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Abstract

The pre-trained language model (PrLM) demonstrates domination in downstream
natural language processing tasks, in which multilingual PrLM takes advantage of
language universality to alleviate the issue of limited resources for low-resource
languages. Despite its successes, the performance of multilingual PrLM is still un-
satisfactory, when multilingual PrLMs only focus on plain text and ignore obvious
universal linguistic structure clues. Existing PrLMs have shown that monolingual
linguistic structure knowledge may bring about better performance. Thus we pro-
pose a novel multilingual PrLM that supports both explicit universal dependency
parsing and implicit language modeling. Syntax in terms of universal dependency
parse serves as not only pre-training objective but also learned representation in
our model, which brings unprecedented PrLM interpretability and convenience
in downstream task use. Our model outperforms two popular multilingual PrLM,
multilingual-BERT and XLM-R, on cross-lingual natural language understanding
(NLU) benchmarks and linguistic structure parsing datasets, demonstrating the
effectiveness and stronger cross-lingual modeling capabilities of our approach.

1 Introduction

The pre-trained language model (PrLM) such as BERT [1] and many kinds of its variants [2, 3, 4]
have proved their effectiveness in many downstream natural language processing (NLP) tasks in-
cluding semantic textual similarity [5], question answering [6], sentiment classification [7], linguis-
tic structure [4, 8] and so on. Most of these PrLM are aimed at languages that with a large amount
of available linguistic resources and are widely used, such as English. However, it is not realistic to
train an individual PrLM for all languages, especially for those low-resource languages. As a result,
several multilingual PrLMs which take advantage of language universality have been published and
shown good cross-lingual performance on several NLP tasks.

Despite its successes, the unsupervised method typically used by multilingual PrLMs makes cross-
lingual transfer inefficiency and keeps the learning still challenging. Improvement can be made by
adding explicit cross-lingual signals including bitext (XLM) [9] and word translation pairs from a
dictionary [10]. This suggests that the effectiveness of multilingual PrLM can be further improved
by integrating explicit universal linguistic characteristics. Existing PrLMs [11, 12] have tried to
incorporate monolingual linguistic structure knowledge to improve the performance across multi-
ple linguistics tasks by Multi-Task Learning (MTL) [13]. However, the combination of universal
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linguistic structure knowledge has not been explored in the multilingual area. Learning universal
knowledge across languages is more complex than learning monolingual knowledge, so a better
integrating method than MTL needs to be explored.

Syntactic dependency parsing disclosing syntactic relations between words in a sentence, has been
found to be extremely useful for many NLP tasks [14, 15, 16]. The syntactic dependency parsing
is also limited by low-resource languages. To meet the huge demand for training syntactic parser
among various languages, the project of universal dependencies (UD) Treebanks was launched [17]
which provides a uniform syntactic parsing structure for different languages. Therefore, UD offers
an excellent universal structure characteristic, which is worth exploiting for the multilingual PrLM.

In this paper, we propose a multilingual PrLM that supports both explicit universal dependency
parsing and implicit language modeling. Unlike using MTL in monolingual works, we embed a
parsing scorer in our PrLM, and directly optimizes this scorer and the encoders below it with UD
pre-training; meantime, we propose a structural encoder to encode the predicted structure given by
the parsing scorer and integrated it into the final representation for other pre-training or downstream
training process. Our approach can be smoothly applied to a variety of multilingual PrLM such as
Multilingual-BERT (m-BERT) [1] and XLM-R [18].

To verify the cross-lingual modeling capabilities of our model, we carry on the experiments on
both cross-lingual NLU benchmarks: XNLI and XQuAD, and linguistic structure parsing datasets:
UD2 v2.7, SPMRL’14 [19], English Penn Treebank (PTB) 3.0 [20] and the Chinese Penn Treebank
(CTB) 5.1 [21]. Our empirical results show that universal structure knowledge learnt and integrated
can indeed help the multilingual PrLM obtain better universal linguistic word representations and
outperform m-BERT and XLM-R baselines in all the above tasks.

2 Related Work

Monolingual PrLM with structure learning Previous works have tried to improve monolingual
PrLM by learning linguistic structure [2, 12, 22, 23, 24, 25]. Some of them use plain text to implicitly
learn structural knowledge, such as StrucBERT [22], which lets the PrLM encode the dependency
between sentences and words by adding the word-level ordering and sentence-level ordering objec-
tives during pre-training. However, this may not be suitable for multilingual setting. Since there are
obvious differences in the word order of different languages, putting disordered plain text of multi-
ple languages together for common training will lead to confusion in implicitly learning structural
information. Contrastively, we use annotated syntactic structures knowledge in UD that provide
clear guidance for improving cross-lingual representation in multilingual PrLM.

