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Abstract
We consider solving nonlinear optimization problems with equality constraints. We propose a

randomized algorithm based on sequential quadratic programming (SQP) with a differentiable ex-
act augmented Lagrangian as the merit function. In each SQP iteration, we solve the Newton system
inexactly via iterative randomized sketching. The accuracy of the inexact solution and the penalty
parameter of the augmented Lagrangian are adaptively controlled in the algorithm to ensure that the
inexact random search direction is a descent direction of the augmented Lagrangian. This allows us
to establish global convergence almost surely. Moreover, we show that a unit stepsize is admissible
for the inexact search direction provided the iterate lies in a neighborhood of the solution. Based
on this result, we show that the proposed algorithm exhibits local linear convergence. We apply the
algorithm on benchmark nonlinear problems in CUTEst test set and on constrained logistic regres-
sion with datasets from LIBSVM to demonstrate its superior performance. The code is available
at: https://github.com/IlgeeHong/Randomized-SQP.

1. Introduction

We consider the nonlinear equality-constrained optimization problem

min
x∈Rn

f(x) s.t. c(x) = 0, (1.1)

where f : Rn → R is the objective function and c : Rn → Rm are equality constraints. There exist
numerous methods for solving Problem (1.1), including projected first- and second-order methods,
penalty methods, augmented Lagrangian methods, and sequential quadratic programming (SQP). In
this paper, we focus on solving (1.1) via SQP, which is one of the leading second-order methods for
constrained optimization problems [9, 10, 14]. The algorithms in this class typically enjoy global
convergence guarantees, and require a few iterations to find a local solution. However, the com-
putational cost of SQP algorithms is dominated by solving one (or more) Newton system in each
iteration, which can be prohibitive for large-scale problems.

To reduce the per-iteration computational cost, [4] proposed an inexact SQP algorithm where,
in each iteration, the Newton system is approximately solved using a deterministic iterative solver
and the stepsizes are chosen based on a penalized merit function. With suitable conditions on
the quality of the inexact solution, the authors showed that the inexact search direction is still a
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descent direction of the merit function and the algorithm enjoys global convergence. Despite the
solid theoretical underpinnings, the algorithm of [4] suffers from few drawbacks. First, for each
SQP iteration, the algorithm relies on a few fixed tuning parameters (κ1, κ2, ϵ, β) for bounding
the residuals of the iterative solver. These parameters may substantially affect the performance of
the algorithm and have to be chosen carefully. In particular, a tighter residual bound will lead to
more inner loop iterations to compute a more precise step. However, the cost of more inner loop
iterations must be balanced against a possible decrease in the outer loop iterations for finding the
local solution. Second, the algorithm uses a nonsmooth merit function ϕπ(x) = f(x) + π∥c(x)∥
when performing the line search, which is known to cause the Maratos effect—a unit stepsize may
not be accepted near the solution. Such an effect leads to a slow local convergence [5]. Third, the
local behavior of that algorithm has not been rigorously analyzed.

In this paper, we propose a randomized SQP algorithm to solve Problem (1.1) in which the
Newton system in the inner loop is solved using the iterative randomized sketching (IRS) [8]. Thus,
the proposed method could be seen as a randomized extension of [4]. Furthermore, instead of using
fixed bound to control the accuracy of the inexact search direction throughout all SQP iterations,
the proposed method adaptively controls the accuracy of the inexact solution to balance between
the number of inner and outer loop iterations whilst the method achieves fast local convergence. We
use a differentiable exact augmented Lagrangian as the merit function of the form

Lη(x,λ) = L(x,λ) +
η1
2
∥c(x)∥2 + η2

2
∥∇xL(x,λ)∥2, (1.2)

where L(x,λ) = f(x) + λT c(x) is the Lagrangian function of Problem (1.1) with λ ∈ Rm be-
ing the Lagrangian multipliers, and η = (η1, η2) is the penalty parameter. The benefit of using
an exact penalty function is that a stationary point (x⋆,λ⋆) of (1.2) is also a stationary point of
Problem (1.1) and vice versa, provided that η1 is sufficiently large and η2 is sufficiently small [2,
Proposition 4.15]. Further, the smoothness of the merit function in (1.2) effectively overcomes the
Maratos effect [3]. We emphasize three novelties of the proposed algorithm. First, we use the iter-
ative randomized sketching [8] to compute an inexact solution of the Newton system. Projecting a
large Newton system into a smaller one and obtaining an approximate solution leads to large com-
putational savings [8, 16, 17]. Second, the algorithm adaptively selects a parameter that controls
a bound on the residuals when accepting the search direction. As a result, the inexact solution of
the Newton system is a descent direction of the merit function, and is accurate enough to guarantee
the global and local linear convergence of the algorithm. Empirically, our adaptive algorithm re-
sults in smaller KKT residuals (the sum of the feasibility error and the optimality error) and fewer
gradient evaluations. Third, despite the randomness in the inexact search direction brought by the
randomized solver, we establish the almost sure global convergence. Furthermore, we show that
the algorithm locally selects a unit stepsize even with the adaptive step acceptance condition, which
leads to a local linear convergence rate. Such a local result complements the existing literature on
inexact SQP algorithms.

2. Method

We propose an adaptive inexact SQP algorithm that uses iterative randomized sketching to solve the
Newton system in the inner loop. We use ∥ · ∥ to denote the ℓ2 norm for vectors and the operator
norm for matrices. At the k-th outer iteration, we let fk = f(xk), etc., to simplify the notation.
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When a constraint qualification holds, the first-order necessary conditions for x⋆ to be a solution
to Problem (1.1) are that there exist multipliers λ⋆ such that(

∇xL(x⋆,λ⋆)
∇λL(x⋆,λ⋆)

)
=

(
∇f(x⋆) +GT (x⋆)λ⋆

c(x⋆)

)
=

(
0
0

)
, (2.1)

where G(x) = ∇T c(x) = (∇c1(x), . . . ,∇cm(x))T ∈ Rm×n is the constraint Jacobian. In each
outer iteration k, the SQP algorithm finds the search direction (∆xk,∆λk) by solving the following
Newton system (

Bk GT
k

Gk 0

)(
∆xk

∆λk

)
= −

(
∇fk +GT

k λk

ck

)
, (2.2)

where B(x,λ) is the Hessian of the Lagrangian ∇2
xL(x,λ) = H(x,λ) or its symmetric perturba-

tion. Let Γk =

(
Bk GT

k

Gk 0

)
∈ R(n+m)×(n+m) and we rewrite the Newton system (2.2) by

Γk

(
∆xk

∆λk

)
= −

(
∇fk +GT

k λk

ck

)
. (2.3)

Instead of finding the exact Newton direction (∆xk,∆λk), we apply the iterative randomized
sketching to obtain an inexact solution (∆̃xk, ∆̃λk) to (2.3). In particular, we let S ∈ R(n+m)×d

be a random sketch matrix which has some probability distribution P and for each outer iteration
k and inner iteration j, we specify each random matrix by Sk,j ∼ S. For j-th inexact solution
(∆̃xk,j , ∆̃λk,j), we define the residual vectors of the Newton system by

rk,j =

(
rpk,j
rdk,j

)
= Γk

(
∆̃xk,j

∆̃λk,j

)
+

(
∇fk +GT

k λk

ck

)
. (2.4)

Then the inner loop iteration updates the solution as(
∆̃xk,j+1

∆̃λk,j+1

)
=

(
∆̃xk,j

∆̃λk,j

)
−Wk,j

(
rpk,j
rdk,j

)
, (2.5)

where Wk,j = ΓT
k Sk,j

(
ST
k,jΓkΓ

T
k Sk,j

)−1
ST
k,j ∈ R(n+m)×(n+m). Now we define

δtrial
k =

(
1

2
− β

)
η2,k

2Ψ2
k(3Υk + 4η2,kΥ

2
k + η1,kΥ

2
k)
, (2.6)

where Υk = ∥Bk∥ ∨ ∥Gk∥ ∨ ∥Hk∥ and Ψk is defined in Lemma 6. At each outer iteration k, we
force the adaptive parameter δk, which controls the accuracy of the inexact solution of (2.3), to be
smaller than δtrial

k . This procedure ensures the algorithm selects a unit stepsize locally, so that it
enjoys the local linear convergence near a stationary point of Problem (1.1). For the simplicity of
notation, we drop the inner iteration j from (∆̃xk,j , ∆̃λk,j) and rk,j when we generally refer to
the inexact search direction and residual vector. The following condition describes when a search
direction will be accepted.

3



ADAPTIVE INEXACT SEQUENTIAL QUADRATIC PROGRAMMING VIA ITERATIVE RANDOMIZED SKETCHING

Step Acceptance Condition. Given η1,k, η2,k > 0 and 0 < δk ≤ δtrial
k , a step (∆̃xk, ∆̃λk) that is

computed via (2.5) is acceptable if

∥rk∥ ≤ δk
∥∇Lk∥
∥Γk∥Ψk

(2.7)

and (
∇xLkη
∇λLkη

)T (
∆̃xk

∆̃λk

)
≤ −

η2,k
2
∥∇Lk∥2 . (2.8)

In each outer iteration k, we first update the inexact search direction by (2.5) until the resid-
ual at the inner iteration j satisfies (2.7) with a given δk. Then, we check if the inexact search
direction is a descent direction of (1.2); that is, whether (2.8) is satisfied for given (η1,k, η2,k). If it
does not satisfy (2.8), we increase η1,k, and decrease η2,k and δk as

η1,k ← η1,kν
2, η2,k ← η2,k/ν, δk ← (δk/ν

4 ∧ δtrial
k ) (2.9)

where ν > 1 is a given constant. We repeat the above two steps until we find an inexact search di-
rection which satisfies (2.7) and (2.8) with appropriate (η1,k, η2,k, δk). We design this scheme using
double while loops in Algorithm 1. The stepsize αk is selected to satisfy the Armijo condition

Lk+1
η ≤ Lkη + αkβ

(
∇xLkη
∇λLkη

)T (
∆̃xk

∆̃λk

)
, (2.10)

and the iterate is updated as (
xk+1

λk+1

)
=

(
xk

λk

)
+ αk

(
∆̃xk

∆̃λk

)
. (2.11)

Our Algorithm 1 is presented in Appendix C.

3. Convergence Analysis

We now study well-posedness of Algorithm 1, and establish global and local linear convergence guar-
antees. We emphasize that the randomness plays a key role in the analysis since the inexact search
direction is calculated by the iterative randomized solver. Compared with an algorithm that uses a
deterministic iterative solver, our inexact search direction is stochastic. As a result, all the compo-
nents of the algorithm that are affected by the search direction are also random; for example, (2.7),
(2.8), and (2.10). Our analysis relies on the following assumption.

