

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 YOUR VISION-LANGUAGE MODEL CAN'T EVEN COUNT TO 20: EXPOSING THE FAILURES OF VLMS IN COMPOSITIONAL COUNTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have become a central focus of today’s AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, **VLMCountBench**, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color and size in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.

1 INTRODUCTION

Vision-Language Models (VLMs) have recently emerged as one of the most influential paradigms in artificial intelligence (Gemma, 2025; Wang et al., 2024a; OpenAI, 2024). By jointly training on large-scale paired data from the web, VLMs have demonstrated impressive generalization across a wide range of tasks, including image captioning, video understanding, visual question answering, visual reasoning, and embodied AI (Driess et al., 2023; Cheng et al., 2024; Wang et al., 2024b). These models form the foundation of many recent multimodal systems and are increasingly deployed in real-world applications. Their ability to align vision and language representations in a unified framework has positioned them as a strong foundation for multimodal research and practice.

Despite these remarkable successes, a fundamental question persists: Do VLMs possess reliable basic perceptual abilities? Among these, counting plays a central role, as it underlies numerous higher-level reasoning skills and everyday applications. Counting is both a simple and fundamental visual task that requires identifying discrete objects and enumerating them accurately. Prior work has already raised concerns in related domains. Generative models, for instance, often fail to produce the correct number of objects in synthetic images (Petsiuk et al., 2022; Cao et al., 2025; Hui et al., 2024) and videos (Guo et al., 2025; Sun et al., 2025), and CLIP-based models have been shown to struggle with distinguishing and enumerating multiple objects in classification and retrieval settings (Jiang et al., 2023; Paiss et al., 2023; Zhang et al., 2024). However, the specific counting ability of VLMs remains less systematically explored. This motivates our research question:

Question 1. *Can state-of-the-art VLMs reliably perform simple and compositional counting tasks?*

While some existing benchmarks touch on VLMs’ ability to count, they typically do so in complex or noisy environments (Li et al., 2024a;b; Xu et al., 2024). For example, datasets designed for visual question answering or captioning may contain counting-related queries, but these are embedded within broader tasks involving recognition, commonsense reasoning, or natural image understanding. As a result, it is difficult to disentangle whether a model’s failure arises from counting itself

054 or from unrelated challenges. Similarly, large-scale natural image benchmarks (e.g., COCO (Lin
 055 et al., 2014) object detection dataset with labels on the quantity of objects) introduce uncontrolled
 056 variability, making it nearly impossible to isolate the exact conditions that cause performance degra-
 057 dation. Thus, despite progress, there remains no controlled and minimalist benchmark dedicated
 058 specifically to testing counting in VLMs.

059 To address this gap, we introduce **VLMCountBench**, a benchmark designed under a strictly min-
 060 imalist setting. The benchmark consists of simple geometric shapes (e.g., triangles, circles) and
 061 their compositions, thereby removing semantic complexity and focusing exclusively on counting.
 062 This setting allows us to implement precise variable control, systematically manipulating factors
 063 such as color, size, rotation, and overlap. By conducting ablation studies under these conditions, we
 064 can rigorously analyze VLM performance and identify the specific challenges that lead to counting
 065 failures.

066 We carry out a comprehensive empirical evaluation across multiple state-of-the-art VLMs (), cover-
 067 ing both open-source and commercial private models, focusing on both single-shape and multi-shape
 068 settings. Our results reveal several striking findings:

- 070 • VLMs can count reliably when only a single shape type is present, achieving high accuracy
 071 in simple counting scenarios.
- 072 • VLMs exhibit substantial failures in **compositional counting**, where two or more shape
 073 types coexist. These failures persist even when the task involves small numbers of objects
 074 and minimal visual complexity.
- 075 • Performance deteriorates consistently across variations in color, size, rotation, and overlap-
 076 ping, indicating a lack of stability to simple visual properties.

078 **Roadmap.** In Section 2, we review the related works. In Section 3, we present our proposed
 079 benchmark. In Section 4, we present the main experimental results. We introduce the prompt
 080 refinement in Section 5. In Section 6, we conclude our paper.

082 2 RELATED WORKS

084 **Vision-Language Models.** Motivated by the impressive success of Large language models
 085 (LLMs) (Brown et al., 2020; Wei et al., 2022; Touvron et al., 2023; Chung et al., 2024), schol-
 086 arly attention is progressively shifting toward the exploration and development of vision-language
 087 models, as they have the potential to connect vision and language, achieve more natural human-
 088 computer interaction (Kim et al., 2025b), and advance tasks such as visual question answering (Lin
 089 et al., 2023; Kim et al., 2025a) and multimodal reasoning (Lee et al., 2024a; Chia et al., 2024). One
 090 significant leap in this area is the revolutionary Visual ChatGPT (Wu et al., 2023), which combines
 091 the reasoning ability of language models with several visual models to achieve natural language-
 092 driven image generation, editing, and understanding. Besides, PaLM-E (Driess et al., 2023) has
 093 effectively integrated text and vision, achieving remarkable results across a variety of tasks (Xu
 094 et al., 2016; Marino et al., 2019). Flamingo (Alayrac et al., 2022) integrates frozen large language
 095 models with visual encoders through cross-attention layers, achieving few-shot learning for visual
 096 language tasks. Conversely, BLIP2 (Li et al., 2023) effectively connects frozen Large Language
 097 Models (LLMs) with visual input through a lightweight Q-Former module, which converts image
 098 features into a format that LLMs can understand. This design enables high performance in various
 099 tasks with minimal additional training. Well-known models such as InstructBLIP (Marino et al.,
 100 2019) and LLaVA (Liu et al., 2023) have significantly advanced the field by introducing diverse vi-
 101 sual instruction-tuning datasets. While prior vision-language models have demonstrated impressive
 102 performance across diverse multimodal tasks, their ability to perform precise quantitative analysis
 103 on images remains largely unexplored. To address this gap, we propose VLMCountBench to offer
 104 insights into their numerical understanding in visual scenes.

