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Abstract

Accurate tooth segmentation in 3-Dimensional (3D) intraoral scanned (IOS) mesh data
is an essential step for many practical dental applications. Recent research highlights the
success of deep learning based methods for end-to-end 3D tooth segmentation, yet most
of them are only trained or validated with a small dataset as annotating 3D IOS dental
surfaces requires complex pipelines and intensive human efforts. In this paper, we propose
a novel method to boost the performance of 3D tooth segmentation leveraging large-scale
unlabeled IOS data. Our tooth segmentation network is first pre-trained with an unsu-
pervised learning framework and point-wise contrastive learning loss on the large-scale
unlabeled dataset and subsequently fine-tuned on a small labeled dataset. With the same
amount of annotated samples, our method can achieve a mIoU of 89.38%, significantly
outperforming the supervised counterpart. Moreover, our method can achieve better per-
formance with only 40% of the annotated samples as compared to the fully supervised
baselines. To the best of our knowledge, we present the first attempt of unsupervised pre-
training for 3D tooth segmentation, demonstrating its strong potential in reducing human
efforts for annotation and verification.
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1. Introduction

With the development of Computer-Aided Design (CAD) techniques, digital dentistry has
attracted tremendous attention with various significant breakthroughs (Wu et al., 2014),
(Zanjani et al., 2019a), (Zanjani et al., 2019b), (Sun et al., 2020), (Zhang et al., 2020),
(Wu et al., 2021). In many dental diagnosis scenarios, such as orthodontics and implant,
the first crucial step is to precisely recognize individual teeth and the gingiva in the 3-
Dimensional (3D) intra-oral scanned (IOS) tooth data collected from patients (Yuan et al.,
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2010). In practice, a single IOS mesh for the upper or low jaw usually consists of more than
100,000 triangular faces. It usually takes about 15 to 30 minutes for an experienced expert
to manually or interactively annotate a half jaw, which is undoubtedly cumbersome and
labor-intensive (Hao et al., 2021). To enable more efficient treatment planning, automated
strategies are highly demanded for real-world clinical applications.

A lot of works have launched attempts to address the 3D tooth segmentation task in
IOS meshes. Traditional geometry-based methods extract hand-crafted features such as
curvatures from IOS meshes to design decision rules for segmentation (Kondo et al., 2004),
(Li et al., 2007), (Kumar et al., 2011), (Fan et al., 2014), (Li and Wang, 2016). Recently,
many deep learning based methods are proposed with superior performance. Some works
first extract predefined features and subsequently apply the 2D or 3D convolutional neural
networks for 3D tooth semantic segmentation (Tian et al., 2019). There are also methods
which design specific neural network architectures for end-to-end tooth segmentation, such
as MeshSegNet (Lian et al., 2020), DC-Nets (Hao et al., 2021), TSegNet (Cui et al., 2021),
Mask-MCNet (Zanjani et al., 2019a). However, most of these methods are only trained or
validated with a small dataset, e.g., less than 50 IOS meshes, as annotating 3D IOS dental
surfaces requires complex pipelines and intensive human efforts. Moreover, when these
methods are evaluated in clinical settings, their performance always degrades due to the
inferior generalization ability across diverse anatomical tooth features. Though the DC-Net
presents a clinical applicability test, the annotated dataset is not publicly available due to
privacy issues. As a result, it’s hard for the community to make further advancements to
meet the requirements for clinical usages.

Recent research has witnessed the great success of unsupervised pre-training strategies
for various computer vision (Chen et al., 2020), (Grill et al., 2020), (He et al., 2020) and
natural language processing tasks (Devlin et al., 2018). As for 3D vision, several pioneering
works also investigate unsupervised pretraining for 3D point cloud processing via occlu-
sion completion, contrastive learning or spatio-temporal representation learning strategies
(Wang et al., 2021), (Huang et al., 2021),(Xie et al., 2020). However, these methods are not
originally designated for 3D tooth segmentation, while the IOS meshes usually contain more
complicated topological features and heterogeneous anatomical geometry as compared to
simple natural objects. Moreover, the IOS meshes are of very high resolution, while current
voxel-based pretraining frameworks are unable to achieve satisfactory results with accurate
fine-grained segmentation for clinical applications.

