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Abstract: Many robotic tasks can have multiple and diverse solutions and, as
such, are naturally expressed as goal sets. Examples include navigating to a room,
finding a feasible placement location for an object, or opening a drawer enough
to reach inside. Using a goal set as a planning objective requires that a model for
the objective be explicitly given by the user. However, some goals are intractable
to model, leading to uncertainty over the goal (e.g. stable grasping of an object).
In this work, we propose a technique for planning directly to a set of sampled
goal configurations. We formulate a planning as inference problem with a novel
goal likelihood evaluated against the goal samples. To handle the intractable goal
likelihood, we employ generalized Bayesian inference to approximate the trajec-
tory distribution. The result is a fully differentiable cost which generalizes across
a diverse range of goal set objectives for which samples can be obtained. We show
that by considering all goal samples throughout the planning process, our method
reliably finds plans for manipulation and navigation problems where heuristic ap-
proaches fail.

Keywords: Planning as inference, variational inference, nonparametric learning.

1 Introduction

In order to accomplish diverse tasks in unstructured environments, robots need the ability to gener-
ate motion plans to different user-specified goals. Such goals are often naturally expressed as goal
regions in the workspace, rather than single point goals (e.g. navigate to a certain room, place an
object on a shelf). Traditional trajectory planning techniques require the goal regions to be explicitly
specified as planning objectives. This specification is challenging in cases where the goal region is
uncertain. Examples of uncertain goal regions include those which are intractable to model explic-
itly, such as stable grasp poses across diverse objects [1, 2] or user preferences [3, 4].

We seek to solve planning problems under goal region uncertainty given only a fixed set of goal
demonstrations. The key insight of our approach is to model these demonstrations as samples from
an underlying goal distribution. Our goal set planner plans directly to these goal samples, result-
ing in a generalizable, data-driven planning objective which can be employed across goal regions,
eliminating the need to explicitly model the goal. Planning to goal distributions has been formulated
as a flexible representation for a number of objectives [5], but requires a fully specified parametric
goal distribution. Our approach instead treats the goal as an implicit distribution, from which we
can obtain samples (e.g. successful grasp poses [6]) but which cannot be evaluated explicitly. We
formulate this problem as inference-based planning [7, 8, 9], and seek a distribution of trajectories
which terminate in high-density regions of the goal distribution (see Figure 1). Due to the complex,
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Goal Samples

Simulated Rollouts Trajectory Execution
Figure 1: Our goal set planner considers a discrete set of goal samples as the planning objective. By considering
multiple possible goals within the trajectory optimization process, we can handle challenging environments
with clutter and dynamic obstacles.

multi-modal nature of the planning problem, we consider particle-based trajectory distributions and
perform inference using Stein Variational Gradient Descent [10, 11]. In contrast to previous data-
driven approaches to intractable planning objectives [1, 2, 3, 4, 6, 12, 13], we require no upfront
learning before planning begins.

Primary contributions. We formulate the problem of goal set planning as generalized Bayesian in-
ference (GBI), an emerging statistical technique which enables inference for intractable likelihoods.
GBI refers to a class of problems in which the likelihood function is specified through a generic
loss, typically a divergence between two distributions evaluated against observations [14, 15, 16].
We demonstrate that divergences can be computed over implicit goal distributions, which allows us
to leverage a loss function that quantifies the divergence between the terminal state samples and the
goal samples to infer the posterior trajectory distribution [17]. We then propose a Stein variational
inference methodology to solve the problem as a sequence of gradient updates of a set of trajectories.

Secondary contributions. We present a number of potential loss functions which can be ap-
plied within this framework. We additionally compare to several previously proposed heuristic ap-
proaches [5, 18]. We demonstrate the applicability of our approach in planar navigation and in a
high-dimensional grasping task. By considering the full set of goal samples throughout the plan-
ning process, our planner reliably finds reachable grasps in scenarios where heuristic approaches
fail to reach their selected pose from the goal set. Additional demonstrations and data are available
at https://janapavlasek.com/projects/goal-sets.

