmem)δ(pmem − k

b
)

)
, (11)

where G(pmem) is the Gaussian distribution function of membrane potential pmem and δ(·) is the
Dirac delta function and

∫∞
−∞ δ(x) dx = 1. However, since pmem ∼ N (0, σ), when Eq. 9 is applied

to membrane potentials pmem, spikes are emitted only when pmem exceeds 0. This may lead to the
distributions of attention scores resembling the right tail of a discrete normal distribution, causing
mismatched attention scores between SNNs and ANNs. Hence, we propose a membrane potential
rectify function (MPRF) ϕℓ(·), which can be expressed as:

p̂mem = ϕℓ(pmem) =
pmem − µ(pmem)

σ(pmem)
· γ + α, (12)

where pmem and p̂mem represent the membrane potential of Q-SDSA before and after applying the
MPRF, and γ, α are the learnable hyperparameters. The MPRF is only executed when ℓ ∈ Q-SDSA.
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Figure 3: (a) Comparative results of accuracy, power, and parameters on ImageNet. (b) Comparison
of information distribution in Q-SDSA before and after using the proposed IE-LIF and FGD scheme.

After MPRF, attention score distribution aligns more closely with the desired normal distribution,
reducing the mismatch between SNNs and ANNs. At this point, the information entropy of SNN
attention scores is pS⋆

=
∑b

k=0 G(p̂mem)δ(p̂mem − k
b ). Furthermore, the MPRF can be incorporated

into the weights wℓ during inference, details of which can be found in Appendix H.

4.3 FINE-GRAINED DISTILLATION

The IE-LIF neuron has maximized the information entropy of H(pS). Building upon this, we achieve
the optimization goal of Eq. 8 by proposing a fine-grained distillation (FGD), which adjusts the
distribution of Q-SDSA at the upper level to minimize the conditional entropy H(pS⋆ |pA).

The proposed FGD achieves minimal conditional entropy by minimizing the norm distance between
p̂S⋆

and p̂A, with the optimal solution being p̂S⋆

= p̂A. It utilizes appropriate distillation activations
and meticulously designed similarity matrices to effectively leverage knowledge from the teacher
model. Therefore, the FGD scheme is defined as:

LFGD =
∑

p∈{q,k,v}

L∑
l=1

H∑
h=1

||F l
pA −F l

pS ||, where Fp =
p× p⊤

||p× p⊤||
, (13)

where L denotes the number of layers in the Transformer, H represents the number of heads, and || · ||
indicates ℓ2 normalization. During backpropagation, gradient updation drives the attention matrix of
the QSD-Transformer and the same ANN Transformer closer, thereby minimizing H(pS⋆ |pA). The
overall training loss function L of our QSD-Transformer is defined as:

L = LCE(

T∑
t=1

sℓ[t], y) + λLFGD, (14)

where sℓ[t] is the output of our QSD-Transformer, LCE is the cross-entropy loss (Rathi & Roy, 2021)
for ensuring task performance, and LFGD is the proposed distillation loss for enhancing information
entropy. λ is a coefficient to balance these two loss functions, and it is set to 2 in this paper.

5 EXPERIMENT

In this section, we validate the QSD-Transformer on various vision tasks, including image classifica-
tion, object detection, semantic segmentation, and transfer learning. Then, we ablate the proposed
scheme to prove the effectiveness of our method. For further detailed information on datasets, power
calculations, experimental setups, and hyperparameters, refer to Appendix I and K.

ImageNet classification. We evaluate the QSD-Transformer’s effectiveness in image classification
using the challenging ImageNet-1K dataset (Deng et al., 2009). The comparison results are sum-
marized in Table 1. Notably, with only 6.8M parameters, the QSD-Transformer achieves a top-1
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Table 1: ImageNet classification results (Deng et al., 2009). ‘ Bits’ denotes the bit width of the weight
and activity, respectively. Power is the estimation of energy consumption same as Yao et al. (2023b).
⋆ indicates self-implementation results with open-source code (Yu et al., 2023).

Method Architecture Bits Spike
-driven

Time
Step

Param
(M)

Power
(mJ)

Acc.
(%)

Transformer (Yu et al., 2023) CAformer⋆ 32-32 ✗ N/A 15.1 40.3 79.9
Transformer (Yu et al., 2023) Q-ViT 4-4 ✗ N/A 11.4 8.1 80.9

QCFS (Bu et al., 2021) ResNet-34 32-1 ✓ 256 21.8 - 73.4
MST (Wang et al., 2023) Swin-T 32-1 ✓ 128 28.5 - 77.9

SpikeZIP-TF (You et al., 2024) ViT-S 32-1 ✓ 64 22.1 - 81.5

SEW-ResNet (Fang et al., 2021) SEW-ResNet-34 32-1 ✗ 4 25.6 4.9 67.8
SEW-ResNet-152 32-1 ✗ 4 60.2 12.9 69.2

MS-ResNet(Hu et al., 2024) MS-ResNet-34 32-1 ✓ 4 21.8 5.1 69.4
MS-ResNet-104 32-1 ✓ 4 77.3 10.2 75.3

