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Abstract

Hierarchical Reinforcement Learning (HRL) has made notable progress in complex
control tasks by leveraging temporal abstraction. However, previous HRL algo-
rithms often suffer from serious data inefficiency as environments get large. The
extended components, i.e., goal space and length of episodes, impose a burden on
either one or both high-level and low-level policies since both levels share the total
horizon of the episode. In this paper, we present a method of Decoupling Horizons
Using a Graph in Hierarchical Reinforcement Learning (DHRL) which can allevi-
ate this problem by decoupling the horizons of high-level and low-level policies
and bridging the gap between the length of both horizons using a graph. DHRL
provides a freely stretchable high-level action interval, which facilitates longer
temporal abstraction and faster training in complex tasks. Our method outperforms
state-of-the-art HRL algorithms in typical HRL environments. Moreover, DHRL
achieves long and complex locomotion and manipulation tasks.

1 Introduction
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Figure 1: DHRL: By decoupling the hori-
zons of both levels of the hierarchical net-
work, DHRL not only solves long and sparse
tasks but also significantly outperforms previ-
ous state-of-the-art algorithms.

Reinforcement Learning (RL) has been successfully
applied to a range of robot systems, such as locomo-
tion tasks [24, 8], learning to control aerial robots
[10, 13], and robot manipulation [14, 22]. Goal-
conditioned RL, which augments state with the goal
to train an agent for various goals [23, 19], further
raised the applicability of RL in robot systems allow-
ing the agent to achieve diverse tasks.

Hierarchical Reinforcement Learning (HRL), which
trains multiple levels of goal-conditioned RL, has im-
proved the performance of RL in complex and sparse
tasks with long horizons using temporally extended
policy [25, 26, 16]. On the back of these strengths,
HRL was adopted to solve various complex robotics
tasks [20, 11, 18].

However, HRL often has difficulty in complex or large environments because of training inefficiency.
Previous studies speculated that the cause of this problem is the large goal space, and restricted
the high-level action space to alleviate this phenomenon [28, 12]. Nevertheless, this approach
performs well only in limited length and complexity and still suffers from the same trouble in larger
environments.
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Figure 2: Our method is scalable in large environ-
ments by breaking down the relations between the
two levels and allowing both levels to operate at
their suitable horizons.

We show that this practical limitation of HRL
can be mitigated by breaking down the coupled
horizons of HRL. In previous HRL frameworks,
the horizons of the low level and high level are
related to each other structurally because they
share the total length of the episode. This rela-
tion causes a tradeoff between the training bur-
den of both levels; if the intervals between high-
level actions increase (x-axis in Figure 2), the
low-level policy has to cover a wider range, and
in the opposite case, the high-level policy takes
charge of the extended burden alone in large
environments (y-axis in Figure 2). This is the
reason why the previous HRL algorithms cannot
cope with extended components of large envi-
ronments (see Table 1 for the performance of
the previous HRL method at various intervals).

We break down the coupled horizons of HRL: To break the relation between the horizons of both
levels, we adopt a graph structure. In our method, the high-level policy can use a longer temporal
abstraction while the lower one only takes charge of smaller coverage by decomposing the subgoal
into several waypoints with a graph. In this way, the HRL algorithm obtains the capability to stretch
the interval of high-level action freely and achieves complex and large tasks, thanks to the enlarged
strength of the HRL.

In summary, our main contributions are:

• We show that the previous HRL structures are not scalable in large environments, and that
this limitation can be mitigated by removing coupled traits of high level and low level.

• To break down the coupled traits of HRL, we propose DHRL which decouples the horizons
of high-level and low-level policies and bridges the gap using a graph.

• Our algorithm outperforms state-of-the-art algorithms in typical HRL environments and
achieves complex and long tasks.

2 Preliminaries

We consider a finite-horizon Universal Markov Decision Process (UMDP) which can be represented as
a tuple (S,G,A, T ,R, γ) where S , A and G are state space, goal space and action space respectively.
The environment is defined by the transition distribution T (st+1|st, at) and reward function R :
S × A × G → R, where st ∈ S and at ∈ A are the state and action at timestep t respectively.
Also, total return of a trajectory τ = (s0, a0, ..., sH , aH) is R(τ, g) =

∑H−1
t=0 γtr(st+1, g) where

r(st+1, g) (or r(st, at, g)) is a goal conditioned reward function and γ is a discount factor. Subgoal
sg, waypoint wp and goal g are defined in goal space G and we consider G that is a subspace of S
with a mapping ψ : S → G.

