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ABSTRACT

Dynamic link prediction is an important problem considered by many recent works
proposing various approaches for learning temporal edge patterns. To assess their
efficacy, models are evaluated on publicly available benchmark datasets involving
continuous-time and discrete-time temporal graphs. However, as we show in this
work, the suitability of common batch-oriented evaluation depends on the datasets’
characteristics, which can cause multiple issues: For continuous-time temporal
graphs, fixed-size batches create time windows with different durations, resulting in
an inconsistent dynamic link prediction task. For discrete-time temporal graphs, the
sequence of batches can additionally introduce temporal dependencies that are not
present in the data. In this work, we empirically show that this common evaluation
approach leads to skewed model performance and hinders the fair comparison of
methods. We mitigate this problem by reformulating dynamic link prediction as a
link forecasting task that better accounts for temporal information present in the
data. We provide implementations of our new evaluation method for commonly
used graph learning frameworks.

1 INTRODUCTION

Many scientific fields study data that can be modeled as graphs, where nodes represent entities that
are connected by edges. Examples include social (Lazer et al., 2009), financial (Bardoscia et al.,
2021), biological (Davidson et al., 2002) as well as molecular networks (David et al., 2020). Apart
from the mere topology of interactions, i.e., who is connected to whom, such data increasingly
include information on when these interactions occur. Depending on the temporal resolution, the
resulting temporal graphs are often categorized as continuous-time or discrete-time (Longa et al.,
2023): State-of-the-art data collection technology provides high-resolution continuous-time temporal
graphs, which capture the exact (and possibly unique) occurrence time of each interaction. Examples
include time-stamped online interactions (Kumar et al., 2019) or social networks captured via high-
resolution proximity sensing technologies (Vanhems et al., 2013). In contrast, discrete-time temporal
graphs give rise to a temporally ordered sequence of static snapshots, where each snapshot contains
interactions recorded within a (typically coarse-grained) time interval. Examples include scholarly
collaboration or citation graphs, which frequently include monthly or yearly snapshots.

Building on the growing importance of temporal data and the success of graph neural networks
(GNNs) for static graphs (Bronstein et al., 2017; Corso et al., 2024), deep graph learning has recently
been extended to temporal (or dynamic) graphs (Feng et al., 2024). To this end, several temporal
graph neural network (TGNN) architectures have been proposed that are able to simultaneously learn
temporal and topological patterns. These architectures are often evaluated in dynamic link prediction,
where the task is to predict the existence of edges during a future time window of length ∆t, e.g., to
provide recommendations to users (Kumar et al., 2019).

For dynamic link prediction, TGNNs commonly utilize temporal batches to speed up training (Su
et al., 2024). To construct these temporal batches, the sequence of temporally ordered edges is divided
into a sequence of equally large chunks that contain the same number of edges. Within each batch,
edges are typically treated as if they occurred simultaneously, thus discarding temporal information
within a batch. For continuous-time temporal graphs, such fixed-size batches are likely associated
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(a) b = 10, NMI = 0.66

b = 12, NMI = 0.64

h = 6, NMI = 0.71

(b) b = 9, NMI = 0.78 b = 10, NMI = 0.66 h = 1, NMI = 1

Figure 1: Illustration of the issues with a batch-based evaluation of TGNNs: (a) A continuous-time
temporal graph, split into batches with sizes b = 10 (top), b = 12 (middle), and time windows with
duration h = 6 (bottom). (b) A discrete-time temporal graph, split into batches with size b = 9 (left),
b = 10 (middle), and time windows with duration h = 1 (right). Splitting temporal graphs with
inhomogeneous temporal activities into batches with fixed size b assigns edges in time windows of
varying lengths to the same batch and edges with identical timestamps to different batches. We use
normalized mutual information (NMI) between the edges’ timestamps and their associated batch
number (shown by colors) to quantify how much temporal information can be recovered from the
sequence of batch numbers alone. In our work, we propose a time-window-oriented approach to
evaluate dynamic link prediction that mitigates the information loss of current batch-based evaluation.

with time windows of varying lengths ∆ti ̸= ∆tj . Changing the batch size affects the resulting
window lengths and could, e.g., change the task from predicting at the minute to the hour level, thus
altering its difficulty (see Figure 1a). In discrete-time temporal graphs, snapshots are typically so
large that they comprise multiple batches (see Figure 1b). Thus, the ordered sequence of batches
does not necessarily correspond to a temporally ordered sequence. In essence, batch-wise training of
TGNNs effectively mixes information from the past, present, and future. This violates the arrow of
time and questions the applicability of TGNNs in real-world prediction settings, where models do not
have access to future information.

Addressing these important problems in the evaluation of temporal graph learning techniques, our
work makes the following contributions:

• We quantify the information loss due to the aggregation of edges into batches on 14 discrete-
time and continuous-time temporal graphs, thus showing how the dynamic link prediction
task depends on the batch size.

• To better account for the arrow of time in the evaluated datasets, we formulate the task
as link forecasting using a time-window-oriented evaluation that adequately considers the
available temporal information that replaces the current link prediction task.

• We perform an experimental evaluation of state-of-the-art TGNNs for link forecasting.
Our results highlight substantial differences in model performance compared to a batch-
oriented evaluation of link prediction, thus demonstrating the real-world impact of our
work. Furthermore, our results suggest that memory-based methods are not well suited for
discrete-time data, which has so far been overlooked due to the overestimation of model
performance caused by information leakage in batch-based evaluation.
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While batch-oriented processing is a technical necessity for efficient model training, our work shows
that tuning the batch size essentially tunes the link prediction task, thus fitting the task to the model
and undermining a fair comparison of temporal graph learning techniques. Proposing a time-window-
oriented evaluation of dynamic link forecasting, our work provides a simple yet effective solution,
facilitating a fairer and more realistic evaluation approach that better reflects real-world scenarios.

2 PRELIMINARIES AND RELATED WORK

Temporal graphs. A temporal (or dynamic) graph G = (V,E) is a tuple where V is the set
of n = |V | nodes and E is a chronologically ordered sequence of m = |E| time-stamped edges
defined as E = {(u0, v0, t0), . . . , (um−1, vm−1, tm−1)} with 1 ≤ t0 ≤ · · · ≤ tm−1 ≤ tmax
(Poursafaei et al., 2022; Wang et al., 2021b; Yu et al., 2023). Each node vi can have static node
features hi ∈ HV and each edge (ui, vj , t) can have edge features eij,t ∈ HE that change over
time. We assume that interactions occur instantaneously with discrete timestamps t ∈ N. Although
timestamps t ∈ N are discrete, such temporal graphs are often categorized as continuous-time
(Kazemi et al., 2020; Skarding et al., 2021). In contrast, discrete-time temporal graphs coarse-grain
time-stamped edges into a sequence of static snapshot graphs

{
Gti:tj

}
, where Gti:tj = (V,Eti:tj )

with Eti:tj = {(u, v) | ∃(u, v, t) ∈ E : ti ≤ t ≤ tj} (Xue et al., 2022).

Dynamic link prediction. Given time-stamped edges up to time t, the goal of dynamic link predic-
tion is to predict whether an edge (v, u, t+ 1) exists at future time t+ 1 (Yu et al., 2023; Poursafaei
et al., 2022; Kazemi et al., 2020; Wang et al., 2021b). In practice, it is often computationally infeasible
to train and evaluate models on all possible edges one edge at a time. Thus, the chronologically
ordered sequence of edges E is usually divided into temporal batches B+

i , where each batch has a
fixed size of b edges. Edges within the same batch are typically processed in parallel (Su et al., 2024;
Rossi et al., 2020), thereby discarding temporal information within each batch. In addition to the
existing (positive) edges (u, v) ∈ B+

i , non-existing (negative) edges (u−, v−) ∈ B−
i are sampled

and used for training and evaluation. This is done since real-world graphs are typically sparse and
using all possible edges between all node pairs would lead to a large class imbalance and longer
runtime.
While some TGNNs can utilize the edges’ individual timestamps, e.g. via temporal encodings,
sampling approaches for selecting recent neighbors (Rossi et al., 2020) or negative edges (Poursafaei
et al., 2022) do not consider the temporal ordering of edges within batches. E.g. for negative sampling
with collision checks specifically Poursafaei et al. (2022), this is because edges occurring as a positive
sample in a batch cannot also be included as a negative sample in the same batch even with a different
timestamp. Thus, while the prediction can utilize a positive sample’s timestamp, this sample is
ignored for the remaining batch duration during evaluation, essentially adopting the notion that edges
within batches occur concurrently. With these assumptions, the task is formally defined as follows:
Definition (Dynamic link prediction). Let G = (V,E) be a temporal graph with node features
HV and edge features HE . Let b be the batch size and B+

i := {(u, v) | ∃(u, v, t) ∈ E with t ∈
{tb·i, . . . , tb·(i+1)−1}} the set of b edges in the i-th batch. We further use B−

i to denote a set of
negative edges drawn using negative sampling as described in Appendix A. For a given batch i

we use Êi = {(u, v, t) | ∃(u, v, t) ∈ E : t < tb·i} to denote the past edges. The goal of dynamic
link prediction is to find a model fθ

(
u, v | Êi, HV , HÊi

)
with parameters θ that, for all edges

(u, v) ∈ B+
i ∪B−

i in each batch i, predicts whether (u, v) ∈ B+
i or (u, v) ∈ B−

i .

State-of-the-art TGNNs. Current state-of-the-art dynamic link prediction methods, such as
JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGN (Rossi et al., 2020) keep an
up-to-date memory of temporal information in the graph by utilizing recurrent neural networks.
Temporal Graph Attention (TGAT) extends graph attention to the temporal domain and replaces
positional encodings in GAT with a vector representation of time (Xu et al., 2020). TCL (Wang
et al., 2021a) uses a transformer-based architecture to capture the nodes’ time-evolving properties.
CAWN learns temporal motifs based on causal anonymous walks (CAW) (Wang et al., 2021b).
GraphMixer takes an attention-free and transformer-free approach, using an MLP-based link encoder,
a mean-pooling-based node encoder, and an MLP-based link classifier for predictions (Cong et al.,
2023). DyGFormer combines nodes’ historical co-occurrences as interaction targets of the same
source node with a temporal patching approach to capture long-term histories (Yu et al., 2023).
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Several further approaches for discrete-time dynamic link prediction exist, including DyGEM (Taheri
et al., 2019), DySAT (Sankar et al., 2020), and EvolveGCN (Pareja et al., 2020). For a recent survey
of deep-learning-based dynamic link prediction, we refer to Feng et al. (2024).

Temporal graph training. Recent works (Su et al., 2024; Zhou et al., 2022; 2023) identified
issues in the training setup for memory-based TGNNs with large batch sizes: Processing edges
that belong to the same batch in parallel ignores their temporal dependencies, resulting in varying
performance depending on the chosen batch size. This issue has been termed temporal discontinuity.
Su et al. (2024) propose PRES which accounts for intra-batch temporal dependencies through a
prediction-correction scheme. Zhou et al. (2023) propose a distributed framework using smaller
batch sizes on multiple trainers. However, these works focus on training, not considering temporal
discontinuity in evaluation.

Temporal graph evaluation. Recent progress in terms of TGNN evaluation includes the temporal
graph benchmark (TGB) (Huang et al., 2023) similar to the static open graph benchmark (OGB) (Hu
et al., 2020). Poursafaei et al. (2022) identify problems with random negative sampling for dynamic
link prediction and propose new negative sampling techniques dependent on time to improve the
evaluation of TGNNs. Gastinger et al. (2023) identify issues in the evaluation of temporal knowledge
graph forecasting. Although none of the models used for this task overlap with regular TGNNs for
dynamic link prediction, some of the problems can be related, e.g., differences in forecasting horizons
leading to incomparable results.

3 FROM LINK PREDICTION TO LINK FORECASTING

Learning temporal patterns in a batch-oriented fashion leads to issues in continuous-time and discrete-
time graphs. Below, we show that batching leads to inconsistent tasks because the time window
for prediction varies for temporal batches across different link densities in time. Temporal batches
further cause information loss or leakage by either inducing a non-existing temporal order between
links or ignoring the existing order. We demonstrate these issues in eight continuous-time and six
discrete-time temporal graphs, whose characteristics are summarized in Table 1 and Appendix B. To
mitigate these issues, we then formulate the link forecasting task based on fixed-length time windows.

Table 1: Characteristics of continuous and discrete-time temporal graphs (Poursafaei et al., 2022; Yu
et al., 2023). For each dataset, we list the type, the number of nodes n, the number of edges m, the
resolution of timestamps, the total duration T of the observation, the average number of edges |Et|
with the same timestamp t, and the temporal density T/m.

Dataset Type n m Resolution T |Et| T/m

Enron Contin. 184 125 235 1 second 3.6 years 5.5 ± 16.6 908.2 s
UCI Contin. 1899 59 835 1 second 193.7 days 1.0 ± 0.3 279.7 s
MOOC Contin. 7144 411 749 1 second 29.8 days 1.2 ± 0.5 6.2 s
Wiki. Contin. 9227 157 474 1 second 31.0 days 1.0 ± 0.2 17.0 s
LastFM Contin. 1980 1 293 103 1 second 4.3 years 1.0 ± 0.1 106.0 s
Myket Contin. 17 988 694 121 1 second 197.0 days 1.0 ± 0.0 24.5 s
Social Contin. 74 2 099 519 1 second 242.3 days 3.7 ± 2.5 10.0 s
Reddit Contin. 10 984 672 447 1 second 31.0 days 1.0 ± 0.1 4.0 s
UN V. Discrete 201 1 035 742 1 year 71.0 years 14 385.3 ± 7142.1 36.1 min
US L. Discrete 225 60 396 1 congress 11.0 congr. 5033.0 ± 92.4 1.8 ·10−4 congr.
UN Tr. Discrete 255 507 497 1 year 31.0 years 15 859.3 ± 3830.8 32.1 min
Can. P. Discrete 734 74 478 1 year 13.0 years 5319.9 ± 1740.5 91.8 min
Flights Discrete 13 169 1 927 145 1 day 121.0 days 15 796.3 ± 4278.5 5.4 s
Cont. Discrete 692 2 426 279 5 minutes 28.0 days 300.9 ± 342.4 1.0 s

3.1 PROBLEMS IN BATCH-BASED DYNAMIC LINK PREDICTION

One issue of batch-oriented temporal graph learning and dynamic link prediction is that activities
in real-world temporal graphs are inhomogeneously distributed across time. In Figure 2 we show
the temporal activity in terms of the number of time-stamped edges within a given time interval
both for continuous-time and discrete-time temporal graphs. For continuous-time data, we used
binning in six-hour intervals. The results show that most real-world temporal graphs have highly

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 2000 4000

0

1000

Enron

0 500

0

1000
UCI

0 50 100

0

5000

10000
MOOC

0 50 100

0

1000

2000
Wiki.

0 2500 5000

Time (6 hours)

0

500

1000 LastFM

0 500

Time (6 hours)

0

1000

2000
Myket

0 500 1000

Time (6 hours)

0

5000

10000

Social

0 50 100

Time (6 hours)

0

5000
Reddit

(a) Continuous-time temporal graphs resolved in seconds and binned into 6-hour time periods.
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(b) Discrete-time temporal graphs with different time resolution (see Table 1).