2 Related Work
Trajectory planning to a goal can be stated as an optimization problem with the objective of finding
a minimum cost path to a point in the robot workspace and can be efficiently solved using differ-
entiable costs and dynamics [19, 20, 21]. Casting planning as probabilistic inference has become a
popular technique for achieving robust control under uncertainty [22, 11, 23, 9, 24]. One popular
approach is to employ a nonparametric, particle-based representation of the trajectory distribution,
iteratively updating the posterior through importance sampling [23, 9]. Other methods use varia-
tional inference to efficiently infer the trajectory distribution [22, 11, 25].

Most related to our work is that of Conkey and Hermans, who formulate trajectory planning to goals
defined as a probability distribution [5]. Our proposed approach also considers the goal to be a distri-
bution, but we represent the goal as an implicit (sampled) distribution [17] eliminating the need for
the distribution to be explicitly specified by the user. The problem of planning to a set of goals has
been considered by the manipulation community for robotic grasping. A popular approach for grasp
planning to a goal set has been to formulate trajectory optimization and grasp selection as indepen-
dent steps [26, 27, 18]. These methods first select a single goal from the set prior to planning based
on a scoring metric, then treat the selected sample as a point goal. Similar approaches have been
used to heuristically guide sampling-[28] and graph-based [29] motion planners to goal samples
from sets in other contexts. Another approach is to jointly perform trajectory optimization and grasp
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selection. Dragan et al. [30] add a manually defined goal set constraint to the problem of trajectory
optimization. Wang et al. [31] perform grasp selection and refinement online by estimating the grasp
distribution. These methods require domain-specific information about the grasping problem and do
not generalize across planning problems. Data-driven approaches to represent intractable planning
objectives either employ high-fidelity simulation to measure success (e.g of grasps) [1, 2, 6, 13],
or demonstrations to represent user preferences [3, 4, 12]. In these techniques, an upfront computa-
tional cost is required before planning begins, and must be performed again whenever environmental
conditions, such as observability or dynamic environments, necessitate replanning.

3 Goal Sample Set Planning as Inference

Given a robot with state xt ∈ X at time t, we consider the problem of planning to a goal set within
the state space, G ⊂ X . We consider the case of arbitrarily complex goal regions G that do not admit
explicit analytic specification. Instead we can obtain a set of valid goal samples, G̃ = {x(i)

g }i=1:N ,
x
(i)
g ∈ G. Examples of this type of goal include data labelled by simulation or human demonstration.

We seek a policy ut = π(xt) such that the terminal state after a time horizon T lies within the goal
region, xT ∈ G, given only goal samples G̃. The robot trajectory is defined as a sequence of states
and actions, τ = {(xt, ut)}t=0:T . We seek the minimum cost trajectory, τ∗, which solves:

τ∗ = argmin
τ

C
(
xT ; G̃

)
+

T−1∑
t=0

ct(xt, ut; z), (1)

where z denotes the environmental observation (e.g. the map of the environment). The running cost,
ct(xt, ut; z), is chosen based on the domain (e.g. quadratic cost, obstacle cost, etc.). Our primary
contribution is the formulation of the terminal cost, C(xT ; G̃), when the goal region is represented
only by a set of samples, G̃.

The planning objective in Eq. 1 can be restated in terms of probabilistic inference using the formal-
ism of planning as inference [7, 8, 22, 9]. In planning as variational inference, we seek to find a
distribution over trajectories q(τ) ∈ Q that minimizes the divergence with the posterior distribution
of trajectories, pO(τ | z), defined from the cost in Eq. (1):

q∗(τ) = argmin
q∈Q

DKL

(
q(τ) || pO(τ | z)

)
. (2)

We can factorize the posterior over trajectories, τ , given an environment observation, z, and a set of
goal samples, G̃ = {x(i)

g }i=1:N , as:

pO(τ | z, G̃) ∝ pgoal(G̃ | xT )

T−1∏
t=1

p(z | xt)

T−1∏
t=1

p(xt+1 | xt, ut) (3)

= pgoal(G̃ | xT )pO(z | τ ′)p(τ ′), (4)

where τ ′ = {(xt, ut)}t=0:T−1 denotes the portion of the trajectory up to time T − 1, xT denotes
the terminal state of the trajectory, and pgoal(G̃ | xT ) is the goal likelihood given the implicit goal
distribution G̃. We model the likelihood pO(z | τ ′) in terms of the trajectory cost yielding:

pO(z | τ ′) ≈
1

Z
exp

(
−α

T−1∑
t=0

ct(xt, ut; z)

)
, (5)

where Z is a normalization term. The likelihood pgoal(G̃ | xT ) in Eq. (4) is intractable due to the
implicit goal distribution. The following section addresses the key technical question of this work:
how can we perform inference on the intractable posterior arising from an implicit goal distribution?