HRL framework typically has high-level policy πhi and low-level policy πlo, each maintaining a
separated replay buffer Bhi and Blo. Our method also follows the general HRL framework and
employs both buffers that store high-level (st, gt, sgt, rt, st+ch) ∈ Bhi and low-level transition data
(st, wpt, at, rt, st+1) ∈ Blo, where ch is the interval between high-level action.

One of the key problems in learning HRL is that the low-level policy πlo is non-stationary and thus
old data from past policies may contain different next-states st+ch even though the high-level policy
provides the same subgoal in the identical state. To bypass this off-policy discrepancy, HRL models
use off-policy correction which relabels the old subgoal of high-level policy to be the most ‘plausible
subgoal’ that will result in a similar transition in old data with the current low-level agent [17, 28, 12]
(HIRO-style off-policy correction). Other approaches propose to relabel high-level action sgt to be
achieved state st+ch (HAC-style hindsight action relabelling), reducing the computation cost to find
a ‘plausible subgoal’ [15].
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Graph-guided RL methods, which combine the strength of RL and planning by decomposing a
long-horizon task into multi-step sub-problems, estimate the temporal distance between states and
goals to construct a graph G = (V,E) on goal space G without additional prior knowledge about
environments. Previous studies proposed various methods to recover distance from Q-value [4, 9, 27].
If the agent gets -1 reward at every step except when it is in a goal area where the agent gets 0 reward,
then, Qlo(s, a|g) can reveal the temporal distance between s to g as: (Refer to the Appendix B for
the detailed derivation.)

Dist(s→ g) = logγ (1 + (1− γ)Qlo(s, π(s, g)|g)) (1)

However, it is known that recovering temporal distance correctly from the vanilla Q-network in
this setting is challenging. For that reason, the previous methods use an additional Value function
approximator [27] or distributional Q-networks [4].

3 Related work
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Graph Level Policy Level
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Figure 3: The differences between DHRL and the
previous graph-based HRL methods. Our algo-
rithm includes the graph structure between both
levels explicitly while the previous methods use
the graph only for training high-level policy or get-
ting waypoints.

Graph-guided RL. Graphs have recently
been used as a non-parametric model in rein-
forcement learning (RL) to combine the advan-
tages of RL and planning [4, 9, 27, 3, 6]. By de-
composing a long-horizon task into multi-step
planning problems, these studies have shown
better performance and data efficiency. Search
on the Replay Buffer (SORB) [4] constructs
a directed graph based on the states randomly
extracted from a replay buffer and Q-function-
based edge cost estimation. The follow-up stud-
ies further improved the performance of earlier
graph-guided RLs [4, 9] by combining addi-
tional methods such as graph search on latent
space[27] or model predictive control [3].

However, previous papers sidestepped the exploration problems in complex tasks through ‘uniform
initial state distribution’ [4, 9, 27, 6], or work only on the dense reward settings [3]. We emphasize
that the ‘uniform initial state distribution’ accesses privileged information about the environment
during training by generating the agent uniformly within the feasible area of the map. This greatly
reduces the scope of application of these algorithms. Unlike prior methods, ours can train from sparse
reward settings and a ‘fixed initial state distribution’ without knowledge of the agent’s surroundings,
which makes it practical for physical settings. For detailed examples and comparison of various initial
state distributions, see Table 2 and Figure 11 in Appendix C.

Constrained-subgoal HRL. To mitigate the training inefficiency issue of HRL, several researchers
proposed methods that restrict the action of high-level agent to be placed in adjacent areas. Hier-
archical Reinforcement Learning with k-step Adjacency Constraint (HRAC) [28] limits the sub-
goal to be in the adjacency space of the current state. Hierarchical reinforcement learning Guided
by Landmarks (HIGL) [12] improved the data efficiency by adding novelty-based landmarks to
adjacency-constrained HRL. However, these improvements only work on the limited length and
complexity of the environment.