Figure 2: Real-world datasets exhibit diverse edge occurrence patterns that are visualised using the
edge density across time, i.e., histograms counting the number of edges per timestamp. Dashed lines
divide the datasets into 70% train, 15% validation, and 15% test sets as used in Section 4.

inhomogeneous activities across time. For batch-oriented evaluation, this introduces the issue that
each fixed-size batch B+

i determines a time window with duration tb·(i+1)−1 − tb·i, i.e., shorter or
longer during periods with higher or lower activity, respectively.

In Figure 3 we evaluate the dependency between batch size and time window for empirical temporal
graphs. We observe that, both in continuous- and discrete-time temporal graphs, a single batch size
can create time windows with varying durations even within the same dataset. For continuous-time
temporal graphs, we typically have much bigger batches than edges per timestamp such that the time
window defined by the batches become long (cf. Table 1). The number of edges per snapshot in
discrete-time temporal graphs is generally larger than the batch size b in any period regardless of the
density (Table 1). This means that edges in a batch often belong to the same snapshot leading to
small window durations.

As an example, consider the Myket dataset (Loghmani & Fazli, 2023) which contains users v and
Android applications u, connected at time t when user v installs application u. The timestamps are
provided in seconds and edges occur roughly every 30 seconds on average (cf. Table 1), making the
expected time range for a batch with size b = 2 approximately 30 seconds. With b = 2, the task
is to predict which users install what applications during this time window. Choosing b = 120 or
b = 2880 turns the task into a prediction problem for approximately the next hour or day, respectively.
As we can see, batching not only leads to incomparable prediction tasks between models and datasets
due to the varying window duration but also acts as a kind of coarse-graining discarding temporal
information inside each batch.

In Figure 4 we use normalized mutual information (NMI) (Cover & Thomas, 2006) to measure the
information loss caused by splitting the temporal edges into batches. NMI quantifies how much
information observing one random variable conveys about another random variable (see Appendix G
for more information). It takes values between 0, meaning “no information”, and 1, meaning “full
information”. By treating the index i of each batch Bi assigned to each edge (u, v) ∈ Bi as one
random variable and the associated edge’s timestamp t as the other, we can measure the temporal
information that is retained after dividing edges into batches. In this case, an NMI value of 1 means
that we can reconstruct the timestamps of edges correctly from their batch number, and a value of 0

5
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(a) Continuous-time temporal graphs: Batch size b determines the average time window length. However, a
single batch size creates time windows with various lengths within and across datasets.

(b) Discrete-time temporal graphs: Fixed-size batches fall mostly within snapshots when the batches are much
smaller than the snapshots. Depending on the dataset, larger batches can also span across many snapshots.

Figure 3: Using a low opacity value for individual points, the distribution of time window durations
is shown for different batch sizes. I.e. points appear less see-through with an increasing number of
points with the same duration and batch size stacked on top of each other.

means that batch numbers do not carry any information about timestamps. Consequently, small NMI
values indicate a large loss of temporal information due to batching.

In Figure 4a we see that in continuous-time temporal graphs where timestamps have a high resolution,
larger batches result in more information loss because assigning edges that occur at different times to
the same batch discards their temporal ordering; the larger the batch size, the more information is
lost. A batch size of b = 1 preserves most temporal information – i.e. maximum NMI – because we
obtain a bijective mapping between almost all timestamps and batch numbers, except when multiple
edges happen simultaneously.

Figure 4b shows the batch-size dependent NMI for discrete-time temporal graphs. The “optimal”
batch size that retains most temporal information depends on the average number of links per snapshot
and, thus, on the characteristics of the data. Too small batch sizes impose an ordering on the edges
within the snapshots that is not present in the data while too large batches stretch across snapshots
and discard the temporal ordering of edges from different batches. Additionally, information about
the patterns inside each snapshot is leaked when edges with the same timestamp are evaluated
sequentially in different batches, providing an unfair advantage for memory-based models that can
utilize this information during inference.

Link prediction vs. link forecasting: These results show that the aggregation of time-stamped
edges within batches of varying duration loses information about the temporal ordering of interactions,
but also introduces a non-existent order in snapshots larger than the batch size. This non-existent
order can further lead to information leakage about patterns within snapshots. The results further
highlight that changing the batch size influences both the prediction time window as well as the
temporal information available to TGNNs. Effectively, the batch size is a hidden hyperparameter
that directly impacts the characteristics (and difficulty) of the link prediction task. In real-world
applications, however, the prediction time window is inherently connected to the problem at hand,
necessitating a task formulation that is chosen carefully for each dataset instead of for each model.
To address these issues, we propose a new link forecasting task that utilizes a fixed prediction time

6
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(a) For continuous-time, the temporal ordering of edges within batches is discarded. With increasing batch size,
more edges with different timestamps are assigned to the same time window, thus, losing more information.
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(b) Small batches for discrete-time temporal graphs implicitly define an edge ordering within snapshots that is
not present in the data, consequently losing the information that edges of the same snapshot occur at the same
time. The NMI has its maximum near the average snapshot size (refer to Table 1) after which the values decrease
again similar to continuous-time datasets.

Figure 4: Temporal information loss in terms of Normalized Mutual Information (NMI, y-axis) for
different batch sizes (x-axis), where smaller NMI scores indicate more information loss.

window with a variable number of edges. Compared to dynamic link prediction with a fixed batch
size, this task is both easier and harder: It is easier because it limits the window durations in which the
temporal ordering of edges is lost and, additionally, does not introduce artificial temporal orderings
that are not present in the data. It is harder because it prevents information leakage and ensures that
the task is not tuned to fit the model.

3.2 LINK FORECASTING: TASK DEFINITION

The study of temporal information is at the center of time series forecasting (Benidis et al., 2023) and,
therefore, we relate our task definition to a fixed temporal quantity to solve the identified problems.
We can interpret the temporal edges E as n2 Boolean time series, each of which takes the value 1
at the times an edge occurs. Standard multivariate models output a value for each timestamp over
a forecasting horizon h. In large-scale temporal graphs, it is computationally infeasible to forecast
the existence of all n2 possible links, thus, only a sample of negative edges is considered instead. In
continuous-time dynamic graphs, observations are available at high resolution, e.g. seconds, however,
for many practical applications, predicting at lower granularity suffices. For example, it is typically
enough to predict whether a customer purchases a certain product within the next day or week.
Therefore, we consider forecasting for all timestamps [t+ 1, t+ h] during a time window at once
instead of for each of them individually, and define the link forecasting task as follows:

Definition (Dynamic link forecasting). Let G = (V,E) be a temporal graph with node features HV

and edge features HE . Let h be the time horizon and W+
i := {(u, v) | ∃(u, v, t) ∈ E with i·h ≤ t <

(i+1) ·h} the set of edges in the i-th time window. We use W−
i to denote a sample of |W+

i | negative
edges that are sampled using one of the negative sampling approaches described in appendix A and
do not occur as positive edges in time window [i · h, (i + 1) · h), i.e. W−

i ∩W+
i = ∅. We further

use Êi = {(u, v, t) | ∃(u, v, t) ∈ E : t < i · h} to denote the set of past edges for time window i.
The goal of dynamic link forecasting is to find a model fθ(u, v|Êi, HV , HÊi

) with parameters θ
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that, for all edges (u, v) ∈ W+
i ∪W−

i in each time window i, forecasts whether (u, v) ∈ W+
i or

(u, v) ∈ W−
i .

Crucially, this definition makes the evaluation independent of the batch size b and instead introduces
a time horizon h that defines the forecasting time window. Essentially, this forecasting time window
aggregates edges into snapshots, discarding temporal information inside each time window since
we are forecasting whether a link exists in any of the timestamps t ∈ [t + 1, t + h]. Similar
to batch-based dynamic link prediction, adopting such a time-window-based perspective enables
parallel processing of edges, but does not preclude information loss entirely. Instead, time windows
require deliberately choosing the temporal resolution based on the characteristics of each dataset and
application (see appendix C for examples), resulting in a trade-off between evaluation runtime and
granularity of temporal information available to the TGNN models. To summarize, link forecasting
requires choosing a time horizon that affects and controls the information loss, but ensures that this
information loss is consistent for different models, facilitating fair performance comparisons.

Computational cost Let m be the total number of links, where typically m ≪ n2 since real-world
graphs are sparse, then we can assign each link to its corresponding time window in O(m) by
checking each link’s interaction time. After each link is assigned, the time complexity during model
evaluation is the same as for the batch-based approach. Since the number of links per time window
varies and windows can become large during periods when many temporal edges occur, we cannot
preclude memory overflows entirely. To mitigate this issue, one can split large time windows into
smaller batches for GPU-based computations. Since information leakage instead of information loss
needs to be prevented between batches of the same time window, steps such as negative sampling or
memory updates need to be done based on the whole time window.

Implementation We provide implementations for our evaluation procedure in commonly used
PyTorch libraries to simplify the adoption of our approach. Specifically, we implement a new
DataLoader called SnapshotLoader that replaces the widely used TemporalDataLoader
in PyTorch Geometric (Fey & Lenssen, 2019). We extend DyGLib (Yu et al., 2023) with a command
line argument horizon that can be used in the evaluation pipeline. The latter was used for the
experiments in this work and can be used to reproduce our results. The implementations are added as
supplementary material to ensure anonymity and will be made publicly available after acceptance of
the paper.

4 LINK PREDICTION VS. FORECASTING IN STATE-OF-THE-ART TGNNS

We now experimentally evaluate the performance of nine state-of-the-art models (Kumar et al., 2019;
Trivedi et al., 2019; Xu et al., 2020; Rossi et al., 2020; Wang et al., 2021b; Poursafaei et al., 2022;
Wang et al., 2021a; Cong et al., 2023; Yu et al., 2023), both for the (conventional) dynamic link
prediction task as well as our proposed dynamic link forecasting task. We use implementation
and model configurations provided by DyGLib (Yu et al., 2023) (cf. Appendix D) and repeat each
experiment five times to obtain averages. We use historical negative sampling (Poursafaei et al., 2022)
and train each model using batch-based training and validation with batch size b = 200 which was
found “to be a good trade-off between speed and update granularity” (Rossi et al., 2020) and adopted
in similar works (Yu et al., 2023; Poursafaei et al., 2022). Afterwards, we evaluate each model trained
with batch-based training using our proposed time-window-based evaluation method as well as the
common batch-based evaluation approach with b = 200. We choose the forecasting horizon h such
that we obtain average batch sizes of approximately 200 for all continuous-time datasets to make the
results of our new evaluation method comparable to the results of the batch-oriented approach (see
Table 2 for the exact values). For discrete-time temporal graphs, we set h = 1 to obtain one time
window per snapshot, predicting for time intervals ranging from five minutes to a year, depending on
the datasets (cf. Table 1). Note that we choose h based on the batch size b = 200 to achieve as much
comparability as possible between the link forecasting and prediction tasks, thereby emphasizing
performance differences between both approaches by “only” grouping the edges differently. We
quantify how much information is shared between both approaches in Table 2 by calculating the
NMI score between time window ID and batch ID as random variables. Additionally, we evaluate the
models’ performance based on realistic time horizons and present the results in Appendix C.
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Table 2: Average links per window |W+
i | and standard deviation for horizon h used in the evaluation

(left). We chose h for each dataset to get |W+
i | ≈ 200. The average time window duration is provided

in hours and seconds per batch (center). NMI uses the time window and batch IDs of the test set (cf.
Appendix G) quantifying how much the chosen chunks differ between the approaches (right).

Dataset h |W+
i | b Avg Duration (h) Avg Duration (s) NMI

Enron 172 800s (48h) 214.1 ± 274.1 200 50.1 ± 165.38 180395.2 ± 595358.23 0.80
UCI 57 600s (16h) 208.5 ± 335.5 200 15.4 ± 31.67 55542.5 ± 114021.12 0.83
MOOC 1200s (1/3h) 199.3 ± 167.2 200 0.3 ± 0.72 1242.8 ± 2597.53 0.88
Wikipedia 3600s (1h) 211.7 ± 56.3 200 0.9 ± 0.26 3382.2 ± 921.97 0.89
LastFM 21 600s (6h) 204.4 ± 120.2 200 5.9 ± 5.37 21099.5 ± 19331.76 0.91
Myket 5400s (3/2h) 220.1 ± 133.6 200 1.4 ± 1.18 4879.2 ± 4236.54 0.91
Social Evo. 1800s (1/2h) 186.1 ± 165.3 200 0.6 ± 1.26 1984.1 ± 4533.72 0.91
Reddit 900s (1/4h) 226.0 ± 54.5 200 0.2 ± 0.06 792.5 ± 199.35 0.92

The results are presented in Table 3 for continuous-time and in Table 4 for discrete-time temporal
graphs. The tables show AUC-ROC scores for time-window-based link forecasting and the relative
change compared to the batch-based evaluation of dynamic link prediction (average precision scores
are provided in Appendix E). For continuous-time temporal graphs, the change in performance
between our window-based and the batch-based approach largely depends on the dataset: Datasets
with a similar window duration for all fixed-sized batches (quantified by NMI scores close to
one in Table 2), such as Wikipedia, Reddit, or Myket, only exhibit small differences between the
performances. This is expected since we chose the horizon h to produce batches of the same average
size as the fixed-sized batches. Nevertheless, we observe lower NMI values in Table 2 for datasets
with inhomogeneously distributed temporal activity such as Enron or UCI – i.e. the time windows do
not fit the fixed-sized batches well. These datasets with lower NMIs show substantial performance
changes across models. This highlights that the performance scores of batch-based evaluation are
skewed and may not reflect the models’ performance in a real-world setting on inhomogeneous
temporal datasets.

