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ABSTRACT

The temporal relationship between different cellular states and lineages is only
partially understood and has major significance for cell differentiation and cancer
progression. However, two pain points persist and limit learning-based solutions:
(a) lack of real datasets and standardized benchmark for early cell developments;
(b) the complicated transcriptional data fail classic temporal analyses. We integrate
Mouse-RGC, a large-scale mouse retinal ganglion cell dataset with annotations
for 9 time stages and 30, 000 gene expressions. Existing approaches show a limited
generalization of our datasets. To tackle the modeling bottleneck, we then translate
this fundamental biology problem into a machine learning formulation, i.e., tem-
poral trajectory analysis. An innovative regularized optimal transport algorithm,
TAROT, is proposed to fill in the research gap, consisting of (1) customized masked
autoencoder to extract high-quality cell representations; (2) cost function regular-
ization through biology priors for distribution transports; (3) continuous temporal
trajectory optimization based on discrete matched time stages. Extensive empirical
investigations demonstrate that our framework produces superior cell lineages
and pseudotime, compared to existing approaches on Mouse-RGC and another
two public benchmarks. Moreover, TAROT is capable of identifying biologically
meaningful gene sets along with the developmental trajectory, and its simulated
gene knockout results echo the findings in physical wet lab validation.

1 INTRODUCTION

T=0

T=n

Figure 1: Demo Cell Temporal Tra-
jectories from Time 0 → n. Differ-
ent colors indicate cells from differ-
ent time stages.

Since first introduced in 2009, large-scale single-cell RNA se-
quencing (scRNA-seq) has presented enormous opportunities for
researchers in various research fields (Patel et al., 2014; Satija et al.,
2015; Tirosh et al., 2016). It helps reveal detailed information on
transcriptional patterns in different cell and tissue types as well as
disease models (Elmentaite et al., 2022; Jagadeesh et al., 2022).
Equipped with scRNA-seq, we are able to discover significant het-
erogeneities that would never be found with bulk analysis within
the cell population, which contributes to understanding biology
questions with higher cellular resolution. The fast-advancing tech-
nology and increased recognition of different cell subtypes also
naturally lead us to ask: ① How and when are the cell subtypes
established? ② Could we predict the developmental trajectory
of each cell and predict the cell “fate” based on current status?
③ And could we find the key regulator that controls this type of
establishment? Answers to those questions are important for cell
differentiation research in developmental biology (Rizvi et al.,
2017; Han et al., 2018; Gulati et al., 2020) and can provide promis-
ing pipelines to demystify the cellular response during disease progression (Zhang et al., 2021; Jia
et al., 2022). In the past decade, although a great amount of effort (Trapnell et al., 2014; Qiu et al.,
2017; Ji & Ji, 2016; Street et al., 2018; Cao et al., 2019) has been put into developing trajectory
inference methods using single-cell sequencing data, it remains extremely challenging. This is
because, with current technologies, we can not trace the same population of cells over developmental
time. It only allows us to collect the transcriptional information of cells for a specific time point as a
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“snapshot”, and then a sophisticated computational modeling (Saelens et al., 2019; Van den Berge
et al., 2020) is required to construct cell trajectories over multiple “snapshots”, as demonstrated in
Figure 1. Existing algorithms reach good performance on simulated datasets (Klein et al., 2023) but
are still unsatisfactory on realistic benchmarks.

To enhance the capabilities of learning-based algorithms, we generate Mouse-RGC, which is a
large-scale integrated mouse retinal ganglion cell dataset. It contains 30, 000 gene expressions from
9 time stages of early cell development. However, naively plugging previous approaches (Street et al.,
2018; Klein et al., 2023) fail to generalize well on our benchmark, implying their shortage in handling
real cases with much higher data complexity. To develop effective solutions, we recast the biology
challenge into a machine learning problem, i.e., temporal trajectory analysis, aiming to transport cells
across time stages. In detail, our proposed TAROT first learns superior cell representations through
a tailored masked autoencoder. Then, it performs a regularized optimal transport (OT) to produce
mappings between every two-time stages. During the matching, we consider the biological priors of
gene expression from both developmental and functional perspectives. Note that directly applying
OT will result in inferior results due to neglecting the intrinsic structures in this biology problem.
Last, continuous temporal trajectories (i.e., cell pseudotime) are optimized and generated by fitting
ordered discrete time stages. Our contributions are summarized below:

⋆ We integrate a larger-scale scRNA-seq dataset, i.e., Mouse-RGC, with 30, 000 mouse
neuron cells annotated cross 9 early developmental time stages. It provides a standardized
and challenging benchmark for further research in machine learning (ML) and single-cell
transcriptomics.