Assumption 1 All the iterates {xk}k≥0 belong to an open convex set X . The objective function
f is twice continuously differentiable and bounded over X . Its gradient ∇f and Hessian ∇2f
are Lipschitz continuous and bounded over X . The constraint function c is twice continuously
differentiable, Lipschitz continuous, and bounded over X . Its Jacobian G and Hessian of each
coordinate are Lipschitz continuous and bounded below over X .

Assumption 2 The Jacobian matrices {Gk}k≥0 have full row rank. There exist constants ξB,ΥB >
0, such that, for any outer iteration k ≥ 0, zTBkz ≥ ξB∥z∥2 for any z ∈ {z : Gkz = 0} and
∥Bk∥ ≤ ΥB .
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Assumption 3 The random sketch matrix S satisfies P(STz ̸= 0) > 0 for any z ∈ Rn+m\{0}.
For any outer and inner iteration k, j ≥ 0, Sk,j

i.i.d.∼ S.

Assumption 1 does not make any assumptions about the set Λ that contains the dual iterates
{λk}k≥0. The boundedness of Λ can be proven based on the algorithm itself; see Lemma 13 in
Appendix A. Assumption 2 implies that Γk in (2.3) is invertible. Therefore, for any outer iteration
k, the Newton system (2.3) has a unique solution. This is a standard assumption in the SQP lit-
erature [3]. Assumption 3 is used specifically to establish the well-posedness of Algorithm 1. In
Lemma 7, we first define the subsequence of the inner iteration {jl}l≥0 where the reduction of the
error step occurs, and show that the event Ak = ∩Ll=1{jl < ∞} happens with probability 1. Thus,
conditioned on the event Ak, the error linearly decays in those iterations (see Lemma 8). Lemma 9
shows that for each outer iteration k, conditioned on the event Ak, almost surely, there exists finite
inner iteration such that the first component in Step Acceptance Condition (2.7) is satisfied. We
denote this event as Bk. In Lemma 10, we show that conditioned on the event Ak ∩ Bk, the second
component in Step Acceptance Condition (2.8) is satisfied. Thus, Lemma 9 and 10 imply that the
double while loop in Algorithm 1 terminates in finite time. Furthermore, Lemma 11 shows that all
adaptive parameters (η1, η2, δ) will be fixed at some values after a number of outer iterations. The
formal statements of Lemma 7–11 are presented in Appendix A. Finally, we establish the global
convergence of Algorithm 1 in Theorem 1.

Theorem 1 (Global convergence) Suppose Assumption 1, 2, 3 hold for the iterates {(xk,λk)}k≥0

generated by Algorithm 1. Then ∥∇Lk∥ → 0 as k →∞ almost surely.

Next, we establish local linear convergence guarantees of Algorithm 1. We first present two
additional assumptions that are necessary to the local behaviour analysis.

Assumption 4 The third derivative of the objective function ∇3f exists and continuous over X .
The third derivative of the constraints∇3ci exists and continuous over X for all i ∈ {1, . . . ,m}.

Assumption 5 For any outer iteration k ≥ 0, ∥Hk −Bk∥ = o(1).

Assumption 4 strengthens the condition of the objective function f and constraints c in As-
sumption 1 to thrice continuously differentiability. For Assumption 4, when using the augmented
Lagrangian as the merit function (see (1.2)), it is common to assume the existence of third deriva-
tives of f and ci, since the Hessian of the augmented Lagrangian ∇2

xLη requires ∇3f and ∇3ci to
exist. The existence of third derivatives is only necessary for analysis, and they are never computed
in practice. Assumption 5 is standard in the SQP literature and is needed to show local superlinear or
quadratic convergence [3]. Now we establish local linear convergence of Algorithm 1 in Theorem 2.

Theorem 2 (Local linear convergence) Let (x⋆,λ⋆) be a stationary point of (1.1). Suppose As-
sumption 1, 2, 3, 4, 5 hold for the iterates {(xk,λk)}k≥0 generated by Algorithm 1, and (xk,λk)→
(x⋆,λ⋆). Then for all sufficiently large outer iteration k, almost surely, αk = 1, and∥∥∥∥(xk+1 − x⋆

λk+1 − λ⋆

)∥∥∥∥ ≤ δ⋆
∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ ,
where δ⋆ be the stabilized value of δ ∈ (0, 1).

Proof of Theorem 1 and 2 are given in Appendix B.
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Figure 1: KKT residual, number of gradient and Jacobian evaluations, and number of objective and
constraints evaluations boxplots for Algorithm 1 and Algorithm 3 on CUTEst problems.

4. Experiments

We implement three inexact SQP algorithms to solve benchmark nonlinear problems in CUTEst test
set [7] and solve constrained logistic regression with datasets from LIBSVM [6]. The considered
three algorithms are Algorithm 1 (the proposed algorithm), Algorithm 2: [4] with the ℓ1 penal-
ized merit function, and Algorithm 3: adaptive version of Algorithm 2. We use two randomized
iterative solvers and one deterministic iterative solver for (2.3): Gaussian vector sketch [8, Section
3.2], Randomized Kaczmarz [8, Section 3.3], and GMRES [15]. We evaluate each algorithm with
the following three criteria: (1) the KKT residual (∥∇Lk∥), (2) the number of gradient and Jaco-
bian evaluations, and (3) the number of objective and constraints evaluations. We first present the
comparison between Algorithms 1 and 3 on CUTEst set in Figure 1.

From Figure 1, we observe that Algorithm 1 outperforms Algorithm 3 in terms of the KKT
residual and number of objective and constraints evaluations. This result is expected as Algorithm 1
uses tighter bounds on the residuals of the iterative solver to guarantee fast local convergence. This
results in steeper decrease in the merit function at each iteration and fewer number of outer itera-
tions. However, as we mentioned earlier, smaller number of outer iterations yields possible increase
in the number of inner iterations required to satisfy (2.7). We can reduce this cost by applying IRS,
which substantially saves the computational complexities by projecting (2.3) into a smaller space
for each inner iteration.

On the one hand, we see Algorithm 3 shows slightly lower number of gradient and Jacobian
evaluations than Algorithm 1. This is because for each iteration, Algorithm 1 finds a stepsize αk

to satisfy the Armijo condition (2.10), and Lη(xk + αk∆̃xk,λk + αk∆̃λk) in (2.10) requires the
gradient and Jacobian to be evaluated at each new trial point. For Algorithm 3, however, the gradient
and Jacobian are not involved in the evaluations of the ℓ1 penalized merit function at new trial points.

Further comparisons between Algorithms 2 and 3, and experiments on LIBSVM datasets are in
Appendix D due to the limitation of space. The code is available at: https://github.com/
IlgeeHong/Randomized-SQP.
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Appendix A.

Lemma 3 (Upper bound on Hessian of Lagrangian) Under Assumption 1, 2, 3, for any outer
iteration k, there exists a uniform constant ΥH > 0, independent of k, such that for any outer
iteration k, ∥Hk∥ ≤ ΥH .

Lemma 4 (Upper bound on Newton matrix) Under Assumption 1, 2, for any outer iteration k,
there exists a uniform constant ΥN > 0, independent of k, such that for any outer iteration k,
∥Γk∥ ≤ ΥN .

Lemma 5 (Boundedness on Jacobian of constraints) Under Assumption 2, there exist constants
κG, ξG > 0 such that for any outer iteration k, ξGI ⪯ GkG

T
k ⪯ κGI .

Lemma 6 (Upper bound on Newton matrix inverse) Under Assumption 2, for any outer itera-

tion k, we let Ψk =
7(∥Bk∥2 ∨ 1)

ξB(σ1,k ∧ 1)
where σ1,k is the smallest eigenvalue of GkG

T
k . Then for any

outer iteration k,
∥∥Γ−1

k

∥∥ ≤ Ψk.

For later usage, we further define Ψ = supk≥0{Ψk} and Υ = supk≥0{Υk}.

Lemma 7 Let Qk,j be a random matrix with orthonormal columns that form a basis of row(ST
k,jΓk).

Let {jl}l≥0 be a subsequence of the inner iteration where j0 = 0 and jl be the l-th iteration such
that

col
(
Qk,jl−1+1

)
+ · · ·+ col (Qk,jl) = Rn+m.

Let L be any given positive integer. Under Assumption 2, 3, for any outer iteration k, conditioned
on the event that the algorithm reaches (xk,λk), the event

Ak = ∩Ll=1{jl <∞} (A.1)

happens with probability 1.

Lemma 8 (Subsequence of error linearly decays) Under Assumption 2, 3, for any outer iteration
k and for any positive integer L, conditioned on the event that the algorithm reaches (xk,λk) and

Ak in (A.1), there exists a sequence of random variables {γk,l}Ll=1 where γk,l
i.i.d.∼ γk ∈ [0, 1) such

that, for any l ≤ L, ∥∥∥∥(∆̃xk,jl −∆xk

∆̃λk,jl −∆λk

)∥∥∥∥ ≤ γk,l

∥∥∥∥(∆̃xk,jl−1
−∆xk

∆̃λk,jl−1
−∆λk

)∥∥∥∥ .
Lemma 9 (Error of inexact solution) For any δk ∈ (0, 1), let Jk be the inner iteration such that

∥rk,Jk∥ ≤ δk
∥∇Lk∥
∥Γk∥Ψk

.

Under Assumption 1, 2, 3, for any outer iteration k, conditioned on the event that the algorithm
reaches (xk,λk) and Ak in (A.1), the event

Bk = {Jk <∞} (A.2)

9
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happens with probability 1. Moreover, conditioned on the event Ak ∩ Bk, if we let (∆̃xk, ∆̃λk) =
(∆̃xk,Jk , ∆̃λk,Jk), then ∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥ ≤ δk

∥∥∥∥(∆xk

∆λk

)∥∥∥∥ . (A.3)

Lemma 10 (Descent direction of inexact step) Let (∆̃xk, ∆̃λk) be the inexact solution that sat-
isfies (2.7). Under Assumption 1, 2, 3, for any outer iteration k, conditioned on the event that the
algorithm reaches (xk,λk) and Ak ∩ Bk in (A.1) and (A.2), if

η1,k ≥
17κG
η2,kξ

2
G

, η2,k ≤
ξB

12Υ2
, δk ≤

η2,kξG
16η1,kΥ2

,

then we have (
∇xLkη
∇λLkη

)T (
∆̃xk

∆̃λk

)
≤ −

η2,k
2
∥∇Lk∥2 .

Lemma 11 (Stability of adaptive parameters) Under Assumption 1, 2, 3, after sufficiently large
outer iteration k, all adaptive parameters (η1, η2, δ) are stabilized almost surely.