Spikformer (Zhou et al., 2023b) Spikformer-8-512 32-1 ✗ 4 29.7 11.6 73.4
Spikformer-8-768 32-1 ✗ 4 66.3 21.5 74.8

QKformer (Zhou et al., 2024b) HST-10-384 32-1 ✓ 4 16.4 - 78.8

SD-Transformer (Yao et al., 2023b) SD-Transformer-8-512 32-1 ✓ 4 29.7 4.5 74.6
SD-Transformer-8-768 32-1 ✓ 4 66.3 6.1 76.3

SpikingResformer (Shi et al., 2024) SpikingResformer-T 32-1 ✓ 4 11.1 4.2 74.3
SpikingResformer-L 32-1 ✓ 4 60.4 9.7 78.7

SD-Transformer v2 (Yao et al., 2023a)
SD-Transformer v2-T 32-1 ✓ 4 15.1 16.7 74.1
SD-Transformer v2-M 32-1 ✓ 4 31.3 32.8 77.2
SD-Transformer v2-L 32-1 ✓ 4 55.4 52.4 79.7

QSD-Transformer

SD-Transformer v2-T 4-1 ✓ 4 1.8 2.5 77.5
SD-Transformer v2-M 4-1 ✓ 4 3.9 5.7 78.9
SD-Transformer v2-L 4-1 ✓ 4 6.8 8.7 80.3

HST-10-384 4-1 ✓ 4 2.3 - 79.3
ViT-S 4-1 ✓ 4 3.4 - 81.9

Table 2: Object detection results on COCO 2017 (Lin et al., 2014).

Method Architecture Bits Spike
-driven

Time
Step

Param
(M)

Power
(mJ)

mAP@0.5
(%)

Transformer (Yu et al., 2023) CAformer 32-32 ✗ N/A 31.2 890.6 54.0
Transformer (Zhu et al., 2020) DETR 32-32 ✗ N/A 41.0 860.2 57.0

Spiking-Yolo (Kim et al., 2020) ResNet-18 32-1 ✓ 3500 10.2 - 25.7
Spike Calibration (Li et al., 2022) ResNet-18 32-1 ✓ 512 17.1 - 45.3

Spike Retina (Zhang et al., 2023) Spike-ResNet-18 32-1 ✓ 4 11.3 - 28.5
EMS-SNN (Su et al., 2023) EMS-ResNet-18 32-1 ✓ 4 26.9 - 50.1

SD-Transformer v2 (Yao et al., 2023a) SD-Transformer v2-M 32-1 ✓ 1 75.0 140.8 51.2

QSD-Transformer SD-Transformer v2-T 4-1 ✓ 4 16.9 45.1 48.1
SD-Transformer v2-M 4-1 ✓ 4 34.9 117.2 57.0

accuracy of 80.3% in the SNN domain, showcasing significant advantages in both accuracy and
efficiency. Specifically, QSD-Transformer vs. SD-Transformer v2 (Yao et al., 2023a) vs. Spik-
ingResformer (Shi et al., 2024): Param, 6.8M vs. 55.4M vs. 60.4M; Power: 8.7mJ vs. 52.4mJ
vs. 9.7mJ; Acc, 80.3% vs. 79.7% vs. 78.7%. When compared to the SOTA model in the SNN
field, SD-Transformer v2 (Yao et al., 2023a), our method achieves a 0.6% improvement in accuracy
while reducing parameter by 87.58% and power by 83.40%. In summary, the QSD-Transformer
establishes better results in both accuracy as well as efficiency on ImageNet-1K in the SNN domain
and especially shines in efficiency.
Object detection. We evaluate the efficacy of the QSD-Transformer on the object detection task and
select the classic and large-scale COCO (Lin et al., 2014) dataset as our benchmark for evaluation.
Similar to the previous work (Yao et al., 2023a), we convert the mmdetection (Chen et al., 2019)
codebase into a spiking version by IE-LIF and then use it to execute our model. We employ the
QSD-Transformer as the backbone to extract features, along with Mask R-CNN (He et al., 2017) for
object detection. The backbone is initialized with the pre-trained QSD-Transformer on ImageNet-1K,
and other added layers are initialized with Xavier (Glorot & Bengio, 2010). The comparison results
are summarized in Table 2. Obviously, the QSD-Transformer outperforms the existing state-of-the-art
methods in the SNN domain by a significant margin. More specifically, our method exceeds the
performance of SD-Transformer v2 by 5.8% in terms of the mAP@0.5 metric, while utilizing fewer
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Table 3: Semantic segmentation results on ADE20K (Zhou et al., 2017).

Method Architecture Bits Spike
-driven

Time
Step

Param
(M)

Power
(mJ)

MIoU
(%)

Segformer (Xie et al., 2021) Segformer 32-32 ✗ N/A 3.8 38.9 37.4
DeepLab-V3 (Zhang et al., 2022a) DeepLab-V3 32-32 ✗ N/A 68.1 1240.6 42.7

SD-Transformer v2 (Yao et al., 2023a) SD-Transformer v2-M 32-1 ✓ 4 59.8 183.6 35.3

QSD-Transformer SD-Transformer v2-T 4-1 ✓ 4 3.3 17.5 39.0
SD-Transformer v2-M 4-1 ✓ 4 9.6 37.9 40.5

Table 4: Transfer learning results on CIFAR10, CIFAR100 and CIFAR10-DVS.