Table 3: Test AUC-ROC scores for link forecasting and the relative change compared to link prediction
for continuous-time graphs on the same trained models (standard deviations in Appendix E). We
compute the AUC-ROC score per time window and average by weighing each time window equally,
regardless of the number of edges (Appendix F discusses additional weighting schemes). The last
row/column provides mean µ and standard deviation σ of the absolute values of the relative change
per column/row.

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

Enron 84.0(↑8.6%) 80.3(↑9.2%) 67.9(↓0.2%) 69.0(↑17.6%) 75.7(↑13.9%) 82.7(↑3.6%) 75.1(↑11.1%) 88.6(↑9.0%) 84.5(↑10.6%) 9.3%±5.1%
UCI 86.8(↑4.2%) 60.2(↑17.1%) 62.1(↓1.5%) 55.2(↓7.4%) 56.5(↓3.0%) 72.5(↑4.9%) 56.3(↓6.2%) 80.2(↓0.5%) 75.7(↓0.6%) 5.0%±5.1%
MOOC 83.1(↓2.1%) 79.0(↓2.1%) 87.4(↓1.2%) 79.9(↓2.9%) 68.8(↓2.2%) 59.8(↓3.4%) 68.4(↓5.8%) 70.3(↓5.5%) 80.0(↓1.5%) 3.0%±1.7%
Wiki. 81.5(↓0.4%) 78.3(↓0.1%) 83.7(↓0.6%) 82.9(↓0.7%) 71.3(↓0.4%) 77.2(↑0.1%) 84.6(↓0.6%) 87.3(↓0.6%) 79.8(↓0.3%) 0.4%±0.2%
LastFM 76.3(↓2.2%) 69.0(↓3.7%) 79.2(↓1.9%) 65.2(↓4.7%) 66.3(↓2.6%) 78.0(↓0.2%) 62.5(↓2.7%) 59.9(↓9.2%) 78.2(↓1.0%) 3.1%±2.6%
Myket 64.4(↑0.6%) 64.1(↓0.1%) 61.2(↑0.1%) 57.8(↑0.4%) 33.5(↑3.1%) 52.6(↑1.3%) 58.2(↓0.3%) 59.8(↑0.5%) 33.8(↑3.0%) 1.0%±1.2%
Social 92.1(↑0.8%) 92.2(↓0.5%) 92.2(↑0.5%) 92.5(↓0.1%) 86.5(↓1.4%) 84.9(↓1.1%) 94.7(↓0.6%) 94.6(↑0.6%) 97.3(↑0.0%) 0.6%±0.4%
Reddit 80.6(↓0.0%) 79.5(↑0.0%) 80.4(↓0.0%) 78.6(↓0.1%) 80.2(↓0.0%) 78.6(↓0.1%) 76.2(↓0.1%) 77.1(↓0.1%) 80.2(0.0%) 0.0%±0.1%

µ± σ 2.4%±2.9% 4.1%±6.1% 0.8%±0.7% 4.2%±6.0% 3.3%±4.4% 1.8%±1.9% 3.4%±4.0% 3.2%±4.0% 2.1%±3.6%

Table 4: Test AUC-ROC scores as in Table 3 but for discrete-time graphs.

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

UN V. 54.0(↓26.7%) 52.2(↓28.2%) 51.3(↓27.1%) 54.4(↑3.0%) 53.7(↑7.1%) 89.6(↑0.0%) 53.4(↑0.6%) 56.9(↑1.1%) 65.2(↑3.5%) 10.8%±12.6%
US L. 52.5(↓6.8%) 61.8(↓22.6%) 57.7(↓31.2%) 78.6(↑0.2%) 82.0(↑0.2%) 68.4(↑1.3%) 75.4(↓0.3%) 90.4(↑0.2%) 89.4(↑0.0%) 7.0%±11.7%
UN Tr. 57.7(↓12.8%) 50.3(↓20.4%) 54.3(↓14.0%) 64.1(↑3.9%) 67.6(↑4.5%) 85.6(↓1.0%) 63.7(↑4.5%) 68.6(↑3.4%) 70.7(↑3.4%) 7.5%±6.6%
Can. P. 63.6(↓0.5%) 67.5(↑1.2%) 73.2(↓0.2%) 72.7(↑1.5%) 70.0(↑2.9%) 63.2(↑0.4%) 69.5(↑2.0%) 80.7(↓0.6%) 85.5(↓12.5%) 2.4%±3.9%
Flights 67.4(↓3.1%) 66.0(↓4.3%) 68.1(↓1.0%) 72.6(↑0.0%) 65.2(↑0.3%) 74.6(↑0.0%) 70.6(↓0.0%) 70.7(↓0.0%) 68.6(↓0.5%) 1.0%±1.6%
Cont. 95.6(↑0.1%) 94.9(↓0.5%) 96.6(↑0.5%) 95.9(↑0.6%) 86.7(↑4.1%) 93.0(↑0.9%) 95.7(↑1.7%) 95.2(↑1.1%) 97.7(↑0.6%) 1.1%±1.2%

µ± σ 8.3%±10.2% 12.9%±12.2% 12.3%±14.1% 1.5%±1.6% 3.2%±2.7% 0.6%±0.5% 1.5%±1.7% 1.1%±1.2% 3.4%±4.7%

We further observe that, for link forecasting, the performance of memory-based models (JODIE,
DyRep, TGN) on discrete-time temporal graphs tends to decrease more than for other methods.
This is expected since these models incorporate information about the present snapshot by updating
their memory based on prior batches, which means using part of the snapshot’s edges to predict
its remaining edges. Our evaluation method prevents this information leakage, which explains the
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substantial drop in performance.
For non-memory-based models, the performance tends to be better for link forecasting compared
to link prediction on most discrete-time datasets. This is within our expectations because our time-
window-based approach prevents, for h = 1, all batches that stretch across multiple snapshots. The
batch-based approach can have overlapping batches which results in information loss because, when
making predictions, only edges that occur before the current batch may be used. However, since
batches stretching across snapshots contain edges from multiple snapshots, all edges belonging to
those snapshots must not be used to make predictions – because they have not occurred before the
batch. Therefore, in the case of overlapping batches, not all available information can be used to
make predictions. For Contacts – the discrete-time dataset with the highest NMI score, we see the
smallest changes in model performance. This demonstrates that the models’ performance obtained
through batch-oriented evaluation reflects the time-window-based performance more closely when a
given batch size defines more homogeneous time windows. However, this is often not the case in
real-world discrete-time temporal graphs with low granularity and large snapshots.

5 CONCLUSION

In this work, we considered issues associated with current evaluation practices for dynamic link
prediction in temporal graphs. To address computational limitations, edges in the test set are split
into fixed-size batches, making the task “too easy” but at the same time “too hard”: “Too easy”
because state-of-the-art approaches for dynamic link prediction have treated the batch size as a
tunable parameter. Changing the batch size, however, changes the prediction task, resulting in
incomparable results between different batch sizes. For discrete-time temporal graphs, multiple
batches that include edges from the same timestamp further leak information that can be utilized by
memory-based TGNNs. “Too hard” since in continuous-time temporal graphs, fixed-size batches
create varying-length time windows that essentially lead to a different task for each duration, requiring
the model to capture multiple task definitions at the same time. Furthermore, for edges within a
batch, information regarding their temporal ordering is lost. In discrete-time temporal graphs where
snapshots are typically larger than the batch size, batches additionally impose an ordering of edges
not present in the data.

We solve these issues by formulating the dynamic link forecasting task. Dynamic link forecasting
acknowledges the resolution at which temporal interaction data is recorded and explicitly considers a
forecasting horizon corresponding to a prediction time window of a fixed duration. Depending on the
dataset and problem setting, the horizon may span seconds, minutes, hours, or longer, but crucially,
time windows always span the same length. We evaluated dynamic link forecasting performance
of nine state-of-the-art temporal graph learning approaches on 14 real-world datasets, comparing
it to the common dynamic link prediction evaluation. We find substantial differences, especially
for memory-based TGNNs. We provide data loader implementations for PyTorch Geometric and
DyGLib to facilitate practical applications of our evaluation approach.

Limitations and Open Issues Limitations of our work include that our reformulation of the
dynamic link prediction task suggests time-window-based approaches for model training, which
however goes beyond the scope of our paper. Furthermore, the metrics used in this work consider
the problem of dynamic link prediction or forecasting as binary classification, using one negative
sample for each positive edge. Other approaches (Huang et al., 2023; You et al., 2022) consider the
problem as a ranking task (e.g. using the mean reciprocal rank (MRR)) and compare each positive
edge against a large number of negative samples. These approaches typically use only one positive
sample per batch which alleviates the information loss and provides a better estimate of the models’
precision due to the large number of negative samples. In contrast, our window-based approach allows
the parallel processing of many positive samples in each time window, leading to a considerably
faster evaluation by making reasonable simplifications of the task. Specifically, it is enough to make
predictions at a lower resolution than the data is available in for many tasks, e.g. it may not be
required to predict whether a customer will purchase a certain product within the next second; making
such a prediction for the next day or week may be sufficient. Combining the advantages of both, our
time-window-based evaluation and the ranking-based tasks, is left for future work.

Lastly, there are no expected negative societal impacts that go beyond those of other foundational
works in machine learning research.
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Scarselli, and Andrea Passerini. Graph Neural Networks for temporal graphs: State of the art, open
challenges, and opportunities. abs/2302.01018, 2023.

Graham K. MacDonald, Kate A. Brauman, Shipeng Sun, Kimberly M. Carlson, Emily S. Cassidy,
James S. Gerber, and Paul C. West. Rethinking Agricultural Trade Relationships in an Era of
Globalization. BioScience, 65(3):275–289, 02 2015. ISSN 0006-3568. doi: 10.1093/biosci/biu225.

Anmol Madan, Manuel Cebrian, Sai Moturu, Katayoun Farrahi, and Alex ”Sandy” Pentland. Sensing
the ”health state” of a community. IEEE Pervasive Computing, 11(4):36–45, 2012. doi: 10.1109/
MPRV.2011.79.

Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009. doi: https://doi.org/10.1002/asi.21015.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5363–
5370, 4 2020. doi: 10.1609/aaai.v34i04.5984. URL https://ojs.aaai.org/index.php/
AAAI/article/view/5984.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards Better
Evaluation for Dynamic Link Prediction. In NeurIPS, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael M.
Bronstein. Temporal Graph Networks for Deep Learning on Dynamic Graphs. abs/2006.10637,
2020.

12

https://ojs.aaai.org/index.php/AAAI/article/view/5984
https://ojs.aaai.org/index.php/AAAI/article/view/5984


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
International Conference on Web Search and Data Mining, WSDM ’20, pp. 519–527, New
York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450368223. doi:
10.1145/3336191.3371845. URL https://doi.org/10.1145/3336191.3371845.

Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune Lehmann. Interaction
data from the copenhagen networks study. Scientific Data, 6(1):315, 12 2019. ISSN 2052-4463.
doi: 10.1038/s41597-019-0325-x.
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A NEGATIVE SAMPLING APPROACHES

Dynamic link prediction is typically framed as a binary classification problem to predict class 1 for
existing links during a certain time window and 0 otherwise. Due to the sparsity of most real-world
graphs, it usually suffices to train and evaluate using all existing (positive) edges and a sample of
non-existing (negative) edges out of all possible edges V 2. In static link prediction, negative edges
are typically sampled randomly from V 2 without replacement but Poursafaei et al. (2022) showed
that this technique is ill-suited for dynamic link prediction. One reason is rooted in the characteristics
of temporal graphs where already-seen interactions tend to repeat several times during the observation
period. To address this issue, Poursafaei et al. (2022) introduced negative sampling which we cover
in the following.

Given a training set Etrain and test set Etest, each containing a sequence of edges Etmin:tmax in the
temporal graph G, we can define the following commonly used sampling strategies for drawing
negative samples B−

i for batch B+
i with |B+

i | = |B−
i | Poursafaei et al. (2022); Yu et al. (2023).

• Random: Sample B−
i from V 2 without replacement. The subgraph corresponding to B+

i is
assumed to be sparse, making it unlikely to sample a positive edge e ∈ Bi as negative.

• Historic: Sample B−
i without replacement from all training edges Ehist = Etrain \{

(vj , uj)|tb·i ≤ tj ≤ tb·(i+1)

}
except the ones appearing at the same time as the edges

in B+
i . If |Ehist| < |B+

i |, draw the remaining edges randomly as described above.

• Inductive: Sample B−
i without replacement from all unseen test edges Eind = Etest\(Etrain∪{

(vj , uj)|tb·i ≤ tj ≤ t(i+1)·b
}
) except the ones appearing at the same time as the edges in

B+
i . If |Eind| < |B+

i |, draw the remaining edges randomly as described above.

Note that we leave out the validation set Eval for simplicity. Negative edges for Eval can be sampled
as for Etest.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B DATASETS

In this work, we use eight continuous-time and six discrete-time datasets, listed in Table 1. Here,
we describe what systems were observed to create the datasets and plot the datasets’ link count
histograms in Figure 5 and window sizes for varying time horizons in Figure 6.
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(a) In the continuous-time temporal graphs, it is most common that at most one edge occurs per timestamp.
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(b) The snapshots in discrete-time temporal graphs contain large numbers of edges, typically much larger than
commonly utilized batch sizes. The Contacts dataset has fewer links per snapshot due to its much higher
resolution than the remaining discrete-time datasets.

Figure 5: The link count histograms show how many edges occur per timestamp in continuous-time
temporal graphs and per snapshot in discrete-time temporal graphs, respectively.

• Enron Shetty & Adibi (2004) is a bipartite continuous-time graph where nodes are users and
the temporal edges represent emails sent between users. Emails with multiple recipients are
recorded as separate and simultaneously occurring edges, one per recipient. The temporal
edges are resolved at the second level and the dataset spans approximately 3.6 years.

• UCI Panzarasa et al. (2009) is a unipartite continuous-time social network dataset from an
online platform at the University of California at Irvine. The nodes represent students and
the timestamped edges represent communication between the students. The dataset spans
approximately six and a half months.

• MOOC (massive open online course) Kumar et al. (2019) is a bipartite continuous-time
graph where nodes represent users and units in an online course, such as problems or videos.
Temporal edges are resolved at the second level and encode when a user interacts with a
unit of the online course. The dataset spans approximately one month.

• Wikipedia (Wiki.) Kumar et al. (2019) is a bipartite continuous-time graph where nodes
represent editors and Wikipedia articles. The timestamped edges are resolved at the second
level and represent when an editor has edited an article. The dataset spans approximately
one month.