Lemma 12 (Armijo condition) Under Assumption 1, 2, 3, for any outer iteration k, conditioned
on the event that the algorithm reaches (xk,λk) and Ak ∩ Bk in (A.1) and (A.2), the Armijo
condition (2.10) is satisfied. Moreover, there exists a uniform constant αmin > 0, independent of k,
such that for any k, 0 < αmin ≤ αk.

Lemma 13 (Boundedness of dual variable) Under Assumption 1, 2, 3, almost surely, {λk}k≥0

produced by Algorithm 1 is bounded.

10
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Appendix B. Proof of Lemma and Theorem

B.1. Proof of Lemma 3
Proof Under Assumption 1, 2, 3, Lemma 13 shows {λk}k≥0 is bounded. Using Assumption 1, we have for
any outer iteration k,∇2fk,∇2ci,k are all bounded. Then we get

∥Hk∥ =
∥∥∇2

xxLk

∥∥ =

∥∥∥∥∥∇2fk +

m∑
i=1

λi,k∇2ci,k

∥∥∥∥∥ ≤ ∥∥∇2fk
∥∥+max

i

{
|λi,k|

} m∑
i=1

∥∥∇2ci,k
∥∥ ≤ ΥH .

This ends proof of Lemma 3.

B.2. Proof of Lemma 4
Proof Assumption 1 implies that for any outer iteration k, there exists a uniform constant ΥG > 0, indepen-
dent of k, such that for any outer iteration k, ∥Gk∥ ≤ ΥG. Using this fact together with Assumption 2, we
get

∥Γk∥ ≤ ∥Bk∥+ 2 ∥Gk∥ ≤ ΥB + 2ΥG ≤ ΥN .

This ends proof of Lemma 4.

B.3. Proof of Lemma 5
Proof Assumption 2 implies that for any outer iteration k, GkG

T
k is positive definite. For any outer iteration

k, let σm,k ≥ · · · ≥ σ1,k > 0 be the eigenvalues of GkG
T
k . Then we can show σ1,kI ⪯ GkG

T
k ⪯ σm,kI . If

we let ξG = infk≥0{σ1,k}, and κG = supk≥0{σm,k} then for any outer iteration k, ξGI ⪯ GkG
T
k ⪯ κGI .

This ends proof of Lemma 5.

B.4. Proof of Lemma 6
Proof For any outer iteration k, let Zk be a matrix which has orthonormal columns spanning the null space
of Gk. Using Assumption 2, we have ZT

k BkZk ⪰ ξBI and GT
k (GkG

T
k )

−1Gk + ZkZ
T
k = I . Appendix C.1.

in [11] and [12] implies that

Γ−1
k =

(
Bk GT

k

Gk 0

)−1

=

(
K1 KT

2

K2 K3

)
where

K1 = Zk(Z
T
k BkZk)

−1ZT
k , K2 = (GkG

T
k )

−1Gk(I −BkZk(Z
T
k BkZk)

−1ZT
k )

K3 = (GkG
T
k )

−1Gk(BkZk(Z
T
k BkZk)

−1ZT
k Bk −Bk)G

T
k (GkG

T
k )

−1.

Taking ℓ2 norm on both sides yields,

∥K1∥ ≤
1

ξB
, ∥K2∥ ≤ ∥(GkG

T
k )

−1Gk∥
(
1 +
∥Bk∥
ξB

)
≤ 1
√
σ1,k

(
1 +
∥Bk∥
ξB

)
,

∥K3∥ ≤ ∥(GkG
T
k )

−1Gk∥2
(
∥Bk∥+

∥Bk∥2

ξB

)
≤ 1

σ1,k

(
∥Bk∥+

∥Bk∥2

ξB

)
.

11
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Let ξB ≤ 1 and assume σ1,k ≤ 1 ≤ ∥Bk∥. Then we get∥∥Γ−1
k

∥∥ ≤ ∥K1∥+ 2∥K2∥+ ∥K3∥

≤ 1

ξB
+

2
√
σ1,k

(
1 +
∥Bk∥
ξB

)
+

1

σ1,k

(
∥Bk∥+

∥Bk∥2

ξB

)

≤ 5 ∥Bk∥√
σ1,kξB

+
2 ∥Bk∥2

σ1,kξB
≤ 7 ∥Bk∥2

σ1,kξB
.

Since we assume σ1,k ≤ 1 ≤ ∥Bk∥, it follows that

∥∥Γ−1
k

∥∥ ≤ 7(∥Bk∥2 ∨ 1)

ξB(σ1,k ∧ 1)
= Ψk.

This ends proof of Lemma 6.

B.5. Proof of Lemma 7
Proof Let k ≥ 0 and we suppose the algorithm reaches (xk,λk). Using (2.3) and (2.4), we rewrite the
updating rule of IRS (2.5) as(

∆̃xk,j+1

∆̃λk,j+1

)
=

(
∆̃xk,j

∆̃λk,j

)
−Wk,j

(
Γk

(
∆̃xk,j

∆̃λk,j

)
+∇Lk

)
=

(
∆̃xk,j

∆̃λk,j

)
−Wk,jΓk

(
∆̃xk,j −∆xk

∆̃λk,j −∆λk

)
.

If we let ek,j =
(
∆̃xk,j −∆xk

∆̃λk,j −∆λk

)
, then the above display can be rewritten as

ek,j+1 = ek,j −Wk,jΓkek,j . (B.1)

Using the fact that Wk,jΓk = ΓT
k Sk,j+1(S

T
k,j+1ΓkΓ

T
k Sk,j+1)

−1ST
k,j+1Γk forms an orthogonal projection

onto row(ST
k,j+1Γk), (B.1) can be simplified as

ek,j+1 = ek,j −Qk,j+1Q
T
k,j+1ek,j . (B.2)

Let j0 = 0 and jl be the l-th iteration such that

col
(
Qk,jl−1+1

)
+ · · ·+ col (Qk,jl) = row(Γk) = Rn+m,

otherwise let jl be infinite. Since Γk is invertible, Assumption 3 implies P(STΓkz ̸= 0) > 0 for any
z ∈ Rn+m\{0}. Given the relationship between row(STΓk) and Qk, we further get P(QT

k z ̸= 0) > 0

for any z ∈ Rn+m\{0}. We denote the lower bound of this probability as πk ∈ (0, 1]. Since Qk,j
i.i.d.∼

Qk, conditioned on the event {jl−1 < ∞}, the probability that
∑t+1

i=0 col
(
Qk,jl−1+i

)
grows in dimension

relative to
∑t

i=0 col
(
Qk,jl−1+i

)
, when dim

(∑t
i=0 col

(
Qk,jl−1+i

))
< n + m is at least πk. As a result,

conditioned on the event {jl−1 < ∞}, the probability that the event
{
dim

(∑t+1
i=0 col

(
Qk,jl−1+i

))
>

dim
(∑t

i=0 col
(
Qk,jl−1+i

))}
happens n + m times in N iterations with N ≥ n + m is dominated by a

negative binomial distribution. Thus,

for N ≥ n+m, P(jl = N |jl−1 <∞) ≤
(

N − 1
n+m− 1

)
(1− π)N−n−mπn+m.

12
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Taking N →∞, we get for any l ∈ N,

P(jl =∞|jl−1 <∞) = 0.

Therefore, for any l ∈ N, P(jl <∞|jl−1 <∞) = 1. Let L be given positive integer. Then for any l ≤ L,

P
(
∩Ll=1{jl <∞}

)
= P(j1 <∞)× P(j2 <∞|j1 <∞)× · · · × P(jL <∞|jL−1 <∞, . . . , j1 <∞)

= P(j1 <∞)× P(j2 <∞|j1 <∞)× · · · × P(jL <∞|jL−1 <∞)

= 1.

This ends proof of Lemma 7.

B.6. Proof of Lemma 8
Proof Let k ≥ 0 and we suppose the algorithm reaches (xk,λk) and the event Ak happens. Let L be given
positive integer. We denote qk,j,h be the h-th column of Qk,j . Using (B.2), we have for any l ≤ L,

ek,jl =
(
Πjl

j=jl−1+1

(
Πp

h=1

(
I − qk,j,hq

T
k,j,h

)))
ek,jl−1

.

Taking ℓ2 norm on both sides yields

∥ek,jl∥ ≤
∥∥∥Πjl

j=jl−1+1

(
Πp

h=1

(
I − qk,j,hq

T
k,j,h

))∥∥∥ ∥∥ek,jl−1

∥∥ .
LetFk,l denote all matrices Fk,l where the columns of Fk,l are the vectors {fk,l,1, . . . , fk,l,n+m} ⊂ {qk,jl−1+1,1, . . . , qk,jl,d}
that are a maximal linearly independent subset. Theorem 4 in [13] implies that∥∥∥Πjl

j=jl−1+1

(
Πp

h=1

(
I − qk,j,hq

T
k,j,h

))∥∥∥ ≤√1−minFk,l∈Fk,l
det(FT

k,lFk,l).

For any l ≤ L, define

γk,l =
√
1−minFk,l∈Fk,l

det(FT
k,lFk,l).

Then we have for any l ≤ L,
∥ek,jl∥ ≤ γk,l

∥∥ek,jl−1

∥∥ .
Using the fact that FT

k,lFk,l is positive definite and Hadamard’s inequality, we have {γk,l}l≤L ⊂ [0, 1). Let

Qk,l = {Qk,jl−1+1, . . . , Qk,jl}. Using Assumption 3, we getQk,1, . . . ,Qk,L
i.i.d∼ Qk, hence, γk,1, . . . , γk,L

i.i.d∼
γk. This ends proof of Lemma 8.

B.7. Proof of Lemma 9
Proof Let k ≥ 0 and we suppose the algorithm reaches (xk,λk) and the event Ak happens. Using
Lemma 8, we have P(γk = 1) = 0, hence, there exists τk ∈ (0, 1) such that P(γk ≤ τk) > 0. We
denote the lower bound of P(γk ≤ τk) by πk ∈ (0, 1]. Let N̄ be the smallest positive integer such that

N̄ ≥ log(δk/ ∥Γk∥2 Ψ2
k)/log(τk) + 1. Then we have τ N̄k ≤

δk

∥Γk∥2 Ψ2
k

. Now we consider the procedure

where for each iteration l, we generate γk,l from a distribution of γk independently. Let Lk be the iteration
such that

I{γk,1 ≤ τk}+ · · ·+ I{γk,Lk
≤ τk} = N̄ ,

13
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otherwise let Lk be infinite. Since for any l ∈ N, P(γk,l ≤ τk) ≥ πk and γk,l
i.i.d.∼ γk, the probability that

the event {γk,l ≤ τk} happens N̄ times in N iterations with N ≥ N̄ is dominated by a negative binomial
distribuiton. Thus,

for N ≥ N̄ , P(Lk = N) ≤
(
N − 1
N̄ − 1

)
(1− πk)

N−N̄πN̄
k .