105 **Benchmarks for Vision-Language Models.** With the rapid development of Vision-Language
 106 Models (VLMs), researchers designed some benchmarks such as TextVQA (Singh et al., 2019),
 107 GQA (Hudson & Manning, 2019), and DocVQA (Mathew et al., 2021) to evaluate the ability of
 108 VLMs on individual tasks. However, while these task-specific benchmarks provide valuable in-
 109 sights, they do not fully reflect the overall capabilities of VLMs in real-world applications. There-

fore, recent efforts (Huang et al., 2024; Yue et al., 2024; Das et al., 2024) have shifted toward developing more comprehensive evaluation benchmarks. Meanwhile, VHELM (Lee et al., 2024b) comprehensively evaluates the performance of VLMs in multiple dimensions such as perception, reasoning, multilingual ability, and robustness. In addition, several representative benchmarks have been proposed to target different aspects of multimodal evaluation. For example, Perception Test (Patraucean et al., 2023) focuses on measuring fine-grained perceptual capacity such as color, shape, and size. LVLM eHub (Xu et al., 2024) combines multiple comprehensive benchmarks to design an evaluation platform that covers a wide range of multimodal tasks. LLaVA Bench (Liu et al., 2023), LAMM (Yin et al., 2023), and Touchstone (Bai et al., 2023) leverage GPT-based evaluators to assess model outputs, thereby reducing potential biases introduced by human annotators. Beyond general-purpose benchmarks, some works focus on constructing targeted datasets for more objective and fine-grained evaluation of VLM. MME (Chaoyou et al., 2023) and MMBench (Liu et al., 2024) are designed to strengthen the objective evaluation of VLMs by introducing 2,194 true/false questions and 2,974 multiple-choice questions across diverse ability dimensions. Although existing benchmarks effectively evaluate various VLM capabilities, they primarily target concrete visual entities (e.g., objects, scenes) and largely ignore numerical counting in visual contexts, which motivates the creation of **VLMCountBench**.

3 BENCHMARK

In Section 3.1, we introduce the evaluated models in this benchmark. In Section 3.2, we present the prompts to evaluate

3.1 EVALUTAED MODELS

Table 1: **Key Details of the Large Vision-Language Models.** Gemini-2.5 is a closed-source model that does not provide any information about its parameters.

Model	Source	Year	# Output Tokens	# Params
Gemini 2.5 Flash	(Comanici et al., 2025)	2025	64k	N/A
GPT-4o	(OpenAI, 2024)	2024	16K	200B
Ernie 4.5	(Baidu, 2025)	2025	16k	47B
GLM 4.5v	(Hong et al., 2025)	2025	64k	12B
Gemma 3 27B	(Gemma, 2025)	2025	128k	27B
Qwen 2.5 72B	(Yang et al., 2025)	2025	32K	72B
Kimi VL A3B	(Du et al., 2025)	2024	32K	3B
Llama 4 Maverick	(Meta, 2025)	2025	4K	17B

We evaluate eight state-of-the-art language models via the OpenRouter API, using their default context lengths and provider settings without any manual adjustment. All inference runs were performed without chain-of-thought prompting; however, Kimi VL A3B (Du et al., 2025) and Llama 4 Maverick (Meta, 2025) inherently expose chain-of-thought style reasoning that cannot be disabled, so any intermediate reasoning was ignored and only final outputs were considered.

Open-source models. Gemma 3 27B (Gemma, 2025) and Qwen 2.5 72B (Yang et al., 2025) provide long-context handling (default capacities of roughly 128 k and 32 k tokens respectively) and support high-resolution images where applicable. Kimi VL A3B (Du et al., 2025), a lightweight 3B parameter vision-language model, and Llama 4 Maverick (Meta, 2025), a 17B parameter text-focused model with a 4k token window, represent smaller, more agile configurations. Ernie 4.5 47B (Baidu, 2025) and GLM 4.5v 12 B (Hong et al., 2025) extend open-source multimodal capabilities with default 16 k and 64 k generation limits, respectively, and adhere to the common image side maximum of 1024 px established by their providers.

Closed-source models. Gemini 2.5 Flash (Comanici et al., 2025), from Google DeepMind, is optimized for fast multimodal inference with a default 64k token limit and image handling up to 1024 px. GPT-4o (OpenAI, 2024), OpenAI’s flagship multimodal system with around 200B parameters, operates under a 16k token default and similar image size constraints.

162 For all models open and closed, we did not modify decoding hyperparameters or preset any structured outputs beyond provider defaults, ensuring a consistent evaluation setting across architectures
 163 and access modalities.
 164

165

166

167 3.2 BENCHMARK PROMPTS AND INPUT IMAGES

168

169 Our benchmark is designed to directly
 170 evaluate the basic counting ability of
 171 vision-language models (VLMs), while
 172 minimizing the influence of confounding
 173 factors such as complex scene understand-
 174 ing or higher-level reasoning. We adopt a
 175 deliberately simple setting where the task
 176 is restricted to counting a small number of
 177 basic geometric shapes. This allows us to
 178 isolate and probe the fundamental ability
 179 of VLMs to perform object counting. De-
 180 spite the simplicity of this setting, we will
 181 show that VLMs still exhibit significant
 182 failures. The benchmark considers three
 183 object types, triangle, square, and circle,
 184 and three levels of composition: one, two,
 185 or three object types in the same image.
 186

For each image, the quantity of objects is sampled between 1 and 20. An illustration of our benchmark is shown in Figure 1.