The previous work closest to our method is HIGL. However, there are three key differences between
the previous work and our approach. First, our model explicitly includes the whole graph structure
while HIGL needs to train high-level action to imitate the graph by using an additional loss term
corresponding to the Euclidean distance from the nodes of the graph. Second, we use a graph to
decouple the horizons of high level and low level, unlike the previous method which uses the graph
only for guidance. Most importantly, ours can achieve goals in long and complex environments. To
the best of our knowledge, there is no prior HRL research to train a model that has decoupled the
horizons of the two levels.
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Figure 4: An overview of DHRL which includes the mid-level non-parametric policy between the
high and low levels. The high-level (orange box) policy delivers subgoal sg ∈ G to the graph level
(green box) and the graph instructs the low-level policy (blue box) to reach the waypoint wp ∈ G. ch
represents how long each high-level action operates for. The low level is given cl,i steps to achieve
the goal where ch ̸= cl,i.

4 Methods

We introduce Decoupling Horizons Using a Graph in Hierarchical Reinforcement Learning (DHRL),
which can separate the time horizons of high-level and low-level policies and bridge the gap between
both horizons using a graph. Our framework consists of high-level policy πhi(sg|s, g), low-level
policy πlo(a|s, wp), and a graph G. Given a goal gt in the environment, the high-level policy outputs
a subgoal sgt (see Figure 4). Then, the shortest path from the current state st to sgt is found on the
graph. To do so, st and sgt are added to the existing graph structure, then a sequence of waypoints
(st, wpt,1, wpt,2, ..., sgt) is returned using a graph search algorithm. Finally, the low-level policy
tries to achieve wpt,i during cl,i steps.

The key point of our method is that the low-level horizon hlow = cl is unrelated to the high-level
horizon hhigh. Since the high level generates one subgoal every ch steps, the H-step task is a H/ch-
step task for a high-level agent (hhigh = H/ch) where ch is the interval between high-level action
(ch > cl). In other words, unlike the previous HRL methods which have the relationship of

hhigh × hlow = H, (2)

our algorithm does not have such relations, removing an obstacle toward a scalable-RL algorithm.
Since the low-level horizon cl is determined by the edge cost between waypoints, we can also express
the cl between the i-1th waypoint and ith waypoint as cl,i, but we omit the letter i in the later
statements that do not need to specify the waypoint.

In section 4.1, we explain how to construct a graph over states and find a path on the graph level. In
section 4.2, we present a low-level policy which can recover temporal distance between states without
overestimation. In section 4.3, We introduce a strategy to train our method through graph-agnostic
off-policy learning. Finally, in section 4.4, we propose additional techniques for better data efficiency
in large environments.

4.1 Graph level: planning over the graph

This section details the graph search part in DHRL planning. We emphasize that every distance in
the DHRL model is based on temporal distance Dist(· → ·), obtained through Eq. (1). Thus, our
algorithm requires no further information about the environment (e.g. Euclidean distance between
states) than general HRL settings.

To find the shortest path, we adopt Dijkstra’s Algorithm, as in the previous study [4]. The differences
from the previous methods [4, 27] are the existence of the high-level policy, and whether the
secondary path is considered. Let ψ : S → G be the projection of states on the goal space. In the
graph initialization phase, we samples n nodes (also called landmarks) using FPS algorithm [2]
(Algorithm 2 in Appendix A) from ψ(s) where s ∈ S is state sampled from Blo. Then, we connect
a directed edge s1 → s2 if the temporal distance from s1 to s2 is less than the cutoff-threshold. In
the planning phase, the graph G(V,E) gets the subgoal sgt from the high-level policy and adds the
projection of current state ψ(st) and sgt to V, so that the number of nodes in G becomes n + 2.
Then, we connect the edges with costs less than the cutoff-threshold between the newly added nodes
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and existing nodes. Next, we find the sequence of waypoints W : (wpt,0 = ψ(st), wpt,1, wpt,2,
..., wpt,k−1, wpt,k = sgt) that connects from ψ(st) to sgt using a graph search algorithm. At this
time, if there is no path from ψ(st) to sgt, we adopt a secondary path from ψ(st) to sg†t , where
sg†t is the closest node to sgt among the nodes connected from ψ(st). After finding the waypoint
sequence, the graph level provides wpt,1 to the low-level policy and instructs it to reach wpt,1. If
it has been Dist(wpt,i−1 → wpt,i) steps since the agent started tracking wpt,i or it achieves wpt,i,
then we update the current tracking waypoint to the next waypoint wpt,i+1. In order to reflect the
newly discovered state, we update graph nodes at every N episodes.