Taking N →∞, we get
P(Lk =∞) = 0.

Therefore, Lk is finite with probability 1. Now letting L = Lk and applying Lemma 8, we have∥∥∥∥∥
(
∆̃xk,jLk

−∆xk

∆̃λk,jLk
−∆λk

)∥∥∥∥∥ ≤ (ΠLk

l=1γk,l

)∥∥∥∥(∆̃xk,0 −∆xk

∆̃λk,0 −∆λk

)∥∥∥∥ =
(
ΠLk

l=1γk,l

)∥∥∥∥(∆xk

∆λk

)∥∥∥∥ .
Using this expression together with (2.3), (2.4), and Lemma 6 which says

∥∥Γ−1
k

∥∥ ≤ Ψk, we get∥∥∥rk,jLk

∥∥∥ =

∥∥∥∥∥Γk

(
∆̃xk,jLk

∆̃λk,jLk

)
+∇Lk

∥∥∥∥∥ =

∥∥∥∥∥Γk

(
∆̃xk,jLk

−∆xk

∆̃λk,jLk
−∆λk

)∥∥∥∥∥ ≤ ∥Γk∥

∥∥∥∥∥
(
∆̃xk,jLk

−∆xk

∆̃λk,jLk
−∆λk

)∥∥∥∥∥
≤ ΠLk

l=1(γk,l) ∥Γk∥
∥∥∥∥(∆xk

∆λk

)∥∥∥∥ ≤ ΠLk

l=1(γk,l) ∥Γk∥
∥∥Γ−1

k

∥∥ ∥∇Lk∥

≤ ΠLk

l=1(γk,l) ∥Γk∥Ψk ∥∇Lk∥ . (B.3)

Using (B.3) we have{
I{γk,1 ≤ τk}+ · · ·+ I{γk,Lk

≤ τk} = N̄

}
⇒
{
ΠLk

l=1(γk,l) ≤ τ N̄k

}
⇒
{
ΠLk

l=1(γk,l) ≤
δk

∥Γk∥2 Ψ2
k

}
⇒
{∥∥∥rk,jLk

∥∥∥ ≤ δk
∥∇Lk∥
∥Γk∥Ψk

}
Finally, if we let Jk = jLk

, then we obtain

P
(

there exists finite Jk such that ∥rk,Jk
∥ ≤ δk

∥∇Lk∥
∥Γk∥Ψk

∣∣∣∣(xk,λk),Ak

)
= 1.

Now conditioned on the event Ak ∩ Bk, we get

∥rk,Jk
∥ ≤ δk

∥∇Lk∥
∥Γk∥Ψk

⇒ Ψk

∥∥∥∥Γk

(
∆̃xk,Jk

−∆xk

∆̃λk,Jk
−∆λk

)∥∥∥∥ ≤ δk
∥∇Lk∥
∥Γk∥

⇒
∥∥Γ−1

k

∥∥ ∥∥∥∥Γk

(
∆̃xk,Jk

−∆xk

∆̃λk,Jk
−∆λk

)∥∥∥∥ ≤ δk
∥∇Lk∥
∥Γk∥

⇒
∥∥∥∥(∆̃xk,Jk

−∆xk

∆̃λk,Jk
−∆λk

)∥∥∥∥ ≤ δk
∥∇Lk∥
∥Γk∥

⇒
∥∥∥∥(∆̃xk,Jk

−∆xk

∆̃λk,Jk
−∆λk

)∥∥∥∥ ≤ δk

∥Γk∥
∥∥∥∥(∆xk

∆λk

)∥∥∥∥
∥Γk∥

⇒
∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥ ≤ δk

∥∥∥∥(∆xk

∆λk

)∥∥∥∥ .
This ends proof of Lemma 9.

14



ADAPTIVE INEXACT SEQUENTIAL QUADRATIC PROGRAMMING VIA ITERATIVE RANDOMIZED SKETCHING

B.8. Proof of Lemma 10
Proof Let k ≥ 0 and we suppose the algorithm reaches (xk,λk) and the event Ak ∩ Bk happens. We start

from dividing
(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
into two terms as follows:

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
=

(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
+

(
∇xLk

η

∇λLk
η

)T (
∆̃xk −∆xk

∆̃λk −∆λk

)
. (B.4)

First, we develop the first term and obtain(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
=

(
(I + η2,kHk)∇xLk + η1,kG

T
k ck

ck + η2,kGk∇xLk

)T (
∆xk

∆λk

)
=

(
∆xk

∆λk

)T (
I + η2,kHk η1,kG

T
k

η2,kGk I

)(
∇xLk

ck

)
= −

(
∆xk

∆λk

)T (
I + η2,kHk η1,kG

T
k

η2,kGk I

)(
Bk GT

k

Gk 0

)(
∆xk

∆λk

)
= −

(
∆xk

∆λk

)T (
(I + η2,kHk)Bk + η1,kG

T
kGk (I + η2,kHk)G

T
k

Gk(I + η2,kBk) η2,kGkG
T
k

)(
∆xk

∆λk

)
= −∆xk

T
(
(I + η2,kHk)Bk +

η1,k
2

GT
kGk

)
∆xk −

η1,k
2

∆xk
TGT

kGk∆xk

− η2,k∆λk
TGkG

T
k∆λk −∆λk

TGk (2I + η2,k(Bk +Hk))∆xk

= −∆xk
T
(
(I + η2,kHk)Bk +

η1,k
2

GT
kGk

)
∆xk −

η1,k
2
∥Gk∆xk∥2 − η2,k

∥∥GT
k∆λk

∥∥2
−∆λk

TGk (2I + η2,k(Bk +Hk))∆xk.

Using (2.2) we have Gk∆x = −ck and GT
k∆λk = − (Bk∆xk +∇xLk). Using this expression together

with the above display, we obtain(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
= −∆xk

T
(
(I + η2,kHk)Bk +

η1,k
2

GT
kGk

)
∆xk −

η1,k
2
∥ck∥2 − η2,k ∥Bk∆xk +∇xLk∥2

−∆λk
TGk (2I + η2,k(Bk +Hk))∆xk

= −∆xk
T
(
(I + η2,kHk)Bk +

η1,k
2

GT
kGk

)
∆xk −

η1,k
2
∥ck∥2 −

η2,k
2
∥∇xLk∥2 +

η2,k
2
∥∇xLk∥2

− η2,k ∥Bk∆xk +∇xLk∥2 −∆λk
TGk (2I + η2,k(Bk +Hk))∆xk.

Taking the forth and fifth terms from the above display and using the expression∇xLk = −
(
Bk∆xk +GT

k∆λk

)
,

we obtain
η2,k
2
∥∇xLk∥2 − η2,k ∥Bk∆xk +∇xLk∥2

= −η2,k ∥Bk∆xk∥2 − 2η2,k∆xk
TBk∇xLk −

η2,k
2
∥∇xLk∥2

= −η2,k ∥Bk∆xk∥2 + 2η2,k∆xk
TBk

(
Bk∆xk +GT

k∆λk

)
− η2,k

2

∥∥Bk∆xk +GT
k∆λk

∥∥2
= η2,k∆xk

TBkBk∆xk + η2,k∆xk
TBkG

T
k∆λk −

η2,k
2
∥Bk∆xk∥2 −

η2,k
2

∥∥GT
k∆λk

∥∥2
≤ η2,k∆xk

TBkBk∆xk + η2,k∆xk
TBkG

T
k∆λk −

η2,k
2

∥∥GT
k∆λk

∥∥2 .
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Combining the above two displays we get(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
≤ −∆xk

T
(
(I + η2,kHk)Bk +

η1,k
2

GT
kGk

)
∆xk −

η1,k
2
∥ck∥2 −

η2,k
2
∥∇xLk∥2

+ η2,k∆xk
TBkBk∆xk + η2,k∆λk

TGkBk∆xk −
η2,k
2
∥GT

k∆λk∥22

−∆λk
TGk (2I + η2,k(Bk +Hk))∆xk.

Assuming η1,k ≥ η2,k at the moment and using Cauchy-Schwarz inequality, we get(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
≤ −η2,k

2
∥∇Lk∥2 −∆xk

T
(
(I + η2,k(Hk −Bk))Bk +

η1,k
2

GT
kGk

)
∆xk −

η2,k
2

∥∥GT
k∆λk

∥∥2
−∆λk

TGk (2I + η2,kHk)∆xk

≤ −η2,k
2
∥∇Lk∥2 − η2,k∆xk

T (Hk −Bk)Bk∆xk −∆xk
TBk∆xk −

η1,k
2

∆xk
TGT

kGk∆xk

− η2,k
2

∥∥GT
k∆λk

∥∥2 − 2∆λk
TGk∆xk − η2,k∆λk

TGkHk∆xk

≤ −η2,k
2
∥∇Lk∥2 + η2,k ∥(Hk −Bk)∆xk∥ ∥Bk∆xk∥ −∆xk

TBk∆xk −
η1,k
2

∆xk
TGT

kGk∆xk

− η2,k
2

∥∥GT
k∆λk

∥∥2 + 2 ∥∆λk∥ ∥Gk∆xk∥+ η2,kΥ
∥∥GT

k∆λk

∥∥ ∥∆xk∥

≤ −η2,k
2
∥∇Lk∥2 + 2η2,kΥ

2 ∥∆xk∥2 −∆xk
T
(
Bk +

η1,k
2

GT
kGk

)
∆xk −

η2,k
2

∥∥GT
k∆λk

∥∥2
+ 2 ∥∆λk∥ ∥Gk∆xk∥+ η2,kΥ

∥∥GT
k∆λk

∥∥ ∥∆xk∥ .

Now we apply Young’s inequality for the last two terms. Note that

η2,kΥ∥GT
k∆λk∥∥∆xk∥ =

(√
η2,k
2
∥GT

k∆λk∥
)(√

2η2,kΥ∥∆xk∥
)

2∥∆λk∥∥Gk∆xk∥ =

(√
η2,kξG

2
∥∆λk∥

)(
4√

η2,kξG
∥Gk∆xk∥

)
.

Using the above expression, we get

η2,kΥ
∥∥GT

k∆λk

∥∥ ∥∆xk∥ ≤
η2,k
4

∥∥GT
k∆λk

∥∥2 + η2,kΥ
2 ∥∆xk∥2

and

2 ∥∆λk∥ ∥Gk∆xk∥ ≤
η2,kξG

8
∥∆λk∥2 +

8

η2,kξG
∥Gk∆xk∥2 .