Method Param
(M)

CIFAR10 CIFAR100 CIFAR10-DVS

T Acc. (%) T Acc. (%) T Acc. (%)

Spikformer (Zhou et al., 2023b) 29.1 4 97.0 4 83.8 - -
SpikingResformer (Shi et al., 2024) 17.3 4 97.4 4 85.9 10 84.8

QSD-Transformer 1.8 4 97.8±0.1 4 86.6±0.3 10 88.8±0.1
6.8 4 98.4±0.2 4 87.6±0.2 10 89.8±0.1

than half the parameters. In conclusion, our approach demonstrates efficacy in object detection tasks
and has established a new benchmark for detection within the SNN domain.

Semantic segmentation. We validate the efficacy of the QSD-Transformer on the semantic segmen-
tation task and select the challenging ADE20K (Zhou et al., 2017) dataset. Similar to the procedures
in object detection, we converted the mmsegmentation (Contributors, 2020) codebase into a spiking
version and utilized it to execute our model. The QSD-Transformer serves as the backbone for feature
extraction, integrated with Semantic FPN (Kirillov et al., 2019) for segmentation. The initialization
is similar to that in the object detection task. The backbone is initialized with a pre-trained model
on ImageNet-1K, and the added layers are initialized using Xavier (Glorot & Bengio, 2010). Since
SD-Transformer v2 is the only work in the SNN field reporting results on ADE20K, we compare our
approach with advanced deep models. As depicted in Table 3, our method significantly outperforms
SD-Transformer v2 (Yao et al., 2023a) across all comparison metrics, achieving an 83.94% reduction
in parameters, a 79.36% decrease in power, and a 5.2% increase in MIoU. Moreover, our method
achieves a comparable MIoU to the advanced DeepLab-V3 in the ANN domain while substantially
reducing both parameters and power.
Transfer learning. We demonstrate the efficacy of the QSD-Transformer on transfer learning tasks.
We evaluate the model’s transfer learning capability on both static datasets (CIFAR) (Krizhevsky et al.,
2009) and the neuromorphic dataset (CIFAR10-DVS) (Li et al., 2017) using five repeated experiments
with different random seeds. To assess this ability, we fine-tune the pre-trained weights from the
ImageNet-1K dataset on these selected datasets. Compared with existing transfer learning methods
in SNNs, such as SpikingResformer and Spikformer, the proposed QSD-Transformer demonstrates
state-of-the-art results. It achieves 98.4% accuracy on CIFAR-10, 87.6% accuracy on CIFAR-100,
and 89.8% accuracy on CIFAR10-DVS, surpassing SpikingResformer by 1.0%, 1.7%, and 5.0%,
respectively. Thus, our method has demonstrated commendable performance across a variety of
computer vision tasks.

Ablation study. We first ablate two components of the QSD-Transformer, namely the IE-LIF and
FGD schemes, to verify the effectiveness of the proposed method. Additionally, we quantized the
weights to 4, 3, and 2 bits to study the impact of bit width on performance. Experiments are performed
on the ImageNet dataset. The results are shown in Table 5, where the QSD-Transformer baseline
without the IE-LIF neuron and FGD scheme achieves an accuracy of 70.0%. In contrast, using the
IE-LIF neuron increases the accuracy by 5.8%. With both the IE-LIF neuron and FGD scheme, the
accuracy further reaches 77.5%. Therefore, both the proposed IE-LIF neuron and the FGD scheme
can improve performance, and their combined use can bring more significant accuracy. Moreover,
we also investigate the impact of bit-width on performance. It can be seen from Table 5 that the
accuracy decreases with bit width reduction. Notably, even when the weights are quantized to 2-bit,
our method still achieves 75.0% accuracy.
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Table 5: Ablation study of the IE-LIF, FGD, and different bits.

Architecture IE-LIF FGD Weight Bits Acc.(%)

SD-Transformer v2 (Yao et al., 2023a)

- - 4 70.0
✓ - 4 75.8
✓ ✓ 4 77.5
✓ ✓ 3 76.9
✓ ✓ 2 75.0

Spikformer (Zhou et al., 2023b)

- - 4 64.1
✓ - 4 70.1
✓ ✓ 4 75.5
✓ ✓ 3 74.1
✓ ✓ 2 73.1

Next, we delve into the application of our method within the Spikformer architecture (Zhou et al.,
2023b) to validate its robustness and scalability. Specifically, we initially established a Spikformer-8-
384 model as a quantization baseline under the conditions of a time step of 4 and a 4-bit quantization
of the weights. Subsequently, we conducted ablation experiments of various modules and weight
bit-widths on the ImageNet dataset. As shown in Table 5, direct quantization of Spikformer indicates
a significant performance drop of 6.14% under standard quantization conditions. Then, by applying
our IE-LIF spiking neurons, we were able to enhance the accuracy by 6.0%. Furthermore, the
accuracy was further improved to 75.5% by combining the IE-LIF neurons with the FGD scheme.
We also investigated the impact of bit-width on performance. Notably, our method maintains 73.1%
accuracy even with 2-bit weight quantization. The above results demonstrate that our method can be
robustly applied to various spiking-based Transformer models.