187

188

Prompts. To construct queries, we combine three basic concepts: `<object>`, `<level>` of composition, and `<quantity>`. The options are:

189

190

191

192

193

194

195

196

197

198

In ‘level 1’, the image contains only one type of object. In ‘level 2’, two types of objects are present, and in ‘level 3’, three different types of objects are shown. The corresponding prompt templates are given below:

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

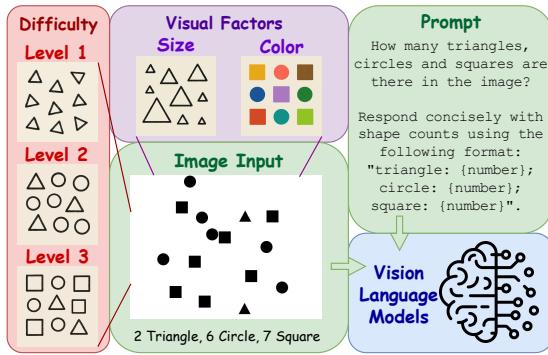


Figure 1: Our experimental design to let VLMs perform object counting.

Level 1 Prompt Template P_1

How many `<object 1>` are there in the image?

Respond concisely with shape counts using the following format: “`<object 1>: {number}`”. For example: “`<object 1>: 7`”. The number 7 is provided as an example only and does not represent the actual quantity of objects in the image.

[image: `<quantity 1>` of `<object 1>`]

Level 2 Prompt Template P_2

How many `<object 1>` and `<object 2>` are there in the image?

Respond concisely with shape counts using the following format: “`<object 1>: {number}; <object 2>: {number}`”. For example: “`<object 1>: 9; <object 2>: 13`”. The numbers 7 and 13 are provided as examples only and do not represent the actual quantity of objects in the image.

[image: `<quantity 1>` of `<object 1>`, `<quantity 2>` of `<object 2>`]

216 Level 3 Prompt Template P_3
 217
 218 How many $\langle\text{object 1}\rangle$, $\langle\text{object 2}\rangle$ and $\langle\text{object 3}\rangle$ are there in the image?
 219 Respond concisely with shape counts using the following format: “ $\langle\text{object 1}\rangle$: {number}; $\langle\text{object 2}\rangle$: {number}; $\langle\text{object 3}\rangle$: {number}”. For example: “ $\langle\text{object 1}\rangle$: 3; $\langle\text{object 2}\rangle$: 11; $\langle\text{object 3}\rangle$: 6”. The numbers 3, 11, and 6 are provided as examples only and do not represent the actual quantity of objects in the image.
 220 [image: <quantity 1> of <object 1>, <quantity 2> of <object 2>, <quantity 3> of <object 3>]
 221
 222
 223
 224

225 Here, [image: ...] denotes the actual input image containing the specified objects. The placeholders
 226 $\langle\text{object 1}\rangle$, $\langle\text{object 2}\rangle$ and $\langle\text{object 3}\rangle$ always correspond to distinct object types (e.g., a query
 227 may ask about triangles and squares, but never triangles and triangles).

228 An example prompt at ‘level 2’ is shown below:

229 Prompt Example 1
 230

231 How many triangles and circles are there in the image?
 232 Respond concisely with shape counts using the following format: “triangles: {number}; circles:
 233 {number}”. For example: “triangles: 9; circles: 13”. The numbers 9 and 13 are provided as
 234 examples only and do not represent the actual quantity of objects in the image.
 235 [image: 7 triangles, 15 circles]
 236

237 For each level, we randomly sample from all possible combinations of objects and quantities, and
 238 retain 200 prompts per level. All images are generated automatically.

239 **Input Images.** To generate large-scale annotated data, we employ a simple automatic image
 240 generator. This can be implemented with basic Python commands, without relying on costly or time-
 241 consuming modern generative models, while still being sufficient to reveal the counting limitations
 242 of VLMs. Each image is a 640×480 canvas with a white background and stored as a JPG file.
 243 All shapes are drawn with black borders, white interiors, identical sizes, and no rotation. They are
 244 placed uniformly at random on the canvas, with no overlaps, ensuring that object counts remain
 245 unambiguous and easily verifiable.

246 In the base setting, we restrict our benchmark to varying only quantity and composition. More
 247 complex properties that may affect counting performance, such as size, color, and overlapping, are
 248 deferred to the ablation study.

250 3.3 EVALUATION METRICS
 251

252 For each test sample in our benchmark, we use two evaluation metrics: accuracy and relative error.
 253 Accuracy measures whether the VLM’s response is exactly correct, while relative error provides a
 254 finer-grained evaluation by quantifying how far the prediction deviates from the ground truth. Let a
 255 single test sample be denoted as $q := (p, x, y, m)$, where p is the input prompt, x is the input image,
 256 $y \in \mathbb{N}_+^m$ is the ground-truth vector of object counts, and $m \in \{1, 2, 3\}$ is the number of object types.
 257 For example, in Prompt Example 1 with two object types (triangle and circle) and counts 7 and 13,
 258 we have $y = [7, 13]^\top$ and $m = 2$.

259 **Accuracy.** Accuracy evaluates whether the prediction matches the ground truth for each object type.
 260 Let \mathcal{Q} denote the set of test samples of interest (e.g., all ‘Level 2’ samples). The metric is defined
 261 as:

$$262 \quad \text{Accuracy}(\mathcal{Q}) := m^{-1} |\mathcal{Q}|^{-1} \sum_{(p, x, y, m) \in \mathcal{Q}} \sum_{i=1}^m \mathbf{1}[\text{VLM}(p, x)_i = y_i],$$

263 where $\mathbf{1}[\cdot]$ is the indicator function, which returns 1 if the condition inside is true and 0 otherwise,
 264 and $\text{VLM}(p, x) \in \mathbb{N}_+^m$ is the predicted object counts.

265 Intuitively, for each sample q , we compute the fraction of object types predicted exactly correctly,
 266 then average over all samples in \mathcal{Q} . For instance, if an image contains three object types (triangle,
 267 circle, square) and the model predicts only the square count correctly, then the accuracy for this
 268 sample is 1/3. The final accuracy is the mean of such values over all test samples.