Using Lemma 5, we obtain(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
≤ −η2,k

2
∥∇Lk∥2 + 3η2,kΥ

2 ∥∆xk∥2 −
η2,k
4

∥∥GT
k∆λk

∥∥2 + η,k2ξG
8
∥∆λk∥2 +

8

η2,kξG
∥Gk∆xk∥2

−∆xk
T
(
Bk +

η1,k
2

GT
kGk

)
∆xk

≤ −η2,k
2
∥∇Lk∥2 + 3η2,kΥ

2 ∥∆xk∥2 −
η2,kξG

8
∥∆λk∥2 −∆xk

T

(
Bk +

(
η1,k
2
− 8

η2,kξG

)
GT

kGk

)
∆xk.

(B.5)
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In order to bound the second and fourth terms from the above display, we decompose ∆xk as ∆xk = ∆uk+
∆vk where ∆uk ∈ Null(Gk) and ∆vk ∈ Image(GT

k ). Then we have ∥∆xk∥2 = ∥∆uk∥2 + ∥∆vk∥2 and
∆vk = GT

k∆v̄k for some ∆v̄k. Using Lemma 5, we get ∥∆vk∥2 = ∥GT
k∆v̄k∥2 ≤ κG∥∆v̄k∥2 and further

obtain

∥Gk∆xk∥2 = ∥Gk∆vk∥2 =
∥∥GkG

T
k∆v̄k

∥∥2 ≥ ξ2G ∥∆v̄k∥2 ≥
ξ2G
κG
∥∆vk∥2 .

Using the above expressions and Cauchy-Schwarz inequality, and assuming η1,k ≥ 16/(η2,kξG) at the
momonet, we get

3η2,kΥ
2 ∥∆xk∥2 −∆xk

T

(
Bk +

(
η1,k
2
− 8

η2,kξG

)
GT

kGk

)
∆xk

= 3η2,kΥ
2 ∥∆xk∥2 −∆uT

kBk∆uk − 2∆uT
kBk∆vk −∆vT

k Bk∆vk −
(
η1,k
2
− 8

η2,kξG

)
∥Gk∆xk∥2

≤ 3η2,kΥ
2 ∥∆xk∥2 − ξB ∥∆uk∥2 + 2Υ ∥∆uk∥ ∥∆vk∥+Υ ∥∆vk∥2 −

(
η1,k
2
− 8

η2,kξG

)
ξ2G
κG
∥∆vk∥2

≤
(
3η2,kΥ

2 − ξB
)
∥∆xk∥2 + 2Υ ∥∆uk∥ ∥∆vk∥+ (ξB +Υ) ∥∆vk∥2 −

(
η1,kξ

2
G

2κG
− 8ξG

η2,kκG

)
∥∆vk∥2 .

Now we apply Young’s inequality for the second term. Note that

2Υ∥∆uk∥∥∆vk∥ = (
√

ξB∥∆uk∥)
(

2Υ√
ξB
∥∆vk∥

)
.

Using the above expression, we get

2Υ ∥∆uk∥ ∥∆vk∥ ≤
ξB
2
∥∆uk∥2 +

2Υ2

ξB
∥∆vk∥2 ≤

ξB
2
∥∆xk∥2 +

2Υ2

ξB
∥∆vk∥2 .

This leads to

3η2,kΥ
2 ∥∆xk∥2 −∆xk

T

(
Bk +

(
η1,k
2
− 8

η2,kξG

)
GT

kGk

)
∆xk

≤
(
3η2,kΥ

2 − ξB
2

)
∥∆xk∥2 +

2Υ2

ξB
∥∆vk∥2 + (ξB +Υ) ∥∆vk∥2 −

(
η1,kξ

2
G

2κG
− 8ξG

η2,kκG

)
∥∆vk∥2

≤
(
3η2,kΥ

2 − ξB
2

)
∥∆xk∥2 +

(
2Υ2

ξB
+ ξB +Υ+

8ξG
η2,kκG

− η1,kξ
2
G

2κG

)
∥∆vk∥2 .

Plugging the above inequality back into (B.5), we get(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
≤ −η2,k

2
∥∇Lk∥2 +

(
3η2,kΥ

2 − ξB
2

)
∥∆xk∥2 +

(
2Υ2

ξB
+ ξB +Υ+

8ξG
η2,kκG

− η1,kξ
2
G

2κG

)
∥∆vk∥2 −

η2,kξG
8
∥∆λk∥2 .

In order to make the upper bound negative, we let

η2,k ≤
ξB

12Υ2
. (B.6)

Furthermore, without loss of generality, we assume κG∧Υ/2 ≥ 1 ≥ ξB∨ξG. Using this assumption together
with (B.6), we obtain

2Υ2

ξB
+ξB+Υ+

8ξG
η2,kκG

≤ 2Υ2

ξB
+
3Υ

2
+

8ξG
η2,kκG

≤ 3Υ2

ξB
+

8ξG
η2,kκG

≤ 1

4η2,k
+

8ξG
η2,kκG

≤ 1

4η2,k
+

8

η2,k
≤ 8.5

η2,k
.
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Using (B.6) togther with the above inequality, we get(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
≤ −η2,k

2
∥∇Lk∥2 −

ξB
4
∥∆xk∥2 +

(
8.5

η2,k
− η1,kξ

2
G

2κG

)
∥∆vk∥2 −

η2,kξG
8
∥∆λk∥2 .

In order to make the upper bound negative, we let

η1,k ≥
17κG

η2,kξ2G
. (B.7)

Note that (B.6) and (B.7) imply η1,k ≥ η2,k and η1,k ≥ 16/(η2,kξG), hence, justify our previous assumption.
Using (B.6) and (B.7), we finally have(

∇xLk
η

∇λLk
η

)T (
∆xk

∆λk

)
≤ −η2,k

2
∥∇Lk∥2 −

η2,kξG
8
∥∆λk∥2 −

ξB
4
∥∆xk∥2

≤ −η2,k
2
∥∇Lk∥2 −

η2,kξG
8
∥∆λk∥2 −

η2,kξG
8
∥∆xk∥2

≤ −η2,k
2
∥∇Lk∥2 −

η2,kξG
8

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 . (B.8)

Now we develop the second term of (B.4). Using Cauchy-Schwarz inequality and (B.6), we get(
∇xLk

η

∇λLk
η

)T (
∆̃xk −∆xk

∆̃λk −∆λk

)
=

(
∆̃xk −∆xk

∆̃λk −∆λk

)T (
I + η2,kHk η1,kG

T
k

η2,kGk I

)(
∇xLk

ck

)
= −

(
∆̃xk −∆xk

∆̃λk −∆λk

)T (
(I + η2,kHk)Bk + η1,kG

T
kGk (I + η2,kHk)G

T
k

Gk(I + η2,kBk) η2,kGkG
T
k

)(
∆xk

∆λk

)
≤
∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥∥∥∥∥(∆xk

∆λk

)∥∥∥∥ ((1 + η2,kΥ)Υ + (η1,k + η2,k)Υ
2 + 2(1 + η2,kΥ)Υ

)
≤
∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥∥∥∥∥(∆xk

∆λk

)∥∥∥∥ (3Υ + 4η2,kΥ
2 + η1,kΥ

2
)

≤
∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥∥∥∥∥(∆xk

∆λk

)∥∥∥∥(3Υ +
ξB
3

+ η1,kΥ
2

)
.

Furthermore, without loss of generality, we assume κG ∧Υ/2 ≥ 1 ≥ ξB ∨ ξG. Using (B.6) and (B.7), we get
η1,k ≥ (17κG)/(η2,kξ

2
G) ≥ 17/(η2,kξG) ≥ (17× 12Υ2)/(ξBξG). Then we have 19/6 ≤ η1,kΥ and further

obtain

3Υ +
ξB
3

+ η1,kΥ
2 ≤ 19Υ

6
+ η1,kΥ

2 ≤ 2η1,kΥ
2.

Using this inequality, we finally have(
∇xLk

η

∇λLk
η

)T (
∆̃xk −∆xk

∆̃λk −∆λk

)
≤ 2η1,kΥ

2

∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥∥∥∥∥(∆xk

∆λk

)∥∥∥∥ . (B.9)
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Now plugging (B.8) and (B.9) back into (B.4) and using (A.3), we obtain(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
=

(
∇xLk

η

∇λLk
η

)T (
∆xk

∆λk

)
+

(
∇xLk

η

∇λLk
η

)T (
∆̃xk −∆xk

∆̃λk −∆λk

)
≤ −η2,k

2
∥∇Lk∥2 −

η2,kξG
8

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 + 2η1,kΥ
2

∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥∥∥∥∥(∆xk

∆λk

)∥∥∥∥
≤ −η2,k

2
∥∇Lk∥2 −

η2,kξG
8

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 + 2δkη1,kΥ
2

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2
≤ −η2,k

2
∥∇Lk∥2 −

(
η2,kξG

8
− 2δkη1,kΥ

2

)∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 .
In order to make the upper bound negative, we let

δk ≤
η2,kξG

16η1,kΥ2
, (B.10)

and obtain (
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
≤ −η2,k

2
∥∇Lk∥2 .

This ends proof of Lemma 10.

B.9. Proof of Lemma 11

Proof We suppose the event ∩∞k=0(Ak ∩ Bk) happens. We start from finding the lower bound of
δtrial
k η1,k
η2,k

.

Since the updating rule of the adaptive parameters (2.9) increases η1,k by a factor of ν2 and decreases η2,k
by a factor of 1/ν, we have that η1,0 ≤ η1,k and η2,0 ≥ η2,k for all k ≥ 0. Using this fact, we have that for
any k ≥ 0,

2Ψ2
k(3Υk + 4η2,kΥ

2
k + η1,kΥ

2
k) ≤ 2Ψ2(3Υ + 4η2,0Υ

2 + η1,kΥ
2)

≤ 6Ψ2Υ+ 8η2,0Ψ
2Υ2 + 2η1,kΨ

2Υ2

≤ 6Ψ2Υ+ 8η2,0Ψ
2Υ2 + 2η1,kΨ

2Υ2

≤ η1,k
η1,0

(6Ψ2Υ+ 8η2,0Ψ
2Υ2) + 2η1,kΨ

2Υ2

≤ η1,k

(
6Ψ2Υ

η1,0
+

8η2,0Ψ
2Υ2

η1,0
+ 2Ψ2Υ2

)
.