⋆ We recast the analyses of cell developmental differentiation as an ML problem of inferring
temporal trajectories. Our proposed TAROT consists of an improved design of cell represen-
tation extractor and regularized OT with biology priors, delivering substantially enhanced
cell lineages.

⋆ Based on discrete inferred lineages, we introduce B-Splines optimization to produce contin-
uous cell pseudotime estimations with superior quality.

⋆ Extensive experiments validate the effectiveness of our proposals on Mouse-RGC and two
public datasets. For example, TAROT achieves {3.10% ∼ 65.03%, 13.70% ∼ 35.08%,
6.16% ∼ 27.49%, 20.82% ∼ 44.28%} performance improvements on Mouse-RGC and
Mouse-MCC datasets over previous approaches.

⋆ Moreover, TAROT can locate crucial gene sets that are biologically meaningful for each
temporal trajectory. Removing these genes significantly reshapes the simulated cell differen-
tiation, echoed with the wet lab studies on the Mouse-iPE dataset.

2 RELATED WORKS

Optimal Transport (OT). OT (Villani et al., 2009; Peyré et al., 2019) serves as a powerful tool for
comparing two measures in a Lagrangian framework. It has played a beneficial role in widespread
applications in statistics (Munk & Czado, 1998; Evans & Matsen, 2012; Sommerfeld & Munk, 2018;
Goldfeld et al., 2022) and machine learning (Schmitz et al., 2018; Kolouri et al., 2018) domains.
OT can also be used to define metrics such as the Wasserstein distance (Arjovsky et al., 2017;
Liu et al., 2019), which has gained tremendous popularity in the training of generative adversary
networks (Deshpande et al., 2019; Adler & Lunz, 2018; Petzka et al., 2017; Deshpande et al., 2018;
Yang et al., 2018; Baumgartner et al., 2018; Wu et al., 2019), transfer learning (Shen et al., 2018;
Lee et al., 2019), and contrastive representation learning (Chen et al., 2021). There also are several
preliminary studies that use OT to model the cellular dynamics network (Tong et al., 2020) and cell
developmental trajectories (Schiebinger et al., 2019; Klein et al., 2023).

Representation Learning in Single-Cell Genomics. Extracting powerful cell representations is
one of the ultra goals for single-cell genomics. It has been investigated for a long history, and various
solutions are delivered ranging from classic optimization algorithm (Li et al., 2017; Satija et al., 2015;
Zhao et al., 2022; Stuart et al., 2019) to modern deep learning-based approaches (Yang et al., 2022;
Hao et al., 2023; Cui et al., 2022; Geuenich et al., 2023; Zhao et al., 2023). For instance, Yang et al.
(2022) utilizes the bi-directional transformer to learn robust single-cell representations. To further
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improve the cell representation quality, more recent studies leverage a variety of advanced pre-training
designs, including generative (Shen et al., 2023; Cui et al., 2023), mask language modeling (Hao
et al., 2023), multi-task learning (Cui et al., 2022), self-supervised active learning (Geuenich et al.,
2023), and contrastive learning (Zhao et al., 2023) objectives.