Other works use annotated syntactic knowledge as the structural knowledge such as LIMIT-BERT
[12] and LISA [24]. LIMIT-BERT is a monolingual PrLM that achieves advancement in several
parsing datasets and NLU tasks by performing MTL on multiple linguistic tasks including syntactic
parsing. The main difference between LIMIT-BERT and our method is that we do not regard parsing
as a pre-training objective, but use the parsing component as an intermediate structure to explicitly
learn and extract of the syntactic structure, thereby reducing the black box characteristics of the
model. LISA is a Transformer model that uses syntax information to enhance SRL. It incorporates
syntactic information by training one attention head predicting syntactic dependency arc. First of
all, LISA only aims at one specific task, so it is doubtful whether its method can be applied to the
PrLM and improve the performance of multiple tasks. Secondly, LISA can only use the arc feature
of syntax but not the relations, while our approach of syntactic structural integration can integrate
both of the arc and relation features learned by our model into the final universal representation. By
the way, our PrLM can be used directly as a well-behaved parser, but LISA clearly does not.

Multilingual PrLM with explicit cross-lingual signals Cross-lingual pre-training tasks includ-
ing cross-lingual word recovery, cross-lingual paraphrase classification and cross-lingual masked
language model can take advantage of bitext to learn the mappings among different languages
from more perspectives [26]. Recently, Ahmad et al. [27] proposes a multilingual PrLM training
mBERT using an auxiliary objective to encode the universal dependency tree structure that helps
cross-lingual transfer. However, our work significantly differs from theirs. We regard parsing not
only as a pre-training objective, but also as an active part of the overall PrLM structure, so this part
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Figure 1: The model architecture for UD-PrLM.

of the structure will further exert its effectiveness in downstream tasks rather than discarding it in
the fine-tuning stage, which increases the adaptability from pre-training to fine-tuning phase.

3 Universal Dependency as Language Modeling

In this work, we chose UD parse as our universal structure knowledge. Our model includes five
modules: token representation, multi-layer Transformers, universal structure learning (USL) layer,
universal structure integration (USI) layer and pre-training objectives. Figure 1 shows the full model
architecture of our method.

3.1 Token Representation

Take BERT [1] as an example, in the token representation layer, given input sentence X , the sentence
is concatenated with two special tokens “[CLS]" and “[SEP]": [CLS], x1, x2, ..., xN , [SEP], and
[CLS] is also used as the dummy ROOT node in UD training process. The input X is mapped into
a sequence of input embedding vectors [e1, e2, ..., e|X|], one for each token, which is a sum of the
corresponding word and positional embeddings.

Since the UD parse tree is annotated at word-level and the input sequence X in PrLM is based on
subword tokenization, in order to sufficiently improve the representation of all tokens and adapt to
the subword-level tasks, we propose a conversion strategy that extends the parsing tree from the word
level: Ŷ to the subword level: Y , and use the subword-level parsing tree as the training objective for
USL. Detailed strategy description is shown in Appendix A.1.

3.2 Multi-layer Transformers

The multi-layer Transformers architecture in our model is adapted from Vaswani et al.[28], which
transforms the input embedding vectors into a sequence of contextualized representation vectors
H = [h1, h2, ..., h|X|] shared across different tasks. We use a Transformer architecture with L
layers, A self-attention heads for each block and hidden size H:

H(L) = Transformers(Emb(X) +PosEncoding(X))
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Algorithm 1: Training Process

Input: MLM training data X̂MLM , UD Treebanks (X̂UD, ŶUD), Parameters: θ = (ρ, γ, ω, ϕ),
Probability of training USL: p.

1 DMLM , XUD, YUD ← Token(X̂MLM ∪ X̂UD),Token(X̂UD),Strategy(ŶUD,Token) ;
2 Initialize θ0 randomly ;
3 for t← 1 to m do
4 θt+1 ← Opt(θt,LUSL(ρt + γt, X

t
UD, Y t

UD) + LMLM (ρt + ϕt, D
t
MLM )) ;

5 for t← m to m+ n do
6 if random.uniform(0, 1) < p then
7 θt+1 ← Opt(θt,LUSL(ρt + γt, X

t
UD, Y t

UD) + LMLM (ρt + γt + ωt + ϕt, D
t
MLM )) ;

8 else
9 θt+1 ← Opt(θt,LMLM (ρt + γt + ωt + ϕt, D

t
MLM ));

Output: θn.

3.3 Universal Structure Learning

Our USL layer follows the state-of-the-art graph-based deep biaffine dependency parser [29]. We
replace the BiLSTM encoder with the multi-layer Transformers architecture and use the hidden state
of its last layer as the output of encoder H(L) = [h

(L)
1 , h

(L)
2 , ..., h

(L)
|X|].