Table 6: Ablation study of the activity bits and
training time step on the QSD-Transformer.

Bits (b) Timestep (T ) Acc.(%)
1 1 67.6
1 2 68.5
1 4 70.0
2 1 71.6
2 2 77.4
4 1 77.5

Finally, our ablation studies on the activity bit b and
training time step T of the IE-LIF model reveal that
augmenting the activity bit b substantially boosts per-
formance. As depicted in Table 6, elevating b from
1 to 4 with T = 1 results in a 9.9% increase in accu-
racy; conversely, with b = 1, raising T from 1 to 4
yields a more modest 2.4% improvement. This dis-
parity arises because augmenting the activity bits b
enhances the model’s information capacity and mit-
igates quantization errors, whereas increasing the
training time step T has a less pronounced impact,
likely due to the redundancy inherent in spike trains.
Furthermore, extending the time step T incurs significant memory and energy costs, which is not the
case for increasing the activity bit b. These findings underscore that the quantization performance is
more sensitive to the activity bits than the time step configuration, and enhancing the activity bits is a
more efficient approach.

6 CONCLUSION

In this paper, we first introduce the lightweight spike-driven transformer, namely the QSD-
Transformer, which quantifies the weights from 32-bit to low-bit. By employing both low-bit
weights and 1-bit spike activities, QSD-Transformer has demonstrated significant energy efficiency.
Despite exhibiting efficiency benefits, the QSD-Transformer suffers from performance degradation.
We reveal that this is attributed to the SID problem and propose a bi-level optimization strategy to
solve this challenge. At the lower level, we propose the IE-LIF neuron, which generates multi-bit
spikes in training while maintaining spike-driven behavior during inference. At the upper level, we
introduce the FGD scheme, which optimizes attention distribution between the Q-SDSA and its ANN
counterpart. Extensive experiments show that our method achieves state-of-the-art results in both
performance and efficiency on various vision tasks, paving the way for the practical deployment of
spike-based Transformers in resource-limited platforms.
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Appendix

A THEORETICAL EFFICIENCY ANALYSIS IN TRAINING AND INFERENCE

In this section, We would like to provide additional clarification regarding the impact of the proposed
IE-LIF and FGD strategies on training and inference efficiency. As shown in Table 7, our QSD-
Transformer quantization framework employs multi-bit pulses (IE-LIF) and knowledge distillation
(FGD) techniques, yet it does not increase the computational and memory overhead during training.
In fact, compared to traditional spike-based Transformers, our approach reduces these overheads. We
measure the memory consumption and the training time in one epoch of all models. The memory
per image (MB/img) is measured as the peak GPU memory each image occupies during training,
following Zhang & Zhang (2024).

IE-LIF During training, we utilize multi-bit pulses with a single time step, which are converted
to binary pulses during inference. This maintains the sparsity of the spiking neural network (SNN)
while reducing memory requirements during inference. Furthermore, since IE-LIF neurons use
multi-bit pulses with a single time step, compared to the training time and memory complexity of
the conventional spike-driven Transformer, which scales with O(LT ), our approach reduces the
complexity to O(L). As shown in Table 7, this results in a 3.2× improvement in training speed and a
6.1× reduction in memory usage.

Optimizing Activation Bit-Width and Time Steps As shown in Table 7, we find that increasing
the activation bit-width has a more significant impact on performance improvement, without a
substantial increase in memory consumption. Therefore, we recommend enhancing performance by
increasing the activation bit-width b rather than increasing the number of time steps. This significantly
reduces the memory required for training.

Fine-Grained Distillation (FGD) Although the distillation process might seem to augment training
time and memory usage, by minimizing the disparities in information distribution between SNNs and
ANNs, we optimize resource utilization during training, avoiding the need for excessive time step
increments. This approach also ensures that performance remains consistent.

Table 7: Theoretical efficiency analysis evaluated on ImageNet-1K.

Method Params.
(M) Bits T × b Complexity Training

Time (min/ep)
Memory

(MB/img)
Full-precision 15.1 32-1 4× 1 O(LT ) 16.4 548.9

Quantized Baseline 1.8 4-1 4× 1 O(LT ) 18.4 560.1
QSD-Transformer 1.8 4-1 1× 4 O(L) 5.7 90.4

B ADDITIONAL EXPERIMENTS ON LATEST SOTA NETWORK

We’ve included the results of our quantization framework, QSD-Transformer, on the ImageNet
dataset, and compared it with the latest state-of-the-art method, QKformer (Zhou et al. (2024c)).

As shown in Table 8, after applying our QSD-Transformer quantization framework, QKFormer
achieves a 7.1 × reduction in model size while improving performance by 0.5%. This demonstrates
the broad applicability of our method and further extends its potential to enhance other spike-based
Transformer models.