However, it is challenging to train Q-network which recovers reliable temporal distance. We explain
the reason and a solution in the next section.

4.2 Low level: Separate Q-networks for Graph and Critic (SQGC)

Unlike previous graph-guided RL methods that leverage a graph only after the actor and critic
networks have been learned, we construct and utilize a graph during training. To do so, the low-level
policy Qlo is evaluated during training to assign edge costs. However, when πlo is not yet competent
in achieving some goals or encounters difficult goals, the accumulation of failure experiences in
the replay buffer causes underestimation of Q-values. This leads to an overestimation of temporal
distance reconstructed from Eq. (1) and spoils the graph near the overestimated region by making the
node-selection algorithm (Algorithm 2 in Appendix A) select more and more graph nodes around the
overestimated area. Therefore, a temporal-distance reconstruction method is needed even when the
policy is not sufficiently trained.

For this reason, we propose Separate Q-networks for Graph and Critic (SQGC) to prevent temporal
distance overestimation. SQGC is composed of two identical Q-networks using different proportions
of hindsight goal relabeling (HER) [1]. The SQGC includes Qlo

critic and Qlo
graph where Qlo

critic is for
training πlo, just like a typical application, and Qlo

graph is for recovering temporal distance between
nodes. We substitute wpt with ŵpt := agt+tftr in the sequential transition of a single episode
(st, wpt, at, r(st+1, wpt), st+1)t=1:H−1 where ag means the achieved goal and tftr is a random
integer drawn from the uniform distribution between 0 and H − t. To train Qlo

graph, we relabel 100%
of wpt in (st, wpt, at, r(st+1, wpt), st+1)t=1:H−1 as ŵpt, while we replace only 80% of wpt for
Qlo

critic.

Our method can prevent overestimation in the distance recovery by relabelling the goals in all
transitions for training Qlo

graph because the experiences of failure are replaced with the successful
trajectory (see section 5.3 for the ablation study). Also, by maintaining the original Qcritic

lo to train
πlo, there is no degradation in the performance of the agent who might otherwise not be able to get
negative feedback from failure since the failure will be relabeled as a desired goal.

However, it is still challenging to train HRL including a graph level using off-policy RL algorithms.
We describe our approach to train DHRL using an off-policy algorithm in the next section.

4.3 High level: hindsight transitions for graph-agnostic off-policy learning

Thanks to decoupling the time horizons of both levels in HRL, the high-level policy in our method
can look further without any additional burden on the low-level policy. In other words, We can stretch
ch, which represents how long each high-level action operates for. However, because of the extended
interval and non-stationarity of the high-level MDP, it is challenging to train DHRL with an off-policy
algorithm, which is important for data efficiency in that the off-policy algorithm can use the previous
data from the replay buffer.

This non-stationarity of the high-level MDP is caused by the presence of a graph and low-level policy.
Since the graph is gradually updated, it is challenging to train a model using an off-policy method
from the data given by the previous graph. Furthermore, as ch gets longer, predicting the similarity of
the trajectory of ch steps with only the first step of πlo(ai|si, gi) gets more difficult when we replace
subgoal using HIRO-style off-policy correction [17] which is a popular method adopted by SOTA
HRL algorithms [28, 12].

To facilitate the off-policy learning for longer ch and the changing graph in DHRL, we adopt
a well-known hindsight action relabelling method proposed in Hierarchical Actor-Critic (HAC)
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[15] in the high-level replay buffer data (st, gt, sgt, rt, st+ch) ∈ Bhi. Alongside the original tran-
sitions data, we copy the transition data and replace the subgoal (sgt = πhigh

β (sgt|st, gt)) with
the achieved goal agt+ch after ch steps. Thus, we use both transitions (st, gt, sgt, rt, st+ch) and
(st, gt, agt+ch , rt, st+ch) to train the high-level policy. Our method utilizes the optimality of the
graph and low-level policy to include a graph in the learning process, while the HAC-style hindsight
action relabelling method assumes the optimal low-level policy πlo∗ only.