Relative Error. While accuracy captures exact correctness, it does not reflect how close the prediction is when incorrect. To address this, we use relative error, which measures the normalized deviation of predicted counts from ground truth. Formally:

$$\text{RelativeError}(\mathcal{Q}) := m^{-1} |\mathcal{Q}|^{-1} \sum_{(p, x, y, m) \in \mathcal{Q}} \sum_{i=1}^m y_i^{-1} \cdot |\text{VLM}(p, x)_i - y_i|,$$

where $\text{VLM}(p, x) \in \mathbb{N}_+^m$ again denotes the predicted counts.

This metric computes, for each sample q , the average relative error across object types, and then averages over all samples in \mathcal{Q} . For example, if an image contains 16 circles and 10 squares, and the model predicts 8 circles and 8 squares, then the relative error is: $0.5 \cdot (|8 - 16|/16 + |8 - 10|/10) = 0.5 \cdot (0.5 + 0.2) = 0.35$. Thus, relative error provides a more detailed measure of how far predictions deviate from the true counts.

4 EXPERIMENTS

We present the main experimental results of the VLMCountBench in this section.

4.1 COMPOSITIONAL COUNTING

Table 2: Overall Counting Accuracy and Relative Error Across various Object Types. The models are listed in a sequence of descending overall count accuracy. We highlight the top 3 models with the best counting accuracy in **blue**, and top 3 models with the least relative error in **red**.

Model	Level 1		Level 2		Level 3		Overall	
	Count	Acc	Count	Acc	Count	Acc	Count	Acc
Gemma3 27B	0.26	0.14	0.21	0.23	0.22	0.25	0.23	0.21
Kimi VL A3B	0.29	0.23	0.22	0.27	0.19	0.30	0.23	0.27
Llama4 Maverick	0.38	0.15	0.33	0.14	0.25	0.19	0.32	0.16
Gpt-4o	0.44	0.07	0.39	0.10	0.23	0.17	0.35	0.11
Ernie 4.5	0.52	0.05	0.43	0.08	0.38	0.10	0.44	0.08
Gemini 2.5 Flash	0.58	0.04	0.54	0.05	0.30	0.13	0.47	0.07
GLM4.5v	0.56	0.05	0.49	0.07	0.43	0.08	0.49	0.07
Qwen2.5 72B	0.60	0.04	0.56	0.05	0.45	0.07	0.53	0.05

We conduct experiments across three levels: contexts containing one object, two objects, and three objects. For each level, the number of shapes ranges from 1 to 20. Table 2 presents vision-language models' counting performance when varying both the number of object types (one, two, or three) and the number of object instances (ranging from 1 to 20) within the input context.

As shown in Table 2, current vision-language models still face significant challenges in counting, especially when dealing with multiple objects or diverse object types within the input images. Notably, even the best-performing vision-language model in our benchmark achieves only modest accuracy. For instance, Qwen2.5 72B (Yang et al., 2025) achieved an accuracy of 0.60 at Level 1, but its accuracy substantially declined to 0.45 at Level 3, highlighting the difficulty of the counting task. These findings point to the following insight:

Observation 4.1. Our results reveal that current vision-language models do not perform ideally on the counting task, and there remains a substantial gap between existing vision-language models' capabilities and the reliable counting ability required for practical applications.

Across all vision-language models in our benchmark, there is a refined relationship between accuracy and relative error, with relative error serving as a fine-grained metric specifically designed to evaluate counting performance. Even when a model's prediction is incorrect, a smaller relative error indicates that the predicted counts are closer to the ground truth. In addition, we observed that higher accuracy typically corresponds to smaller relative errors, indicating that models with higher accuracy tend to produce more reliable counting results. For example, Qwen2.5 72B (Yang et al., 2025) has the highest overall counting accuracy at 0.53 and the lowest overall relative error at 0.05. At Level 1, its accuracy is 0.60 with a relative error of 0.04, while at Level 3, the accuracy drops to 0.45 with a slight increase in relative error to 0.07, its relatively small relative error indicates that its counting results are usually close to ground truth, compared to models with lower accuracy and

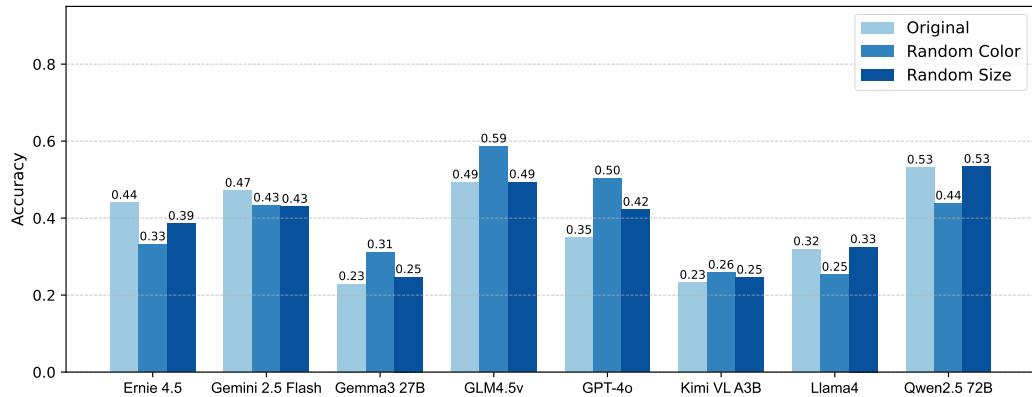
324 larger relative errors, such as Kimi VL A3B (Du et al., 2025), which has an overall accuracy of 0.23
 325 and a relative error of 0.27, demonstrating a certain degree of counting ability. This brings us a novel
 326 insight:

327 **Observation 4.2.** *Vision-language models that achieve higher accuracy tend to have smaller relative
 328 errors, indicating a stronger counting ability. Conversely, vision-language models with lower
 329 accuracy generally show larger relative errors, suggesting limited counting competence. This
 330 demonstrates that some vision-language models possess a certain degree of visual counting capability,
 331 while others struggle to reliably quantify objects.*