For both arc and label predictions, two separate MLPs are used to distinguish two kinds of low-
dimensional vectors as head and dependent representations respectively.

rmi = ReLU(MLPm(h
(L)
i )),m ∈ [head, dep], i = 1, 2, ..., |X|

The scores of all possible head-dependent pairs for arc and all head-dependent-label triples for label
are computed via the Variable-class biaffine classifier [29]:

Rm = [rm1 ; rm2 ; ...; rm|X|],m ∈ [head, dep]

Sk = Softmax(RT
depU1Rhead + uT

2 Rhead + uT
3 Rdep + b), k ∈ [arc, label].

For arc, U1 ∈ RHdep×Hhead , u2 ∈ RHhead , u3 ∈ RHdep . For label, U1 ∈ R|D|×Hdep×Hhead , u2 ∈
R|D|×Hhead , u3 ∈ R|D|×Hdep where Hhead is the dimension of the head representations, Hdep is the
dimension of the dependent representations and D is the label set. So that Sarc ∈ R|X|dep×|X|head

and Slabel ∈ R|D|×|X|dep×|X|head .

During training, we aim to optimize the following probability for UD parsing:

Pθ(Y |X) =

|X|∏
i=1

Pθ(y
label
i |xi, y

arc
i )Pθ(y

arc
i |xi),

where θ denotes the learnable parameters and yarci , ylabeli denote the gold-standard head and de-
pendency relation for subword xi in subword-level parsing tree Y . The training objective for UD
parsing is the cross-entropy, which minimizes the negative log-likelihood:

LUSL = −
|X|∑
i=1

(
logPθ(y

arc
i |xi) + logPθ(y

label
i |xi, y

arc
i )

)
.

For evaluation, we restore the subword-level score tensors: Sarc and Slabel to word-level: Ŝarc and
Ŝlabel by extracting the first subword of each word. Then, we judge whether the prediction result of
Ŝarc is a valid parsing tree. If so, we directly extract the corresponding prediction label from Ŝlabel.
Otherwise, we use the max spanning tree (MST) algorithm to find the maximum spanning tree based
on Ŝarc.

4



3.4 Universal Structure Integration

In order to better integrate linguistic structure knowledge into the output representation of our PrLM,
we propose the USI layer, which combines Sarc and Slabel obtained by the USL layer with H(L) as
the final output representations.

We first combine Sarc and Slabel into a full label scoring matrix SUS by dot product. SUS ∈
R|X|dep×|X|head×|D|, in fact, stores the information about the label-head pair probability of each
dependent in the sentence. Then we use this label scoring matrix SUS as the attention score to
obtain a dependent and label specific representation by product summation operation to H(L), the
result is ĤUS ∈ R|X|×H×|D|.

SUS = Sarc · Slabel, ĤUS := SUS
ijk ×H

(L)
ih → Oihk,

where [·]ijk × [·]ih → [·]ihk indicates the Einstein summation notation.

Then we employ a weight tensor W ∈ R|D|×H×H to aggregate and map the dependent and label
specific representation to the final dependency tree-aware representation: HUS ∈ R|X|×H .

HO := ĤUS
ihk ×Wkhm → Oihk, HUS = GELU(Linear(HO)),

where [·]ihk × [·]khm → [·]ihk indicates the Einstein summation notation, the dimensions of HO ∈
R|X|×H×|D|, and will be flatten to shapeR|X|×(H×|D|) before input to Linear.

We also do a residual connection to avoid losing the information in H(L), and we use an additional
Transformer layer to get the final representation.

H(L+1) = Transformer(HUS +H(L))

3.5 Pre-training Objectives

We use Masked LM (MLM) as the only pre-training objective other than USL. In MLM, a random
sample of the tokens in the input sequence is selected and replaced with the special token [MASK].
As described in BERT [1], 15% of the input tokens are uniformly selected for possible replacement.
Of the selected tokens, 80% are replaced with [MASK], 10% are left unchanged, and 10% are
replaced by a randomly selected vocabulary token. The MLM objective is a cross-entropy loss on
predicting the masked tokens:

LMLM = −
∑

x∈m(X)

logPθ(x|X\m(X)),

where m(X) and X\m(X) denote the masked words from X and the rest of words respectively. The
training loss of our model is calculated by adding the losses of USL and MLM.

L = LUSL + LMLM

3.6 Training Details

Algorithm 1 shows the training process of our model, in which Token denotes the tokenization,
Strategy denotes the strategy creating subword-level parsing tree, Opt denotes the optimization
strategy and ρ, γ, ω, ϕ denote the learnable parameters in Transformer encoder (and token represen-
tation), USL layer, USI layer and MLM decoder respectively. We randomly initialize the model
parameters θ. In the first m epochs, USL and MLM are trained as two parallel tasks sharing the
parameters in Transformer encoder. That is to say, we do not use USI layer to integrate universal
structure knowledge for MLM because the parsing capability of the model is too weak in this phase.
In the next n steps, we open the USI layer. At this time, the USL objective has converged well, so
we reduce the frequency of training USL appropriately according to a certain probability p.