• LastFM is a bipartite continuous-time graph where nodes represent users and songs. Tem-
poral edges are resolved at the second level and model the users’ listening behavior and
represent when a user has listened to a song. The dataset was originally published by Celma
(2010) and later filtered by Kumar et al. (2019) for use in a temporal graph learning context.
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(a) The number of links per window in continuous-time temporal graphs for horizons ranging from one second
to one year. The x-axis is labeled in hours.

(b) Window sizes for discrete-time temporal graphs where h represents the number of snapshots.

Figure 6: Window sizes, i.e. number of links per time window, for different horizons. For smaller
values of h, we can see a wide range of window sizes for most datasets; for large values of h, i.e.
horizons that include more than half of the observed time, the window sizes diverge because the
window of the second time window that still includes observed links gets smaller.

• Myket Loghmani & Fazli (2023) is a bipartite continuous-time graph where nodes represent
users and Android applications. The timestamped edges represent when a user installed an
application. The dataset spans approximately six and a half months.

• Social Evolution (Social) Madan et al. (2012) is a unipartite continuous-time graph of the
proximity between the students in a dormitory, collected between October 2008 and May
2009 using mobile phones. Temporal edges connect students when they are in proximity
and are resolved in seconds.

• Reddit Kumar et al. (2019) is a bipartite continuous-time graph where nodes represent
Reddit users and their posts. The timestamped edges are resolved in seconds and represent
when a user has made a post on Reddit. The dataset spans approximately one month.

• UN Vote (UN V.)Voeten et al. (2009); Poursafaei et al. (2022) is a weighted unipartite
discrete-time graph of votes in the United Nations General Assembly between 1946 and
2020. Nodes represent countries and edges connect countries if they both vote “yes”. The
dataset is resolved at the year level and edge weights represent how many times the two
connected countries have both voted “yes” in the same vote.

• US Legislators (US L.) Huang et al. (2020); Fowler (2006); Poursafaei et al. (2022) is
a weighted unipartite discrete-time graph of interactions between legislators in the US
Senate. Nodes represent legislators and edges represent co-sponsorship, i.e., edges connect
legislators who co-sponsor the same bill. The dataset is resolved at the congress level and
edge weights encode the number of co-sponsorships during a congress.

• UN Trade (UN Tr.) MacDonald et al. (2015); Poursafaei et al. (2022) is a directed and
weighted unipartite discrete-time graph of food and agricultural trade between countries
where nodes represent countries. The dataset spans 30 years and is resolved at the year level.
Weighted edges encode the sum of normalized agriculture imports or exports between two
countries during a given year.
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• Canadian Parliament (Can. P.) Huang et al. (2020); Poursafaei et al. (2022) is a weighted
unipartite discrete-time political network where nodes represent Members of the Canadian
Parliament (MPs) and an edge between two MPs means that they have both voted “yes” on
a bill. The dataset is resolved at the year level and the edges’ weights represent how often
the two connected MPs voted “yes” on the same bill during a year.

• Flights Schäfer et al. (2014); Poursafaei et al. (2022) is a directed and weighted unipartite
discrete-time graph where nodes represent airports and edges represent flights during the
COVID-19 pandemic. The edges are resolved at the day level and their weights are given by
the number of flights between two airports during the respective day.

• Contacts (Cont.) Sapiezynski et al. (2019); Poursafaei et al. (2022) is a unipartite discrete-
time proximity network between university students. Nodes represent students who are
connected by an edge if they were in close proximity during a time window. The dataset is
resolved at the 5-minute level and spans one month.
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C EVALUATION BASED ON REALISTIC TIME HORIZONS

In our main experiments, we determined the time horizon based on the average number of links per
time window to enable a fair comparison to the batch-based approach. In section 3.1, we discussed
that the time horizon for a realistic evaluation should instead be chosen carefully for each individual
dataset. To provide an example of such a realistic evaluation, we will assign a reasonable horizon for
each dataset used in this work. Note that this enables a fair model comparison since we use the same
horizon for all models across each dataset. The temporal resolution for most discrete-time datasets
is limited due to the data collection process. The US Legislators dataset for example contains one
snapshot for each congress which provides a natural horizon of one snapshot. Thus, we will only
consider continuous-time datasets and discrete-time datasets where the duration of a snapshot is not
yet a natural time horizon for evaluation, i.e. Contacts.

We list the considered datasets and the chosen horizon with the reasoning behind it in the following:

• Enron is a network of users with edges representing emails sent between them. We choose
24 hours as a reasonable horizon since 90% of all email replies are typically sent within a
day Kooti et al. (2015).

• UCI is a social network based on student communications. We use 30 min as the horizon
since users receiving a text message typically feel pressured to reply between the next 20
minutes and the end of the day Aranda & Baig (2018).

• MOOC connects students to units of an online course based on their interactions. We set
h = 6 min since Guo et al. (2014) recommend keeping the learning video of a unit shorter
than this time frame.

• Wikipedia represents the editing behaviour of users in a graph. Since editing Wikipedia
articles is unpaid, we do not expect frequent interactions from each user. We assume that
users come from different time zones and consider that the total duration of the dataset is
only one month. Therefore, we see the typical working time of 8 hours as an appropriate
time horizon to take into account that interactions won’t appear very frequently but there are
still enough time windows for evaluation.

• LastFM connects users to the songs they listen to. We select 24 hours as the horizon to
evaluate this dataset on a task where the goal is to predict the songs that users will listen to
tomorrow based on their listening behaviour during the last days.

• Myket represents users and Android applications that are connected when an application is
installed. Considering that, similar to the Wikipedia dataset, no frequent interactions are
expected, we choose 24 hours as the time horizon since the total duration of the dataset is
longer than the total duration of the Wikipedia dataset.

• Social Evolution is a proximity network gathered from students in a dormitory. Thus, we
select 2 hours – a typical duration of a lecture including breaks – as the time horizon.

• Reddit contains the posting behaviour of Reddit users. Since dynamics in a social network
are typically fast, we select a time horizon of 15 minutes.

• Contacts: Similar to Social Evolution, we select 2 hours as the time horizon since the
network also captures the proximity of students.

We use the trained models from the experiments of the main part of our work and reevaluate the
specified datasets with the selected time horizons. The results are presented in Table 5 and 6. For
completeness, both tables also include the performance scores of the discrete-time datasets that have
not been reevaluated because we determined the horizon used above as realistic.

The results using both the AUC-ROC as well as the average precision score mostly agree on a
best-performing model, yet for different datasets, there is no clear winner among the models. For
continuous-time datasets, JODIE, GraphMixer, and DyGFormer are among the best-performing
models while EdgeBank, GraphMixer, and DyGFormer performed best for discrete-time data.

DyGFormer performs best for both Contacts and Social Evolution, suggesting that DyGFormer is best
suited for proximity networks among all models. For UN Vote, UN Trade, and Flights, EdgeBank –
a simple baseline model that predicts an edge if it has occurred before – is among the best. These
datasets are highly repetitive because they are, e.g. based on a schedule or relations among countries
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Table 5: Average AUC-ROC performance and standard deviation over five runs using the trained
models from the above experiments and the window-based evaluation with the horizons specified
above. The tables also include the datasets that have not been reevaluated using performance scores
obtained with the time horizons of the main experiments. Due to time constraints, only one run using
CAWN on the Contacts dataset finished in time. The score of the single run is reported below and
will be replaced by the mean and standard deviation over five runs in the camera-ready version.

Datasets JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Enron 84.2 ± 4.8 80.4 ± 2.5 70.0 ± 4.5 68.3 ± 1.8 75.5 ± 0.4 83.1 ± 0.0 74.2 ± 4.8 87.9 ± 0.6 83.9 ± 0.6
UCI 89.4 ± 0.7 70.4 ± 2.8 64.0 ± 1.3 52.2 ± 1.1 56.0 ± 0.2 75.3 ± 0.0 55.3 ± 1.3 82.7 ± 0.9 75.4 ± 0.4
MOOC 84.6 ± 4.1 81.3 ± 3.3 87.6 ± 1.3 80.7 ± 0.9 69.3 ± 1.5 62.9 ± 0.0 68.1 ± 0.9 70.4 ± 1.6 79.9 ± 10.0
Wiki. 75.5 ± 0.8 73.2 ± 0.9 83.5 ± 0.6 83.5 ± 0.2 71.9 ± 0.8 76.1 ± 0.0 85.2 ± 0.6 87.9 ± 0.3 80.6 ± 1.6
LastFM 74.9 ± 2.1 67.5 ± 1.4 78.6 ± 2.9 66.0 ± 0.9 67.2 ± 0.3 77.5 ± 0.0 63.2 ± 6.7 60.6 ± 1.3 78.9 ± 0.6
Myket 64.5 ± 1.8 62.7 ± 3.1 60.4 ± 2.3 57.8 ± 0.4 32.2 ± 0.4 51.4 ± 0.0 58.3 ± 2.0 59.9 ± 0.3 32.8 ± 0.9
Social 87.0 ± 2.0 84.4 ± 4.7 92.3 ± 2.7 92.6 ± 0.5 86.7 ± 0.0 85.1 ± 0.0 94.7 ± 0.5 94.7 ± 0.2 97.4 ± 0.1
Reddit 80.6 ± 0.1 79.5 ± 0.8 80.4 ± 0.4 78.6 ± 0.7 80.2 ± 0.3 78.6 ± 0.0 76.2 ± 0.4 77.1 ± 0.4 80.2 ± 1.1

UN V. 54.0 ± 1.8 52.2 ± 2.0 51.3 ± 7.1 54.4 ± 3.6 53.7 ± 2.1 89.6 ± 0.0 53.4 ± 1.0 56.9 ± 1.6 65.2 ± 1.1
US L. 52.5 ± 1.8 61.8 ± 3.5 57.7 ± 1.8 78.6 ± 7.9 82.0 ± 4.0 68.4 ± 0.0 75.4 ± 5.3 90.4 ± 1.5 89.4 ± 0.9
UN Tr. 57.7 ± 3.3 50.3 ± 1.4 54.3 ± 1.5 64.1 ± 1.3 67.6 ± 1.2 85.6 ± 0.0 63.7 ± 1.6 68.6 ± 2.6 70.7 ± 2.6
Can. P. 63.6 ± 0.8 67.5 ± 8.5 73.2 ± 1.1 72.7 ± 2.2 70.0 ± 1.4 63.2 ± 0.0 69.5 ± 3.1 80.7 ± 0.9 85.5 ± 3.5
Flights 67.4 ± 2.0 66.0 ± 1.9 68.1 ± 1.7 72.6 ± 0.2 65.2 ± 1.8 74.6 ± 0.0 70.6 ± 0.1 70.7 ± 0.3 68.6 ± 1.3
Cont. 85.4 ± 0.5 74.5 ± 3.1 94.6 ± 0.6 96.0 ± 0.2 86.6 ± nan 85.8 ± 0.0 95.7 ± 0.4 95.2 ± 0.2 97.8 ± 0.0

that rarely change. Thus, since they are all outperformed by simple baselines, none of the proposed
TGNN models adequately address the task of these datasets, i.e. finding edges that do not follow
the schedule or some other reoccurring pattern. For other types of datasets like communication (e.g.
Enron or UCI) or user-interaction networks (e.g. Wikipedia or MOOC), no clear patterns are visible.

Table 6: Mean average precision scores and standard deviation following Table 5.

Datasets JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Enron 82.2 ± 4.8 80.0 ± 3.4 71.2 ± 4.2 72.6 ± 1.3 77.1 ± 0.3 81.6 ± 0.0 77.9 ± 2.6 89.2 ± 0.4 85.0 ± 0.6
UCI 93.0 ± 0.5 81.5 ± 1.9 78.0 ± 0.9 71.6 ± 0.7 73.3 ± 0.2 75.6 ± 0.0 73.2 ± 0.7 89.6 ± 0.5 85.2 ± 0.3
MOOC 84.1 ± 5.4 79.4 ± 3.8 87.4 ± 1.6 83.9 ± 0.8 73.8 ± 1.1 62.1 ± 0.0 75.8 ± 0.5 75.6 ± 0.9 82.6 ± 8.9
Wiki. 78.3 ± 1.2 76.4 ± 0.7 88.3 ± 0.4 88.0 ± 0.2 75.7 ± 1.1 72.4 ± 0.0 89.7 ± 0.4 91.3 ± 0.2 84.0 ± 1.2
LastFM 73.6 ± 2.0 64.8 ± 1.8 78.6 ± 3.7 73.0 ± 0.8 69.2 ± 0.5 72.9 ± 0.0 71.2 ± 6.7 71.0 ± 1.1 81.3 ± 0.9
Myket 62.9 ± 1.5 60.2 ± 1.9 61.1 ± 1.7 56.8 ± 0.4 44.9 ± 0.2 51.1 ± 0.0 57.8 ± 2.2 59.0 ± 0.2 44.4 ± 1.7
Social 82.5 ± 4.0 81.6 ± 5.7 94.0 ± 1.8 95.0 ± 0.3 85.8 ± 0.1 79.9 ± 0.0 96.2 ± 0.3 95.8 ± 0.2 97.8 ± 0.1
Reddit 80.1 ± 0.3 79.2 ± 0.9 80.6 ± 0.6 78.6 ± 1.0 81.3 ± 0.4 73.5 ± 0.0 76.5 ± 0.6 77.5 ± 0.5 82.8 ± 0.8
UN V. 52.6 ± 1.8 49.6 ± 1.9 49.7 ± 3.9 52.7 ± 2.6 52.4 ± 2.0 84.2 ± 0.0 52.4 ± 0.9 54.0 ± 1.4 62.4 ± 1.7
US L. 46.0 ± 0.9 62.5 ± 3.6 58.6 ± 2.4 71.0 ± 8.9 80.7 ± 3.7 63.2 ± 0.0 77.5 ± 4.3 86.5 ± 1.9 86.1 ± 1.0
UN Tr. 52.7 ± 3.0 49.4 ± 0.9 53.2 ± 1.5 59.1 ± 2.7 59.2 ± 1.7 79.0 ± 0.0 57.5 ± 1.9 65.8 ± 1.9 67.1 ± 2.7
Can. P. 52.1 ± 0.5 61.0 ± 7.6 69.9 ± 0.8 70.8 ± 1.6 68.3 ± 2.3 59.4 ± 0.0 68.2 ± 1.6 80.9 ± 0.5 83.2 ± 2.9
Flights 65.2 ± 2.7 63.9 ± 2.8 68.3 ± 2.2 73.5 ± 0.3 64.7 ± 0.9 70.4 ± 0.0 71.0 ± 0.4 71.9 ± 0.8 68.9 ± 2.0
Cont. 83.3 ± 0.7 69.7 ± 3.7 95.0 ± 0.8 96.9 ± 0.2 88.3 ± nan 82.3 ± 0.0 96.7 ± 0.5 95.8 ± 0.1 98.5 ± 0.0
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D EXPERIMENTAL DETAILS

For reproducibility, we provide a Python package extending the dynamic graph learning library
DyGLib1 Yu et al. (2023) as a supplement, including a bash script to run the experiments. The code
will be made publicly available on GitHub after acceptance of the paper.