In this paper, we propose a novel method to boost the performance of 3D tooth segmen-
tation with an unsupervised pre-training strategy that leverages large-scale unlabeled IOS
meshes. We first construct a large 3D IOS mesh dataset, which consists of 6,000 unlabeled
IOS meshes and 1,000 labeled meshes. To cope with the high-resolution and heteroge-
neous mesh data, we formulate the segmentation task over 3D dental mesh as a fine-grained
point cloud semantic segmentation task, avoiding approximation errors in voxel-based meth-
ods. With the Dynamic Graph CNN (DGCNN) (Wang et al., 2019) as our backbone, our
tooth segmentation network is first pre-trained with an unsupervised learning framework
and point-level InfoNCE (Oord et al., 2018) loss. Afterward, the pre-trained backbone
is modified to adapt to the downstream semantic segmentation task and fine-tuned on a
small labeled dataset. Extensive experiments reveal that our method can achieve a mIoU of
89.38%, significantly outperforming the supervised counterparts when trained with the same
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Figure 1: The proposed framework for unsupervised pre-training. Red points represent
matched points, and dark faces represent Ft1 and Ft2 . The output of the feature
extractor is h (consist of hc, hn, hs) and used as input to the encoder.

amount of labeled samples. Moreover, our method can achieve segmentation performance
on par with the fully supervised baselines with only 20-40% of the annotated samples. To
the best of our knowledge, our work is the first attempt to employ unsupervised pre-training
methods for 3D tooth segmentation, exhibiting strong potential for reducing human effort
for annotation and verification.

2. Method

2.1. Overview

Given a 3D IOS mesh composed of many triangulated faces, 3D tooth segmentation aims
to classify each face into different teeth and the gingiva following the Federation Dentaire
Internationale (FDI) standard. Mathematically, for each face fi in the mesh, we want to
annotate it with a label yi, where yi ∈ {0, 11−18, 21−28, 31−38, 41−48} denotes the gingiva
and FDI notations for the 32 permanent teeth, respectively. Our method includes two steps:
unsupervised pre-training and supervised fine-tuning. In unsupervised pre-training, we first
generate two augmented views of each unlabeled 3D IOS mesh and feed them into the
segmentation backbone. A novel PointInfoNCE loss (Xie et al., 2020) function is adopted
for unsupervised representation learning on a set of predefined matched points. Afterward,
the pre-trained encoder is further fine-tuned in a supervised manner with a small number
of labeled 3D IOS meshes.

2.2. Unsupervised pre-training

Augmented data preprocessing. It is not uncommon to generate asymmetric aug-
mented input pairs for better representation learning in contrastive learning. As for 3D
meshes or point clouds, the augmented input pair, which usually contains two augmenta-
tions with different views of the same input, should bring much more abundant and diverse
training examples while discouraging the model from learning simple equivariance of the
geometric transformation. Consequently, we generate two different views as our pre-training
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input. Let X = {Mt}Lt=1 be the dataset with L 3D IOS meshes where Mt = (V, F ) denotes
the t-th sample with V, F as mesh vertices and faces, respectively. The pipeline to generate
asymmetric input pairs is elaborated as follows. Given Mt, we randomly sample two sets
of faces Ft1 = {fi, i = 1, 2, .., n1} and Ft2 = {fj , j = 1, 2, ..., n2}, where n1, n2 > 10, 000
denotes the number of sampled faces, as illustrated in Figure 1. Such sampling process
must ensure that there is a guaranteed overlap between the two sets to build a point-to-
point correspondence, i.e., a set of matched points which plays a pivot role in subsequent
pretraining, in the overlapping region over faces. Afterward, we apply two different trans-
formations to Mt to obtain two augmented views of it in two local coordinate systems, i.e.,
Mt1 = T1(Mt) and Mt2 = T2(Mt), where T1, T2 are different transformation augmentations
as described below. The corresponding faces of Ft1 and Ft2 in Mt1 and Mt2 are extracted,
and transformed to two point clouds Pt1 and Pt2, each with 10,000 points based on a uni-
form downsampling strategy (Hou et al., 2021),(Hao et al., 2021) over face centers. Finally,
the correspondence mapping between points from the two point clouds are computed as
P s = {(i, j)} = Φ(Pt1, Pt2), where i and j are the index of the matched points xi ∈ R3

in Pt1 and yj ∈ R3 in Pt2, and Φ defines a point-to-point mapping function in the world
coordinate. The pipeline is illustrated in Figure 1.