332 When the number of object types in the input image increases, we observe a clear trend: higher
 333 composition levels lead to reduced counting accuracy and increased relative error. For example,
 334 Gemini 2.5 Flash achieves a counting accuracy of 0.58 at Level 1, which decreases to 0.54 at Level
 335 2 and further drops to 0.30 at Level 3. Its relative error correspondingly rises from 0.04 to 0.05 and
 336 then to 0.13. Similar phenomena are observed in GLM4.5v and Qwen2.5 72B, where accuracy
 337 declines and relative error rises as more object types are present. From this, we derive the following
 338 insight:

339 **Observation 4.3.** *Even one of the best-performing models experiences substantial performance
 340 degradation as the scene composition becomes more complex. This indicates that current vision-
 341 language models may struggle to distinguish multiple object types in a single visual scene, and the
 342 interaction between object types (e.g., similar appearances) may further confuse the vision-language
 343 models.*

345 4.2 IMPACT OF VISUAL PERTURBATIONS



361 **Figure 2: Impact of Visual Perturbations on Model Accuracy.**

363 To better explore the current vision-language models’ performance in the counting task. We conduct
 364 an ablation study based on our benchmark, VLMCountBench. Figures 2 report counting perfor-
 365 mance, measured by accuracy and relative error, under the three ablation settings. In the original
 366 setting, which serves as our main experiment, all shapes are uniform in size and colored black. In
 367 the random color setting, shapes are randomly assigned different colors while all other conditions
 368 remain identical to the main experiment. In the random size setting, the shape will randomly resize,
 369 possibly larger or smaller, with all other conditions remaining unchanged. This setting enables us to
 370 systematically evaluate the impact of visual perturbations, such as color and size variations, on the
 371 counting performance of vision-language models.

372 As illustrated in Figure 2, applying random color and random size perturbations to input images
 373 leads to varying impacts on counting performance across vision-language models. In particular,
 374 GLM4.5v (Hong et al., 2025) and GPT-4o (OpenAI, 2024) actually benefit from color variations,
 375 showing notable increases in accuracy compared with the original setting, possibly because the
 376 color differences make objects easier to distinguish. while Ernie 4.5 (Baidu, 2025) and Qwen2.5
 377 72B (Yang et al., 2025) experience substantial drops, suggesting that these models may rely on
 378 specific color distributions learned during training, and that color randomization can disrupt their

378 counting mechanism. In contrast, size perturbations generally cause smaller impacts on performance.
 379 Qwen2.5 72B (Yang et al., 2025) and GLM4.5v (Hong et al., 2025) remain relatively high
 380 accuracy, while Gemma3 27B (Gemma, 2025) and Kimi VL A3B (Du et al., 2025) continue to
 381 perform at lower levels. Based on the above analysis, we make the following observations:
 382

383 **Observation 4.4.** *Perturbations in color and size could positively or negatively affect counting
 384 performance, and the majority of vision-language models are more sensitive to color changes than
 385 to size variations, reflecting the different robustness features between vision-language models.*

387 5 PROMPT REFINEMENT

389 In this subsection, we evaluate whether the counting limitations of VLMs can be simply resolved
 390 by prompt refinements. In Section 5.1, we illustrate the prompt refinement in our work. We present
 391 the prompt refinement result and discuss the current discoveries regarding the counting capability of
 392 VLMs in Section 5.2.

395 5.1 THE PROPOSED PROMPTS

397 Let the prompt template for the three difficulty levels in Section 3.2 be P_1, P_2, P_3 . In this section,
 398 we introduce several refinement prompts that hint the VLMs to solve the complex counting task by
 399 task decomposition, splitting the original task into smaller and manageable parts. These refinement
 400 prompts are denoted as $P_{r,1}$ and $P_{r,2}$, and our final prompt used to evaluate the VLMs is denoted by
 401 $P \parallel P_r$, where \parallel represents concatenation.

402 Specifically, P_r has several instantiations.

403 **Spatial Decomposition.** We found that directly requiring the VLMs to provide a global number
 404 may result in omissions or duplications in image counting tasks. Inspired by this, we designed
 405 a spatial decomposition approach that breaks down counting tasks into spatial dimensions. We
 406 demand VLMs first count the number of objects in the left half of the image, then count the right
 407 half, and finally add the results of the two parts. We believe that such prompt refinement can help
 408 the VLMs form a local-global inference process, thereby improving the counting performance. Our
 409 prompt can be shown as follows:

411 Spatial Decomposition Prompt $P_{r,1}$

413 First count the objects on the left half of the image, then the right half, and add them together.

415 In specific applications, such as counting triangles and circles in an image, we require the VLMs to
 416 “count the left first, then the right, and finally merge the results”, and output the quantities of each
 417 category in a fixed format. The details example can be shown as follows:

419 A Level 2 Spatial Decomposition Example $P_2 \parallel P_{r,1}$

421 How many triangles and circles are there in the image?

422 Respond concisely with shape counts using the following format: “triangles: {number}; circles:
 423 {number}”. For example: “triangles: 9; circles: 13”. The numbers 9 and 13 are provided as
 424 examples only and do not represent the actual quantity of objects in the image.

425 **First count the objects on the left half of the image, then the right half, and add them together.**

426 [image: 7 triangles, 15 circles]

428 **Type Decomposition.** Another human-inspired method for counting a great number of objects in an
 429 image is to first count one category of objects and then proceed to the next. The type decomposition
 430 strategy of counting by category could avoid confusion between different categories and improve
 431 the counting performance of the VLMs. We define our prompt as follows:

432 Type Decomposition Prompt $P_{r,2}$
 433
 434 Count all instances of <object 1>first, then all instances of <object 2>, and then all instances of <object
 435 3>.
 436

437 For example, when the image contains triangles, circles, and squares, we explicitly require the VLMs
 438 to "count triangles first, then circles, and finally squares", and provide the results in a unified format.
 439 The details example can be shown as follows:
 440