Lineage and Pseudotime Inference. The increasing availability of scRNA-seq data allows re-
searchers to reconstruct the trajectories of cells during a dynamic process. The relationships between
different cellular states and lineages are extremely important for studies on embryonic develop-
ment (Griffiths et al., 2018; Cang et al., 2021; Mittnenzweig et al., 2021; Kim et al., 2023), cell
differentiation (Rizvi et al., 2017; Han et al., 2018; Gulati et al., 2020), cancer progression (Zhang
et al., 2021; Jia et al., 2022) and cell fate diversification (Buchholz et al., 2016; Koenig et al., 2022).
In the past few years, numerous trajectory inference pipelines have been established, which can be
roughly divided into two major categories based on the algorithm they used. The first and perhaps
the most commonly used one is minimum spanning tree (MST) based approaches. Monocle and
Monocle-2, which are the early used methods, both infer the developmental trajectory of one single
cell level and assign the pseudotime of each cell (Trapnell et al., 2014; Qiu et al., 2017). Later, Tools
for Single Cell Analysis (TSCAN) (Ji & Ji, 2016) and Slingshot (Street et al., 2018) run the MST al-
gorithm on clusters to construct the cluster-based MST. Then, they orthogonally project each cell onto
the paths of the MST to get the pseudotime. Notably, Slingshot utilized a principal curves algorithm
to calculate smooth curves from MST, which gives better visualization. The second category is the
graph-based trajectory inference method, which employs various algorithms to construct trajectories
among cells. One prominent and widely used tool, Monocle3 (Cao et al., 2019), generates trajectories
using a principal graph algorithm. Then, it calculates the shortest Euclidean distance of each cell
from the root node to assign the pseudotime. However, the self-selected root node required some
prior knowledge about the cell identity. Diffusion pseudotime (DPT) (Haghverdi et al., 2016) and
URD (Farrell et al., 2018) uses a k-nearest-neighbor algorithm to construct the temporal trajectory of
the cells in gene expression space.

E13 (803)

E14 (2336)

E16 (1824)

E18 (7310)

P0 (4705)

P2 (1855)

P4 (2697)
P7 (3413)

P56 (5057)

Figure 2: The sample distribution of our
Mouse-RGC (30K cells) dataset based on
developmental time stages. For example,
“E18 (7310)” indicates 7, 310 cell samples
in time stage E18.

Single-Cell Transcriptomics. The heterogeneity anal-
ysis is the core reason for performing single-cell sequenc-
ing studies. It assesses the transcriptional similarities and
differences within the cell populations and helps reveal
a higher cellular resolution among cells (Haque et al.,
2017; Satija et al., 2015; Tirosh et al., 2016). Using
scRNA-seq (Patel et al., 2014), researchers are able to
define detailed heterogeneity of immune cells (Shalek
et al., 2013; Mahata et al., 2014; Stubbington et al., 2017),
cancer cells (Wu et al., 2021; Fan et al., 2020), embry-
onic stem cells (Jaitin et al., 2014; Klein et al., 2015)
etc. In the meantime, transcriptional assessments with
single-cell sequencing technology also identify rare cell
populations that would never been detected using bulk
analysis (Miyamoto et al., 2015; Zeisel et al., 2015; Tirosh
et al., 2016). In parallel, the gene co-expression patterns
that scRNA-seq reveals allow us to define gene modules
and point out the underlying mechanism of gene expression regulations (Wagner et al., 2016).

3 DATASET AND MACHINE LEARNING FORMULATION

3.1 MOUSE-RGC: A LARGE-SCALE DATASET OF RETINAL GANGLION CELLS FROM MOUSE

In this section, we introduce all three datasets that are adopted to evaluate TAROT’s effectiveness. As
for public datasets, we consider a mouse cerebral cortex cell benchmark (Di Bella et al., 2021), i.e.,
Mouse-CCC, and a mouse induced Erythroid Progenitor (iEP)-derived cell benchmark (Capellera-
Garcia et al., 2016), i.e., Mouse-iEP, which contains {66443, 1947} cells across {11, 2} time
stages, respectively. The detailed information about our Mouse-RGC is presented below.

3
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Figure 3: (Left): Clustering Mouse-RGC to 56 kinds of cell types and projecting them into a 2D space via
UMAP; (Right): Decomposing the clustering results by their time stage labels. Zoom-in for better reliability.

Data Collection. For the Mouse-RGC dataset, we extract 30K mouse neuron cells from previously
published datasets(Shekhar et al., 2022; Whitney et al., 2023) and newly formed data. The develop-
mental time stages of {E13, E14, E16, E18, P0, P2, P4, P7, P56} (Figure 4). Then, the corresponding
gene expressions are measured by the RNA sequencing technique as previously defined1. Single-cell
libraries were prepared using the single-cell gene expression 3′ kit on the Chromium platform (10X
Genomics, Pleasanton, CA) following the manufacturer’s protocol. To be specific, single cells were
partitioned into Gel beads in EMulsion (GEMs) in the 10X Chromium instrument followed by cell
lysis and barcoded reverse transcription of RNA, amplification, enzymatic fragmentation, 5′ adaptor
attachment, and sample indexing. On average, around 8, 000 ∼ 12, 000 single cells were loaded on
each channel, and around 3, 000 ∼ 7, 000 cells were recovered. Libraries were sequenced on the
Illumina HiSeq 2, 500 platforms.