Transformation. We apply different transformations on the 3D meshes to generate dif-
ferent augmented views. Mathematically, we define the transformation T = [R|t|S], in
which R ∈ SO(3) (3D rotation group in geometry) denotes the rotation, t ∈ R3 denotes
translation, and S denotes scaling operations, respectively. For the rotation R, we rotate
the mesh with random angles (0 to 360°) around an arbitrary axis. Meanwhile, the function
t is devised to translate Mt globally in the coordinates. The random scale function S is
designed to scale the Mt with a factor randomly chosen from the range [0.9, 1.1].

Feature extraction. After augmented data preprocessing, we generate two different point
clouds Pt1 and Pt2. The 3D coordinate of each point is the center of the corresponding
face, which is denoted as hc = [x0, y0, z0] ∈ R3. We further extract more geometrical
features from the original mesh for each point. In particular, we compute the normal vector
hn ∈ R3, and a face shape descriptor hs ∈ R9 as suggested in (Hao et al., 2021) with detailed
computational steps attached in the Appendix. Finally, we concatenate the three features
together as the feature vector of each point in our point cloud, leading to a 15-dimensional
feature vector h = Concat(hc, hn, hs) ∈ R15.
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Figure 2: The architecture of supervised fine-tuning. N = 20, 000 is the number of points.
Similarly, the input of our network is h. The output of our encoder is a 1× 1024
dimension global feature. Then we concat it with our one-hot categorical vector
to construct a new global feature containing the prior knowledge.
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Unsupervised pre-training framework. As shown in Figure 1, our unsupervised pre-
training framework employs a standard contrastive learning architecture, which enables the
encoder to learn the point-wise consistent representations by shrinking the distance between
samples from the same asymmetric pair in the hidden space. Specifically, our framework
includes two parts: a representation learning module and an InfoNCE loss function.

We design the encoder to learn feature representations of the extracted point clouds
from 3D tooth data, as shown in Figure 1. Our encoder is inspired by the Dynamic Graph
CNN (DGCNN) (Wang et al., 2019) with modifications to adapt to the 3D IOS data, which
is of much higher resolution and morphological complexity. Let’s consider Pt1 only. It is
firstly transformed into a standard feature space with the Transform Net (Qi et al., 2017a).
Second, it is fed to three consecutive Edge-Conv blocks (Wang et al., 2019), which consist
of a feature extractor based on k-nearest neighbor(kNN) strategy, three 2D convolutional
layers, and a max-pooling aggregation operation. Based on an explicit local graph among
neighborhood points defined by kNN, the Edge-Conv block updates the edge features with
convolutional operations. The features used for kNN are the corresponding output from the
previous block, leading to updated proximity defined on different hidden representations.
Hence, the stacked Edge-Conv blocks can learn local features in the bottom layers and global
semantic features in the top layers. With the concatenated representation from different
layers, our backbone is able to capture both local topological geometry and global features
for every point in Pt1 . Such representations are projected to a consistent hidden space with
a projection head (i.e., a Multilayer Perceptron) for subsequent contrastive representation
learning, following the standard conventions in many contrastive learning paradigms.

Loss Function. The InfoNCE loss (Oord et al., 2018) is proposed and has been widely
used for unsupervised pre-training in 2D vision tasks. It is adopted by contrastive learning
frameworks to conduct a dictionary query process. Here we define the PointInfoNCE loss
(Xie et al., 2020) over points in the two augmented point clouds. We define the matched
point pairs (i, j) in P s as positive pairs, whose features hi and hj are obtained via the encoder
and projection head. We further define (i, k) as negative pairs if ∃(·, k) ∈ P s, k ̸= j. In
this case, we are considering points that have at least one matched point pairs in P s as the
negative samples, ignoring all other non-match points for more efficient loss computation.
Given the positive and negative pairs, the contrastive learning loss is defined as follows:

L = − 1

|P |
∑

(i,j)∈P

log
exp(hi · hj/τ)∑

(·,k)∈P exp(hi · hk/τ)
. (1)

Optimizing over this PointInfoNCE loss function would minimize the distance between
positive point pairs while maximizing the distance between negative point pairs, leading to
good point-wise representations for further tooth semantic segmentation.