We use the best hyperparameters reported by Yu et al. (2023) and, for completeness, list these
hyperparameters for the 13 datasets used by Yu et al. (2023) below. However, the Myket dataset
Loghmani & Fazli (2023) was not included in the study. Therefore, for Myket, we use each method’s
default parameters as suggested by the respective authors.

We use 9 state-of-the-art dynamic graph learning models and baselines (JODIE Kumar et al. (2019),
DyRep Trivedi et al. (2019), TGAT Xu et al. (2020), TGN Rossi et al. (2020), CAWN Wang et al.
(2021b), EdgeBank Poursafaei et al. (2022), TCL Wang et al. (2021a), GraphMixer Cong et al. (2023)
and DyGFormer Yu et al. (2023)). The neural-network-based approaches (all except EdgeBank)
are trained five times for 100 epochs using the Adam optimizer with a learning rate of 0.0001.
An early-stopping strategy with a patience of 5 is employed to avoid overfitting. For training and
validation, a batch size of 200 is used. The training, validation and test sets of each dataset contain
70%, 15% and 15% of the edges, respectively. The sets are split based on time, i.e., the training set
contains the edges that occurred first while the test set comprises the most recent edges.

The experiments were conducted on a variety of machines with different CPUs and GPUs. A list of
machine specifications is provided in Table 7.

Table 7: Hardware details of the machines used for the experiments.

(a) CPUs

CPU

AMD Ryzen Threadripper PRO 5965WX 24 Cores
AMD Ryzen 9 7900X 12 Cores
11th Gen Intel(R) Core(TM) i9-11900K 8 Cores
AMD Ryzen 9 7950X 16 Cores
13th Gen Intel(R) Core(TM) i9-13900H 14 Cores

(b) GPUs

GPU

NVIDIA GeForce RTX 3090 Ti
NVIDIA GeForce RTX 4080
NVIDIA GeForce RTX 3090
NVIDIA GeForce RTX 4090
NVIDIA GeForce RTX 4060 (Laptop)
NVIDIA A100
NVIDIA GeForce RTX 2080 Ti
NVIDIA TITAN Xp
NVIDIA TITAN X
NVIDIA Quadro RTX 8000

For all model architectures, time-related representations use a size of 100 dimensions while all other
non-time-related representations are set to 172. An exception is DyGFormer where the neighbor
co-occurrence encoding and the aligned encoding each have 50 dimensions. We use eight attention
heads for CAWN, and two attention heads for all other attention-based methods. The memory-based
models either use a vanilla recurrent neural network (JODIE and DyRep), or a gated recurrent unit
(GRU) to update their memory. Other model-specific parameters are provided in Table 8 .

1https://github.com/yule-BUAA/DyGLib (MIT License)
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Table 8: Specific hyperparameters for different models and datasets.

(a) Hyperparameters for neighborhood sampling-based
models. nNeighbors is the number of sampled neighbors
using the specified neighbor sampling strategy. nLayers is
the number of transformer layers (for TCL), the number
of MLP-Mixer layers (for GraphMixer) or the number
of GNN layers otherwise.

Dataset Model Neigh. Sampling nNeighbors nLayers Dropout

Wikipedia

DyRep recent 10 1 0.1
TGAT recent 20 2 0.1
TGN recent 10 1 0.1
TCL recent 20 2 0.1
GraphMixer recent 30 2 0.5

Reddit

DyRep recent 10 1 0.1
TGAT uniform 20 2 0.1
TGN recent 10 1 0.1
TCL uniform 20 2 0.1
GraphMixer recent 10 2 0.5

MOOC

DyRep recent 10 1 0.0
TGAT recent 20 2 0.1
TGN recent 10 1 0.2
TCL recent 20 2 0.1
GraphMixer recent 20 2 0.4

LastFM

DyRep recent 10 1 0.0
TGAT recent 20 2 0.1
TGN recent 10 1 0.3
TCL recent 20 2 0.1
GraphMixer recent 10 2 0.0

Enron

DyRep recent 10 1 0.0
TGAT recent 20 2 0.2
TGN recent 10 1 0.0
TCL recent 20 2 0.1
GraphMixer recent 20 2 0.5

Social Evo.

DyRep recent 10 1 0.1
TGAT recent 20 2 0.1
TGN recent 10 1 0.0
TCL recent 20 2 0.0
GraphMixer recent 20 2 0.3

UCI

DyRep recent 10 1 0.0
TGAT recent 20 2 0.1
TGN recent 10 1 0.1
TCL recent 20 2 0.0
GraphMixer recent 20 2 0.4

Myket

DyRep recent 10 1 0.1
TGAT recent 20 2 0.1
TGN recent 10 1 0.1
TCL recent 20 2 0.1
GraphMixer recent 20 2 0.1

Flights

DyRep recent 10 1 0.1
TGAT recent 20 2 0.1
TGN recent 10 1 0.1
TCL recent 20 2 0.1
GraphMixer recent 20 2 0.2

Can. Parl.

DyRep uniform 10 1 0.0
TGAT uniform 20 2 0.2
TGN uniform 10 1 0.3
TCL uniform 20 2 0.2
GraphMixer uniform 20 2 0.2

US Legis.

DyRep recent 10 1 0.0
TGAT recent 20 2 0.1
TGN recent 10 1 0.1
TCL uniform 20 2 0.3
GraphMixer recent 20 2 0.4

UN Trade

DyRep recent 10 1 0.1
TGAT uniform 20 2 0.1
TGN recent 10 1 0.2
TCL uniform 20 2 0.0
GraphMixer uniform 20 2 0.1

UN Vote

DyRep recent 10 1 0.1
TGAT recent 20 2 0.2
TGN uniform 10 1 0.1
TCL uniform 20 2 0.0
GraphMixer uniform 20 2 0.0

Contacts

DyRep recent 10 1 0.0
TGAT recent 20 2 0.1
TGN recent 10 1 0.1
TCL recent 20 2 0.0
GraphMixer recent 20 2 0.1

(b) Hyperparameters DyGFormer.

Dataset Model Sequence Length Patch Size Dropout

Wikipedia DyGFormer 32 1 0.1
Reddit DyGFormer 64 2 0.2
MOOC DyGFormer 256 8 0.1
LastFM DyGFormer 512 16 0.1
Enron DyGFormer 256 8 0.0
Social Evo. DyGFormer 32 1 0.1
UCI DyGFormer 32 1 0.1
Myket DyGFormer 32 1 0.1
Flights DyGFormer 256 8 0.1
Can. Parl. DyGFormer 2048 64 0.1
US Legis. DyGFormer 256 8 0.0
UN Trade DyGFormer 256 8 0.0
UN Vote DyGFormer 128 4 0.2
Contacts DyGFormer 32 1 0.0

(c) Hyperparameters CAWN.

Dataset Model Walk Length Time Scale Dropout

Wikipedia CAWN 1 0.000001 0.1
Reddit CAWN 1 0.000001 0.1
MOOC CAWN 1 0.000001 0.1
LastFM CAWN 1 0.000001 0.1
Enron CAWN 1 0.000001 0.1
Social Evo. CAWN 1 0.000001 0.1
UCI CAWN 1 0.000001 0.1
Myket CAWN 1 0.000001 0.1
Flights CAWN 1 0.000001 0.1
Can. Parl. CAWN 1 0.000001 0.0
US Legis. CAWN 1 0.000001 0.1
UN Trade CAWN 1 0.000001 0.1
UN Vote CAWN 1 0.000001 0.1
Contacts CAWN 1 0.000001 0.1

(d) Hyperparameters EdgeBank

Dataset Model Neg. Sampling Memory Mode Time Window

Wikipedia EdgeBank
random unlimited -
historical repeat threshold -
inductive repeat threshold -

Reddit EdgeBank
random unlimited -
historical repeat threshold -
inductive repeat threshold -

MOOC EdgeBank
random time window fixed proportion
historical time window repeat interval
inductive repeat threshold -

LastFM EdgeBank
random time window fixed proportion
historical time window repeat interval
inductive repeat threshold -

Enron EdgeBank
random time window fixed proportion
historical time window repeat interval
inductive repeat threshold -

Social Evo. EdgeBank
random repeat threshold -
historical repeat threshold -
inductive repeat threshold -

UCI EdgeBank
random unlimited -
historical time window fixed proportion
inductive time window repeat interval

Myket EdgeBank
random unlimited -
historical repeat threshold
inductive repeat threshold

Flights EdgeBank
random unlimited -
historical repeat threshold -
inductive repeat threshold -

Can. Parl. EdgeBank
random time window fixed proportion
historical time window fixed proportion
inductive repeat threshold -

US Legis. EdgeBank
random time window fixed proportion
historical time window fixed proportion
inductive time window fixed proportion

UN Trade EdgeBank
random time window repeat interval
historical time window repeat interval
inductive repeat threshold -

UN Vote EdgeBank
random time window repeat interval
historical time window repeat interval
inductive time window repeat interval

Contacts EdgeBank
random time window repeat interval
historical time window repeat interval
inductive repeat threshold -
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E DETAILED AUC-ROC AND AVERAGE PRECISION RESULTS

Here, we provide detailed tabulated results for all models’ AUC-ROC and average precision perfor-
mance across five runs, including standard deviations.

AUC-ROC

Table 9: Average AUC-ROC performance over five runs for the test set of the continuous-time datasets
from Poursafaei et al. (2022); Yu et al. (2023), including standard deviations.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

Enron 84.0 ± 5.1 80.3 ± 1.4 67.9 ± 7.1 69.0 ± 1.6 75.7 ± 0.5 82.7 ± 0.0 75.1 ± 5.2 88.6 ± 0.5 84.5 ± 0.6
UCI 86.8 ± 1.0 60.2 ± 2.8 62.1 ± 1.3 55.2 ± 1.4 56.5 ± 0.5 72.5 ± 0.0 56.3 ± 1.0 80.2 ± 1.0 75.7 ± 0.5
MOOC 83.1 ± 4.2 79.0 ± 4.5 87.4 ± 1.9 79.9 ± 0.8 68.8 ± 1.6 59.8 ± 0.0 68.4 ± 1.4 70.3 ± 1.2 80.0 ± 9.0
Wiki. 81.5 ± 0.4 78.3 ± 0.4 83.7 ± 0.6 82.9 ± 0.3 71.3 ± 0.8 77.2 ± 0.0 84.6 ± 0.5 87.3 ± 0.3 79.8 ± 1.6
LastFM 76.3 ± 0.8 69.0 ± 1.4 79.2 ± 2.7 65.2 ± 0.9 66.3 ± 0.3 78.0 ± 0.0 62.5 ± 6.4 59.9 ± 1.4 78.2 ± 0.6
Myket 64.4 ± 2.2 64.1 ± 2.9 61.2 ± 2.6 57.8 ± 0.5 33.5 ± 0.4 52.6 ± 0.0 58.2 ± 2.2 59.8 ± 0.4 33.8 ± 0.9
Social 92.1 ± 1.9 92.2 ± 0.7 92.2 ± 2.6 92.5 ± 0.5 86.5 ± 0.0 84.9 ± 0.0 94.7 ± 0.5 94.6 ± 0.2 97.3 ± 0.1
Reddit 80.6 ± 0.1 79.5 ± 0.8 80.4 ± 0.4 78.6 ± 0.7 80.2 ± 0.3 78.6 ± 0.0 76.2 ± 0.4 77.1 ± 0.4 80.2 ± 1.1

Pred.

Enron 77.4 ± 3.6 73.5 ± 2.4 68.0 ± 2.9 58.7 ± 1.2 66.4 ± 0.4 79.8 ± 0.0 67.6 ± 5.5 81.3 ± 0.8 76.4 ± 0.5
UCI 83.3 ± 1.4 51.4 ± 7.8 63.0 ± 1.3 59.6 ± 1.5 58.2 ± 0.6 69.1 ± 0.0 60.0 ± 0.9 80.6 ± 0.8 76.2 ± 0.6
MOOC 84.8 ± 3.1 80.7 ± 3.2 88.5 ± 1.6 82.3 ± 0.6 70.4 ± 1.3 61.9 ± 0.0 72.6 ± 0.6 74.4 ± 1.4 81.2 ± 8.9
Wiki. 81.8 ± 0.4 78.4 ± 0.4 84.1 ± 0.6 83.5 ± 0.2 71.6 ± 0.8 77.1 ± 0.0 85.2 ± 0.5 87.8 ± 0.3 80.0 ± 1.6
LastFM 78.0 ± 0.7 71.7 ± 1.1 80.7 ± 2.4 68.4 ± 0.7 68.1 ± 0.3 78.2 ± 0.0 64.3 ± 6.1 65.9 ± 1.7 78.9 ± 0.6
Myket 64.0 ± 2.1 64.2 ± 2.7 61.1 ± 2.6 57.6 ± 0.4 32.5 ± 0.4 51.9 ± 0.0 58.4 ± 2.0 59.5 ± 0.4 32.8 ± 1.0
Social 91.4 ± 2.1 92.7 ± 0.5 91.7 ± 3.3 92.6 ± 0.5 87.7 ± 0.1 85.8 ± 0.0 95.2 ± 0.2 94.1 ± 0.2 97.3 ± 0.1
Reddit 80.6 ± 0.1 79.5 ± 0.8 80.4 ± 0.4 78.7 ± 0.6 80.2 ± 0.3 78.6 ± 0.0 76.2 ± 0.4 77.1 ± 0.4 80.2 ± 1.1

Table 10: Average AUC-ROC performance over five runs for the test set of the discrete-time datasets
from Poursafaei et al. (2022); Yu et al. (2023), including standard deviation.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

UN V. 54.0 ± 1.8 52.2 ± 2.0 51.3 ± 7.1 54.4 ± 3.6 53.7 ± 2.1 89.6 ± 0.0 53.4 ± 1.0 56.9 ± 1.6 65.2 ± 1.1
US L. 52.5 ± 1.8 61.8 ± 3.5 57.7 ± 1.8 78.6 ± 7.9 82.0 ± 4.0 68.4 ± 0.0 75.4 ± 5.3 90.4 ± 1.5 89.4 ± 0.9
UN Tr. 57.7 ± 3.3 50.3 ± 1.4 54.3 ± 1.5 64.1 ± 1.3 67.6 ± 1.2 85.6 ± 0.0 63.7 ± 1.6 68.6 ± 2.6 70.7 ± 2.6
Can. P. 63.6 ± 0.8 67.5 ± 8.5 73.2 ± 1.1 72.7 ± 2.2 70.0 ± 1.4 63.2 ± 0.0 69.5 ± 3.1 80.7 ± 0.9 85.5 ± 3.5
Flights 67.4 ± 2.0 66.0 ± 1.9 68.1 ± 1.7 72.6 ± 0.2 65.2 ± 1.8 74.6 ± 0.0 70.6 ± 0.1 70.7 ± 0.3 68.6 ± 1.3
Cont. 95.6 ± 0.8 94.9 ± 0.3 96.6 ± 0.3 95.9 ± 0.2 86.7 ± 0.1 93.0 ± 0.0 95.7 ± 0.5 95.2 ± 0.2 97.7 ± 0.0

Pred.