3.2 SINGLE CELL DATA PROCESS

Preprocess and Properties. After we collected the raw signals, the following single-cell sequenc-
ing data processing was done using the Seurat package (Hao et al., 2021). Sample quality control
was performed on each sample individually. For each sample, doublets were removed using Dou-
bletFinder (McGinnis et al., 2019). We retained cells that expressed at least 1, 500 genes and less
than 11, 000 genes. Meanwhile, we removed cells that have more than 5% mitochondrial genes
and genes expressed in fewer than 10 cells. The resulting n cells × g genes matrix of UMI counts
were subject to downstream analysis. The UMI-based gene expression matrix was normalized using
sctransform (Hafemeister & Satija, 2019). After that, the batch correction was done with canonical
correlation analysis (Hotelling, 1992; Anderson et al., 1958), using the top 4, 000 anchor genes.

Clustering. In this research, we are interested in the evolution of different cell types of mouse
neurons. Therefore, we built a nearest-neighbor graph to cluster cells based on their transcriptional
similarity. Specifically, the number of nearest neighbors was chosen to be 50, according to the rich
experiences of biology scientists. The edges were weighted based on the Jaccard overlap metric, and
graph clustering was performed using the Louvain algorithm (Blondel et al., 2008). In the end, as
demonstrated in Figure 3 (Left), the cell clusters were then projected onto a nonlinear 2D space using
the Uniform Manifold Approximation and Projection (UMAP) algorithm (McInnes et al., 2018).
For temporal trajectory analysis, we further decomposed the cell clusters by their time stage labels
like Figure 3 (Right). Our goal is to demystify the neuron evolution path across these 9 time stages.
Referring Appendix B.2 for more details.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Neuron Cells

E16

E18

P0

(a) Biology Problem: How to model and infer evolution trajectory of neurons? 

Developmental Time

RNA Expressions

(b) Machine Learning Problem: How to match distributions across temporal stages? 

Transport

During Transport: Cost Design

E16
E18
P0

...
...

Post Transport: Continues TrajectoryPre-Transport: Feature Learning

...
...

Encoder

Decoder

Superior Cell Representation

Cost 1: Cell
Representation

Distance 

Cost 2: Gene
Developmental
Regularization 

...... ......

Biology Prior Regularization

E14

E16

E18

P0

E14

E16

E18

P0

Continues Trajectory Optimization

Predicting the "Life Trajectory" of Cells!

Figure 4: (a) Biology Problem. We aim to model and infer the evolution trajectory of neurons. Specifically,
the neuron cells are extracted from the developmental time stages {E13, E14, E16, P0, P2, P4, P7, P56} of
mouses. Then, RNA sequencing is performed to collect its expression data. (b) Machine Learning Problem. We
translate the biology problem to an ML problem – matching sample distributions across multiple temporal stages.
This challenging transport problem can be further decomposed into three sub-questions, i.e., Q1, Q2, and Q3.
To tackle these research questions, our proposed TAROT introduces superior cell representations, regularized
optimal transport via biology priors, and continuous trajectory optimization, respectively.

3.3 ML FORMULATION - MATCHING SAMPLE DISTRIBUTION ACROSS TEMPORAL STAGES

Understanding the development of stem cells into fully differentiated cells requires accurate cell
lineage and pseudotime. Thus, the fundamental biology problem here is how to model and infer
evaluation trajectory of neurons? This paper recasts it as a machine learning (ML) problem, aiming
to match cell distributions across temporal stages.

Notations. Let {ri}ni=1 denote the raw cell expressions and {ci}ni=1 are extracted cell repre-
sentations, where n is the total number of cells and ri ∈ R1×g. For each cell representation
ci ∈ {c1, · · · , cn}, it has the labels of time stage and cluster, obtained from the data pre-
processing. Therefore, the total n cells can be divided into k groups, i.e., {C1, · · · , Ck} where∑k

i=1 |Ci| =
∑k

i=1 ni = n, Ci = {c(i)1 , · · · , c(i)ni }, |Ci| = ni is the number of cells in cluster Ci. Con-
sidering temporal information like time stages {t}st=1, we use G(t) = {C(t)1 , · · · , C(t)kt

} to represent
all cells in the time stage t, where s is the total number of time stages and kt denotes the number of
clusters at time step t. Our goal is to establish a mapping from Gt → G(t+1), which shares certain
similarity to the trajectory analysis problem (Helland-Hansen & Hampson, 2009).