2.3. Supervised fine-tuning

The unsupervised pre-trained backbone is further modified and fine-tuned in a supervised
manner for the downstream 3D tooth segmentation task. In particular, we use a one-hot cat-
egorical vector to denote the maxillary and mandible for the input half jaws, which is prior
knowledge to avoid confusion about them during inference. The one-hot vector is further
embedded with a convolutional layer and concatenated with the point-wise representations
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(a) (b) (c)

Figure 3: Visualization of DGCNN and our method for 3D Tooth Segmentation. Each row
for a case. (a) The ground truth; (b) DGCNN; (c) Ours

from the pre-trained backbone. The fused representation is used for semantic segmentation
over 32 permanent teeth and the gingiva with a multilayer perceptron composed of two
fully-connected layers and a dropout layer with a keep probability of 0.4. We use the cross-
entropy loss for supervised fine-tuning. During fine-tuning, the pre-trained weights serve as
initial weights for the supervised backbone, leading to much faster convergence and better
performance as shown in experiments. As for inference, we can not feed all the points in
IOS meshes (e.g., 100,000+ points) to our network due to overloaded GPU memory, while
performing multi-step inference for each of the 10,000 points is quite time-consuming as
well, e.g., we need 10 inference steps for 100,000 points. In this work, we only inference
40,000 randomly sampled points for each mesh, and use a simple kNN based voting mecha-
nism to generate semantic labels for all the rest points. Such a strategy maintains roughly
the same performance as the multi-step method but with better efficiency.

3. Experiment

3.1. Implement Details

Dataset. We collect a large 3D IOS tooth mesh dataset, which consists of 6,000 unlabeled
and 1,000 labeled 3D IOS mesh data. We split the labeled data to 60% for training, 20% for
validation and 20% for testing. More details about experimental setup are in the Appendix.

3.2. 3D Tooth Segmentation Performance

We compare our method with extensive baselines in recent works (e.g., PointNet (Qi et al.,
2017a), PointNet++ (Qi et al., 2017b), DGCNN (Wang et al., 2019), MeshSegNet (Lian
et al., 2020) and DC-Net (Hao et al., 2021)). The results are reported in Table 1. We
can notice that our method can surpass DGCNN with a significant improvement of 2.29%
mIoU. This demonstrates that our unsupervised pre-training method can achieve non-trivial
performance improvement, even with the same backbone as its supervised counterparts.
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Table 1: Segmentation performance of our method and supervised baselines.

Method
Mandible Maxillary All

Acc mIoU DSC Acc mIoU DSC Acc mIoU DSC

PointNet 72.44 67.25 75.09 75.66 72.92 79.97 74.29 70.51 77.89
PointNet++ 68.52 62.50 71.34 70.41 71.23 78.59 69.61 67.52 75.51
MeshSegNet 90.88 77.15 82.63 93.33 79.36 84.33 92.29 78.42 83.61
DGCNN 94.97 83.80 87.61 96.71 89.51 92.50 95.97 87.09 90.42
DC-Net 93.81 86.94 89.74 96.10 90.89 92.88 95.12 89.21 91.54

Ours 96.05 87.18 90.37 97.13 91.00 93.79 96.67 89.38 92.33

Table 2: Segmentation performance of pre-trained with different amount of data.

Data Ratio
Mandible Maxillary All

Acc mIoU DSC Acc mIoU DSC Acc mIoU DSC

10% 95.32 85.30 88.57 97.07 90.75 93.54 96.33(+0.36) 88.43(+1.34) 91.43(+1.01)
50% 95.59 86.22 89.43 97.09 90.39 93.17 96.45(+0.48) 88.62(+1.53) 91.58(+1.16)
100% 96.05 87.18 90.37 97.13 91.00 93.79 96.67(+0.7) 89.38(+2.29) 92.33(+1.91)

DC-Net not only introduces a novel network, but also explores the improvement of inference.
Different from our knn strategy, DC-Net optimizes the inference with graph cut algorithms,
which significantly boosts the inference performance. However, even using knn, our method
still exceeding the DC-Net with 0.79% DSC and 1.55% accuracy.