UN V. 73.7 ± 2.4 72.6 ± 1.5 70.3 ± 4.3 52.8 ± 3.6 50.1 ± 1.6 89.5 ± 0.0 53.0 ± 1.6 56.2 ± 2.0 63.0 ± 1.1
US L. 56.3 ± 1.9 79.9 ± 1.1 84.0 ± 2.2 78.5 ± 7.8 81.8 ± 4.0 67.5 ± 0.0 75.6 ± 5.4 90.2 ± 1.6 89.4 ± 0.9
UN Tr. 66.1 ± 3.0 63.2 ± 2.1 63.1 ± 1.2 61.7 ± 1.3 64.7 ± 1.3 86.4 ± 0.0 60.9 ± 1.3 66.3 ± 2.5 68.3 ± 2.3
Can. P. 63.9 ± 0.7 66.6 ± 2.5 73.4 ± 3.5 71.6 ± 2.6 68.0 ± 1.0 62.9 ± 0.0 68.2 ± 3.6 81.2 ± 1.0 97.7 ± 0.7
Flights 69.5 ± 2.2 69.0 ± 1.0 68.8 ± 1.6 72.6 ± 0.2 65.0 ± 1.4 74.6 ± 0.0 70.6 ± 0.1 70.7 ± 0.3 68.9 ± 1.1
Cont. 95.5 ± 0.6 95.4 ± 0.2 96.1 ± 0.8 95.4 ± 0.3 83.3 ± 0.0 92.2 ± 0.0 94.1 ± 0.8 94.1 ± 0.2 97.1 ± 0.0

AVERAGE PRECISION

Table 11: Mean average precision performance for dynamic link forecasting (window-based) over
five runs for the continuous-time datasets. Values in parenthesis show the relative change as compared
to the average precision performance for dynamic link prediction (batch-based).

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

Enron 80.8(↑12.0%) 78.3(↑12.4%) 68.6(↑5.0%) 71.7(↑13.5%) 76.0(↑15.1%) 81.1(↑5.5%) 78.2(↑11.3%) 89.8(↑9.2%) 85.3(↑11.6%) 10.6%±3.4%
UCI 87.0(↑7.2%) 59.5(↑21.4%) 69.2(↓2.8%) 64.4(↓6.2%) 64.0(↓1.6%) 68.6(↑5.4%) 65.2(↓5.5%) 85.3(↓0.6%) 80.5(↓0.2%) 5.7%±6.4%
MOOC 82.4(↓1.1%) 76.9(↓0.3%) 86.3(↓0.8%) 82.7(↓2.1%) 72.3(↓1.7%) 59.1(↓2.7%) 74.9(↓4.6%) 74.4(↓4.5%) 82.1(↓0.4%) 2.0%±1.6%
Wiki. 84.1(↓0.1%) 80.9(↑0.1%) 88.5(↓0.4%) 87.5(↓0.4%) 75.1(↑0.1%) 73.3(↑0.2%) 89.2(↓0.4%) 90.8(↓0.4%) 83.1(↑0.0%) 0.2%±0.2%
LastFM 76.7(↓1.1%) 69.4(↓2.7%) 78.8(↓1.9%) 72.1(↓3.9%) 68.2(↓2.3%) 73.4(↑0.3%) 70.3(↓1.8%) 70.0(↓5.4%) 80.5(↓0.7%) 2.2%±1.6%
Myket 64.5(↑1.6%) 63.1(↑0.9%) 62.8(↑1.2%) 57.9(↑1.4%) 46.6(↑3.3%) 51.9(↑1.3%) 58.9(↑1.1%) 60.0(↑1.5%) 46.1(↑3.3%) 1.7%±0.9%
Social 89.4(↑1.2%) 91.9(↑0.3%) 93.9(↑0.8%) 95.0(↑0.2%) 85.6(↓0.6%) 79.7(↓1.1%) 96.1(↓0.1%) 95.8(↑0.4%) 97.7(↑0.3%) 0.6%±0.4%
Reddit 80.1(↓0.0%) 79.2(↑0.0%) 80.6(↑0.0%) 78.6(↓0.1%) 81.3(↑0.2%) 73.5(↓0.2%) 76.5(↓0.0%) 77.5(↓0.0%) 82.8(↑0.1%) 0.1%±0.1%

µ± σ 3.0%±4.3% 4.8%±7.9% 1.6%±1.6% 3.5%±4.6% 3.1%±5.0% 2.1%±2.2% 3.1%±3.9% 2.8%±3.3% 2.1%±4.0%
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Table 12: Mean average precision performance for dynamic link forecasting (window-based) over
five runs for the discrete-time datasets. Values in parenthesis show the relative change as compared to
the average precision performance for dynamic link prediction (batch-based).

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

UN V. 52.6(↓22.4%) 49.6(↓26.8%) 49.7(↓24.8%) 52.7(↑0.9%) 52.4(↑3.4%) 84.2(↓0.7%) 52.4(↓1.7%) 54.0(↑0.1%) 62.4(↑4.0%) 9.4%±11.6%
US L. 46.0(↓4.5%) 62.5(↓14.5%) 58.6(↓27.8%) 71.0(↓0.3%) 80.7(↓0.1%) 63.2(↓0.2%) 77.5(↑0.1%) 86.5(↑0.6%) 86.1(↑0.4%) 5.4%±9.6%
UN Tr. 52.7(↓10.6%) 49.4(↓16.6%) 53.2(↓9.7%) 59.1(↑2.0%) 59.2(↑2.4%) 79.0(↓2.6%) 57.5(↑2.3%) 65.8(↑3.3%) 67.1(↑4.4%) 6.0%±5.1%
Can. P. 52.1(↓1.3%) 61.0(↓1.3%) 69.9(↑2.0%) 70.8(↑4.5%) 68.3(↑6.9%) 59.4(↓6.8%) 68.2(↑6.2%) 80.9(↑4.9%) 83.2(↓14.3%) 5.4%±4.0%
Flights 65.2(↓2.2%) 63.9(↓4.3%) 68.3(↓0.0%) 73.5(↑1.1%) 64.7(↑1.3%) 70.4(↓0.2%) 71.0(↑0.4%) 71.9(↑1.0%) 68.9(↓0.1%) 1.2%±1.4%
Cont. 94.0(↓0.2%) 95.8(↑0.4%) 97.0(↑0.8%) 96.8(↑0.8%) 88.2(↑4.4%) 89.4(↑0.6%) 96.6(↑2.1%) 95.7(↑1.6%) 98.3(↑0.6%) 1.3%±1.3%

µ± σ 6.9%±8.5% 10.6%±10.4% 10.8%±12.5% 1.6%±1.5% 3.1%±2.4% 1.8%±2.6% 2.1%±2.2% 1.9%±1.8% 4.0%±5.4%

Table 13: Mean average precision performance over five runs for the test set of the continuous-time
datasets from Poursafaei et al. (2022); Yu et al. (2023), including standard deviations.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

Enron 80.8 ± 5.3 78.3 ± 2.3 68.6 ± 5.6 71.7 ± 1.2 76.0 ± 0.7 81.1 ± 0.0 78.2 ± 2.9 89.8 ± 0.4 85.3 ± 0.6
UCI 87.0 ± 1.9 59.5 ± 2.3 69.2 ± 1.0 64.4 ± 1.1 64.0 ± 0.7 68.6 ± 0.0 65.2 ± 0.9 85.3 ± 0.6 80.5 ± 0.9
MOOC 82.4 ± 4.9 76.9 ± 4.3 86.3 ± 2.3 82.7 ± 0.7 72.3 ± 1.3 59.1 ± 0.0 74.9 ± 0.7 74.4 ± 0.6 82.1 ± 8.7
Wiki. 84.1 ± 0.5 80.9 ± 0.4 88.5 ± 0.4 87.5 ± 0.2 75.1 ± 1.0 73.3 ± 0.0 89.2 ± 0.3 90.8 ± 0.2 83.1 ± 1.2
LastFM 76.7 ± 0.6 69.4 ± 1.8 78.8 ± 3.5 72.1 ± 0.8 68.2 ± 0.5 73.4 ± 0.0 70.3 ± 6.5 70.0 ± 1.1 80.5 ± 0.9
Myket 64.5 ± 1.8 63.1 ± 1.5 62.8 ± 2.2 57.9 ± 0.4 46.6 ± 0.2 51.9 ± 0.0 58.9 ± 2.6 60.0 ± 0.2 46.1 ± 1.7
Social 89.4 ± 4.7 91.9 ± 1.0 93.9 ± 1.7 95.0 ± 0.3 85.6 ± 0.1 79.7 ± 0.0 96.1 ± 0.4 95.8 ± 0.2 97.7 ± 0.1
Reddit 80.1 ± 0.3 79.2 ± 0.9 80.6 ± 0.6 78.6 ± 1.0 81.3 ± 0.4 73.5 ± 0.0 76.5 ± 0.6 77.5 ± 0.5 82.8 ± 0.8

Pred.

Enron 72.1 ± 3.0 69.7 ± 3.7 65.3 ± 3.2 63.2 ± 0.5 66.0 ± 0.5 76.9 ± 0.0 70.2 ± 3.4 82.3 ± 0.6 76.4 ± 0.4
UCI 81.1 ± 3.3 49.0 ± 4.5 71.2 ± 1.1 68.6 ± 1.1 65.1 ± 0.6 65.0 ± 0.0 69.0 ± 0.8 85.9 ± 0.5 80.7 ± 1.1
MOOC 83.4 ± 4.3 77.1 ± 3.8 87.0 ± 2.1 84.5 ± 0.7 73.5 ± 1.0 60.7 ± 0.0 78.5 ± 0.5 77.9 ± 0.8 82.4 ± 9.3
Wiki. 84.1 ± 0.5 80.9 ± 0.3 88.8 ± 0.3 87.9 ± 0.2 75.0 ± 1.2 73.1 ± 0.0 89.5 ± 0.3 91.2 ± 0.2 83.1 ± 1.1
LastFM 77.6 ± 0.6 71.4 ± 1.7 80.3 ± 3.2 75.0 ± 0.7 69.8 ± 0.5 73.2 ± 0.0 71.6 ± 6.1 74.1 ± 1.3 81.1 ± 0.9
Myket 63.4 ± 1.7 62.5 ± 1.4 62.1 ± 2.3 57.1 ± 0.4 45.1 ± 0.2 51.3 ± 0.0 58.3 ± 2.2 59.1 ± 0.2 44.7 ± 1.6
Social 88.3 ± 4.8 91.6 ± 0.7 93.2 ± 2.4 94.8 ± 0.3 86.2 ± 0.2 80.6 ± 0.0 96.2 ± 0.2 95.4 ± 0.1 97.3 ± 0.1
Reddit 80.1 ± 0.3 79.2 ± 0.9 80.5 ± 0.5 78.6 ± 1.0 81.1 ± 0.4 73.7 ± 0.0 76.5 ± 0.6 77.5 ± 0.5 82.7 ± 0.8

Table 14: Mean average precision performance over five runs for the test set of the discrete-time
datasets from Poursafaei et al. (2022); Yu et al. (2023), including standard deviations.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

UN V. 52.6 ± 1.8 49.6 ± 1.9 49.7 ± 3.9 52.7 ± 2.6 52.4 ± 2.0 84.2 ± 0.0 52.4 ± 0.9 54.0 ± 1.4 62.4 ± 1.7
US L. 46.0 ± 0.9 62.5 ± 3.6 58.6 ± 2.4 71.0 ± 8.9 80.7 ± 3.7 63.2 ± 0.0 77.5 ± 4.3 86.5 ± 1.9 86.1 ± 1.0
UN Tr. 52.7 ± 3.0 49.4 ± 0.9 53.2 ± 1.5 59.1 ± 2.7 59.2 ± 1.7 79.0 ± 0.0 57.5 ± 1.9 65.8 ± 1.9 67.1 ± 2.7
Can. P. 52.1 ± 0.5 61.0 ± 7.6 69.9 ± 0.8 70.8 ± 1.6 68.3 ± 2.3 59.4 ± 0.0 68.2 ± 1.6 80.9 ± 0.5 83.2 ± 2.9
Flights 65.2 ± 2.7 63.9 ± 2.8 68.3 ± 2.2 73.5 ± 0.3 64.7 ± 0.9 70.4 ± 0.0 71.0 ± 0.4 71.9 ± 0.8 68.9 ± 2.0
Cont. 94.0 ± 2.6 95.8 ± 0.4 97.0 ± 0.5 96.8 ± 0.2 88.2 ± 0.2 89.4 ± 0.0 96.6 ± 0.4 95.7 ± 0.2 98.3 ± 0.0

Pred.