Problem Definition. Given the cluster set G(t) = {C(t)1 , · · · , C(t)kt
} as each time stage t ∈

{1, · · · , s}, we aim to (1) infer temporal trajectories like G(1) → G(2) → · · · → G(s), based
on their gene expression; (2) estimate continuous pseudotime for each sample.

An Ideal Solution. To infer the temporal trajectory, it requires answering three key questions (Q1,
Q2, and Q3) as summarized in Figure 4 (b):

① Before the Transportation. It needs to extract high-quality cell representations {ci}ni=1 from
the gene expressions {ri}ni=1. Both low-dimensional projection methods like PCA (Bro &
Smilde, 2014) and UMAP (McInnes et al., 2018), and deep neural networks (Yang et al.,
2022; Shen et al., 2023; Cui et al., 2023) can serve as feature extractor.

② During the Transportation. It focuses on computing the mapping function Tt,t+1 : G(t) →
G(t+1), t ∈ {1, · · · , s − 1}, given all cell information from the current and history time
stages. Each mapping between two-time stages is a bipartite graph and can be derived
from distribution matching problems (Gretton et al., 2012) through the Hungarian algorithm
or Optimal Transport, etc. The crucial challenge here is the design of cost functions for
transportation. Naively plugging in distance measurements based on ML intuitions leads

1https://rna.cd-genomics.com/resource-rnc-rna-sequencing-introduction-workflow-and-analysis-
pipelines.html
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to inferior results (Klein et al., 2023), which demands appropriate cost designs to integrate
biology priors of the neuron developments.

③ After the Transportation. Global lineages are deduced according to the pair-wised mapping
{Tt,t+1}s−1

t=1 . However, it only contains a discrete order of different time stages, which is
an irregularly sampled time series due to the constraints of cell data collection. Since cell
differentiation occurs continuously, we need to calculate a continuous cell pseudotime based
on its inferred lineage. It can be addressed by interpolation approaches (Shukla & Marlin,
2020) like Splines.

4 METHODOLOGY

Overview of TAROT. The overall procedures of TAROT are described in Figure 4. Our paper
tackles the aforementioned ML problem by answering the three key questions. Before transport, we
introduce a customized Masked Autoencoder (MAE) transformer to learn adequate cell representation.
During transport, we integrate important biology priors into the design of cost functions and leverage
them to enable a regularized optimal transport. After transport, continuous trajectories will be
produced by performing B-Splines fitting optimization to inferred cell lineages.

4.1 TAROT: CELL LINEAGE INFERENCE VIA DISTRIBUTION MATCHING

Regularized Optimal Transport for Matching. Optimal transport (OT) distance is a popular
option for comparing two distributions. We consider the discrete situation in our case. For two time
steps t1 and t2, there are two sets of features {fi}Mi=1 and {gj}Nj=1. Since we focus on a cluster-level
mapping, then M = kt1 and N = kt2 are the number of clusters in stage t1 and t2 respectively. fi and
gj are averaged cell representations for each cluster. Note that it is straightforward to extend to cell-
level mapping by adopting cell-specific representations. Our discrete distributions can be formulated
as u =

∑M
i=1 uiδfi and v =

∑N
j=1 vjδgj , where u and v are the discrete probability vectors that

sum to 1, and δf (or δg) is a Dirac δ function placed at support point f (or g) in the embedding space.
Then, the total cost of transportation is depicted as < T ,D >=

∑M
i=1

∑N
j=1 Ti,jDi,j .

The matrix D is a cost matrix, where each element denotes the cost between feature fi and gj , like
Di,j = 1 − sim(fi, gj) and sim(·, ·) is a similarity measuring function. The T is the transport
matrix that describes the mapping from {fi}Mi=1 to {gj}Nj=1. To learn the transport plan T , it will
minimize the total cost as follows:

FOT(u,v|D) = minT ⟨T ,D⟩ (1)

s.t. D × 1N = u, DT × 1M = v, D ∈ RM×N
+ . (2)

However, this formulation has a super-cubic complexity in the size of u and v, which prevents
adapting OT in large-scale scenarios. Sinkhorn algorithm Cuturi (2013) is applied to speed up
the computation via an entropy regularization, i.e., FOT(u,v|D) = minT < T ,D > −λE(D),
where E(·) is the entropy function and λ ≥ 0 is a hyper-parameter. An inadequate choice of λ can
either degrade the quality of the OT results if too large or prolong the computation time if too small.
To circumvent the significant human effort required to identify an appropriate λ, we integrate a
straightforward search algorithm that efficiently identifies a suitable λ for the OT calculation. Please
refer to Appendix A for more algorithmic details. The optimization of FOT constitutes the base
framework of TAROT, and more innovative designs are described as follows.