We further investigate the effect of pre-training with different amount of unlabeled
data, with results in Table 2. When we use 10% of unlabeled 3D IOS data during pre-
training, we still achieve 96.33% accuracy, 88.43% mIoU and 91.43% DSC. Compared to
the supervised DGCNN model, it has 1.34% mIoU improvement, revealing that even using
little unlabeled data, unsupervised pre-training can still achieve impressive performance.
With the increasing amount of unlabeled pre-training data, all the evaluation metrics can
be constantly improved, convincingly demonstrating the effectiveness of our method.

Table 3: Segmentation performance with limited labeled training data for fine-tuning

Data Ratio Train Strategy
Mandible Maxillary All

Acc mIoU DSC Acc mIoU DSC Acc mIoU DSC

1%
from scratch 63.00 39.06 48.02 73.83 51.22 60.32 69.23 46.05 55.09

Our 80.75 55.81 63.98 87.55 67.45 74.70 84.66 62.50 70.14

5%
from scratch 88.82 68.86 75.16 91.22 74.07 79.25 90.20 71.86 77.51

Our 89.08 69.45 74.91 92.90 78.07 82.39 91.28 74.41 79.21

10%
from scratch 90.75 73.86 79.62 93.03 78.22 82.81 92.06 76.37 81.46

Our 91.99 75.41 80.40 94.40 82.47 86.40 93.37 79.47 83.85

20%
from scratch 91.95 76.12 81.07 94.22 80.50 84.57 93.26 78.64 83.08

Our 93.97 81.11 85.14 95.06 85.22 88.82 94.60 83.48 87.25

40%
from scratch 94.19 82.65 86.62 96.16 86.93 90.21 95.32 85.11 88.68

Our 94.89 84.17 87.67 96.81 89.74 92.71 95.99 87.37 90.57

100%
from scratch 94.97 83.80 87.61 96.71 89.51 92.50 95.97 87.09 90.42

Our 96.05 87.18 90.37 97.13 91.00 93.79 96.67 89.38 92.33

We also conduct a series of experiments to evaluate the effectiveness of using different
amounts, i.e., 1%, 5%, 10%, 20%, 40%, 100%, of the labeled data during fine-tuning, with
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Table 4: The result on 3D IOS mesh dataset of different transformations
Transformations

Mandible Maxillary All
Acc mIoU DSC Acc mIoU DSC Acc mIoU DSC

translation 95.38 84.30 87.84 96.70 89.41 92.36 96.14(+0.17) 87.24(+0.15) 90.44(+0.02)
rotation 95.70 86.10 89.39 97.07 90.81 93.68 96.48(+0.51) 88.81(+1.72) 91.86(+1.44)
scale 95.52 83.85 87.43 96.74 90.19 93.16 96.22(+0.25) 87.50(+0.41) 90.72(+0.3)

translation + rotation 96.05 87.18 90.37 97.13 91.00 93.79 96.67(+0.70) 89.38(+2.29) 92.33(+1.91)

results shown in Table 3. When trained with only 1% labeled data, DGCNN trained without
weight initialization from pre-trained models can only achieve 69.23% accuracy, 46.05%
mIoU, and 55.09% DSC. In stark contrast, our method significantly outperforms it with
84.66% accuracy, 62.50 % mIoU, and 70.14% DSC. The above two experiments demonstrate
that unsupervised pre-training is an effective solution for tooth segmentation when the
annotated data is severely limited. We can also notice that, with 40% labeled data, our
method surprisingly achieves 87.37% mIoU, even surpassing the supervised DGCNN model
trained with 100% labeled data by 0.28% mIoU. Meanwhile, when 100% labeled data is
available, our method further extends the superiority to 2.29% mIoU.

3.3. Ablation Studies

Augmentation strategies usually have a non-trivial influence over the performance of un-
supervised pretraining methods. Hence, we conduct an ablation study to quantitatively
evaluate the effect of different augmentation methods during pretraining. The results are
shown in Table 4. We can notice that rotation brings more remarkable improvement com-
pared to translation and scale operations for unsupervised pre-training. When translation
and rotation operations are simultaneously adopted, satisfactory performance is achieved.