4 Experiments

4.1 Setup

Pre-training Data Similar to that of m-BERT, we chose the top 104 languages with the largest
Wikipedias and apply exponentially smoothed weighting to these languages to balance the Wikipedia
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size of each language for training MLM in the resulted UD-BERT according to our proposed ap-
proach. We do not use the NSP objective for UD-BERT. For UD-XLM-Rbase and UD-XLM-Rlarge,
we use the same training set from CommonCrawl Corpus as in Conneau et al.(2019) [18]. We
also used MLM as the only objective other than USL for UD-XLM-Rbase and UD-XLM-Rlarge. For
structure learning, we concatenate all the training TreeBanks covering 60 languages in Universal
Dependencies Treebanks (v2.2) [30] as the training set. In addition, we add the sentences in the
training TreeBanks of UD to the training set of MLM letting language modeling directly help our
model learn the structure knowledge.

Pre-training Settings In order to be consistent with the baselines and minimize the inequity of the
amount of parameters, we use the same settings as the baselines for H , A and vocabulary. However,
for the number of Transformer layers, since we use an additional Transformer layer in USI, the
number of layers L prior to this should be reduced by one from the baselines. Specifically, our
UD-BERT and UD-XLM-Rbase use a Transformer architecture with L = 11,H = 768 and A = 12
with a vocabulary of 110k and 250k respectively. Our UD-XLM-Rlarge uses a large Transformer
architecture with L = 23,H = 1024 and A = 16 with a 250k vocabulary. We use WordPiece [31]
tokenization of UD-BERT and SentencePiece [32] tokenization for UD-XLM-Rbase and UD-XLM-
Rlarge. We randomly initialize the model parameters rather than using the pre-trained parameters
of m-BERT or XLM-R for fair comparison with the baselines, so as to avoid the improvement of
training from more training steps. We train our models with the Adam optimizer [33] using the
parameters: Learning rate = 5e − 5, β1 = 0.9, β2 = 0.98, ϵ = 1e − 6 and L2 weight decay of
0.01, a linear warmup [28], GELU activation [34] and a dropout rate of 0.1. Models are trained for
m = 600, 000 and n = 600, 000 epochs in each phase respectively, with Batch size = 128(sents),
and the probability of training USL in the second phase is p = 0.8. The max sequence length
of MLM is 384 and the max sequence length for UD parsing is 256. In the USL layer, we set
Hhead = 128 and Hdep = 64. We list the parameters of our full models and baselines, as well as
the data statistics of our training data in Table 7 in Appendix A.2.

XNLI: Cross-lingual Natural Language Inference takes two sentences as input and determines
whether one entails the other, contradicts it or neither. XNLI is defined on 15 languages. Each
language contains a development set with 2,490 sentence pairs and a test set with 5,010 sentence
pairs. Only English has training data, which is a crowd-sourced collection of 433k sentence pairs
from MultiNLI [35]. The performance is evaluated by classification accuracy.

XQuAD: Cross-lingual Question Answering Dataset [36] is a benchmark dataset for evaluating
cross-lingual question answering performance. The dataset consists of a subset of 240 paragraphs
and 1,190 question-answer pairs from the development set of SQuAD v1.1 [6] together with their
professional translations into 10 languages. The performance is evaluated by F1 and exact match
(EM) scores.

Universal Linguistic Structure Parsing: For universal dependency parsing, we evaluate our
model on 22 languages in Universal Dependencies Treebanks (v2.7) [30] whose detail information
is shown in Table 8 in Appendix A.2. We use the graph-based deep biaffine dependency parsing
model [29] as our dependency parser. For monolingual evaluation, we train a model for each lan-
guage on their training set using word, character and POS tag embeddings of dimension 100 and
representation from PrLM of dimension 300. For cross-lingual evaluation, we train a single model
on English training set using POS tag and representation from PrLM. Unlabeled Attachment Scores
(UAS) and Labeled Attachment Scores (LAS) are adopted as the evaluation metrics. For universal
constituent parsing, we explore the improvement of our model using SPMRL Shared Task 2014,
which focuses on parsing nine morphologically rich languages from different language families. We
also evaluate our model on PTB and CTB. We use the CRF constituency parsing model [37] as our
constituent parser with word and character embeddings of dimension 100 and representation from
PrLM of dimension 300 for monolingual evaluation. For cross-lingual evaluation, we train a single
model on PTB using only the representation from PrLM.

4.2 Results and Analysis

To evaluate the multilingual performance and cross-lingual transfer effect of the PrLM that learns
the universal linguistic structure and integrates the universal linguistic structure into the represen-
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tation explicitly, we conducted experiments on the two typical tasks: universal natural language
understanding and the universal linguistic structure parsing. All the scores are average results of five
random seeds, indicating that our results are stable.