4 Planning to Implicit Goal Distributions as Generalized Bayesian Inference

We propose applying generalized Bayesian inference to directly approximate the solution of Eq. (4).
While one could fit a parametric model of p̂goal(G | xT ) to the sampled data G̃, we seek a generic
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Figure 2: Our SVGD-based planner takes as input a set of goal samples, G̃, an environmental observation, z,
and an initial state, x0 and iteratively updates a set of trajectory particles, τ . At each iteration, the particles are
rolled out using a simulator. Each rollout is then evaluated in terms of its running cost, c. A goal loss , Lgoal,
computes the discrepancy between the terminal points of the trajectory distribution and the goal set. SVGD
updates the trajectory particles using the gradients of the combined running and goal losses.

objective for planning directly to the implicit distribution that avoids task-specific pre-processing.
We now give a brief overview of generalized Bayesian inference and Stein variational inference
before explaining how we combine them to solve the goal set planning problem. Figure 2 visualizes
our approach to planning as generalized Bayesian inference using SVGD.

Generalized Bayesian Inference. Generalized Bayesian inference (GBI) accounts for intractable
inference problems arising from evaluating a loss function instead of a likelihood that factorizes
over each observation [16]. Given a posterior p(x | Y), where x are arbitrary random variables and
Y = {y(i)}i=1:N is a set of N observed data points, GBI approximates the posterior as follows:

pL(x | Y) ∝ p(x) exp (−βL(x,Y)) (6)

where L(x,Y) defines a loss between the random variables and observed data. Typically, the loss
measures divergence (e.g. KL) between the data and query variables. The posterior pL(x | Y)
recovers the conventional Bayesian posterior when β = 1 and L(x,Y) = −

∑N
i=1 log p(y

(i)|x). We
can compute the approximate posterior by solving the following variational optimization problem:

qL(x | Y) = argmin
q∈Q

β Ex∼q [L(x,Y)] +DKL

(
q(x) || p(x)

)
(7)

Stein Variational Inference. We build on work that approximately solves Eq. (2) using Stein
variational inference [11, 32]. Stein variational inference represents the candidate distribution q(τ)
nonparametrically by a set of particles, each representing a trajectory, {τ (i)}i=1:M . Stein variational
gradient descent (SVGD) [10] employs gradient-based optimization over the particle set to mini-
mize the kernelized Stein discrepancy [33] between the true and the approximate posterior. SVGD
can solve high-dimensional planning problems involving complex, multi-modal posteriors [11, 32].
SVGD is an iterative algorithm which applies the following update to each particle i at iteration k:

τ
(i)
k ← τ

(i)
k−1 + γϕ(τ

(i)
k−1) (8)

ϕ(τ) =
1

M

M∑
j=1

k(τ (j), τ)∇τ(j) log pO(τ
(j) | z) +∇τ(j)k(τ (j), τ) (9)

where k(τ (j), τ) is a kernel function between trajectories. We can interpret the first term inside the
summation of Eq. (9) as an attractive force that moves particles according to the gradient of the log-
posterior, while the second term acts as a repulsive term keeping particles from collapsing to a single
point estimate. Thus SVGD leverages parallel gradient-based optimization to generate a diverse set
of samples more efficiently than Markov chain Monte Carlo (MCMC) samplers [9].

Terminal Losses for Goal Sets. We leverage results from the GBI literature which approxi-
mate the optimization problem in Eq. (7) using a divergence metric between two implicit distri-
butions [17]. We define the implicit terminal distribution as X̃T = {x(i)

T }i=1:M and solve:

qL(xT | G̃) := argmin
q∈Q

Lgoal(X̃T , G̃) (10)
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Figure 3: Pass rate for different distance thresholds be-
tween the final state and the nearest goal sample. Dashed
lines represent baseline methods.

Cross Entropy Closest Point

t = 9s t = 5.5s

Figure 4: Cross Entropy (left) and Closest Point
(right) baselines fall into local minima failing to reach
the goal. The trajectory is shown in blue, the trajec-
tory distribution in purple, and the goal distribution in
orange contours. The red ‘x’ shows the closest point.