Table 8: Comparison of QKformer Network Performance

Network Method Bits T × b Params (M) Acc.(%)

QKformer
Full-precision 32-1 4× 1 16.4 78.8
Quantized Baseline 4-1 4× 1 2.3 76.8
QSD-Transformer 4-1 1× 4 2.3 79.3
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C DETAILED COMPARISON WITH DIRECT TRAINING

Here we present the accuracy results for CIFAR10/100 and CIFAR10-DVS with direct training. It can
be observed that our QSD-transformer has achieved the highest accuracy in direct training as well.

Table 9: Detailed comparison on CIFAR10, CIFAR100, and CIFAR10-DVS.

Training algorithm Method Bits Param
(M)

CIFAR10 CIFAR100 CIFAR10-DVS

T Acc. (%) T Acc. (%) T Acc. (%)

Direct Training

Spikformer (Zhou et al., 2023b) 32-1 11.21 4 95.2 4 77.8 10 80.9
SpikingResformer (Shi et al., 2024) 32-1 10.7 4 96.2 4 79.2 10 81.5

QSD-Transformer 4-1 1.8 4 95.4 4 78.2 10 80.4
4-1 6.8 4 96.4 4 79.7 10 82.1

Transfer Learning

Spikformer (Zhou et al., 2023b) 32-32 29.1 4 97.0 4 83.8 - -
SpikingResformer (Shi et al., 2024) 32-32 17.3 4 97.4 4 85.9 10 84.8

QSD-Transformer 4-1 1.8 4 97.8 4 86.6 10 88.8
4-1 6.8 4 98.4 4 87.6 10 89.8

D MORE EXPERIMENTS ON THE TEMPORAL BENCHMARK

The proposed IE-LIF enables multi-time-step forward propagation during training, making it suitable
for temporal benchmarks like CIFAR10-DVS. As shown in the Table 10, we integrate IE-LIF into
the VGG11 module with direct training and achieve significant improvement, demonstrating its
effectiveness for temporal benchmarks.

Table 10: Results of applying IE-LIF on the temporal benchmarks (CIFAR10-DVS (Li et al., 2017)).

Network Method T × b Acc.(%)
VGG11 TET (Deng et al. (2022)) 10× 1 83.1
VGG11 TET+IE-LIF 5× 2 85.1

Moreover, as shown in Table 6 of the main text, we observe that increasing the activation bit-width
leads to a more substantial performance improvement, without significantly increasing memory
consumption. Therefore, we recommend enhancing performance by increasing the activation bit-
width b rather than by increasing the number of time steps. This approach significantly reduces
the memory overhead required for training. In fact, during inference, the activation bit-width and
training step size can be equivalently translated into the corresponding inference step size, enabling
energy-efficient inference through spike-driven processing.However, if the model exhibits strong
temporal dependencies for specific tasks, we may consider incorporating an increased number of
time steps during training to achieve better inference performance.

E NATURAL LANGUAGE PROCESSING.

Thank you for your valuable suggestions. We have added experiments on NLP tasks using our
QSD-Transformer quantization framework, based on Spikezip and SpikeBERT, and provided a
detailed comparison. Specifically, we load the Spikezip model, converted from ANN2SNN, into the
Roberta-B architecture, then replace its standard neurons with our single-time-step multi-bit IE-LIF
neurons. The model is trained for 10 epochs with Fine-grained distillation applied during the last 3
epochs between the converted ReLU-based ANN and the SNN. Results are shown in Table 11,

Table 11: Results of applying QSD-Transformer quantization framework on NLP tasks.

Network Method Bits T × b Params (M) MR SST-2 Subj SST-5

SpikeBERT (Lv et al., 2024) Full-precision 32-1 4× 1 109.0 80.7 85.4 93.0 46.1
QSD-Transformer 4-1 1× 4 15.1 81.2 86.7 84.1 47.1

Roberta-B SpikeZIP-TF (You et al., 2024) 32-1 64× 1 125.0 86.1 92.8 95.6 52.7
QSD-Transformer 4-1 1× 4 16.3 86.5 93.1 96.3 53.1
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F PROOF OF THE PROPOSITION 1.

Proposition 1. Given the SNN Transformer and ANN Transformer models, where the distributions
of the query (q), key (k), and value (v) follow binomial B(r, T ) and normal N (µ, σ) distributions,
respectively, it is postulated that as the SNN’s time step T tends to infinity, there exist parameters
µ, σ, and r such that the average entropy over time of the SNN’s attention scores H(

∑T
t=1 p

S [t])
equals ANN attention scores’ entropy H(pA).

Proof. Proposition 1. can be restated as follows:

lim
T→∞

∃µ, σ, r H(

T∑
t=1

pS [t]) = H(pA), (15)

where pA and pS represent the query q, key k, and value v in the same architecture ANN (teacher)
and QSD-Transformer (student), and following the binomial B(r, T ) and normal N (µ, σ) distribu-
tions. θS is the parameters of the student (QSD-Transformer).