441 A Level 3 Spatial Decomposition Example $P_3 \parallel P_{r,2}$
 442
 443 How many triangles, circles, and squares are there in the image?
 444 Respond concisely with shape counts using the following format: "triangles: {number}; circles:
 445 {number}; squares: {number}". For example: "triangles: 9; circles: 13; squares: 6". The
 446 numbers 9, 13, and 6 are provided as examples only and do not represent the actual quantity of objects
 447 in the image.
 448 Count all instances of triangles first, then all instances of circles, and then all instances of
 449 squares.
 450 [image: 7 triangles, 15 circles, 10 squares]

5.2 RESULTS AND DISCUSSION

451
 452 Table 3: **Counting Accuracy and Relative Error for Spatial and Type Decomposition.** The
 453 models are listed in a sequence of descending overall count accuracy. We highlight the top 3 models
 454 with the best counting accuracy in **blue**, and top 3 models with the least relative error in **red**.
 455

456

Model	Original		Spatial		Type	
	Count Acc	Relative Error	Count Acc	Relative Error	Count Acc	Relative Error
Gemma3 27B	0.26	0.14	0.30	0.15	0.16	0.49
Kimi VL A3B	0.29	0.23	0.18	0.37	0.15	0.50
Llama4 Maverick	0.38	0.15	0.35	0.14	0.21	0.44
Gpt-4o	0.44	0.07	0.43	0.08	0.26	0.40
Ernie 4.5	0.52	0.05	0.43	0.09	0.26	0.41
Gemini 2.5 Flash	0.58	0.04	0.46	0.07	0.29	0.39
GLM4.5v	0.56	0.05	0.46	0.08	0.31	0.39
Qwen2.5 72B	0.60	0.04	0.47	0.07	0.35	0.38

460
 461 Table 2 presents the counting accuracy and relative error under different refinement strategies. The
 462 results demonstrate that compared to the original counting prompts, applying spatial decomposi-
 463 tion prompts will slightly reduce accuracy and increase relative error. Although the decomposi-
 464 tion strategy provides a more structured step-by-step counting process, additional decomposition steps
 465 may introduce errors or complicate the inference process, resulting in a slight decrease in counting
 466 performance. In contrast, type decomposition exhibits an even larger performance drop in both
 467 accuracy and relative error, demonstrating that for current VLMs, dividing by object type will introduce
 468 greater noise in the counting process.
 469

6 CONCLUSION

470 In our study, we propose **VLMCountBench**, a novel benchmark specifically designed to eval-
 471 uate the counting ability of vision-language models under controlled, minimalist settings. Through
 472 systematic experiments on a series of state-of-the-art vision-language models, we found that cur-
 473 rent vision-language models face significant difficulties in accurately calculating objects in input
 474 images, especially in compositional counting scenarios involving multiple object types with vary-
 475 ing attributes, such as size and color. These results reveal the fundamental limitations of existing
 476 vision-language models and emphasize the necessity of future research to enhance robust counting
 477 capabilities. We hope that **VLMCountBench** can provide valuable experience for future researchers
 478 to develop more accurate and reliable vision-language models.
 479

486
487
ETHIC STATEMENT488
489
490
491
492
493
494
495 This paper does not involve human subjects, personally identifiable data, or sensitive applications.
496 We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
497 of this research comply with the principles of fairness, transparency, and integrity.
498499
500
REPRODUCIBILITY STATEMENT501
502
503
504 We ensure the reproducibility of our empirical findings. For all experiments, we describe the sources
505 of the LLM models, datasets, evaluation metrics, and experiment setup in the main text. All prompt
506 templates used are also provided to support the reproducibility of our results.
507508
509
REFERENCES510
511
512
513
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. In *Advances in Neural Information Processing Systems*, 2022.514
515
516
517
Shuai Bai, Shusheng Yang, Jinze Bai, Peng Wang, Xingxuan Zhang, Junyang Lin, Xinggang Wang,
Chang Zhou, and Jingren Zhou. Touchstone: Evaluating vision-language models by language
models. *arXiv preprint arXiv:2308.16890*, 2023.518
519
520
521
ERNIE Team Baidu. Ernie 4.5 technical report, 2025.522
523
524
525
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In *Proceedings of the 34th International Conference on Neural Information
Processing Systems*, pp. 1877–1901, 2020.526
527
528
529
Yuefan Cao, Xuyang Guo, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang, and
Zhen Zhuang. Text-to-image diffusion models cannot count, and prompt refinement cannot help.
arXiv preprint arXiv:2503.06884, 2025.530
531
532
533
Fu Chaoyou, Chen Peixian, Shen Yunhang, Qin Yulei, Zhang Mengdan, Lin Xu, Yang Jinrui, Zheng
Xiaowu, Li Ke, Sun Xing, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. *arXiv preprint arXiv:2306.13394*, 2023.534
535
536
537
An-Chieh Cheng, Hongxu Yin, Yang Fu, Qushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. *Advances in
Neural Information Processing Systems*, 37:135062–135093, 2024.538
539
540
541
Yew Ken Chia, Vernon Toh, Deepanway Ghosal, Lidong Bing, and Soujanya Poria. Puzzlevqa:
Diagnosing multimodal reasoning challenges of language models with abstract visual patterns. In
Findings of the Association for Computational Linguistics: ACL 2024, pp. 16259–16273, 2024.542
543
544
545
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.546
547
548
549
Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. *arXiv preprint arXiv:2507.06261*, 2025.550
551
552
553
Rocktim Das, Simeon Hristov, Haonan Li, Dimitar Dimitrov, Ivan Koychev, and Preslav Nakov.
Exams-v: A multi-discipline multilingual multimodal exam benchmark for evaluating vision lan-
guage models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers)*, pp. 7768–7791, 2024.

540 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
 541 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied mul-
 542 timodal language model. In *International Conference on Machine Learning*, pp. 8469–8488.
 543 PMLR, 2023.

544

545 Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang,
 546 Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*,
 547 2025.