The loss function Lgoal(X̃T , G̃) measures the discrepancy between the terminal state distribution
and the distribution of goal states, represented implicitly by samples X̃T and G̃ respectively.

We note that the loss defined in Eq. (10) provides a measure over the set of terminal states, rather than
an individual likelihood per trajectory particle required by Eq. (4). A key insight of our approach
is to solve the resulting planning as inference task with SVGD, which employs the gradient of the
particle likelihood, without the need to explicitly evaluate the goal loss per particle. We define the
gradient in Eq. (9) as follows, combining the results from Eq. (4) and Eq. (10):

∇τ(j) log pO(τ
(j) | z) = ∇τ(j) log pO(z | τ (j)) +∇τ(j) log p(τ (j))− β∇τ(j)Lgoal(X̃T , G̃) (11)

The terminal loss must be differentiable with respect to the trajectory samples and efficient to com-
pute so it can be used in a control loop. We consider the following two sample tests which meet
this criteria: The kernel Maximum Mean Discrepancy (MMD) [34], a KL divergence approximation
based on classification [35, 36], a smooth k-Nearest Neighbor test [37], and the energy statistic [38].
Details of the derivations of these measures can be found in Appendix A.

5 Experimental Results

We evaluate our method in a simulated 2D planar navigation problem and manipulation experiments
both in simulation and on a physical robot. For all experiments, the goal set planner is run in MPC-
style, where optimization is performed at each timestep, then the first action of the lowest-cost
trajectory is executed.

Baselines. Each baseline involves inference using SVGD [10, 11] with the same running costs,
but with different heuristic terminal costs based on previously published work, as defined below.

– Closest Point: The nearest goal sample to the start configuration is selected as the goal. The
terminal cost is the squared Euclidean distance to this point. A dynamic version of this cost is
obtained by recomputing the closest point at the beginning of each planning timestep [18].

– True Goal Distribution: Given the true goal distribution, the objective is formulated as maximiz-
ing the density of the goal distribution at the terminal point [5]. This method is only applicable
to the 2D planar navigation task when the goal distribution is known.

– Mixture Model: We define a goal likelihood with a Gaussian mixture model obtained by placing
each component centered on each goal sample, with a fixed covariance, akin to a kernel density
estimator. The goal loss is then the cross entropy over the mixture model, which is equivalent to
maximizing the likelihood [5].

Planar Navigation. We implement a 2D planar navigation task to characterize the behavior of our
approach. We define goal distributions over 2D position for each scene using a parametric distribu-
tion (Gaussian, mixture of Gaussians, or uniform). The goal set supplied to the planner consists of a
random set of goal samples drawn from the distribution.
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Figure 5: Trajectory distributions for the Goal Set Planner using the MMD terminal loss are represented as a
set of samples (drawn in purple). The final trajectory is shown in the last pane for each environment, colored
with respect to the velocity (yellow is fast, purple is slow). The red points represent the goal samples and the
orange contours represent the true goal distribution.

Figure 6: Chamfer Distance at each iteration for different terminal costs. (left) Comparison between the base-
line methods and our goal set planner with MMD terminal loss. (right) Comparison between different terminal
costs. The best performing baseline (Cross Entropy) is shown for reference.

To evaluate the goal set planner, we execute 10 runs per method per scene across 5 scenes. We mea-
sure the Euclidean distance between the terminal state in the trajectory and the nearest goal sample
for each run. We present the pass rate for each method in Figure 3, where pass rate is defined as the
percentage of runs for which the error is less than a given error threshold. All methods achieve sim-
ilar path lengths (see results in Appendix B.1). The cross entropy baseline performs close to the set-
based methods with respect to pass rate, but is prone to falling into local minima. The closest point
baselines have a high failure rate on challenging environments, particularly those with collisions
near the goal (see Figure 4), or those with the closest point in collision (see bottom-left in Figure 5).
While it would be trivial to check for collisions with the closest point in the planar environment,
we avoid this additional domain-dependent pre-processing step to better replicate environments in
which collisions are expensive or intractable to compute.