Universal Natural Language Understanding In Table 1, we show the cross-lingual transfer re-
sults (Cross-Transfer) of the baselines and our proposed model on the cross-lingual text classifica-
tion benchmark - XNLI. Meanwhile, we also list the multilingual performance (Train-Trans-FT,
Test-Trans-Eval, and All-FT) as a reference. First, compare the results of the source language
- English, our UD-BERT, UD-XLM-Rbase, and UD-XLM-Rlarge outperform the corresponding m-
BERT, XLM-Rbase, and XLM-Rlarge baselines, demonstrating the universal linguistic structure as
pre-training objective and explicitly syntactic structure integration improve the model pre-training
and final representations.

Table 1: Results on cross-lingual text classification task. We report the accuracy on each of the 15
XNLI languages and the average accuracy. Results with † are from [26].

Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
Train-Trans-FT: Fine-tune multilingual model on each training set translated from English

XLM [9] 82.9 77.6 77.9 77.9 77.1 75.7 75.5 72.6 71.2 75.8 73.1 76.2 70.4 66.5 62.4 74.2

Test-Trans-Eval: Translate test sets to English and use English-only model for evaluation
BERT-en 88.8 81.4 82.3 80.1 80.3 80.9 76.2 76.0 75.4 72.0 71.9 75.6 70.0 65.8 65.8 76.2
RoBERTa 91.3 82.9 84.3 81.2 81.7 83.1 78.3 76.8 76.6 74.2 74.1 77.5 70.9 66.7 66.8 77.8

All-FT: Fine-tune multilingual model on all training sets
XLM [9] 84.5 80.1 81.3 79.3 78.6 79.4 77.5 75.2 75.6 78.3 75.7 78.3 72.1 69.2 67.7 76.9
XLM [9]† 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
Unicoder [26] 85.6 81.1 82.3 80.9 79.5 81.4 79.7 76.8 78.2 77.9 77.1 80.5 73.4 73.8 69.6 78.5
XLM-Rbase 85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
XLM-Rlarge 89.1 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.6

Cross-Transfer: Fine-tune multilingual model on English training set
XLM [9] 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
Unicoder [26] 85.1 79.0 79.4 77.8 77.2 77.2 76.3 72.8 73.5 76.4 73.6 76.2 69.4 69.7 66.7 75.4
m-BERT [1] 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
UD-BERT 82.7 74.9 75.2 72.0 67.4 69.2 70.3 62.7 65.8 70.3 59.6 69.7 61.4 51.2 58.7 67.4
XLM-Rbase 85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
UD-XLM-Rbase 86.5 80.3 81.6 79.8 78.4 80.0 78.9 75.1 74.4 77.1 75.2 77.3 73.0 67.0 68.8 76.9
XLM-Rlarge 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9
UD-XLM-Rlarge 89.4 84.8 85.6 84.5 83.6 84.7 81.2 80.0 81.0 81.9 78.6 80.7 76.8 74.4 74.3 81.4

Second, our UD-BERT and UD-XLM-R performed better in most cases of the 14 transferring target
languages. UD-BERT has an average increase of 1.1 when compared to the baseline, UD-XLM-
Rbase has an average increase of 0.7, and UD-XLM-Rlarge has an average increase of 0.5. This
improvement highlights the fact that the cross-lingual transferring ability of our multilingual PrLM
has improved as a result of the employment of universal linguistic structures. Furthermore, the
cross-lingual transfer effect of our UD-XLM-Rbase outperforms BERT with a similar model struc-
ture and parameters, who translated the test set for evaluation. The results of our UD-XLM-Rlarge
achieved better results than all the methods which leveraging a monolingual language model on the
translations, which shows that cross-lingual transfer is a more promising mode.

Text classification is a relatively simple and intuitive NLU task. To further verify our conclusions,
we conducted experiments on a more complex task - cross-lingual Machine Reading Comprehen-
sion (MRC). The results on XQuAD dataset are shown in Table 2. Similarly, we first compare the
MRC results on the source language English. The performance of UD-BERT and UD-XLM-R has
increased relative to the baseline, which verifies the conclusion that our universal linguistic structure
improves the NLU ability of multilingual language model. For the 11 transferring target languages,
we observed a similar improvement trend on UD-BERT and UD-XLM-R as in the XNLI task, and
the improvement was even greater. The average improvement of UD-BERT, UD-XLM-R base and
UD-XLM-R large reached 1.0, 0.6, 0.8 F1 scores respectively. Among them, Arabic has the largest
improvement, with 1.3, 2.3, and 6.6 F1 scores respectively. All the results here reveal that universal
syntactic structure information embedded is effective for cross-lingual MRC task.