Assume pS [1],pS [2],pS [3], . . . ,pS [t] are t independent random variables, each following a bino-
mial distribution. The expectation is E(pS [t]) = rS [t], where rS [t] is the firing rate of the SNN
at time t. The variance is given by D(pS [t]) = σS [t]. And Let yS [t] = pS [t] − rS [t], where
E(yS [t]) = 0 and D(yS [t]) = σ. Let the characteristic function (Chow & Teicher, 2012) of the
random variable yS [t] be φyS [t](j). Then let the random variable η = yS [1]+yS [2]+yS [3]+...+yS [T ]√

tσ
.

Then the characteristic function of η is:

φη =

[
φyS [t](

j√
Tσ

)

]
·
[
φyS [t](

j√
Tσ

)

]
. . .

[
φyS [t](

j√
Tσ

)

]
=

[
φyS [t](

j√
Tσ

)

]T
, (16)

Then when SNN’s timestep T → ∞, j√
Tσ

can be expanded at the point 0 using the Taylor series:

φyS [t](
j√
Tσ

)) = φyS [t](0) + φ′
yS [t](0)

(
j√
Tσ

)
+

φ′′
yS [t](0)

2!

(
j√
Tσ

)2

+ o

((
j√
Tσ

)2
)
,

Since φyS [t](0) = 1, φ′
yS [t](0) = 0, and φ′′

yS [t](0) = −σ, we have:

φyS [t](
j√
Tσ

) = 1− j2

2T
+ o

((
j√
Tσ

)2
)
,

[
φyS [t](

j√
Tσ

)

]T
=

[
1− j2

2T
+ o

((
j√
Tσ

)2
)]T

=

[
1− j2

2T
+ o

((
j√
Tσ

)2
)]

,

Hence:

lim
T→∞

[
φyS [t](

j√
Tσ

)

]T
= lim

T→∞

[
1− j2

2T
+ o((

j√
Tσ

)

]T
= e−

j2

2 , (17)

where e−
j2

2 happens to be the characteristic function of a random variable following the standard
normal distribution N (0, 1), so η follows the standard normal distribution, which distribution is the
same to the attention score in ANN Transformer. Hence, as the SNN’s time step T tends to infinity,
∃µ, σ, r such that H(

∑T
t=1 p

S [t]) = H(pA).

G PROOF OF THE PROPOSITION 2.

Proposition 2. For a random variable x ∼ N (µ, σ), the information entropy x reaches its maximum
value H(x) = 1

2 log 2πeσ
2(x) and is observed to increase with the expansion of variance σ.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. For a continuous random variable x obeying a normal distribution, its probability density
function p(x) is given by:

p(x) =
1

(2πσ2)
1/2

exp

{
− (x− µ)

2

2σ2

}
, (18)

Consequently, the differential entropy of x can be calculated as

H(x) = −
∫ ∞

−∞
p(x) log p(x)dx,

= −
∫

1

(2πσ2)1/2
exp

{
− (x− µ)2

2σ2

}
log

1

(2πσ2)1/2
exp

{
− (x− µ)2

2σ2

}
dx,

= − 1

(2πσ2)
1/2

∫
exp

{
− (x− µ)

2

2σ2

}(
− log

(√
2πσ

)
− (x− µ)

2

2σ2

)
dx,

= − 1

(2πσ2)1/2
· − log

(√
2πσ

)∫
exp

{
− (x− µ)2

2σ2

}
dx+

1

(2πσ2)1/2

∫
exp

{
− (x− µ)2

2σ2

}
(x− µ)2

2σ2
dx,

=
log
(√

2πσ
)

(2πσ2)
1/2

∫
exp

{
− (x− µ)

2

2σ2

}
dx+

1

(2πσ2)
1/2

∫
exp

{
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(19)
Moreover, it can be easily proven that ∫ ∞

−∞
e−y2

dy =
√
π. (20)

Thus,

H(x) =
log
(√

2πσ
)

√
π

∫ ∞

−∞
e−y2

dy +
1√
π

∫ ∞

−∞
e−y2

y2dy,

= log
(√

2πσ
)
+

1√
π
· −1

2

(
0−

∫ ∞

−∞
e−y2

dy

)
,

= log
(√

2πσ
)
+

1

2
,

=
1

2

(
log
(
2πσ2

)
+ 1
)
,

=
1

2
log
(
2πeσ2

)
.

(21)

H THEORETICAL ANALYSIS IN FUSION OF MPRF AND WEIGHTS

In Section 4.2, we introduce a membrane potential rectify function (MPRF) ϕℓ(·) aimed at maximizing
the information entropy of the attention score. The inherent homogeneity of convolution operations
permits the subsequent batch normalization (BN) and linear scaling transformations to be seamlessly
integrated into the convolutional layer with an added bias during deployment. This approach
enables the model to conduct inference rapidly without incurring additional computational overhead.
Specifically, we utilize Eq. 22 to represent the quantized convolution (Q-Conv):
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yℓ
Q = wℓ

QConv
· Sℓ + bℓ

QConv
(22)

where S denotes input binary spike, wQConv
and bQConv

are quantized weights and bias of the
Q-Conv layer. yQ denotes the output of the Q-Conv layer. After employing MPRF, the rectified
output should be computed as Eq. 23