Figure 5 shows example trajectory distributions for the goal set planner using the MMD cost. Both
the Smooth k-NN and the Kernel MMD terminal losses display moment-matching behaviour, which
we posit allows them to be more robust to challenging environments. We posit that the kernel em-
bedding in the MMD loss enables more flexible representation of the goal region compared to the
other losses. We select MMD for all manipulation experiments.

Distribution matching: We hypothesize that our goal set planning achieves higher success rate in
challenging environments due to its ability to better approximate the underlying goal distribution.
To verify this, we measure the Chamfer distance between the terminal states in the trajectory dis-
tribution at each timestep and the goal samples. The results are shown in Fig. 6. The cross entropy
baseline, using the true goal distribution, achieves lower Chamfer distance than the other baselines,
but performs worse than the goal set planner due to its mode-seeking behavior. Kernel MMD and
smooth k-NN terminal set losses perform better on this metric than the energy statistic and the KL
approximation.

Robotic Grasping. Stable grasping of arbitrary objects is a challenging problem since the goal
distribution consisting of stable grasp poses is intractable to model. We evaluate our goal set planner
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Figure 7: Pass rate data for the grasping experiments: the Euclidean
distance (left) and the L2-norm of the rotation matrix (right) between
the final end-effector orientation and the goal.

Success (%)

Closest Pt. 50
Mixture Model 40

Goal Set (MMD) 54

Table 1: Grasp success rate

on a grasping task using grasp samples generated in simulation [6]. We compare our method to the
Closest Point and Mixture Model baselines.

We assume that the environment and target object are fully observed. Experiments are performed
using the Franka Panda manipulator in the Isaac Gym simulator [39]. We use the STORM library
for GPU-accelerated, fully differentiable dynamics and costs [40]. The goal set is represented by
N = 100 samples of valid grasp configurations drawn from the Acronym dataset [6]. The goal set
planner is used to plan to a pre-grasp pose to offset grasp locations in an MPC framework over a fixed
horizon. The goal set planner optimizes over all goal samples at each planning iteration, and does
not require pre-processing the set prior to planning. After convergence, we use inverse kinematics
(IK) to move to the nearest grasp sample, and then lift the object.

We evaluate over 5 runs across 10 scenes containing 8 different objects and 5 environments. Grasp
success results are shown in Table 1. We observe that a primary source of failure is due to failure
in the IK stage, when moving from the pre-grasp pose to the grasp pose. IK errors can arise from
collisions or singularities encountered during the grasp. To better understand the performance of
the goal set planner independent from the grasp stage, we measure the planning success rate of our
planner to the pre-grasp pose, computed as the distance from the terminal end-effector pose to the
nearest goal sample. We present the pass rate for each method in Figure 7. The goal set planner
achieves a higher pass rate at thresholds over approximately 4 cm. The closest point method may
select goal points which are in collision in some of the example scenes, increasing the distance error,
which also accounts for the discrepancy in grasp success. The rotation error is lower for closest point
because it matches the orientation of the goal consistently, including for unreachable poses. We posit
that the mixture model poorly approximates the true goal distribution explaining its failure.

Robot Demonstration. We demonstrate that our simulated manipulation experiments are transfer-
able to the real robot, under the assumptions of known object and obstacle locations and geometries,
through a robotic grasping demonstration. Figure 8 shows two successful grasping runs of the plan-
ner, one in an environment without obstacles and one with obstacles. Goal samples are drawn from
positive stable grasp examples from the Acronym dataset [6].

Placement. We posit that our planner is more effective than point selection heuristics at dealing
with multi-modal goal regions and changing environments due to its ability to consider multiple
possible goal regions within the trajectory distribution. To examine this claim, we design a table
setting experiment where mugs are placed sequentially on a surface using demonstrations of valid
configurations, inspired by demonstration-based arrangement tasks [4]. The goal region consists of

Figure 8: Execution runs of the goal set planner on the real robot platform in an environment with no collisions
(left three) and with collisions (right three). The robot grasps a mug by planning over a set of successful sample
grasp poses obtained from simulation [6]. Trajectories are planned offline and executed on the robot.
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Figure 9: Given example demonstrations of mug placement as the goal set (green), the robot plans a path to
place a mug. The trajectory distribution (red) considers both free goal distribution modes, and avoids the mode
which has a collision due to the first mug (1), ultimately selecting a free mode (2). The final positions of the
mugs is show relative to the goal samples over 6 runs (3). The mug colors correspond to runs.

three uniform distributions representing valid terminal gripper 3D positions (see Figure 9, left). We
sample 60 points to form the goal set at the beginning of the task, and keep the goal set constant
until all mugs are placed. Each subsequent placement operation requires the consideration of a new
obstacle in the scene. We employ the MMD terminal loss over the goal samples compared to the 3D
terminal positions of the end effector.