3.4. Visualization

We visualize two segmentations to demonstrate the superiority of our method. In the first
case, DGCNN makes mistakes between the incisors, and also wrongly treats part of the
gums as third molars. In the second case, DGCNN makes a severe mistake by failing to
identify a small third molar. In stark contrast, our method is able to correctly recognize
such tiny teeth. There are certainly some limitations of our method as well, which can be
found in the Appendix and addressed in the future.

4. Conclusion

In this paper, we propose a novel unsupervised pre-training strategy which helps signifi-
cantly boost the performance of 3D tooth segmentation. Our method achieves 2.29% mIoU
improvement compared to the supervised counterparts and is on par with the supervised
method with only 20-40% labeled data. The extensive experiments convincingly corroborate
the effectiveness of the proposed unsupervised pre-training strategy for helping alleviate the
necessity of large-scale labeled training data for accurate 3D tooth segmentation. We expect
our future work for improved performance over complicated IOS scans with heterogeneous
anatomical features for clinically applicable diagnosis.
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Appendix A. Experiment Setup

In unsupervised pre-training period, we use the Adam optimizer with learning rate η1 =
0.001 and a exponentially decay factor 0.99. The hyperparameter τ = 0.4 in the PointIn-
foNCE loss. During fine-tuning, we use SGD with initial learning rate η2 = 0.1 that decays
until 0.001 with cosine annealing. We use k = 25 for the kNN step in Edge-Conv blocks,
and the network is trained with a batch size bs = 4 over N = 10, 000 points in pre-training
and N = 20, 000 points in fine-tuning. Our code will be released for a better understanding.
Metrics. We comprehensively evaluate the performance of our method with various met-
rics, i.e., mIoU, Dice Similarity Coefficient(DSC), point-level classification accuracy, preci-
sion, and recall. For one class l, we denote the sets of prediction and ground truth as Pl and
Tl. The Dice Similariy Coefficient(DSC) is usually used to measure similarity of two sets.

For a class l, the DSC is denoted as DSC = 2|Pl∩Tl|
|Pl|+|Tl| , where l = {0, 11-18, 21-28, 31-38,

41-48}.

Appendix B. Feature Vector

Now we elaborate on how to define the shape of a face. For each face, we have three vertices
vi = [xi, yi, zi]

3
i=1 and a face center hc = [x0, y0, z0], so we can use the relative position

relationship between {vi}3i=1 and hc to define face shape descriptor, as hs = Concat([vi −
hc]

3
i=1). (Concat(·) represents concatenate operation for vectors). Finally, we connect the

above features together as the feature vector of each point in our point cloud, as h =
Concat(hc, hn, hs) ∈ R15, a 15-dimensional feature vector.

Appendix C. Backbone

Projection Head. As illustrated in Figure 1, the overall architecture of our unsupervised
backbone consists of an encoder and a projection head. The structure of the encoder has
been elaborated on before. Now we describe the composition of the projection head in
detail. The projection head, composed of a set of cascaded multilayer perceptron (i.e.,
512,256,32), projects the output of our encoder to a consistent hidden space. We refer to
(Xie et al., 2020) to set the number of output neurons of our projection head as 32.
Supervised fine-tuning. Overall, the entire deep learning architecture corresponding to
Figure 2 is composed of: Input → Transform Net → EdgeConv → EdgeConv → EdgeConv
→ Conv2D[1024] → maxpool → Conv2D[256] → Dropout → Conv2D[256] → Dropout
→ Conv2D[128] → Output. Meanwhile, for our categorical vector, we first cope it with
a Conv2D[64] layer and then feed the output into our backbone. Based on the above
architecture, the network is capable of handling 3D teeth data with much higher resolution
and morphological complexity.
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Figure 4: The curve of our training step in supervised fine-tuning. The left figure shows
the curve of loss between train from scratch and ours; The right figure shows the
curves of different transformations.

Appendix D. More experiments

Segmentation results for each category.