By replacing the previous subgoal with the achieved goal, we can assume that this transition was
obtained from a stationary graph and πlo∗ with an error below a bound which is set to be a function
of the density of the graph. We provide a theoretical analysis of the possibility of replacing the old
off-policy graph with a virtual stationary graph in this section and Appendix B.
Definition 4.1. Given a compact state space S , G(V,E) is an ϵ−resolution graph if ∀s ∈ S, ∃v ∈ V
s.t.max(Dist(ψ(s) → v), Dist(v → ψ(s))) < ϵ, where V ⊂ ψ(S) and E = {(vi, vj)|vi, vj ∈
V, Dist(vi → vj) < cl}.
Theorem 4.2. Let G be an arbitrary ϵ−resolution graph (ϵ < cl/2). Also, let πlo

β and Gβ be the
low-level policy and graph at the time of collecting the data. Off-policy error rate ρ(G) is the
normalized distance error with respect to the total traversal distance according to the change of πlo

β

and Gβ to πlo∗ and G. If there is a path from s to g, the upper bound of off-policy error rate ρ(G)
using a path obtained from graph search over G is 2ϵ/cl.

Theorem 4.2 shows that if we replace the previous subgoal with the achieved goal, and assume that
these transitions are obtained from a stationary ϵ−resolution graph G, then the off-policy error ρ is
less than 2ϵ/cl. Thus, we can train DHRL through a graph-agnostic off-policy RL algorithm using
the substituted transition.

4.4 Optional techniques: gradual penalty and frontier-based goal-shifting

:L1

:L2

:L3

Frontier-Based Goal-ShiftingGradual Penalty

Figure 5: Optional techniques for better data effi-
ciency: gradual penalty encourages the high-level
policy to output a subgoal that the low-level agent
can achieve. Frontier-based goal-shifting replaces
goals in the explored area with new goals posi-
tioned in the rim of the graph.

In this section, we propose two additional tech-
niques, gradual penalty and frontier-based goal-
shifting (FGS). These optional techniques can
boost the performance of DHRL on some long
tasks as shown in Figure 9(a) and (c). We note
that these are not essential to train DHRL and
ours outperforms previous HRL frameworks
without these techniques (see section 5.3 for
the ablation study).

Gradual penalty. Similar to the subgoal test-
ing in the previous method [15], we propose
gradual penalty (algorithm 4 in Appendix A),
which can impose the penalty more delicately
when the action space of the high-level agent
gets large. We evaluate sgt of the original transition data (st, gt, sgt, rt, st+ch) by categorizing the
following three cases; (a) close to the graph and low level actually achieved the subgoal ∈ L1, (b)
close to the graph but the low-level policy could not achieve the subgoal ∈ L2 and (c) far from the
graph ∈ L3. In this way, we can impose the more detailed penalties to respond to the expansion of
the high-level action space as the high-level interval ch stretches.

Frontier-based goal-shifting. This optional technique has been devised to accelerate learning in a
complex environment (algorithm 5 in Appendix A). FGS moves the final goal g to the frontier area
when g comes into the place where the graph is already laid out during training. To check whether
the goal is in the graph area, we examine whether minv∈V(Dist(v → g)) is smaller than cut-off
threshold, where V is the set of the graph nodes. Alternative goals are the addition of random noise
to nodes sampled from v ∈ V proportional to −Q(s0, π(s0, v)|v). FGS is similar to the previous
goal-directed exploration research [21] in that both use weighted samples, but ours does not maintain
a generative model and samples the goals from the graph level in DHRL. Note that we do not use
FGS when we compare DHRL with the previous state-of-the-art, since this FGS is beyond the main
contribution, which is about HRL structure.
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Figure 6: DHRL significantly outperforms prior state-of-the-art algorithms (success rate averaged
over 4 random seeds and smoothed equally, and only the sparse settings for Reacher3D are tested as
in the previous papers). Note that in AntMazeComplex, AntMazeBottleneck, and UR3Obstacle, the
curves are not visible as they overlap at zero success rate.