We perform six runs for this task, each involving placing three mugs. Figure 9 shows an example
trajectory distribution for the goal set planner when placing the second of 3 mugs, which shows the
multi-modality of the trajectory distribution. The final mug positions (Figure 9, right) are clustered
corresponding to the modes of the demonstrations. We observe that the final mug placements may
lie outside the sampled region. This can be caused by early termination, or in some cases, trajectory
distributions which converge outside the sampled region. The latter could be caused by singularities
in the robot kinematics or local minima.

6 Discussion & Conclusion

In this work, we present a formulation for a goal set planner, which considers the planning problem in
which an uncertain goal region is represented as a set of samples. The planner is generalizable across
goals which can be represented by implicit distributions, without the need for domain-specific, user-
defined heuristics. We find that independent of the specific loss used, the GBI formulation out-
performs previously proposed approaches for planning to goal sets and distributions. Our method
outperforms all baselines on a 2D navigation problem and yields improved plan-to-grasp success on
a robotic manipulation platform.

In order to remain true to the general planning problem, our method does not consider domain-
specific techniques commonly used for the experiments considered. Our grasping results would
likely be improved by integration of pre-planning steps for checking reachability or collisions [41],
or pre-grasping refinement of the final pose [31]. We hypothesize that combining these approaches
with goal set planning for the application of grasping would improve robustness.

Limitations: Maintaining modes in the trajectory distribution can lend added robustness in chal-
lenging environments, but it also raises challenges in selecting a single trajectory to execute. We
attribute the larger errors in the final pre-grasp pose of our method to the challenge of detecting con-
vergence given the multi-modality of the goal set planner. The terminal set losses considered work
best as local measures, meaning gradient information is noisy if trajectories terminate too far from
the goal. We mitigate this by applying smooth box priors around the goal samples. Furthermore, the
terminal point is not guaranteed to be close to one of the points in the set. This could be mitigated
by switching to a point-based cost once close to the goal set. To deploy our planner in real-world
applications, more investigation is needed to explicitly handle perceptual uncertainty.
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Appendices
A Terminal Losses

This section provides detailed derivations of the different terminal loss functions, Lgoal(X̃T , G̃),
compared in our generalized Bayesian inference planner. Recall, the loss function Lgoal(X̃T , G̃)
measures the discrepancy between the terminal state distribution and the distribution of goal states,
represented implicitly by samples X̃T and G̃ respectively.

Kernel Maximum Mean Discrepancy (MMD). The squared MMD [34] measures discrepancy
between two distributions p(x) and q(y), and is defined as:

MMD2(p, q) = E[k(x, x′)]− 2E[k(x, y)] + E[k(y, y′)] (12)

where k(·, ·) is a kernel function. In the case where distributions p and q are implicit, an unbiased
two-sample approximation of the squared MMD is given by:

MMD2
u(p, q) =

1

m− 1

m∑
i=1

m∑
j ̸=i

k(xi, xj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)+
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)

(13)

where xi ∼ p, 1 ≤ i ≤ m and yi ∼ q, 1 ≤ i ≤ n. When applied to our setting we simply define
Lgoal(X̃T , G̃) = MMD2(X̃T , G̃) where X̃T = {x(i)

T }Mi=1 correspond to samples from the terminal
state associated with the corresponding trajectory particle τ (i).