UN V. 67.8 ± 1.9 67.8 ± 1.7 66.1 ± 3.9 52.3 ± 2.5 50.7 ± 1.4 84.8 ± 0.0 53.3 ± 1.3 53.9 ± 1.7 60.0 ± 1.4
US L. 48.2 ± 1.0 73.1 ± 2.2 81.2 ± 2.1 71.2 ± 8.2 80.8 ± 3.5 63.3 ± 0.0 77.4 ± 4.5 86.0 ± 2.0 85.8 ± 1.0
UN Tr. 58.9 ± 3.1 59.3 ± 1.8 58.9 ± 1.5 57.9 ± 2.4 57.9 ± 2.1 81.1 ± 0.0 56.2 ± 1.5 63.8 ± 1.6 64.3 ± 2.2
Can. P. 52.8 ± 0.5 61.8 ± 1.1 68.5 ± 2.1 67.7 ± 1.6 63.9 ± 1.3 63.8 ± 0.0 64.2 ± 2.0 77.1 ± 0.4 97.1 ± 0.7
Flights 66.7 ± 3.3 66.8 ± 1.6 68.3 ± 1.8 72.7 ± 0.2 63.9 ± 0.9 70.5 ± 0.0 70.8 ± 0.5 71.2 ± 0.7 68.9 ± 1.8
Cont. 94.2 ± 1.3 95.5 ± 0.3 96.3 ± 1.1 96.0 ± 0.3 84.5 ± 0.2 88.8 ± 0.0 94.6 ± 0.8 94.2 ± 0.1 97.7 ± 0.1
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F GLOBAL PERFORMANCE SCORES

The results presented in Table 3 and Table 4 assign the individual scores of each time window the
same weight and then compute the mean over all scores to get the final score. This score measures the
model performance across time, i.e. it is equally important for a model to perform well in periods that
only have a few edge occurrences as well as in periods where many edges occur. In some scenarios,
the focus might not be to forecast the existence of edges in all time windows equally well but instead
forecast for all edges equally well. In the following, we investigate the model performance of link
forecasting compared to link prediction using this perspective of model performance.

The results are presented in Table 15 for continuous-time temporal graphs and in Table 16 for discrete-
time temporal graphs (corresponding average precision in Table 19 and Table 20). In contrast to
the results presented in the main part of this work, the scores are computed over all edges instead
of per time window and then averaged. As we can see, the changes between link forecasting and
link prediction are less expressed if every edge is weighted the same instead of every time window.
Nevertheless, we can still observe the patterns discussed above although not as distinct.

Table 15: Test AUC-ROC scores for link forecasting and the relative change compared to link
prediction for continuous-time graphs on the same trained models (standard deviations in Table 17).
We compute the AUC-ROC score over all edges instead of per time window or batch as in Table 3.
The last row/column provides mean µ and standard deviation σ of the absolute values of the relative
change per column/row.

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

Enron 76.8(↑1.1%) 73.4(↑0.2%) 68.4(↑0.2%) 58.9(↑0.2%) 66.7(↑0.5%) 78.5(↓1.6%) 68.0(↑0.5%) 81.1(↑0.8%) 76.8(↑0.5%) 0.6%±0.5%
UCI 85.4(↑3.5%) 60.7(↑18.1%) 64.0(↑1.5%) 59.5(↓0.2%) 57.9(↓0.5%) 71.3(↑3.1%) 59.9(↓0.1%) 80.5(↓0.1%) 76.4(↑0.2%) 3.0%±5.8%
MOOC 83.9(↓0.9%) 79.5(↓1.3%) 88.1(↓0.5%) 82.2(↑0.1%) 70.5(↑0.2%) 59.9(↓3.2%) 72.3(↑0.0%) 74.2(↑0.1%) 81.0(↑0.0%) 0.7%±1.0%
Wiki. 81.6(↓0.2%) 78.3(↓0.1%) 84.1(↓0.0%) 83.4(↓0.0%) 71.6(↑0.1%) 77.3(↑0.3%) 85.1(↓0.0%) 87.7(↓0.0%) 80.2(↑0.2%) 0.1%±0.1%
LastFM 76.6(↓0.6%) 70.2(↓1.4%) 78.2(↓0.3%) 68.5(↑0.0%) 68.0(↓0.0%) 78.0(↓0.2%) 64.3(↓0.0%) 66.1(↓0.0%) 78.9(↑0.0%) 0.3%±0.5%
Myket 64.0(↑0.1%) 64.0(↓0.0%) 60.7(↓0.1%) 57.4(↓0.3%) 32.6(↑0.3%) 52.0(↑0.0%) 58.4(↓0.1%) 59.4(↓0.1%) 32.9(↑0.3%) 0.1%±0.1%
Social 90.4(↓0.6%) 91.1(↓1.4%) 91.5(↓0.1%) 92.7(↑0.0%) 87.8(↑0.1%) 86.0(↑0.2%) 95.3(↑0.1%) 94.1(↑0.0%) 97.5(↑0.0%) 0.3%±0.5%
Reddit 80.5(↓0.1%) 79.5(↓0.1%) 80.3(↓0.1%) 78.6(↓0.1%) 80.2(↓0.1%) 78.5(↓0.2%) 76.2(↓0.1%) 77.1(↓0.1%) 80.1(↓0.0%) 0.1%±0.1%

µ± σ 0.9%±1.1% 2.8%±6.2% 0.4%±0.5% 0.1%±0.1% 0.2%±0.2% 1.1%±1.4% 0.1%±0.2% 0.1%±0.3% 0.1%±0.2%

Table 16: Test AUC-ROC scores for discrete-time temporal graphs as in Table 15. All results with
standard deviations are listed in Table 18.

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

UN V. 56.3(↓25.5%) 53.3(↓28.7%) 52.0(↓25.9%) 54.3(↑2.8%) 53.8(↑7.4%) 89.7(↑0.1%) 53.4(↑0.7%) 57.1(↑1.4%) 63.9(↑3.2%) 10.6%±12.3%
US L. 52.5(↓7.1%) 61.8(↓22.1%) 57.7(↓31.2%) 78.6(↑0.1%) 82.0(↑0.1%) 68.4(↑1.3%) 75.4(↓0.1%) 90.4(↑0.3%) 89.4(↑0.2%) 6.9%±11.6%
UN Tr. 57.6(↓13.1%) 50.4(↓20.3%) 54.4(↓14.0%) 64.1(↑3.9%) 67.6(↑4.6%) 85.6(↓1.0%) 63.7(↑4.5%) 68.6(↑3.4%) 70.7(↑3.5%) 7.6%±6.5%
Can. P. 64.0(↑0.5%) 64.6(↓3.2%) 72.7(↓1.4%) 72.3(↑0.5%) 68.1(↑0.0%) 61.5(↓2.6%) 68.3(↓0.1%) 81.7(↑0.1%) 83.7(↓14.3%) 2.5%±4.6%
Flights 67.3(↓3.0%) 65.6(↓4.7%) 68.1(↓1.0%) 72.6(↓0.0%) 65.2(↑0.3%) 74.6(↑0.0%) 70.5(↓0.1%) 70.6(↓0.1%) 68.5(↓0.5%) 1.1%±1.7%
Cont. 93.3(↓1.0%) 94.1(↓1.4%) 95.6(↓0.5%) 95.3(↓0.0%) 83.4(↑0.1%) 92.2(0.0%) 94.7(↑0.5%) 93.7(↓0.0%) 97.2(↓0.0%) 0.4%±0.5%

µ± σ 8.4%±9.6% 13.4%±11.7% 12.3%±13.6% 1.2%±1.7% 2.1%±3.2% 0.8%±1.0% 1.0%±1.7% 0.9%±1.3% 3.6%±5.5%
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Table 17: Test AUC-ROC scores for link forecasting and link prediction averaged over 5 runs with
standard deviations on continuous-time temporal graphs.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

Enron 76.8 ± 3.9 73.4 ± 2.7 68.4 ± 3.4 58.9 ± 1.3 66.7 ± 0.5 78.5 ± 0.0 68.0 ± 5.7 81.1 ± 0.8 76.8 ± 0.5
UCI 85.4 ± 1.0 60.7 ± 2.7 64.0 ± 1.1 59.5 ± 1.5 57.9 ± 0.6 71.3 ± 0.0 59.9 ± 0.8 80.5 ± 0.8 76.4 ± 0.5
MOOC 83.9 ± 3.4 79.5 ± 4.1 88.1 ± 2.0 82.2 ± 0.6 70.5 ± 1.2 59.9 ± 0.0 72.3 ± 0.6 74.2 ± 1.4 81.0 ± 9.0
Wiki. 81.6 ± 0.4 78.3 ± 0.4 84.1 ± 0.6 83.4 ± 0.2 71.6 ± 0.8 77.3 ± 0.0 85.1 ± 0.5 87.7 ± 0.3 80.2 ± 1.6
LastFM 76.6 ± 0.5 70.2 ± 1.2 78.2 ± 3.0 68.5 ± 0.8 68.0 ± 0.3 78.0 ± 0.0 64.3 ± 6.0 66.1 ± 1.7 78.9 ± 0.6
Myket 64.0 ± 2.1 64.0 ± 2.7 60.7 ± 2.3 57.4 ± 0.5 32.6 ± 0.4 52.0 ± 0.0 58.4 ± 2.0 59.4 ± 0.4 32.9 ± 1.0
Social 90.4 ± 2.6 91.1 ± 1.0 91.5 ± 3.3 92.7 ± 0.5 87.8 ± 0.1 86.0 ± 0.0 95.3 ± 0.2 94.1 ± 0.2 97.5 ± 0.1
Reddit 80.5 ± 0.2 79.5 ± 0.8 80.3 ± 0.4 78.6 ± 0.7 80.2 ± 0.3 78.5 ± 0.0 76.2 ± 0.4 77.1 ± 0.5 80.1 ± 1.1

Pred.

Enron 76.0 ± 3.0 73.2 ± 2.3 68.3 ± 2.9 58.8 ± 1.2 66.4 ± 0.4 79.8 ± 0.0 67.6 ± 5.6 80.5 ± 0.8 76.4 ± 0.5
UCI 82.5 ± 1.3 51.4 ± 7.7 63.0 ± 1.3 59.6 ± 1.5 58.2 ± 0.6 69.1 ± 0.0 60.0 ± 0.9 80.7 ± 0.8 76.2 ± 0.6
MOOC 84.6 ± 3.1 80.5 ± 3.2 88.5 ± 1.6 82.1 ± 0.6 70.3 ± 1.3 61.9 ± 0.0 72.3 ± 0.6 74.1 ± 1.4 81.0 ± 9.0
Wiki. 81.7 ± 0.4 78.4 ± 0.4 84.1 ± 0.6 83.4 ± 0.2 71.5 ± 0.8 77.1 ± 0.0 85.2 ± 0.5 87.8 ± 0.3 80.0 ± 1.6
LastFM 77.1 ± 0.7 71.2 ± 1.1 78.4 ± 2.7 68.5 ± 0.7 68.1 ± 0.3 78.2 ± 0.0 64.3 ± 6.0 66.1 ± 1.7 78.9 ± 0.6
Myket 63.9 ± 2.1 64.0 ± 2.7 60.8 ± 2.3 57.5 ± 0.4 32.5 ± 0.4 51.9 ± 0.0 58.4 ± 2.0 59.5 ± 0.4 32.8 ± 1.0
Social 91.0 ± 2.4 92.4 ± 0.4 91.5 ± 3.5 92.7 ± 0.5 87.7 ± 0.1 85.8 ± 0.0 95.2 ± 0.2 94.1 ± 0.2 97.4 ± 0.1
Reddit 80.6 ± 0.1 79.5 ± 0.8 80.4 ± 0.4 78.7 ± 0.6 80.2 ± 0.3 78.6 ± 0.0 76.2 ± 0.4 77.1 ± 0.5 80.2 ± 1.1

Table 18: Test AUC-ROC scores for link forecasting and link prediction averaged over 5 runs with
standard deviations on discrete-time temporal graphs.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

UN V. 56.3 ± 1.4 53.3 ± 0.8 52.0 ± 7.2 54.3 ± 1.4 53.8 ± 2.1 89.7 ± 0.0 53.4 ± 1.1 57.1 ± 1.6 63.9 ± 1.7
US L. 52.5 ± 1.8 61.8 ± 3.5 57.7 ± 1.8 78.6 ± 7.9 82.0 ± 4.0 68.4 ± 0.0 75.4 ± 5.3 90.4 ± 1.5 89.4 ± 0.9
UN Tr. 57.6 ± 3.3 50.4 ± 1.2 54.4 ± 1.5 64.1 ± 1.3 67.6 ± 1.2 85.6 ± 0.0 63.7 ± 1.6 68.6 ± 2.6 70.7 ± 2.6
Can. P. 64.0 ± 0.8 64.6 ± 7.5 72.7 ± 2.7 72.3 ± 2.6 68.1 ± 1.0 61.5 ± 0.0 68.3 ± 3.6 81.7 ± 0.9 83.7 ± 3.9
Flights 67.3 ± 2.0 65.6 ± 1.8 68.1 ± 1.7 72.6 ± 0.2 65.2 ± 1.7 74.6 ± 0.0 70.5 ± 0.1 70.6 ± 0.3 68.5 ± 1.3
Cont. 93.3 ± 1.9 94.1 ± 0.5 95.6 ± 0.5 95.3 ± 0.3 83.4 ± 0.1 92.2 ± 0.0 94.7 ± 0.5 93.7 ± 0.1 97.2 ± 0.0

Pred.

UN V. 75.6 ± 1.9 74.8 ± 1.2 70.2 ± 5.8 52.8 ± 1.6 50.1 ± 1.6 89.5 ± 0.0 53.0 ± 1.6 56.3 ± 2.0 61.9 ± 1.6
US L. 56.5 ± 1.9 79.3 ± 1.0 84.0 ± 2.2 78.5 ± 7.8 81.9 ± 4.0 67.5 ± 0.0 75.4 ± 5.5 90.2 ± 1.5 89.3 ± 0.9
UN Tr. 66.3 ± 3.0 63.2 ± 1.9 63.2 ± 1.2 61.7 ± 1.3 64.7 ± 1.3 86.4 ± 0.0 60.9 ± 1.3 66.3 ± 2.5 68.3 ± 2.3
Can. P. 63.6 ± 0.7 66.8 ± 2.4 73.7 ± 3.5 72.0 ± 2.6 68.1 ± 1.0 63.1 ± 0.0 68.4 ± 3.6 81.6 ± 1.0 97.7 ± 0.6
Flights 69.4 ± 2.3 68.9 ± 1.0 68.7 ± 1.6 72.6 ± 0.2 65.0 ± 1.4 74.6 ± 0.0 70.6 ± 0.1 70.7 ± 0.3 68.9 ± 1.1
Cont. 94.3 ± 1.2 95.4 ± 0.3 96.1 ± 0.7 95.3 ± 0.3 83.3 ± 0.1 92.2 ± 0.0 94.3 ± 1.0 93.7 ± 0.1 97.3 ± 0.0

Table 19: Average Precision scores computed as in Table 15 for ROC-AUC scores on continuous-time
temporal graphs. For a full list of results with standard deviations, see Table 21.