5 Experiments

5.1 Environment description

We evaluate DHRL on robot environments based on the MuJoCo simulator including some sparse
and long-horizon tasks. Firstly, various locomotion environments with ‘fixed initial state distributions’
are used to validate the temporal abstraction capability of DHRL in long-horizon and cluttered
environments. In test episodes of the locomotion environments, the agent gets one of the most
challenging goals (i.e., the end of the maze). We also evaluate our algorithm in robot arm environments
in which the agent aims to make the end-effector touch the goal, to evaluate our method in more
complex dynamics.

• PointMaze / AntMazeSmall : The point / ant achieves the goal if it comes within 2.5 distance
(success threshold) from the target point in 12× 12 maze.

• AntMaze : 24× 24 maze with success threshold 5
• AntMazeBottleneck : Bottleneck exists at the middle of the maze. The ant can barely pass

through bottleneck.
• AntMazeComplex : 56× 56 maze with success threshold 5
• Reacher3D : 7-dof robot arm aims to reach a goal.
• UR3Obstacle : 6-dof robot arm aims to reach a goal in an environment with several board-

shaped obstacles.

We adopt TD3 algorithm [5] for high-level and low-level networks and use Dijkstra algorithm to find
the shortest path in the graph level. Also, we note that only a few hyperparameters have been changed
across various locomotion experiments: the number of nodes, penalty, and ch. The results of DHRL
in this paper are obtained using only sparse reward.

5.2 Experiment result
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t 
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a
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Timesteps(k) Timesteps(k)

HRAC, AntMazeSmall Ours, AntMazeSmall

Figure 7: Robustness to ch: HRAC vs Ours

Baselines. We compare our method with state-
of-the-art algorithms with and without a graph
respectively; HIGL [12] and HRAC [28]. For
more comparison with shallow RL (SAC) [7]
and vanilla HRL (HIRO) [17], see Table 3 in
Appendix C.

Comparison to state-of-the-art algorithms.
Results are shown in Figure 6. Thanks to decoupling the horizons of the levels, DHRL could
stretch the high-level interval and shows high data efficiency and success rate in various locomotion

7



Obstacle

Obstacle

(b)AntMazeComplex

(e) Reacher3D
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Figure 8: Locomotion and Reacher tasks in simulation: Additional to general tasks for HRL, we
evaluated our method in long and sparse tasks (see (a), (b), and (c) in the figure). The maps of the
environments are not given to the agent.

Table 1: The tradeoff in performance between the high level and the low level.

SUCCESS RATE HRAC ch = 5 HRAC ch = 10 HRAC ch = 30 HRAC ch = 50 DHRL
12 × 12 MAP 43.0% 88.4% 78.3% 4.5% 95.1%
24 × 24 MAP 18.0% 48.9% 57.4% 16.4% 91.1%
56 × 56 MAP 0.0% 0.0% 0.0% 0.0% 40.1%

and goal-reaching tasks. Moreover, DHRL is the only algorithm that can succeed in complex envi-
ronments (AntMazeComplex and AntMazeBottleneck). When measuring the performance of the
baselines, we selected ch with the best performance among the values ch=10, 20, ..., and 80.

As shown in Figure 6, previous HRL methods cannot solve long-horizon tasks. This is likely due to the
coupling (ch = cl) of the high-level horizon (hhigh = H/ch) and the low-level horizon (hlow = cl)
resulting in an increased burden on either the high-level or the low-level policy. For long-horizon
tasks (large H), if ch(= cl) is fixed, then hhigh increases and the high-level performance plunges
(Table 1). On the other hand, if ch(= cl) is increased, the low level has to manage a wider area and
the performance plunges as shown in Figure 7 and Table 1.