Using the above display, we get

δtrial
k =

(
1

2
− β

)
η2,k

2Ψ2
k(3Υk + 4η2,kΥ2

k + η1,kΥ2
k)
≥ η2,k

η1,k

(
1

2
− β

)
η1,0

6Ψ2Υ+ 8η2,0Ψ2Υ2 + 2η1,0Ψ2Υ2
,

and obtain
δtrial
k η1,k
η2,k

≥
(
1

2
− β

)
η1,0

6Ψ2Υ+ 8η2,0Ψ2Υ2 + 2η1,0Ψ2Υ2
. (B.11)

Using Lemma 10 and (B.11), we obtain the conditions for all adaptive parameters to be stabilized as

η1,kη2,k ≥
17κG

ξ2G
, η2,k ≤

ξB
12Υ2

,
δkη1,k
η2,k

≤ ξG
16Υ2

∧
(
1

2
− β

)
η1,0

6Ψ2Υ+ 8η2,0Ψ2Υ2 + 2η1,0Ψ2Υ2
.

(B.12)
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Note that the lower bound of η1,kη2,k and the upper bound of η2,k, δkη1,k/η2,k do not depend on k. The
updating rule of the adaptive parameters (2.9) implies that η1,kη2,k increases by a factor of ν, η2,k decreases
by a factor of 1/ν, and δkη1,k/η2,k decreases at least by a factor of 1/ν. Thus, conditioned on the event
∩∞k=0(Ak ∩ Bk), all parameters are stabilized after sufficiently large outer iterations k. Now, using the fact
that P(Ak|xk,λk) = 1 and P(Bk|Ak,xk,λk) = 1, we have P(Ak ∩ Bk|xk,λk) = 1. Using Boole’s
inequality,

P (∩∞k=0(Ak ∩ Bk)) = 1− P(∪∞k=0(Ak ∩ Bk)c)

≥ 1−
∞∑
k=0

P((Ak ∩ Bk)c)

= 1−
∞∑
k=0

∫∫
X×Λ

P ((Ak ∩ Bk)c|xk,λk)P ((Xk,Λk) = (xk,λk)) d(xk,λk)

= 1−
∞∑
k=0

∫∫
X×Λ

0 · P ((Xk,Λk) = (xk,λk)) d(xk,λk)

= 1. (B.13)

Therefore, the event ∩∞k=0(Ak∩Bk) happens with probability 1, hence, after sufficiently large outer iterations
k, all parameters are stabilized almost surely. This ends proof of Lemma 11.

B.10. Proof of Lemma 12
Proof Let k ≥ 0 and we suppose the algorithm reaches (xk,λk) and the event Ak ∩ Bk happens. We start
from establishing Lipschitz continuity of∇Lη . Note that

∇Lη =

(
(I + η2H)∇xL+ η1G

T c
c+ η2G∇xL

)
.

Using Assumption 1, we have H,G,∇xL, and c are all Lipschitz continuous and bounded over X . Using
this fact we have∇Lη is also Lipschitz continuous over X . We denote Γ be the Lipschitz constant for∇Lη .
Now we let C be a line segment given by the vector function s(t) = (xk + tαk∆̃xk,λk + tαk∆̃λk) where
0 ≤ t ≤ 1. Using this expression together with the fundamental theorem for line integrals, we get

Lη(xk + αk∆̃xk,λk + αk∆̃λk)

= Lk
η +

∫
C

∇Lη · ds

= Lk
η + αk

(
∇Lk

η

)T (∆̃xk

∆̃λk

)
+

∫
C

∇Lη · ds− αk

(
∇Lk

η

)T (∆̃xk

∆̃λk

)
= Lk

η + αk

(
∇Lk

η

)T (∆̃xk

∆̃λk

)
+ αk

∫ 1

0

∇LT
η (xk + tαk∆̃xk,λk + tαk∆̃λk)

(
∆̃xk

∆̃λk

)
dt− αk

(
∇Lk

η

)T (∆̃xk

∆̃λk

)
= Lk

η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ αk

∫ 1

0

[
∇Lη(xk + tαk∆̃xk,λk + tαk∆̃λk)−∇Lk

η

]T (∆̃xk

∆̃λk

)
dt

≤ Lk
η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ αk

∫ 1

0

Γtαk

∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2 dt
≤ Lk

η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ α2

k

Γ

2

∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2 .
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Using (A.3), we have∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥ ≤ δk

∥∥∥∥(∆xk

∆λk

)∥∥∥∥+ ∥∥∥∥(∆xk

∆λk

)∥∥∥∥ ≤ (δk + 1)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥ ≤ 2

∥∥∥∥(∆xk

∆λk

)∥∥∥∥ . (B.14)

Using this expression together with Lemma 10, we get

Lη(xk + αk∆̃xk,λk + αk∆̃λk) ≤ Lk
η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ α2

k

Γ

2

∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
≤ Lk

η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ 2α2

kΓ

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2
≤ Lk

η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ 2α2

kΓΨ
2 ∥∇Lk∥2

≤ Lk
η + αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
− 4α2

kΓΨ
2

η2,k

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
≤ Lk

η +

(
1− 4ΓΨ2αk

η⋆2

)
αk

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
,

where η⋆2 is the stabilized value of η2. Using the above display, if(
1− 4ΓΨ2αk

η⋆2

)
≥ β ↔ αk ≤

(1− β)η⋆2
4ΓΨ2

,

then the Armijo condition is satisfied. Moreover, since the upper bound of αk does not depend on k, we can

find l ≥ 0, independent of k, such that for any k, 0 < (ρ)l ≤ (1− β)η2
4ΓΨ2

. Finally, if we let αmin = (ρ)l, then
for any outer iteration k, we have 0 < αmin ≤ αk. This ends proof of Lemma 12.

B.11. Proof of Lemma 13
Proof We suppose the event ∩∞k=0(Ak ∩ Bk) happens. Using Assumption 1, we let kf , kc, kg > 0 be
constants such that |fk| ≤ kf , ∥ck∥ ≤ kc, and ∥∇fk∥ ≤ kg . Using this fact together with Lemma 5 and
Cauchy-Schwarz inequality, we get for any k ≥ 0,

Lη(xk,λk) = Lk +
η1,k
2
∥ck∥2 +

η2,k
2

∥∥∇fk +GT
k λk

∥∥2
= fk + λT

k ck +
η1,k
2
∥ck∥2 +

η2,k
2

∥∥∇fk +GT
k λk

∥∥2
= fk + λT

k ck +
η1,k
2
∥ck∥2 +

η2,k
2
∥∇fk∥2 + η2,kλ

T
kGk∇fk +

η2,k
2

λT
kGkG

T
k λk

≥ fk + λT
k (ck + η2,kGk∇fk) +

η2,kξG
2
∥λk∥2

≥ fk − ∥λk∥ ∥ck + η2,kGk∇fk∥+
η2,kξG

2
∥λk∥2

≥ − |fk| − ∥λk∥ (∥ck∥+ η2,k ∥Gk∥ ∥∇fk∥) +
η2,kξG

2
∥λk∥2

≥ −kf − ∥λk∥ (kc + η2,0ΥGkg) +
η⋆2ξG
2
∥λk∥2 ,
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where η⋆2 is the stabilized value of η2. Using Lemma 10 and 12, we have that Lη(xk,λk) ≤ Lη(x0,λ0) for
all k ≥ 0. This leads to

η⋆2ξG
2
∥λk∥2 − ∥λk∥ (kc + η2,0ΥGkg) ≤ Lη(xk,λk) + kf ≤ |Lη(x0,λ0)|+ kf . (B.15)

If we let K1 =
η⋆2ξG
2

> 0, K2 = kc + η2,0ΥGkg > 0, and K3 = |Lη(x0,λ0)| + kf > 0, then we get for
any k ≥ 0,

K1 ∥λk∥2 −K2 ∥λk∥ ≤ K3.

This implies that {λk}k≥0 is bounded. Using (B.13), the event ∩∞k=0(Ak ∩ Bk) happens with probability 1,
hence, {λk}k≥0 is bounded almost surely. This ends proof of Lemma 13.
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B.12. Proof of Theorem 1
Proof We suppose the event ∩∞k=0(Ak ∩Bk) happens. Using Lemma 10 and 12, we have that for any k ≥ 0,(

∇xLk
η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
≤ −η2,k

2
∥∇Lk∥2

and

Lη(xk + αk∆̃xk,λk + αk∆̃λk) ≤ Lk
η + αkβ

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
for some αk ∈ (0, 1]. Combining the above displays, we have that for any k ≥ 0,

Lk+1
η − Lk

η ≤ −
η2,kαkβ

2
∥∇Lk∥2 ≤ −

η⋆2αminβ

2
∥∇Lk∥2 ,

where η⋆2 is the stabilized value of η2. Summing over k, we have

∞∑
k=0

∥∇Lk∥2 ≤
2

η⋆2αkβ

(
L0
η − min

X×Λ
{Lη(x,λ)}

)
<∞.

Therefore, ∥∇Lk∥ → 0 as k → ∞. Using (B.13), the event ∩∞k=0(Ak ∩ Bk) happens with probability 1,
hence, P (∥∇Lk∥ → 0 as k →∞) = 1. This ends proof of Theorem 1.
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B.13. Proof of Theorem 2
Proof We suppose the event ∩∞k=0(Ak∩Bk) happens. We first show for all sufficiently large k, almost surely,
unit stepsize is admissible. It suffices to show that for all sufficiently large k,

Lη(xk + ∆̃xk,λk + ∆̃λk) ≤ Lk
η + β

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
almost surely. (B.16)

Using the fact that for any k ≥ 0,

∇Lk
η =

(
(I + η2,kHk)∇xLk + η1,kG

T
k ck

ck + η2,kGk∇xLk

)
and

∇(M · c) = c · ∇MT +M · ∇c

where M ∈ Rm×n and c ∈ Rn, we get

∇2
xxLk

η = ∇x

(
∇xLk + η2,kHk∇xLk + η1,kG

T
k ck
)

= Hk + η2,k
(
∇xLk · ∇xHk +H2

k

)
+ η1,k

(
ck · ∇Gk +GT

kGk

)
,

∇2
λλLk

η = ∇λ (ck + η2,kGk∇xLk) = η2,kGk∇2
xλLk = η2,kGkG

T
k ,

∇2
xλLk

η = ∇λ

(
∇xLk + η2,kHk∇xLk + η1,kG

T
k c

k
)
= GT

k + η2,k
(
∇xLk · ∇λHk +HkG

T
k

)
,

where ∇xHk = ∇3
xxxfk +

∑m
i=1 λi,k∇3

xxxci,k and ∇λHk = ∇2
xxck. Using Assumption 4, we have that

the third derivatives of f and c are continuous, hence,∇2Lk
η is continuous over X . Now we let

Hk =

(
Hk + η2,kH

2
k + η1,kG

T
kGk GT

k + η2,kHkG
T
k

Gk + η2,kGkHk η2,kGkG
T
k

)
.