548 Team Gemma. Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

549

550 Xuyang Guo, Zekai Huang, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
 551 Can you count to nine? a human evaluation benchmark for counting limits in modern text-to-video
 552 models. *arXiv preprint arXiv:2504.04051*, 2025.

553

554 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 555 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 556 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

557

558 Irene Huang, Wei Lin, M Jehanzeb Mirza, Jacob A Hansen, Sivan Doveh, Victor Ion Butoi, Assaf
 559 Arbelle, Hilde Kuehne, Trevor Darrell, Chuang Gan, et al. Conme: rethinking evaluation of
 560 compositional reasoning for modern vlms. In *Proceedings of the 38th International Conference
 561 on Neural Information Processing Systems*, pp. 22927–22946, 2024.

562

563 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 564 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer
 565 vision and pattern recognition*, pp. 6700–6709, 2019.

566

567 Xiaofei Hui, Qian Wu, Hossein Rahmani, and Jun Liu. Class-agnostic object counting with text-to-
 568 image diffusion model. In *European Conference on Computer Vision*, pp. 1–18. Springer, 2024.

569

570 Ruixiang Jiang, Lingbo Liu, and Changwen Chen. Clip-count: Towards text-guided zero-shot object
 571 counting. In *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 4535–
 572 4545, 2023.

573

574 Hongyeob Kim, Inyoung Jung, Dayoon Suh, Youja Zhang, Sangmin Lee, and Sungeun Hong.
 575 Question-aware gaussian experts for audio-visual question answering. In *Proceedings of the Com-
 576 puter Vision and Pattern Recognition Conference*, pp. 13681–13690, 2025a.

577

578 Yewon Kim, Sung-Ju Lee, and Chris Donahue. Amuse: Human-ai collaborative songwriting with
 579 multimodal inspirations. In *Proceedings of the 2025 CHI Conference on Human Factors in Com-
 puting Systems*, pp. 1–28, 2025b.

580

581 Junlin Lee, Yequan Wang, Jing Li, and Min Zhang. Multimodal reasoning with multimodal knowl-
 582 edge graph. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 583 Linguistics (Volume 1: Long Papers)*, pp. 10767–10782, 2024a.

584

585 Tony Lee, Haoqin Tu, Chi Heem Wong, Wenhao Zheng, Yiyang Zhou, Yifan Mai, Jos-
 586 selin Somerville Roberts, Michihiro Yasunaga, Huaxiu Yao, Cihang Xie, et al. Vhelm: a holistic
 587 evaluation of vision language models. In *Proceedings of the 38th International Conference on
 588 Neural Information Processing Systems*, pp. 140632–140666, 2024b.

589

590 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 591 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF
 592 Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024a.

593

594 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image
 595 pre-training with frozen image encoders and large language models. In *Proceedings of the 40th
 596 International Conference on Machine Learning*, pp. 19730–19742, 2023.

594 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 595 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 596 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 597 22195–22206, 2024b.

598 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 599 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 600 *conference on computer vision*, pp. 740–755. Springer, 2014.

602 Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. Fine-grained late-
 603 interaction multi-modal retrieval for retrieval augmented visual question answering. In *Proceed-
 604 ings of the 37th International Conference on Neural Information Processing Systems*, pp. 22820–
 605 22840, 2023.

606 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Pro-
 607 ceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 608 34892–34916, 2023.

609 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 610 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 611 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024.

612 Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
 613 question answering benchmark requiring external knowledge. In *Proceedings of the IEEE/cvf
 614 conference on computer vision and pattern recognition*, pp. 3195–3204, 2019.

615 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 616 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 617 pp. 2200–2209, 2021.

618 Meta. Llama 4, 2025. URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>.

619 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

620 Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
 621 Teaching clip to count to ten. In *Proceedings of the IEEE/CVF International Conference on
 622 Computer Vision*, pp. 3170–3180, 2023.

623 Viorica Patraucean, Dima Damen, Andrew Zisserman, and Joao Carreira. Perception test: A diag-
 624 nostic benchmark for multimodal video models. In *Conference on Neural Information Processing
 625 Systems*, 2023.

626 Vitali Petsiuk, Alexander E Siemenn, Saisamrit Surbehera, Zad Chin, Keith Tyser, Gregory Hunter,
 627 Arvind Raghavan, Yann Hicke, Bryan A Plummer, Ori Kerret, et al. Human evaluation of text-to-
 628 image models on a multi-task benchmark. *arXiv preprint arXiv:2211.12112*, 2022.

629 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 630 and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF
 631 conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

632 Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v-
 633 compbench: A comprehensive benchmark for compositional text-to-video generation. In *Pro-
 634 ceedings of the Computer Vision and Pattern Recognition Conference*, pp. 8406–8416, 2025.

635 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 636 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 637 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

638 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 639 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 640 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

648 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
 649 understanding with large language model as agent. In *European Conference on Computer Vision*,
 650 pp. 58–76. Springer, 2024b.

651

652 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
 653 drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International
 654 Conference on Learning Representations*, 2022.

655 Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
 656 sual chatgpt: Talking, drawing and editing with visual foundation models. *arXiv preprint
 657 arXiv:2303.04671*, 2023.

658

659 Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
 660 video and language. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 661 Recognition*, pp. 5288–5296, 2016.

662

663 Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan
 664 Huang, Yu Qiao, and Ping Luo. LvLM-ehub: A comprehensive evaluation benchmark for large
 665 vision-language models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

666

667 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 668 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 669 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 670 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
 671 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
<https://arxiv.org/abs/2412.15115>.

672

673 Zhenfei Yin, Jiong Wang, Jianjian Cao, Zhelun Shi, Dingning Liu, Mukai Li, Xiaoshui Huang,
 674 Zhiyong Wang, Lu Sheng, Lei Bai, et al. Lamm: language-assisted multi-modal instruction-
 675 tuning dataset, framework, and benchmark. In *Proceedings of the 37th International Conference
 676 on Neural Information Processing Systems*, pp. 26650–26685, 2023.