Cell Representations via Masked Autoencoder Transformers (MAE). Previous investigations
process gene expression value by biology priors as we used in Section 3.2. However, recent advance-
ments in deep representation learning have shown significant improvements in extracting relevant
features from data, which can enhance performance on various downstream tasks. By applying these
cutting-edge representation learning techniques to single-cell analysis, we can potentially refine
temporal trajectory analysis and gain deeper insights into cellular processes. Moreover, the success
of MAE He et al. (2022) in representation learning demonstrates the mask prediction in learning
better feature representation in a data-driven way. Therefore, TAROT tailors an MAE transformer He
et al. (2022) to extract superior cell representations from the gene expressions {ri}ni=1. Figure 5
illustrates the MAE procedure: the raw signals are first masked and fed into the MAE encoder; then,
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Figure 5: The overall procedure of MAE in TAROT.

masked embeddings are incorporated to align with the full input dimensions; finally, the decoder
reconstructs the original input data and computes the MSE training objective. In the inference phase,
TAROT adopts the MAE encoder to generate cell representations.

Biology Priors Regularize Cost Function. Another critical component of TAROT is the cost
function which include two essential biological aspects: neuron development and gene expression. ①

(Developmental) The natural cell differentiation never look back. In other words, clusters in G(t) can
not be mapped back to ancestor clusters from history trajectories {T1,2, · · · , Tt−1,t}. Specifically, an
extra cost penaltyDdev

i,j is applied if the cluster j from G(t+1) at time t+1 is an ancestor of the cluster
i from G(t) at time t. ② (Gene expression) The expressions of developmental-related genes satisfy
particular patterns. A specific group of genesoften shows monotonically increasing or decreasing
expression during cell differentiation. If a mapping Tt,t+1 meet this prior, an additional cost bonus
Dfuc

i,j will be introduced. Incorporating these biology regulations (①+②), the final cost function is
D̃ = (Ddev +Dfuc)⊙D, with ⊙ signifying element-wise product and D = 1− corr(G(t),G(t+1))
representing the cost from cell representatio correlations. Please refer to Appendix B.3 for the
definition of corr(·, ·).

4.2 TAROT: PSEUDOTIME CALCULATION VIA CONTINUOUS TRAJECTORY OPTIMIZATION

Cellular dynamic processes, such as the cell cycle, cell differentiation, and cell activation, can be
modeled computationally by pseudotime analysis which orders cells along a trajectory. This method
facilitates the reconstruction of the dynamic gene expression profiles that are widely used to study
cell differentiation Trapnell (2015); Butler et al. (2018); Crinier et al. (2021), immune responses Yao
et al. (2019), disease development Herring et al. (2018), and others. The first stage of TAROT outputs
discrete time orders. Then, TAROT executes fitting optimization to get continuous pseudotime to
support more fine-grained analysis.

Continuous Trajectory via B-Splines. While previous methods predominantly relied on principal
curves to construct continuous cellular trajectories—offering robustness against noisy data—they
often overlook critical gene mutations. In the realm of computational analysis, overlooking these
mutations and complex genetic variations can significantly impede our understanding of cellular
dynamics. Therefore, we explore the possibility of optimization methods in continuous single-cell
temporal trajectory construction that can detect mutation signals while maintaining robustness for
noisy data. To be specific, we design the trajectory optimization method based on B-Spline in TAROT.
The flexible nature of the B-Spline facilitates the integration of trajectory optimization with the
connection of discrete temporal orders. A K-degree B-Spline is defined as C(u) =

∑I
i=0Ni,k(u) ·pi,

where {Ni,k(·)}i=I−1,k=K
i=0,k=0 are bases and the I is the number of control points {pi}.