Using ∥∇Lk∥ =

∥∥∥∥(∇xLk

ck

)∥∥∥∥ = o(1), we have ∇2Lk
η = Hk + o(1). Applying Taylor’s theorem to the

augmented Lagrangian merit function about (xk,λk) yields

Lη(xk + ∆̃xk,λk + ∆̃λk)

≤ Lk
η +

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

(
∆̃xk

∆̃λk

)T

∇2Lk
η

(
∆̃xk

∆̃λk

)
+ o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)

= Lk
η +

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

(
∆̃xk

∆̃λk

)T

Hk

(
∆̃xk

∆̃λk

)
+ o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)

= Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

(
∆̃xk

∆̃λk

)T

Hk

(
∆̃xk

∆̃λk

)
+

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)

= Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

(
∆̃xk

∆̃λk

)T

Hk

(
∆̃xk

∆̃λk

)
− 1

2

(
∆̃xk

∆̃λk

)T (
(I + η2,kHk)Bk + η1,kG

T
kGk (I + η2,kHk)G

T
k

Gk(I + η2,kBk) η2,kGkG
T
k

)(
∆xk

∆λk

)
+ o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)

= Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

(
∆̃xk

∆̃λk

)T

Hk

(
∆̃xk −∆xk

∆̃λk −∆λk

)
+

1

2

(
∆̃xk

∆̃λk

)T (
Hk −

(
(I + η2,kHk)Bk + η1,kG

T
kGk (I + η2,kHk)G

T
k

Gk(I + η2,kBk) η2,kG
kGT

k

))(
∆xk

∆λk

)
+ o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)
.
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This leads to

Lη(xk + ∆̃xk,λk + ∆̃λk) ≤ Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

(
∆̃xk

∆̃λk

)T

Hk

(
∆̃xk −∆xk

∆̃λk −∆λk

)
+

1

2

(
∆̃xk

∆̃λk

)T (
(I + η2,kHk)(Hk −Bk) 0

η2,kGk(Hk −Bk) 0

)(
∆xk

∆λk

)
+ o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)
.

Now we let Υk = ∥Bk∥∨∥Hk∥∨∥Gk∥. Using Assumption 5, we get ∥(Hk −Bk)∆xk∥ ≤ ∥(Hk −Bk)∥ ∥∆xk∥ =
o (∥∆xk∥). Using this expression together with (A.3), (B.14), and o(∥(∆̃xk, ∆̃λk)∥) = o(∥(∆xk,∆λk)∥),
we have that for any k ≥ 0,

Lη(xk + ∆̃xk,λk + ∆̃λk)

≤ Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2

∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥ ∥Hk∥
∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥
+

1

2

∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥ (∥I + η2,kHk∥ ∥(Hk −Bk)∆xk∥+ ∥η2,kGk∥ ∥(Hk −Bk)∆xk∥) + o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)

≤ Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+

1

2
∥Hk∥

(
2

∥∥∥∥(∆xk

∆λk

)∥∥∥∥)(δk ∥∥∥∥(∆xk

∆λk

)∥∥∥∥)
+ (1 + 2η2,kΥk)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥ o (∥∆xk∥) + o

(∥∥∥∥(∆̃xk

∆̃λk

)∥∥∥∥2
)

≤ Lk
η +

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ δk(3Υk + 4η2,kΥ

2
k + η1,kΥ

2
k)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 + o

(∥∥∥∥(∆xk

∆λk

)∥∥∥∥2
)
.

(B.17)

Using the fact that for any k ≥ 0, δk ≤ δtrial
k =

(
1

2
− β

)
η2,k

2Ψ2
k(3Υk + 4η2,kΥ2

k + η1,kΥ2
k)

and Lemma 10,

we have that for any k ≥ 0,

δk(3Υk + 4η2,kΥ
2
k + η1,kΥ

2
k) ≤

(
1

2
− β

)
η2,k
2Ψ2

k

⇒ δk(3Υk + 4η2,kΥ
2
k + η1,kΥ

2
k)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 ≤ (1

2
− β

)
η2,k
2Ψ2

k

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2
⇒ δk(3Υk + 4η2,kΥ

2
k + η1,kΥ

2
k)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 ≤ (1

2
− β

)
η2,k
2
∥∇Lk∥2

⇒ δk(3Υk + 4η2,kΥ
2
k + η1,kΥ

2
k)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 ≤ −(1

2
− β

)(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
⇒ 1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+ δ(3Υk + 4η2,kΥ

2
k + η1,kΥ

2
k)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2 ≤ β

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
.

We let K1 ≥ 0 be the outer iteration such that for any k ≥ K1,

1

2

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
+δk(3Υk+4η2,kΥ

2
k+η1,kΥ

2
k)

∥∥∥∥(∆xk

∆λk

)∥∥∥∥2+o

(∥∥∥∥(∆xk

∆λk

)∥∥∥∥2
)
≤ β

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
.

Plugging the above inequality back into (B.17), we have that for any k ≥ K1,

Lη(x
k + ∆̃xk,λ

k + ∆̃λk) ≤ Lk
η + β

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)
.
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Using (B.13), the event ∩∞k=0(Ak ∩ Bk) happens with probability 1, hence,

P

(
∩∞k=K1

{
Lη(x

k + ∆̃xk,λ
k + ∆̃λk) ≤ Lk

η + β

(
∇xLk

η

∇λLk
η

)T (
∆̃xk

∆̃λk

)})
= 1.

Next, we show for all sufficiently large k,∥∥∥∥(xk + ∆̃xk − x⋆

λk + ∆̃λk − λ⋆

)∥∥∥∥ ≤ δ⋆
∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ almost surely,

where δ⋆ be the stabilized value of δ ∈ (0, 1). We start from dividing
(
xk + ∆̃xk − x⋆

λk + ∆̃λk − λ⋆

)
into two terms as

follows: (
xk + ∆̃xk − x⋆

λk + ∆̃λk − λ⋆

)
=

(
xk +∆xk − x⋆

λk +∆λk − λ⋆

)
+

(
∆̃xk −∆xk

∆̃λk −∆λk

)
. (B.18)

First we develop the first term in (B.18). Using Assumption 1– 2 together with ∇L⋆ = 0, we obtain for any
k ≥ 0,(

xk +∆xk − x⋆

λk +∆λk − λ⋆

)
=

(
Bk GT

k

Gk 0

)−1(
Bk GT

k

Gk 0

)(
xk − x⋆

λk − λ⋆

)
+

(
∆xk

∆λk

)
=

(
Bk GT

k

Gk 0

)−1(
Bk GT

k

Gk 0

)(
xk − x⋆

λk − λ⋆

)
−
(
Bk GT

k

Gk 0

)−1

∇Lk

=

(
Bk GT

k

Gk 0

)−1((
Bk GT

k

Gk 0

)(
xk − x⋆

λk − λ⋆

)
−∇Lk

)
=

(
Bk GT

k

Gk 0

)−1((
Bk GT

k

Gk 0

)(
xk − x⋆

λk − λ⋆

)
− (∇Lk −∇L⋆)

)
. (B.19)

Using Assumption 1, we know ∇2L is continuous over X . Using this fact, we apply Taylor’s theorem and
obtain

∇Lk −∇L⋆ =

∫ 1

0

∇2L (xk + t(x⋆ − xk),λk + t(λ⋆ − λk))

(
xk − x⋆

λk − λ⋆

)
dt

=

∫ 1

0

(
H (xk + t(x⋆ − xk),λk + t(λ⋆ − λk)) GT (xk + t(x⋆ − xk))

G(xk + t(x⋆ − xk)) 0

)(
xk − x⋆

λk − λ⋆

)
dt.

Now we let H(t) = H (xk + t(x⋆ − xk),λk + t(λ⋆ − λk)) and G(t) = G(xk + t(x⋆ − xk)). Then we
rewrite the above display as

∇Lk −∇L⋆ =

∫ 1

0

(
H(t) GT (t)
G(t) 0

)(
xk − x⋆

λk − λ⋆

)
dt.

Plugging the above display back into (B.19), we obtain for any k ≥ 0,(
xk +∆xk − x⋆

λk +∆λk − λ⋆

)
=

(
Bk GT

k

Gk 0

)−1((
Bk GT

k

Gk 0

)(
xk − x⋆

λk − λ⋆

)
− (∇Lk −∇L⋆)

)
=

(
Bk GT

k

Gk 0

)−1(∫ 1

0

(
Bk −H(t) GT

k −G(t)T

Gk −G(t) 0

)(
xk − x⋆

λk − λ⋆

)
dt

)
Using Assumption 1, we know H and G are Lipschitz continuous over X . Let Γ1,Γ2 > 0 be the Lipschitz
constants for H and G respectively. Using this fact together with Lemma 6 and Assumption 5, and taking ℓ2
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norm on both sides, we have that for any k ≥ 0,∥∥∥∥(xk +∆xk − x⋆

λk +∆λk − λ⋆

)∥∥∥∥ ≤
∥∥∥∥∥
(
Bk GT

k

Gk 0

)−1
∥∥∥∥∥
∥∥∥∥∫ 1

0

(
Bk −H(t) GT

k −G(t)T

Gk −G(t) 0

)(
xk − x⋆

λk − λ⋆

)
dt

∥∥∥∥
≤

∥∥∥∥∥
(
Bk GT

k

Gk 0

)−1
∥∥∥∥∥
∫ 1

0

∥∥∥∥(Bk −H(t) GT
k −G(t)T

Gk −G(t) 0

)∥∥∥∥∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ dt
≤ Ψ

∫ 1

0

(∥Bk −Hk∥+ ∥Hk −H(t)∥+ 2∥Gk −G(t)∥)
∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ dt
≤ Ψ

∫ 1

0

(
o(1) + Γ1t

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥+ 2Γ2t ∥xk − x⋆∥
)∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ dt
≤ Ψ

∫ 1

0

(
o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥)+ Γ1t

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2 + 2Γ2t

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2
)
dt

≤ Ψo

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥)+ΨΓ1

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2 ∫ 1

0

tdt+ 2ΨΓ2

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2 ∫ 1

0

tdt

≤ o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥)+
ΨΓ1

2

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2 +ΨΓ2

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2
≤ o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥)+O

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥2
)

≤ o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥) . (B.20)

Furthermore, using (B.20) we have∥∥∥∥(∆xk

∆λk

)∥∥∥∥ ≤ ∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥+ ∥∥∥∥(xk +∆xk − x⋆

λk +∆λk − λ⋆

)∥∥∥∥ ≤ ∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥+ o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥) .

Using the above inequality together with (A.3) and (B.20), and taking ℓ2 norm on both sides of (B.18), we
have that for any k ≥ 0,∥∥∥∥(xk + ∆̃xk − x⋆

λk + ∆̃λk − λ⋆

)∥∥∥∥ ≤ ∥∥∥∥(∆̃xk −∆xk

∆̃λk −∆λk

)∥∥∥∥+ ∥∥∥∥(xk +∆xk − x⋆

λk +∆λk − λ⋆

)∥∥∥∥
≤ δk

∥∥∥∥(∆xk

∆λk

)∥∥∥∥+ o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥)
≤ δk

∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥+ o

(∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥) .

We let K̄ ≥ 0 be the outer iteration such that
∥∥∥∥(xk + ∆̃xk − x⋆

λk + ∆̃λk − λ⋆

)∥∥∥∥ ≤ δ⋆
∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ holds where δ⋆ be

the stabilized value of δ ∈ (0, 1). Now we let K2 = K̄ ∨K1. Then, we have for any k ≥ K2,∥∥∥∥(xk+1 − x⋆

λk+1 − λ⋆

)∥∥∥∥ =

∥∥∥∥(xk + ∆̃xk − x⋆

λk + ∆̃λk − λ⋆

)∥∥∥∥ ≤ δ⋆
∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥ .
Using (B.13), the event ∩∞k=0(Ak ∩ Bk) happens with probability 1, hence,

P
(
∩∞k=K2

{∥∥∥∥(xk+1 − x⋆

λk+1 − λ⋆

)∥∥∥∥ ≤ δ⋆
∥∥∥∥(xk − x⋆

λk − λ⋆

)∥∥∥∥}) = 1.

This ends proof of Theorem 2.
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Appendix C. Algorithms

Algorithm 1: Adaptive Inexact SQP via Iterative Randomized Sketching
Input: Initial iterate (x0,λ0);

Scalars η1,0, η2,0, δ0 ∈ (0, 1); ξB ∈ (0, 1], β ∈ (0, 1/2); ν > 1;
for k = 0, 1, 2, . . . do

Compute fk, ∇fk, ck, Gk, Hk, and generate Bk

Compute δtrial
k by (2.6)

Set (∆̃xk, ∆̃λk)← (0,0) and compute rk by (2.4)
Set δk ← (δk ∧ δtrial

k )
while Step Acceptance Condition does not hold do

while ∥rk∥ > δk
∥∇Lk∥
∥Γk∥Ψk

do

Generate S ∼ P , update (∆̃xk, ∆̃λk) by (2.5), and compute rk by (2.4)
end

if
(
∇xLkη
∇λLkη

)T (
∆̃xk

∆̃λk

)
> −

η2,k
2
∥∇Lk∥2 then

Set η1,k ← η1,kν
2 and η2,k ← η2,k/ν

Update δtrial
k by (2.6) and set δk ← (δk/ν

4 ∧ δtrial
k )

end
end
Select αk to satisfy (2.10) using backtracking
Update iterate by (2.11)
Set η1,k+1 ← η1,k, η2,k+1 ← η2,k, and δk+1 ← δk

end
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Algorithm 2 and 3 use the ℓ1 penalized merit function of the form ϕπ(x) = f(x) + π∥c(x)∥1.
Since ϕπ(x) is not differentiable and its directional derivative is hard to compute, we use the upper
bound of the directional derivative of the merit function ϕπ along a step ∆̃xk,

D̃ϕ(∆̃xk;πk) ≤ ∇fkT ∆̃xk − πk (∥ck∥1 − ∥rk∥1) ,

when we check if ∆̃xk is a descent direction of ϕπ. Termination Test 1, Termination Test 2, Model
Reduction Condition, and πtrial

k are referred to in [4].

Algorithm 2: [4] with ℓ1 penalized merit function
Input: Initial iterate (x0,λ0); Scalars κ1, ϵ, τ, σ, η ∈ (0, 1); ξB ∈ (0, 1]; π0, β, κ, κ2 > 0;
for k = 0, 1, 2, . . . do

Compute fk, ∇fk, ck, Gk, Hk, and generate Bk

Set (∆̃xk, ∆̃λk)← (0,0) and compute rk by (2.4)
while Termination Test 1 AND Termination Test 2 are not satisfied do

Generate S ∼ P , update (∆̃xk, ∆̃λk) by (2.5), and compute rk by (2.4)
end
if Termination Test 2 is satisfied and Model Reduction Condition does not hold then

Set πk ← πtrial
k + 10−4

end
Select αk to satisfy (2.10) using backtracking
Update iterate by (2.11)
Set πk+1 ← πk

end

Algorithm 3: Adaptive version of Algorithm 2
Input: Initial iterate (x0,λ0); Scalars κ0, η ∈ (0, 1), ξB ∈ (0, 1], π0 > 0; ν > 1;
for k = 0, 1, 2, . . . do

Compute fk, ∇fk, ck, Gk, Hk, and generate Bk

Set (∆̃xk, ∆̃λk)← (0,0) and compute rk by (2.4)
while Termination Test 1 is not satisfied do

while ∥rk∥1 > κ ∥∇Lk∥1 do
Generate S ∼ P , update (∆̃xk, ∆̃λk) by (2.5), and compute rk by (2.4)

end
if Model Reduction Condition does not hold then

Set πk ← πkν and κk ← κk/ν
2

end
end
Select αk to satisfy (2.10) using backtracking
Update iterate by (2.11)
Set πk+1 ← πk

end
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Appendix D. Further Experiments

Implementation Details.

1. Algorithm 1: The proposed algorithm. The parameters are set as η1,0 = 1, η2,0 = 0.1,
δ0 = 0.1, ξB = 0.1, β = 0.1, ν = 1.4, ρ = 0.5, θk = 1.

2. Algorithm 2: [4] with the ℓ1 penalized merit function. We follow the parameter setup used
in [4]. The parameters are set as π0 = 1, κ = 1, κ1 = 0.1, ϵ = 0.1, τ = 0.1, η = 10−8.
Likewise, the remaining parameters are set as ξB = 0.1, σ = τ(1 − ϵ), and κ2 = β =
∥∇L0∥1
∥c0∥1 + 1

∨ 1.

3. Algorithm 3: Adaptive version of Algorithm 2. The parameters are set as π0 = 1, κ0 = 0.1,
η = 10−8, ξB = 0.1, β = 0.1, ν = 1.4.

For the Hessian modification, we regularize the Hessian Hk by Bk = Hk+(ξB+∥Hk∥)In whenever
Hk does not satisfy Assumption 2. The stopping criterion is set as:

∥∇Lk∥ ≤ 10−4 OR k ≥ 104.

If the algorithm terminates by the former stopping criterion, we say the algorithm converges, other-
wise the latter stopping criterion would be satisfied.

D.1. CUTEst

Among all the problems in the CUTEst test set, we selected the problems for which f is not a con-
stant objective with n < 1000, containing only equality constraints, positive definiteness of GkG

T
k

at all iterates of all algorithms that we ran. This selection scheme yields a total of 47 problems.
Throughout the experiments, we use the initial value of primal-dual variables which are provided
by the CUTEst package. For each algorithm, we average over 10 independent runs.

We compare Algorithms 2 and 3. Remark that Step acceptance condition of Algorithm 1 is
similar with the Termination Test 1 in Algorithm 2, in that both conditions require an inexact step
(∆̃xk, ∆̃λk) to acheive certain accuracy and ensure a step to be a descent direction of the merit
function. However, Algorithm 1 adaptively controls the accuracy of an inexact solution of (2.3),
on the other hand, Algorithm 2 uses a consistent bound to the accuracy throughout all iterations.
Since Algorithm 3 adaptively controls the accuracy of an inexact search direction, but relies on
Termination Test 1 in Algorithm 2, we can view Algorithm 3 as an adaptive version of Algorithm 2.

We present the comparison between Algorithms 2 and 3 on CUTEst set in Figure 2. From Fig-
ure 2, we observe that Algorithm 3 is superior than Algorithm 2 in all three criteria. This is because
Algorithm 3 adaptively controls the accuracy of the inexact solution and this adaptive scheme yields
tighter bounds on the residuals of the iterative solver. This results in steeper decrease in the merit
function at each iteration and smaller number of outer iterations. Since both algorithms use the ℓ1
penalized merit function, both algorithm do not involve gradient and Jacobian evaluations when we
find a stepsize αk.
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Figure 2: KKT residual, number of gradient and Jacobian evaluations, and number of objective and
constraints evaluations boxplots for Algorithm 2 and Algorithm 3 on CUTEst problems.

D.2. Constrained Logistic Regression

We consider equality-constrained logistic regression problems of the form

min
x∈Rn

f(x) =
1

N

N∑
i=1

log (1 + exp(−yi· < Xi,:,x >)) s.t. Ax = b, ∥x∥2 = 1,

where X ∈ RN×n is a feature matrix with n feature dimensions and N data points, y ∈ {−1, 1}N
contains corresponding label data, A ∈ Rm×n and b ∈ Rm. We follow the experiment details
in [1]. Among all datasets in the LIBSVM collection, we consider 7 binary classification datasets
for which 12 ≤ n ≤ 1000, 256 ≤ N ≤ 100000, and positive definiteness of GkG

T
k at all iterates

of all algorithms we ran. For the linear constraints, we fix m = 10 and randomly generate each
entry of A and b from a standard normal distribution for each problem. Combining with the norm
constraint, we use total of 11 number of constraints. For all problems and algorithms, we set the
initial primal and dual iterates as the vector of all ones. For each algorithm, we average over 5
independent runs. Details of the datasets are given in Table 1.

Table 1: Dataset Statistics.

Dataset feature dimension # data points
a9a 123 32,561
ionosphere 34 351
mushrooms 112 8,124
phishing 68 11,055
sonar 60 208
splice 60 1,000
w8a 300 49,749

We evaluate Algorithm 1 and Algorithm 3 with three criteria on the LIBSVM datasets. The box-
plots for the criteria are shown in Figure 3. From Figure 3, we observe that Algorithm 1 outperforms

31



ADAPTIVE INEXACT SEQUENTIAL QUADRATIC PROGRAMMING VIA ITERATIVE RANDOMIZED SKETCHING

Algorithm 3 in terms of the KKT residual and number of objective and constraints evaluations, but
Algorithm 3 has lower number of gradient and Jacobian evaluations than Algorithm 1 as we ob-
served in Subsection D.1.

Figure 3: KKT residual, number of gradient and Jacobian evaluations, and number of objective
and constraints evaluations boxplots for Algorithm 1 and Algorithm 3 on the LIBSVM
datasets.
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