5.3 Ablation study

Decoupling horizons. In this section, we examine how decoupling horizons affects the performance
of long-horizon HRL and evaluate whether DHRL can stretch the interval of high-level policy. As
shown in Figure 9(b), we tested various values of spacing of the high-level action, ch. The result
shows that even in long intervals of the high-level policy, DHRL shows consistent or improved
performance (Figure 9(b)) without major degradation unlike previous HRL methods (Figure 7). In
particular, DHRL agent in long-horizon environments such as AntMazeComplex shows that extended
high-level interval is crucial for exploration and performance (see the rightmost figure in Figure 9(b)).
Considering that the baselines could not solve long-horizon tasks even with various values of ch, and
the performance degrades with increasing ch, we conclude that our method successfully decoupled
the time steps in both levels and stretched the interval between high-level actions. This trait allows
the high-level policy to look further and take advantage of the extended temporal abstraction.
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Figure 9: Ablation study. (a): The separate Q-network (SQGC) effectively alleviates the overestima-
tion problem of temporal distance and FGS improves data efficiency. (b): Extending the high-level
horizon is crucial in long-horizon tasks and DHRL successfully separates the horizons. (c): Gradual
penalty improves the data efficiency in long tasks. (d): Without an additional high-level policy above
the graph level, the performance plunges without the ‘uniform initial state distribution’.

Separate Q-network for Graph and Critic (SQGC). In this section, we evaluate the effects of the
Separate Q-network for Graph and Critic (SQGC) in our method. The red line in Figure 9(a), which is
a variant of DHRL without an SQGC, clearly shows that the SQGC is critical to the performance. We
empirically found that the overestimation of the temporal distance between states occurs especially
near the obstacles (e.g. corners at the maze), and it is difficult for an agent to pass by without a
separate Q network for graph construction. This is consistent with our analysis that the experiences
of failure spoil the ability to recover the temporal distance from Q-network.

Ablate high-level policy. Graph-guided RL, which maintains graph level and low-level policy, is
also a variant of HRL in that the graph level is a non-parametric version of the high-level policy (see
Figure 3). From this point of view, the main difference between graph-guided RL and our method is
the existence of the high-level policy. Then, why do we need additional high-level policy above the
graph level?

Most graph-guided RL algorithms use ‘uniform initial state distribution’ to train the agent in complex
environments and such assumption could be expensive, especially in the physical world where it is
challenging to start from different positions each time. Figure 9(d) shows the result of the graph-
guided RL algorithm, L3P [27], with a uniform and fixed initial state distributions. This indicates
that without ‘uniform initial state distribution’, the performance and data efficiency of the previous
graph-guided RL method drops seriously even in the smallest environment we experimented with. In
contrast, DHRL can explore without ‘uniform initial state distribution’ even in long environments
thanks to the enlarged temporal abstraction and exploration performance. Considering that the high-
level policy suggests a subgoal to graph level, we conclude that the high level facilitates better
exploration of the graph-guided RL. Thus, DHRL that has exploration capability also can be seen as
the improved version of graph-guided RL.

Optional techniques. The result in Figure 9(c) shows that the gradual penalty can improve data
efficiency in long tasks. By imposing a penalty on subgoals that are far from the current graph,
the gradual penalty encourages the high-level agent to output a subgoal near the graph. Since the
low-level agent can hardly achieve subgoals far from the explored area, the gradual penalty accelerates
the training by providing more valid goals. FGS also can improve training efficiency in complex
environments (Figure 9(a)). This means that it is important to provide goals near the unexplored
areas which help the agent explore the unseen states in complex environments. With FGS, DHRL
efficiently guides the agent by sampling the goals located on the rim of the graph.
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6 Conclusion

We proposed a Decoupling Horizons Using a Graph in Hierarchical Reinforcement Learning (DHRL),
which is a data-efficient HRL algorithm leveraging a graph to expand the range of problems that
HRL can solve, by decoupling horizons and allowing both levels to operate at their suitable horizons.
Our experimental results show that our method successfully separates the horizons of the levels
and outperforms prior state-of-the-art methods. We believe that our method can present a direction
towards scalable HRL allowing the hierarchical policy to take advantage of the extended temporal
abstraction and have a lower dependency on the horizon of the environment. In this paper, we adopted
a vanilla graph construction algorithm and sparse reward settings. We expect that if a novelty-based
node selection is added to the graph construction, the performance could be further improved.

Limitation. While our algorithm shows successful results in complex and long-horizon tasks, it
might be difficult to construct a graph in some tasks that require complex interactions with the
environment because of the higher-dimensional state space. We expect that this limitation can be
solved by extending our algorithms into latent state space, or by incorporating a node sparsification
algorithm, which we leave for future works.
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