KL Divergence. A differentiable two-sample KL divergence approximation can be obtained
through density ratio estimation via classification [35, 36]. The KL divergence between distribu-
tions p and q is defined as:

DKL(p, q) = Ex∼p(x)

[
log

p(x)

q(x)

]
. (14)

This quantity can be approximated over samples x(i) ∼ p(x) if the ratio r(x) = p(x)/q(x) can be
computed analytically:

Ex∼p(x) [log r(x)] ≈
1

M

M∑
i=1

log r(x(i)) (15)

In the case where the goal distribution and posterior distribution are implicit, the ratio r(x) cannot
be evaluated. Instead, the ratio can be approximated through classification, where binary label y = 1
indicates that a sample x was drawn from p and y = 0 indicates a sample was drawn from q. The
ratio can then be approximated as:

r∗(x) =
P (x|y = 1)

P (x|y = 0)
, (16)

which can be further simplified to:

r∗(x) = exp(σ−1(P (y = 1 | x))). (17)

This approximation reduces the density ratio estimation to a classification problem. Thus, the ratio
is computed by evaluating a binary classifier for each sample which can be performed efficiently.

Intuitively, this approach assumes that the KL divergence should be highest when the classifier
cannot distinguish between the samples from each distribution. The classifier must be trained in-
dividually for each estimated trajectory distribution in order to use this divergence. To improve
computational efficiency in practice, the classifier can be initialized with the result from the pre-
vious iteration. Finally, we can define Lgoal(X̃T , G̃) = DKL(X̃T , G̃) where the KL divergence is
approximated following Eq. (15).

Smooth K-Nearest Neighbor. It is possible to define a differentiable two-sample test based on
the well known k-NN algorithm as demonstrated in [37]. The Smooth K-Nearest Neighbor test

12



possesses important statistical properties such as consistency and convergence of its statistics to f -
divergence. This is despite the complexity of having to solve a combinatorial optimization problem
(nearest neighbor match) required by the k-NN method. Let n1 be the number of samples of p, and
n2 be the number of samples of q. The k-NN divergence can be defined as

DNN
α =

∫
α2p2(x) + (1− α)2q2(x)

αp(x) + (1− α)q(x)
dx, (18)

for n1/(n1 + n2)→ α ∈ (0, 1).

As proved in [42], the statistic

1− T (X1, X2)

(n1 + n2)k
, (19)

where T (X1, X2) refers to the number of edges connecting samples in a set X1 = {xi}n1
i=1 to

a set X2 = {xi}n2
i=1 from a k-neighborhood graph created with points in X1 and X2, converges

in probability to the DNN
α divergence, and can be used as an efficient approximation. To make the

computation differentiable, the authors of [43] define

T (X1, X2) =
n∑

i=1

n∑
j=1

si({xm}n1+n2
m=1 )j , (20)

where si({xm}n1+n2
m=1 ) denotes the softmax function computed on the Euclidean distances between

all points, except point i. As the softmax function is differentiable, the statistic in Eq. (19) becomes
differentiable and can be used directly as our loss function Lgoal(X̃T , G̃). To avoid specifying a
particular value for α, our implementation computes the statistic for several values and averages
them as the final result.

Energy Statistic. This two-sample test is based on Newton’s gravitational potential energy which
relates two entities by the Euclidean distance between them [38]. Given two distributions p(x) and
q(y), the energy distance is defined as:

DE(p, q) = 2E[||x− y||2]− E[||x− x′||2]− E[||y − y′||2], (21)

where x and y are independent random variables. The corresponding two-sample statistic given two
sets of samples X = {xi}n1

i=1 and Y = {yj}n2
j=1 can then be written as:

DE(X,Y ) =
2

n1n2

n1∑
i=1

n2∑
m=1

∥xi−ym∥2−
1

n2
1

n1∑
i=1

n1∑
j=1

∥xi−xj∥2−
1

n2
2

n2∑
l=1

n2∑
m=1

∥yl−ym∥2. (22)

This provides a computationally efficient statistic which can be directly used as our loss
Lgoal(X̃T , G̃) = DE(X̃T , G̃).

A.1 Practical Considerations

The statistics considered in this work are good local approximations of distribution divergences.
In the case of trajectory optimization, when the terminal states in early planning iterations are far
from the goal set, the goal loss gradients can be uninformative. We therefore include a prior in our
set planning method consisting of a smooth uniform distribution constructed by placing a bounding
box around the goal samples. This can be included in our framework by multiplying a prior over
the terminal state p(xT ) with the goal likelihood in Eq. (6). This mitigates the poor divergence ap-
proximation in early iterations. Note that the uniform prior is insufficiently informative on its own,
particularly in cases where the goal set is multi-modal. Furthermore, the prior needs to be differ-
entiable, which is not the case for a standard uniform distribution. Therefore we define a smooth
uniform prior in the region R = xT : a ≤ xT ≤ b as

p(xT ) ∝ exp
(
−d(xT , R)