677

678 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 679 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 680 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

681

682 Zeliang Zhang, Zhuo Liu, Mingqian Feng, and Chenliang Xu. Can clip count stars? an empirical
 683 study on quantity bias in clip. *arXiv preprint arXiv:2409.15035*, 2024.

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 Appendix

704 **Roadmap.** Section A shows the model details of ten baseline vision-language models. Section B
 705 present additional experiments.

707 A MODEL DETAILS

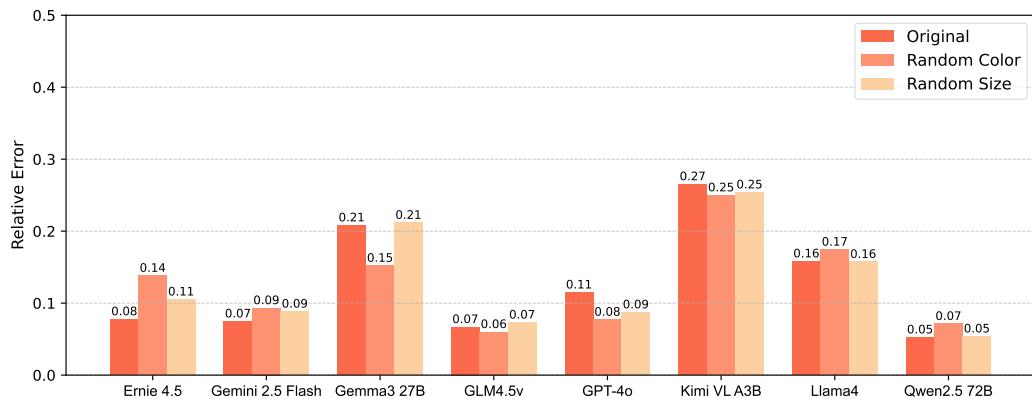
709 We present further details of vision-language models in this section.

- 711 • **GPT 4o** (OpenAI, 2024): Created by the OpenAI in 2024, GPT-4o is a closed-source
 712 multimodal model. GPT 4o integrates visual and language processing into a unified archi-
 713 tecture, enabling tasks such as image understanding, multimodal reasoning, and interactive
 714 dialogue. The model supports multimodal inputs, including text, images, and audio, and it
 715 can generate outputs across modalities at a breakneck speed based on the problem.
- 716 • **Gemma 3** (Gemma, 2025): Developed by Google DeepMind and released in 2025. Gemma
 717 3 is an open-source vision-language model. It supports multimodal inputs, allowing users
 718 to combine text and images within a single prompt. It supports over 140 languages and
 719 includes built-in safety tools for filtering sensitive visual content.
- 720 • **Qwen2 VL 72B** (Wang et al., 2024a): Qwen VL 72B is an open-source vision-language
 721 model by Alibaba in 2024. It supports multimodal input, including text and images, capable
 722 of processing high-resolution images and performing fine-grained understanding.
- 723 • **Gemini 2.5 Flash** (Comanici et al., 2025): Developed by Google DeepMind in 2025, Gem-
 724 ini 2.5 Flash is a closed-source multimodal model that supports processing text, image,
 725 video, and audio inputs. Besides, the model has built-in thinking capabilities to observe its
 726 reasoning process during the generation process
- 727 • **ERNIE 4.5 VL** (Baidu, 2025): ERNIE 4.5 VL is an open-source vision-language model
 728 from Baidu in 2025. It can integrate text and images, providing different modes of
 729 thinking and non-thinking, and support long contextual lengths
- 730 • **GLM 4.5V** (Hong et al., 2025): GLM 4.5V is an open-source vision-language model re-
 731 leased by Zhipu AI in 2025. It is capable of processing multiple types of inputs, including
 732 text, images, and video, and it can handle long-context tasks up to 66K tokens with high
 733 efficiency and accuracy.
- 734 • **Kimi VL A3B** (Du et al., 2025): Kimi VL A3B is an open-source vision-language model
 735 released by Moonshot AI in 2025. It supports a wide range of multimodal inputs, including
 736 text, high-resolution images, short video clips, and optional OCR or GUI inputs. In addi-
 737 tion, it supports advanced reasoning using a "thinking mode", including text-guided image
 738 editing and style conversion.
- 739 • **Llama 4 maverick** (Meta, 2025): Llama-4-maverick is an open-source vision-language
 740 model from Meta. It adopts a Mixture-of-Experts (MoE) architecture with 17B active pa-
 741 rameters, enabling efficient support of multimodal input, including text and high-resolution
 742 images, and provides a 128K token context window.

744 We also present the pricing details of all the models in Figure 4.

745 **Table 4: Key Details of the Large Vision-Language Models.** (Free models up to 1000 requests
 746 per day)

748 Model	749 free access?	750 price/prompt	751 Token Price
Gemini 2.5 Flash	No	\$0.004	\$0.30/M input \$2.50/M output \$1.238/K input imgs
GPT-4o	No	\$0.005	\$5/M input \$15/M output \$7.225/K input imgs
ERNIE 4.5	No	\$0.0007	\$0.14/M input \$0.56/M output
GLM 4.5V	No	\$0.001	\$0.5/M input \$1.8/M output
Gemma 3 27B	Yes	\$0.00005	\$0.067/M input \$0.267/M output
Qwen 2.5 72B	Yes	\$0.0001	\$0.25/M input \$0.75/M output
Kimi VL A3B	Yes	\$0.0001	\$0.025/M input \$0.1/M output
Llama 4 Maverick	Yes	\$0.0003	\$0.15/M input \$0.6/M output \$0.668/K input imgs

756 **B ADDITIONAL EXPERIMENTS**
757758 Due to space constraints, Figure 3 has been moved here.
759774 **Figure 3: Impact of Visual Perturbations on Model Relative Error.**
775
776777 **LLM USAGE DISCLOSURE**
778779 LLMs were used only to polish language, such as grammar and wording. These models did not
780 contribute to idea creation or writing, and the authors take full responsibility for this paper's content.
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809