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

Enron 69.8(↑1.1%) 68.2(↓0.4%) 65.3(↑0.5%) 62.7(↑0.1%) 66.8(↑0.4%) 75.7(↓1.2%) 70.7(↑0.9%) 81.5(↑1.2%) 77.1(↑0.8%) 0.7%±0.4%
UCI 85.1(↑6.8%) 56.6(↑18.1%) 71.9(↑0.4%) 69.0(↓0.1%) 65.6(↑0.0%) 66.9(↑3.1%) 69.6(↓0.1%) 85.9(↓0.2%) 81.2(↑0.2%) 3.2%±6.0%
MOOC 82.8(↓0.5%) 76.2(↓0.6%) 86.3(↓0.7%) 84.4(↑0.0%) 73.6(↑0.1%) 58.7(↓3.2%) 78.3(↓0.0%) 77.7(↓0.0%) 82.1(↑0.0%) 0.6%±1.0%
Wiki. 84.1(↑0.0%) 80.8(↑0.2%) 88.8(↓0.0%) 87.9(↑0.0%) 75.2(↑0.3%) 73.4(↑0.5%) 89.5(↓0.0%) 91.1(0.0%) 83.3(↑0.3%) 0.1%±0.2%
LastFM 76.4(↓1.9%) 70.3(↓2.5%) 78.5(↓0.7%) 76.0(↑0.0%) 72.2(↓0.0%) 73.0(↓0.2%) 72.5(↑0.0%) 75.1(↓0.0%) 82.1(↑0.0%) 0.6%±1.0%
Myket 63.1(↑0.4%) 61.7(↓0.0%) 61.3(↑0.0%) 56.4(↓0.3%) 44.8(↑0.0%) 51.1(↑0.0%) 57.6(↓0.1%) 58.7(↓0.1%) 44.4(↑0.0%) 0.1%±0.2%
Social 87.0(↓1.0%) 90.0(↓1.5%) 93.0(↑0.0%) 94.9(↑0.0%) 86.6(↑0.2%) 80.8(↑0.3%) 96.4(↑0.1%) 95.5(↑0.0%) 97.6(↑0.1%) 0.4%±0.5%
Reddit 79.7(↓0.1%) 78.9(0.0%) 80.3(↓0.1%) 78.3(↓0.1%) 81.0(↑0.1%) 73.4(↓0.2%) 76.3(↓0.0%) 77.2(↓0.0%) 82.6(↓0.0%) 0.1%±0.1%

µ± σ 1.5%±2.2% 2.9%±6.2% 0.3%±0.3% 0.1%±0.1% 0.1%±0.2% 1.1%±1.3% 0.1%±0.3% 0.2%±0.4% 0.2%±0.3%

Table 20: Average Precision scores as in Table 19 for discrete-time graphs. All results and standard
deviations are listed in Table 22.

Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer µ± σ

UN V. 53.3(↓23.6%) 50.6(↓28.2%) 49.9(↓22.6%) 52.5(↑1.7%) 52.6(↑4.8%) 84.1(↓0.4%) 52.4(↓0.9%) 54.1(↑1.4%) 60.0(↑3.0%) 9.6%±11.6%
US L. 46.0(↓4.2%) 62.5(↓15.3%) 58.6(↓28.5%) 71.0(↑0.2%) 80.7(↑0.0%) 63.2(↓0.0%) 77.5(↓0.1%) 86.5(↑0.7%) 86.1(↑0.6%) 5.5%±9.9%
UN Tr. 52.8(↓10.0%) 49.6(↓15.7%) 53.3(↓9.6%) 59.1(↑3.0%) 59.2(↑3.3%) 79.0(↓2.5%) 57.5(↑3.5%) 65.8(↑2.7%) 67.1(↑3.3%) 6.0%±4.7%
Can. P. 52.3(↑0.4%) 59.9(↓6.4%) 69.7(↓2.5%) 70.5(↑0.1%) 66.6(↑0.1%) 58.0(↓2.8%) 67.0(↑0.1%) 81.4(↑0.2%) 82.2(↓16.1%) 3.2%±5.3%
Flights 65.2(↓2.3%) 63.4(↓5.3%) 68.3(↓0.8%) 73.5(↓0.0%) 64.7(↑0.7%) 70.3(0.0%) 71.0(↓0.1%) 71.9(↓0.0%) 68.8(↓0.6%) 1.1%±1.7%
Cont. 90.2(↓2.2%) 95.1(↓0.7%) 95.7(↓0.7%) 96.0(↓0.0%) 85.2(↓0.0%) 88.7(↓0.1%) 95.4(↑0.4%) 93.5(↓0.1%) 97.9(↓0.0%) 0.5%±0.7%

µ± σ 7.1%±8.7% 11.9%±9.9% 10.8%±12.0% 0.8%±1.2% 1.5%±2.1% 1.0%±1.3% 0.8%±1.3% 0.8%±1.0% 3.9%±6.1%
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Table 21: Test average precision scores for link forecasting and link prediction averaged over 5 runs
with standard deviations on continuous-time temporal graphs.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

Enron 69.8 ± 3.6 68.2 ± 4.0 65.3 ± 2.8 62.7 ± 0.8 66.8 ± 0.5 75.7 ± 0.0 70.7 ± 3.7 81.5 ± 0.6 77.1 ± 0.7
UCI 85.1 ± 1.8 56.6 ± 2.4 71.9 ± 0.9 69.0 ± 1.0 65.6 ± 0.7 66.9 ± 0.0 69.6 ± 0.8 85.9 ± 0.4 81.2 ± 0.9
MOOC 82.8 ± 5.1 76.2 ± 4.3 86.3 ± 2.7 84.4 ± 0.7 73.6 ± 0.9 58.7 ± 0.0 78.3 ± 0.6 77.7 ± 0.7 82.1 ± 9.8
Wiki. 84.1 ± 0.5 80.8 ± 0.3 88.8 ± 0.4 87.9 ± 0.2 75.2 ± 1.1 73.4 ± 0.0 89.5 ± 0.3 91.1 ± 0.2 83.3 ± 1.2
LastFM 76.4 ± 0.5 70.3 ± 2.0 78.5 ± 3.9 76.0 ± 0.7 72.2 ± 0.4 73.0 ± 0.0 72.5 ± 5.9 75.1 ± 1.2 82.1 ± 0.8
Myket 63.1 ± 1.8 61.7 ± 1.5 61.3 ± 2.1 56.4 ± 0.4 44.8 ± 0.3 51.1 ± 0.0 57.6 ± 2.3 58.7 ± 0.2 44.4 ± 1.7
Social 87.0 ± 6.1 90.0 ± 1.4 93.0 ± 2.4 94.9 ± 0.3 86.6 ± 0.1 80.8 ± 0.0 96.4 ± 0.2 95.5 ± 0.2 97.6 ± 0.1
Reddit 79.7 ± 0.4 78.9 ± 0.9 80.3 ± 0.6 78.3 ± 1.0 81.0 ± 0.5 73.4 ± 0.0 76.3 ± 0.6 77.2 ± 0.5 82.6 ± 0.8

Pred.

Enron 69.0 ± 2.1 68.5 ± 4.3 65.0 ± 3.9 62.6 ± 0.6 66.6 ± 0.5 76.7 ± 0.0 70.1 ± 3.6 80.5 ± 0.6 76.5 ± 0.6
UCI 79.7 ± 3.0 48.0 ± 4.3 71.7 ± 1.1 69.1 ± 1.0 65.6 ± 0.7 64.9 ± 0.0 69.6 ± 0.8 86.0 ± 0.5 81.0 ± 1.0
MOOC 83.2 ± 4.5 76.6 ± 4.0 86.9 ± 2.2 84.3 ± 0.7 73.5 ± 1.0 60.6 ± 0.0 78.3 ± 0.5 77.7 ± 0.7 82.1 ± 9.8
Wiki. 84.1 ± 0.6 80.6 ± 0.3 88.8 ± 0.3 87.9 ± 0.2 75.0 ± 1.1 73.0 ± 0.0 89.5 ± 0.3 91.1 ± 0.2 83.1 ± 1.2
LastFM 77.9 ± 0.7 72.1 ± 1.9 79.1 ± 3.1 76.0 ± 0.6 72.2 ± 0.4 73.1 ± 0.0 72.4 ± 5.9 75.1 ± 1.2 82.1 ± 0.8
Myket 62.9 ± 1.8 61.7 ± 1.5 61.3 ± 2.1 56.6 ± 0.4 44.8 ± 0.3 51.1 ± 0.0 57.6 ± 2.2 58.7 ± 0.2 44.4 ± 1.7
Social 87.8 ± 5.3 91.3 ± 0.8 93.0 ± 2.6 94.9 ± 0.3 86.4 ± 0.1 80.5 ± 0.0 96.3 ± 0.2 95.4 ± 0.1 97.6 ± 0.1
Reddit 79.8 ± 0.4 78.9 ± 0.9 80.4 ± 0.6 78.4 ± 1.0 80.9 ± 0.5 73.6 ± 0.0 76.3 ± 0.6 77.2 ± 0.5 82.6 ± 0.8

Table 22: Test average precision scores for link forecasting and link prediction averaged over 5 runs
with standard deviations on discrete-time temporal graphs.

Eval Dataset JODIE DyRep TGN TGAT CAWN EdgeBank TCL GraphMixer DyGFormer

Forec.

UN V. 53.3 ± 1.2 50.6 ± 1.5 49.9 ± 4.4 52.5 ± 1.4 52.6 ± 1.9 84.1 ± 0.0 52.4 ± 0.9 54.1 ± 1.4 60.0 ± 2.0
US L. 46.0 ± 0.9 62.5 ± 3.6 58.6 ± 2.4 71.0 ± 8.9 80.7 ± 3.7 63.2 ± 0.0 77.5 ± 4.3 86.5 ± 1.9 86.1 ± 1.0
UN Tr. 52.8 ± 3.1 49.6 ± 0.8 53.3 ± 1.7 59.1 ± 2.7 59.2 ± 1.7 79.0 ± 0.0 57.5 ± 1.9 65.8 ± 1.9 67.1 ± 2.7
Can. P. 52.3 ± 0.6 59.9 ± 6.5 69.7 ± 1.5 70.5 ± 1.8 66.6 ± 2.1 58.0 ± 0.0 67.0 ± 1.9 81.4 ± 0.5 82.2 ± 3.2
Flights 65.2 ± 2.6 63.4 ± 2.6 68.3 ± 2.2 73.5 ± 0.3 64.7 ± 0.8 70.3 ± 0.0 71.0 ± 0.4 71.9 ± 0.8 68.8 ± 2.0
Cont. 90.2 ± 5.2 95.1 ± 0.6 95.7 ± 1.0 96.0 ± 0.4 85.2 ± 0.2 88.7 ± 0.0 95.4 ± 0.6 93.5 ± 0.1 97.9 ± 0.1

Pred.

UN V. 69.7 ± 1.5 70.5 ± 1.1 64.4 ± 6.5 51.6 ± 1.3 50.2 ± 1.4 84.5 ± 0.0 52.9 ± 1.4 53.3 ± 1.7 58.2 ± 1.5
US L. 48.0 ± 1.0 73.8 ± 2.4 81.9 ± 2.3 70.9 ± 8.7 80.7 ± 3.6 63.2 ± 0.0 77.6 ± 4.4 85.8 ± 2.0 85.6 ± 1.2
UN Tr. 58.7 ± 3.7 58.9 ± 1.7 58.9 ± 1.5 57.4 ± 2.6 57.4 ± 2.3 81.0 ± 0.0 55.6 ± 1.5 64.1 ± 1.7 64.9 ± 2.6
Can. P. 52.1 ± 0.4 64.0 ± 1.7 71.5 ± 1.8 70.4 ± 1.7 66.5 ± 2.4 59.7 ± 0.0 67.0 ± 1.9 81.2 ± 0.4 98.0 ± 0.5
Flights 66.7 ± 3.6 66.9 ± 1.9 68.9 ± 2.0 73.5 ± 0.3 64.2 ± 1.0 70.3 ± 0.0 71.0 ± 0.4 71.9 ± 0.8 69.3 ± 2.0
Cont. 92.2 ± 2.3 95.8 ± 0.4 96.4 ± 0.9 96.0 ± 0.4 85.2 ± 0.2 88.7 ± 0.0 95.0 ± 1.0 93.5 ± 0.1 98.0 ± 0.0
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G NORMALIZED MUTUAL INFORMATION

Normalized mutual information is an information-theoretic measure based on mutual information.
It is based on mutual information, which for two random variables X and Y captures the bits of
information we gain about the outcome of Y if we know the outcome of X and vice-versa. A formal
definition is given in the following:
Definition (Mutual Information). Consider two random variables, X and Y with joint probability
mass function p (x, y) and marginal probability mass functions p (x) and p (y). Mutual information
is the reduction in the uncertainty of X due to the knowledge of Y defined as (Cover & Thomas,
2006)

I (X,Y ) =
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) p (y)
.

Note that mutual information can be defined using different logarithms. The intuitive understanding
described above using bits of information is defined using log2. This work utilizes the implementation
of the Python library scikit-learn (Pedregosa et al., 2011) which uses the natural logarithm loge.

The specific value of mutual information depends on the entropy

H(X) = −
∑
x∈X

p(x) log p(x)

of the underlying random variables, and is thus difficult to compare across different set-
tings. To address this issue, normalized mutual information provides a measure between zero
and one that is normalized based on the entropies of the underlying random variables (Vinh
et al., 2010). We use the following normalization as implemented in scikit-learn’s function
normalized mutual info score:

NMI(X,Y ) =
I(X,Y )

1
2 · (H(X) +H(Y ))

In the context of our work, we use the NMI to capture the loss of temporal information. In Figure 4,
we use the NMI to measure how much information about the edges’ timestamps is lost by grouping
the edges into batches. Specifically, we use the number i of each batch B+

i ∪B−
i of the definition of

dynamic link prediction in Section 2 assigned to each edge in the corresponding batch as one random
variable and the timestamps of the edges as the other. With this setup, we can measure how much
information about the timestamps of edges we gain – or keep – based on the batch number only.
Additionally, we use the NMI in Table 2 to quantify the difference between the assignments of edges
to time windows and batches respectively. Similar as above, we assign to each edge in the test set of
each dataset its batch number and also a time window number corresponding to the time window the
edge belongs to and then compute the NMI between those two variables.
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