2
/
√

(2σ2)
)

(23)

where d (x,R) = min |x − x′|, x′ ∈ R is a distance function, and σ controls the sharpness of the
approximation.
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Once inference over the trajectory distributions converges, we must select a single trajectory esti-
mate to execute. A common approach to accomplish this is by taking the mean, or weighted mean,
of the particle set. This method is ineffective when the trajectory distribution is multi-modal. An
alternative approach is to pick the maximum weighted particle. Our proposed set-based terminal
losses yield a single score over the whole distribution, which does not enable weighing individual
particles based on terminal loss. To select our final sample, we instead select the lowest cost tra-
jectory. In practice, we also include the prior in the weight computation to avoid local minima with
very low-cost trajectories.

B Experiment Details

B.1 Planar Navigation

The agent state xt is composed of a 2D position and velocity, and the control signal ut is a 2D
acceleration. We use known, linear dynamics in a fully observed environment for the controller
rollouts.

Losses. For each method, the running cost is summed over each timestep, where the cost for one
timestep is:

ct(xt, ut, z) = x⊤
t Qxt + u⊤

t Rut + α cSDF(xt, z) (24)

where Q and R are quadratic cost parameters for the state and action, and cSDF(xt, z) is the obstacle
avoidance term, computed using the Signed Distance Function (SDF) over the environment z. The
goal loss Lgoal(X̃T , G̃) is a set goal loss which is differentiable with respect to the trajectory τ .

Implementation Details. For each of our goal set planner ablations, N = 50 samples are ran-
domly selected from goal distribution, except for KL (Ratio Estimation), which uses N = 100
samples. This method involves training a learned classifier so is aided by a higher sample size. For
the closest point methods, the goal sample with the smallest Euclidean distance from the start state
is selected. For all the methods, M = 50 particles are used to represent the trajectory distribution.
The particles represent the discrete control signals, ut, which are 2D accelerations at each 0.1 sec-
ond timestep over a horizon of 3 seconds. All planners are initialized with the distribution from
the previous timestep, shifted to the current timestep, and run for 50 iterations. We use the Adam
optimizer [44] to select the step size in the SVGD update rule.

The KL divergence uses a 3 layer fully-connected network as the classifier, retrainined at each
timestep. To mitigate computational complexity, we warm start the training with the weights from
the previous timestep. The Kernel MMD uses an RBF kernel, with a bandwidth selected by applying
the median heuristic over the goal samples [44]. The Smooth k-NN loss uses a value of k = 1.

We use the RBF kernel for SVGD, and set the bandwidth using the median heuristic, a popular
technique for choosing the kernel bandwidth which yields a good estimate in many cases [45].
Without access to data consisting of trajectory samples, we assume that they are normally distributed
with covariance σ = 1. Under these assumptions, it follows that the expected distance between
samples drawn from the distribution is 2D, where D is the trajectory dimension.

Extended Results. We visualize the total Euclidean path length for each method in Figure 10. The
baselines are shown with hatched bars. We exclude paths for which the terminal state is not within
40 cm of any goal sample. All methods achieve similar path lengths, with the closest point baselines
consistently resulting in slightly shorter paths. This is unsurprising given the distance-based goal
selection bias, but comes at the cost of being less robust to different environments.

B.2 Grasping

Figure 11 shows a case where the goal set planner finds a reachable point from the set, but the
closest point method may select goal points which are in collision in some of the example scenes.
This phenomenon helps explain the discrepancy in grasp success at the cost of increasing distance
error.
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Figure 10: Average path length for each terminal cost for the planar navigation task. The points indicate results
for individual runs. Only successful trajectories are included, where success is defined as getting to within 40
cm from any sample within the goal set. The numbers on the bars indicate the number of successful runs out of
50 in each category.

Figure 11: Example failure execution for the closest point planner (top) compared the the goal set planner
(bottom). The closest point selected is shown in blue. The point is not reachable in the environment, causing
the robot to fail to reach it (top right). The set planner considers all the grasp samples, shown in green. It finds
a reachable grasp point and grasps successfully (bottom right).
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