Table 5: Mandible
Mandible mIoU Precision Dice Recall

0 95.24 98.14 97.55 96.98
31 83.89 90.38 88.73 91.66
32 87.39 93.25 91.28 92.21
33 90.90 93.84 94.25 94.95
34 85.36 94.23 88.16 89.01
35 90.60 94.47 93.91 94.80
36 91.62 94.98 94.50 95.54
37 90.11 92.83 92.79 94.18
38 75.44 95.00 77.54 80.30
41 85.83 92.10 90.33 91.34
42 86.77 92.37 90.75 93.00
43 91.99 95.60 95.16 94.97
44 85.10 95.21 87.63 88.60
45 89.65 94.49 92.99 94.22
46 89.66 94.07 92.53 93.89
47 89.21 92.49 92.17 92.30
48 73.30 92.99 75.94 79.77

Table 6: Maxillary
Maxillary mIoU Precision Dice Recall

0 95.94 98.05 97.92 97.81
11 91.82 94.97 95.07 95.27
12 90.31 95.99 93.63 94.07
13 91.74 94.53 94.86 96.61
14 89.90 95.54 92.56 94.25
15 92.73 96.25 95.58 96.25
16 94.09 96.13 96.54 97.40
17 91.88 95.48 94.92 95.18
18 85.51 97.39 88.08 87.72
21 92.10 94.83 95.27 95.85
22 90.67 94.25 94.02 95.35
23 92.63 95.61 95.43 96.16
24 86.85 95.11 89.29 91.23
25 90.42 96.04 93.61 94.02
26 95.20 97.15 97.48 97.94
27 91.73 95.75 94.48 94.29
28 83.50 95.55 85.61 87.35

Curves. The left part of Figure 4 plots the curve of loss value during the fine-tuning
period. Gray and red lines represent the loss of each epoch with training from scratch and
fine-tuning strategies, respectively, using 100% labeled data. Compared to training from
scratch, using fine-tuning after unsupervised pre-training can achieve faster convergence
and lower loss values in the whole training period. The right part of Figure 4 demonstrates
curves of mIoU per epoch during training under different transformations.

Due to matched pairs different between our data, so we need to sample them to specify
the size to compute loss. Table 7 shows the impact of the number of matched pairs in P s.
Using 4096 pairs can achieve the best performance, compared to others.
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Table 7: The results on 3D IOS mesh dataset of different size of P s

Number of faces
Mandible Maxillary All

Acc mIoU DSC Acc mIoU DSC Acc mIoU DSC

1024 95.69 85.69 89.07 97.04 90.94 93.77 96.46 88.71 91.77
2048 95.27 85.47 88.85 96.99 90.84 93.69 96.26 88.56 91.63
4096 96.05 87.18 90.37 97.13 91.00 93.79 96.67 89.38 92.33

(a) (b) (c) (d) (e)

Figure 5: Visualization of several methods for 3D Tooth Segmentation. Each row for a case.
(a) The ground truth; (b) MeshSegNet; (c) DGCNN; (d) DC-Net; (e) Ours

Appendix E. More Segmentation Results

Figure 5 shows more results of tooth segmentation. Our method outperforms the state-of-
the-art methods for 3D IOS mesh segmentation. Different from DC-Net, which optimizing
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the inference with graph cut algorithms, our method aims at improve the performance of
the tooth segmentation network with unsupervised pre-training. The visualization demon-
strate that our method has superior in identifying 18, 28, 38, 48 teeth than other methods.

Appendix F. Pre-training on other backbone

Figure 6: The curve of our training step in
supervised fine-tuning
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Table 8: Segmentation performance of
our method on PointNet

Methods
Mandible Maxillary All

DSC DSC DSC

train from scratch 75.09 79.97 77.89
Ours 78.08 82.42 80.58

We also apply our pre-training method to other backbone. Figure 6 shows the curve
of mIoU on training set between training from scratch and ours based on PointNet (Qi
et al., 2017a). Table 8 demonstrate the DSC of our method and training from scratch.
Meanwhile, We also tested other metrics(e.g. accuracy, mIoU). Our pre-training method
achieves 73.99% mIoU and 80.58% DSC, exceeding the result of training from scratch with
2.69% DSC and 3.48% mIoU.
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