ŷℓ
Q = ϕ(yℓ

Q) = ϕ(wℓ
QConv

· Sℓ + bℓ
QConv

),

=
(wℓ

QConv
· Sℓ + bℓ

QConv
)− µ(wℓ

QConv
· Sℓ + bℓ

QConv
)

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
· γℓ + αℓ,

=
γℓ · (wℓ

QConv
· Sℓ + bℓ

QConv
)

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
−

γℓ · µ(wℓ
QConv

· Sℓ + bℓ
QConv

)

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
+ αℓ,

=
γℓ ·wℓ

QConv

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
· Sℓ + [

γℓ · bℓ
QConv

− µ(wℓ
QConv

· Sℓ + bℓ
QConv

)

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
+ αℓ],

= wℓ
f · S+ bℓ

f ,

(23)

where wℓ
f and bℓ

f denote the fusioned weight and bias:

wℓ
f =

γℓ ·wℓ
QConv

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
,

bℓ
f =

γℓ · bℓ
QConv

− µ(wℓ
QConv

· Sℓ + bℓ
QConv

)

σ(wℓ
QConv

· Sℓ + bℓ
QConv

)
+ αℓ.

(24)

I THEORETICAL ENERGY CONSUMPTION ANALYSIS

When disregarding the energy consumption factors related to hardware manufacturing processes, data
access, and storage, comparing the computational energy consumption of different models remains
compelling. Such comparisons effectively reflect the intrinsic computational efficiency of various
network models. Previous work by (Horowitz, 2014) indicates that, on a 45nm process hardware
platform, the energy consumption for a single multiply-accumulate (MAC) operation is 4.6pJ (with
3.7pJ for multiplication and 0.9pJ for addition). Many performance analyses in the research of spiking
neural networks (SNNs) (Panda et al., 2020; Yin et al., 2021; Li et al., 2022; Yao et al., 2023b) also
reference this data.

I.1 COMPARISION ON MHSA AND SDSA

Given a float-point input sequence X ∈ RN×D, the float-point Query (q), Key (k), and Value (v) in
RN×D are computed using three learnable linear matrices, where N is the token number, and D is
the channel dimension. The MHSA scaled dot-product is computed as described by (Dosovitskiy
et al., 2020):

MHSA(q,k,v) = softmax

(
qkT

√
d

)
v (25)

where d = D
H is the feature dimension of one head and H is the number of heads, and

√
d serves as

the scaling factor. Typically, MHSA divides q, k and v into H heads along the channel dimension.
For the ith head, qi, ki and vi are in RN×D/H . After performing the self-attention operation on each
of the H heads independently, the outputs are concatenated together.

In MHSA, q and k are matrix-multiplied, followed by a matrix multiplication of their output with v.
The computational complexity of MHSA(·) is O(N2D), indicating a quadratic relationship with the
token number N . For the SDSA modules, the computational complexity is O(ND2), and the energy
cost of the Rep-Conv part is consistent with SNN-based convolution. The energy cost of the SDSA
operator part is given in Table 12.
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Table 12: Theoretical FLOPs/SOPs of self-attention modules.

Multi-head Self-attention (MHSA) Spike-driven Self-attention (SDSA)

Function MHSA(q,k,v) = softmax
(

qkT

√
d

)
v SDSA(qs,ks,ks) = SN s((qsks

T)vs)

q, k, v 3ND2 T · fr1 · 3 · FLConv

f(q, k, v) 2N2D T · fr2 ·ND2

Scale N2 -
Softmax 2N2 -
Linear FLfc T · fr3 · FLfc

I.2 THEORETICAL ENERGY CONSUMPTION OF QSD-TRANSFORMER

We first calculate the theoretical energy consumption requires calculating the synaptic operations
(SOPs):

SOPsℓ = frℓ × T × FLOPsℓ (26)

where frℓ, FLOPsℓ, and T is the firing rate, float-pointing operations, and timestep of layer ℓ. More-
over, the respective number of FLOPs adds { 1

32 ,
1
16 ,

1
8} of the number of {2,3,4}-bit multiplications

equals the OPs following (Liu et al., 2020; Qin et al., 2020).

The total energy consumption of the network can be calculated using Eq. 27 for non-quantized
models and Eq. 28 for quantized models:

Etotal = EMAC · FLOPs1conv + EAC · T · (
N∑

n=2

FLOPsnconv · frn +

M∑
m=1

FLOPsmfc · frm), (27)

Etotal = EMAC · FLOPs1conv + EAC · (
N∑

n=2

SOPsN +

M∑
m=1

SOPsM ) (28)

where N and M are the total number of Conv and FC layers, EMAC and EAC are the energy costs
of MAC and AC operations, and frm, frn, FLOPsnconv and FLOPsmfc are the firing rate and FLOPs
of the n-th Conv and m-th FC layer. Previous SNN works (Horowitz, 2014; Rathi & Roy, 2021;
Yao et al., 2023a) assume 32-bit floating-point implementation in 45nm technology, where EMAC =
4.6pJ and EAC = 0.9pJ for various operations.