Universal Linguistic Structure Parsing Since the universal dependency parsing structure and
the dependency parse encoding structure are built into our multilingual PrLM, to demonstrate that
our model learned how to extract linguistic structure and to encode the structure into the output
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Table 2: F1 / EM scores on XQuAD with English as the source language for each target language.
Cross-Transfer en ar de el es hi ru th tr vi zh ro Avg

m-BERT F1 83.5 61.5 70.6 62.6 75.5 59.2 71.3 42.7 55.4 69.5 58.0 72.7 65.2
EM 72.2 45.1 54.0 44.9 56.9 46.0 53.3 33.5 40.1 49.6 48.3 59.9 50.3

UD-BERT F1 83.9 62.8 72.3 62.9 75.7 59.0 71.6 48.6 55.5 69.9 58.7 73.7 66.2
EM 72.5 46.3 56.0 45.8 57.3 46.3 54.0 38.5 40.2 49.7 48.6 60.3 51.3

XLM-Rbase
F1 83.6 66.8 74.4 73.0 76.4 68.2 74.3 66.5 68.3 73.7 51.3 77.8 71.2
EM 72.1 49.1 60.1 55.7 58.3 51.7 58.1 56.7 52.8 53.8 42.0 62.8 56.1

UD-XLM-Rbase
F1 84.0 69.1 74.9 73.5 77.0 68.4 74.3 66.9 69.3 74.1 51.8 78.0 71.8
EM 72.5 51.2 60.5 56.0 58.3 51.9 58.5 57.1 52.9 54.2 42.6 63.3 56.6

XLM-Rlarge
F1 86.5 68.6 80.4 79.8 82.0 76.7 80.1 74.2 75.9 79.1 59.3 83.6 77.2
EM 75.7 49.0 63.4 61.7 63.9 59.7 64.3 62.8 59.3 59.0 50.0 69.7 61.5

UD-XLM-Rlarge
F1 86.8 75.2 80.9 80.0 82.3 77.1 80.3 73.8 76.3 79.5 59.4 83.9 78.0
EM 75.9 58.2 63.8 61.7 64.0 59.8 64.5 62.2 60.5 59.8 49.9 69.9 62.5

Table 3: The monolingual UD parsing results (UAS/LAS) on 22 UD Treebanks. ∗ means that the
PrLM is tested directly without additional training of a biaffine dependency parsing model.

All-FT m-BERT UD-BERT∗ UD-BERT XLM-Rbase UD-XLM-Rbase XLM-Rlarge UD-XLM-Rlarge
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

bg 94.75 90.88 95.76 91.57 96.12 93.09 96.42 93.56 96.57 93.80 96.53 93.72 96.69 94.04
ca 95.36 93.25 94.97 92.72 95.61 94.27 95.53 94.26 95.78 94.61 95.75 94.58 95.94 94.72
cs 94.38 91.62 95.11 91.94 95.62 93.17 95.60 93.30 95.82 93.43 95.87 93.69 95.99 93.87
nl 94.74 92.72 94.44 91.27 95.38 93.61 95.36 93.44 95.79 93.82 95.63 93.78 96.13 94.50
en 92.52 91.29 91.34 88.17 93.01 91.43 93.60 91.83 94.15 92.55 93.47 91.73 94.19 92.54
et 90.88 88.95 90.04 86.23 91.65 89.73 92.53 90.78 92.78 91.02 93.16 91.50 93.28 91.68
fi 92.98 90.65 89.41 82.51 94.07 91.89 94.99 93.14 95.15 93.44 95.17 93.46 95.66 94.01
fr 94.12 90.75 95.52 92.20 96.08 94.24 96.10 94.34 96.48 94.69 96.01 94.15 96.53 94.75
de 90.77 86.83 88.64 81.78 91.08 87.35 91.30 87.42 91.58 87.63 91.39 87.50 91.72 87.94
he 92.32 89.95 92.52 88.55 93.45 91.06 93.50 91.41 93.87 91.64 93.67 91.48 93.99 91.79
hi 96.54 94.22 95.25 91.34 96.71 94.41 96.73 94.51 97.03 94.99 96.93 94.76 97.17 95.09
id 88.29 83.97 87.73 79.18 87.96 83.72 88.25 84.06 88.51 84.25 88.38 84.27 88.48 84.19
it 95.63 94.01 95.99 93.59 96.32 95.16 96.15 94.93 96.70 95.33 96.26 95.01 96.82 95.60
ko 90.73 88.27 81.90 71.29 90.99 88.67 91.33 89.25 91.42 89.30 92.15 89.79 92.16 89.98
la 85.69 81.84 84.57 79.04 87.01 83.45 86.64 82.99 89.86 86.91 86.97 83.29 90.44 87.33
lv 91.55 89.06 90.57 85.65 92.06 89.72 93.53 91.25 93.88 91.50 94.23 91.90 94.56 92.52
no 95.62 93.88 94.61 92.64 96.23 95.17 96.57 95.58 96.71 95.63 96.70 95.64 96.74 95.75
pl 98.15 96.54 96.26 88.10 98.54 97.14 98.51 97.22 98.80 97.77 98.47 97.08 98.79 97.74
ro 92.70 86.39 93.58 87.38 94.12 89.39 94.25 89.67 94.60 90.11 94.39 89.85 94.73 90.32
ru 95.26 94.00 95.30 92.95 95.74 94.58 96.25 95.26 96.54 95.59 96.38 95.45 96.62 95.72
sk 94.93 91.40 96.22 93.19 96.62 93.95 95.96 93.21 97.49 95.53 95.56 92.74 97.26 95.34
es 94.69 92.89 94.08 90.72 94.92 93.23 94.98 93.44 95.38 93.80 95.33 93.80 95.55 94.09
Avg 93.30 90.61 92.45 87.82 94.06 91.75 94.28 92.04 94.77 92.61 94.47 92.24 94.97 92.89

representations, we performed the universal linguistic structure parsing on UD and multilingual
constituent parsing tasks. It is worth noting that, to shield the influence of the increase in the number
of parameters caused by the addition of the PrLM to the downstream task model, we kept all the
PrLM parameters frozen in the universal NLU evaluation.

In Table 3, we evaluated the effect of using the multilingual PrLM to enhance the parsing model on
22 languages of UD dataset respectively, in order to analyze how many features useful (i.e., syntactic-
aware features) for parsing are provided by the output representation of the various multilingual
PrLM. At the same time, to verify that our model has learned syntax, we listed the results that
UD-BERT is tested directly on 22 languages without additional training of a biaffine dependency
model.

Comparing UD-BERT and m-BERT, our UD-BERT obtained generally better results, except for
Indonesian, with a 0.76/1.14 UAS/LAS average improvement. The average score of UD-BERT∗

is comparable to that of m-BERT, and it outperforms m-BERT in some languages, indicating that
our model has integrated a well-performing parser that can be directly applied to practice without
additional training. When we further compare UD-BERT to stronger XLM-Rbase and XLM-Rlarge
baselines, we found that XLM-Rbase achieved similar results as UD-BERT. Since XLM-R uses more
data and longer pre-training time, from this point of view, UD-BERT has played a role in reducing
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Table 4: Labeled F1 scores on PTB, CTB, and SPMRL test sets.
All-FT en ar eu fr de he hu ko pl sv zh Avg

m-BERT 94.87 88.60 91.06 84.98 90.20 83.35 92.33 89.36 96.36 83.05 90.83 89.54
UD-BERT 95.09 89.97 92.23 85.57 91.06 84.36 93.46 89.72 96.59 85.06 90.99 90.37

XLM-Rbase 95.50 89.67 91.68 85.63 91.54 85.20 93.92 90.82 96.72 86.00 91.84 90.77
UD-XLM-Rbase 95.83 90.22 92.67 86.10 91.98 86.03 94.61 91.32 96.95 86.71 92.30 91.34
XLM-Rlarge 95.74 90.41 92.54 86.47 92.10 86.11 94.56 91.77 97.15 86.80 92.24 91.44
UD-XLM-Rlarge 96.15 90.77 94.13 86.96 92.65 86.97 95.41 92.16 97.33 89.06 92.43 92.18

Table 5: Unlabeled F1 scores on PTB, CTB, and SPMRL test sets.
Cross-Transfer en ar eu fr de he hu ko pl sv zh Avg

m-BERT 95.54 24.22 32.61 59.40 44.36 46.01 57.86 33.99 37.47 71.69 56.87 50.91
UD-BERT 95.93 27.09 35.50 60.87 45.24 46.88 58.99 35.67 39.23 72.20 57.74 52.30

XLM-Rbase 96.19 28.17 34.34 59.70 44.98 47.05 60.26 38.95 38.06 73.68 55.36 52.43
UD-XLM-Rbase 96.60 30.46 37.75 61.36 45.52 47.42 62.00 42.94 39.83 73.90 59.97 54.34
XLM-Rlarge 96.44 20.56 34.23 59.81 45.04 47.01 59.37 36.72 37.87 73.43 54.34 51.35
UD-XLM-Rlarge 96.73 23.44 37.63 61.18 45.71 47.30 60.46 41.26 38.42 73.81 59.58 53.23

the data and time required for pre-training due to the addition of syntactic supervision information.
Further comparing UD-XLM-R with the baseline XLM-R, we found that our method is still helpful
on such strong baselines, which improves the parsing performance in each language. In addition, we
also evaluate the improvement of our model in zero-shot cross-lingual3 setting and in low-resource
languages. The results are shown in Appendices A.3 and A.4, respectively.