J LIMITATIONS AND FUTURE WORKS

Limitations The limitations of this work include the scalability of low-bit spike-driven Transformer
models and the hardware deployment, which we will address in future research. The experimental
results presented in this paper are reproducible. Detailed explanations of model training and configu-
ration are provided in the main text and supplemented in the appendix. Our codes and models will be
made available on GitHub after review.

Future Works Since the largest Spikformer-V2 Zhou et al. (2024d) model has not yet released
its training code and weights, we will attempt to quantify the Spikformer-V2 model in the future
to demonstrate the scalability of our approach. Moreover, we did not take the energy consumption
of memory access into account when calculating the theoretical energy consumption owing to the
diversity of different dataflow and memory access schemes and the implementation on various
hardware platforms. We will deploy our lightweight model into hardware platforms such as Field
Programmable Gate Arrays (FPGAs) to evaluate the factual performance, where we will optimize the
suitable read-write data streams and memory access schemes to enhance the inference speed of the
models.
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K EXPERIMENT DETAILS

K.1 IMAGENET-1K EXPERIMENTS

ImageNet-1K dataset is commonly used for computer vision tasks. It spans 1000 object classes and
contains around 1.3 million training images and 50,000 validation images. For experiments on the
ImageNet dataset, we used the hyper-parameters shown in Table 13. Moreover, we employ our model
on three different scales, with the specific model configurations detailed in Table ??. We conducted
training on eight 40GB A100 GPUs. For the three different model scales—1.8M, 3.8M and 6.8M
parameters—we allocated 24, 28 and 36 hours of training time, respectively.

Table 13: Hyper-parameters for image classification on ImageNet-1K and CIFAR10/100.

Hyper-parameter ImageNet CIFAR10/10
Timestep (Training/Inference) 1/4 1/4

Epochs 300 100
Resolution 224×224 128×128
Batch size 1568 256
Optimizer LAMB LAMB

Base Learning rate 6e-4 6e-4
Learning rate decay Cosine Cosine

Warmup eopchs 10 None
Weight decay 0.05 0.05

Rand Augment 9/0.5 9/0.5
Mixup None 0.8
Cutmix None 1.0

Label smoothing 0.1 None

K.2 COCO EXPERIMENTS

The COCO dataset aims at scene understanding, primarily extracted from complex everyday scenes,
where objects in images are precisely localized through accurate segmentation. The COCO dataset
comprises 118K training images and 5K validation images. In the COCO experiments, we pre-trained
the QSD-Transformer on ImageNet-1k as the backbone, and then fine-tuned it on the COCO dataset
for 24 epochs with the Mask R-CNN as detector to obtain the final model. During the fine-tuning
stage, we resized and cropped the training and test data to 1333x800. Additionally, we applied
random horizontal flipping and resize with a ratio of 0.5 to the training data. The batch size was set
to 12. We used the AdamW optimizer with an initial learning rate of 1e-4, and the learning rate was
decayed polynomially with a power of 0.9. We conducted training on four 40GB A100 GPUs for a
duration of 26 hours.

K.3 ADE20K EXPERIMENTS

The ADE20K semantic segmentation dataset comprises over 20K training and 2K validation scene-
centric images meticulously annotated with pixel-level object and object parts labels, fostering a
comprehensive understanding of complex scenes. It encompasses a total of 150 semantic categories,
encompassing elements such as sky, road, and grass, as well as discrete entities like person, car, and
bed. We also used the QSD-Transformer pre-trained on ImageNet-1K as the backbone combined
with FPN for segmentation experiments. The newly added parameters were initialized using Xavier
initialization, and the model was trained on the ADE20K dataset with a batch size of 20 for 160K
iterations. We utilized the AdamW optimizer with an initial learning rate of 1 × 10−4, and the
learning rate was decayed polynomially with a power of 0.9. During the initial 1500 iterations, we
employed linear decay to warm up the model. The training process was executed on four 40GB A100
GPUs and lasted for 25 hours.
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K.4 TRANSFER LEARNING

We performed transfer learning experiments on the static image classification datasets CIFAR10/100
and the neuromorphic classification dataset CIFAR10-DVS. The CIFAR10/100 datasets each have
50,000 training and 10,000 test images with a resolution of 32× 32. CIFAR10-DVS consists of 10K
event streams created by capturing CIFAR10 images using a DVS camera.

In these experiments, we first loaded pre-trained ImageNet-1K checkpoints and replaced the final
fully connected layer to match the number of classes in each dataset (e.g., replacing the 1000-FC with
100-FC for CIFAR-100). During fine-tuning, we applied data augmentations like mixup, cutmix, and
label smoothing. We used a batch size of 128, the AdamW optimizer with a weight decay of 0.01,
and a cosine-decay learning rate schedule starting at 1× 10−4 over 100 epochs. The experiments
were run on a single 32GB V100 GPU, taking 12 hours for CIFAR-10 and CIFAR-100, and 10 hours
for CIFAR-10-DVS.

For CIFAR10-DVS, we added preprocessing steps: dividing the event stream into T slices, each
with an equal number of events, and compressing these into three-channel frames representing
positive, negative, and all events, transforming the event stream into T frames. We also applied data
augmentation to the processed event data, as described in (Wang et al., 2023; Shi et al., 2024).
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