Though we verified the linguistic feature extraction and encoding capabilities of our PrLM in the
UD parsing, since the evaluation task is the same as in the pre-training, it is hard to illustrate this
effect on the cross-task linguistic parsing task. Thus, we conduct further exploration on multilingual
constituent parsing benchmarks. Table 4 shows the enhanced ability of the language model for mono-
lingual constituent parsing. The comparison demonstrates that with the help of additional universal
dependency features in the representations, the constituent parsing performance of UD-BERT and
UD-XLM-R has been greatly increased, and the average improvement has reached 0.83, 0.57, and
0.74 respectively. This reflects that the universal syntactic features contained in the representations
are very helpful for downstream tasks. In addition, with our syntax-aware multilingual PrLM, the
integration of syntactic tree is no longer necessary to change the downstream task model for adding
extra syntactic encoders, which will greatly reduce the cost of syntactic tree information application.

The multilingual boosting ability of our PrLM is shown in Table 4. Similarly, we evaluated the
PrLM’s cross-lingual transfer ability on constituent parsing in Table 5, and because there are no
available universal constituent label annotations, we only report unlabeled F1. Again, our UD-
BERT and UD-XLM-R achieve an improvement in all transferring target languages, which shows
that the explicit universal features contained in our PrLM can be used to help downstream cross-
lingual transfer tasks. Since the universal dependency structure can be derived directly by additional
inference in our PrLM’s intermediate output, our good cross-lingual transfer ability is interpretable.
Furthermore, our studies found that the transfer effect of XLM-Rbase is superior to that of XLM-
Rlarge, implying that larger model parameters may not always result in higher cross-lingual transfer
capabilities.

5 Ablation Study

In our multilingual PrLM, we propose both novel model structure and novel pre-training strategy,
whose effectiveness is verified by the ablation study in Table 6. We also doubt that the gain is partly
derived from the additional UD plain text, although the amount of UD plain text is small. So we also
show the results of training the baseline with additional UD plain text (w/ UD plain text) in Table 6.
From the results, if universal dependency parsing is only used as an additional pre-training process
(w/o US Integration), there is only a slight performance improvement compared to the baseline,

3In the strict sense, this cannot be totally categorized as zero-shot because the language model part of the
full parser has been pre-trained by UD annotations.
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which shows that just as a pre-training approach is not enough to fuse the universal syntax implicitly.
When we only employ the model structure without UD pre-training (w/o UD Pre-training), this
additional parser structure, even though it is not trained by the UD supervision, can still improve the
performance, and the improvement is greater than that of w/o US Integration. Comparing m-BERT
and m-BERT(w/ UD plain text), we find that the performance difference between them is very small,
and the performance is even lower after the addition of UD plain text. This indicates that a small
amount of UD plain text can not directly improve the model. Combining the above results with
that of our full UD-BERT, we can conclude that the supervised learning of the UD structure and its
explicit integration into the representation are indispensable options for performance improvement.
And our universal structure integration can help the model learn the syntactic knowledge without
additional supervision and improve the performance because it has an accountable form that can
well model the syntactic structure features.

Table 6: Ablation studies on XQuAD and SPMRL.

Method
XQuAD(Cross-Transfer) SPMRL(All-FT)

ar de en el ar de en eu
F1 EM F1 EM F1 EM F1 EM F1 F1 F1 F1

m-BERT 61.5 45.1 70.6 54.0 83.5 72.2 62.6 44.9 88.6 90.2 94.9 91.1
w/ UD plain text 61.0 44.6 70.1 53.8 82.9 71.8 62.3 44.8 88.5 90.2 94.6 91.0

UD-BERT 62.8 46.3 72.3 56.0 83.9 72.5 62.9 45.8 90.0 91.1 95.1 92.2
w/o US Integration 61.9 45.4 70.9 54.5 83.8 72.6 62.5 45.0 88.9 90.4 94.8 91.3
w/o UD Pre-training 61.5 45.0 70.7 54.3 83.6 72.2 62.7 45.2 89.1 90.6 94.9 91.5

6 Conclusion

In this work, we propose a multilingual PrLM that supports both explicit universal structure learning
and implicit language modeling. We chose the universal dependency parses as our universal structure
knowledge and evaluate the cross-lingual modeling capability of our model on two cross-lingual
NLU tasks and four syntactic parsing datasets. Our model outperforms m-BERT and XLM-R in
all tasks and achieves state-of-the-art results on syntactic parsing. Unlike other works that use the
syntax as an objective or feature, our structure learning is used not only for a pre-training objective
but also for improving the representation, which makes our model both a PrLM and a universal
dependency parser. This will greatly change the way that downstream NLP tasks use syntax, because
we have explicitly integrated the syntactic knowledge into the representation of the PrLM.
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