More details about the bases of B-Splines are provided in Appendix A. In TAROT, the previous step
outputs the order of each cluster, and we construct the B-Spline from these sequential clusters. For
each lineage, we insert J learnable control points {p(j)i }|Jj=1 between two fixed control points pi and
pi+1. TAROT treats the averaged cell presentation of each cluster as the fixed control point. And the
continuous trajectory optimization (Figure 4 - Right) is described as min{p(j)

i }i=I−1,j=J
i=0,j=1

∑n′

k=0 ∥ck −

7
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Methods CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓ CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
Mouse-RGC Mouse-CCC

Slingshot 5.28 41.04 42.97 72.22 2.07 10.00 67.90 77.16 68.12 1.13
Monocle-3 7.29 47.04 49.52 48.76 0.12 34.17 55.56 61.11 58.68 0.44
MOSCOT 67.21 44.32 44.54 55.62 0.78 52.55 67.78 82.44 62.62 1.17

TAROT 74.53 60.73 61.17 92.10 0.22 62.16 90.64 88.60 93.50 0.58

Table 1: Performance comparisons of TAROT (Ours) vs. diverse representative baselines on Mouse-RGC and
Mouse-CCC datasets. Note that Mouse-iEP is mainly used for a real case study of simulated gene knockout.

10 5 0 5 10

UMAP 1

10

8

6

4

2

0

2

4

6

UM
AP

 2

Lineage: 2 4 4 4 19 19 19 19 19

TAROT
Slingshot

2 4

19

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime
100

0

100

200

300

Nu
m

be
r o

f C
el

ls

12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

UMAP 1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

UM
AP

 2

Lineage: 6 0 0 51 12 30 30 30 30

TAROT
Slingshot

6

0
51

12
30

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime

0

50

100

150

200

250

300

350

Nu
m

be
r o

f C
el

ls

Figure 6: Two inferred lineages and their corresponding pseudotime distributions from TAROT (Ours) and
Slingshot (Baseline) on the Mouse-RGC dataset. The color bar indicates the value of cell pseudotime.

P(ck, C(u))∥2, where P(ck, C(u)) is the projection of cell representation ck on C(u), and n′ is the
total number of cells on the lineage. Then, the pseudotime u(ck) is derived as argminu∥ck −
C(u)∥2, u ∈ [0, 1].

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Evaluation Metrics. We introduce five evaluation metrics to measure the quality of temporal trajec-
tories from TAROT and other baselines. Specifically, metrics {❶, ❷, ❸} and {❹, ❺} are created to
measure the quality of cell lineage and pseudotime, respectively. ❶ Correlation Test (CT) for Lineages.
We compute the ratio of lineages that pass the correlation test as 1

s−1

∑s−1
t

1
|Tt,t+1|

∑
lt∈Tt,t+1

CT(lt),

where Tt,t+1 is set of mappings {lt : C(t)i → C(t+1)
j } from time stage t to t + 1. The CT(lt) is the

indicator function that returns 1 if the spearman correlation between averaged cell representations
from C(t)i and C(t+1)

i is the highest one; returns 0, otherwise. ❷ Gene Pattern Test per Gene (GPT-G)
and ❸ Gene Pattern Test per Lineage (GPT-L). Based on the developmental and functional priors,
we select an extra group of genes for testing, which are not utilized during the TAROT design. The
selection follows the widely adopted standards (Finak et al., 2015). Such genes are experimentally
validated to have monotonically increased or decreased expressions along with the cell differentiation
(or the cell pseudotime). For each test gene, we first compute the percentage of lineages where the
gene exhibits monotonicity. Then, averaging the result across all test genes produces the accuracy of
GPT-G. Similarly, we first calculate the percentage of genes that exhibit monotonicity along with
a given lineage. Then, averaging the result across all inferred lineage generates the accuracy of
GPT-L. ❹ Time Order Consistency Test (TOC) for Lineage. It examines whether the optimized cell
pseudotime is aligned with the time order in lineages. We focus on the tuning point of lineages
where the cell differentiation happens i.e., the cell type changes. If the tuning point cluster is C(t)i ,

we compute the accuracy of TOC as 1

|C(t)
i |

∑
ci∈C(t)

i

|{u(G(t−1)
i )<u(ci)}|+|{u(G(t+1)

i )>u(ci)}|
|G(t−1)

i |+|G(t+1)
i |

, where

{u(G(t−1)
i ) < u(ci)} is a set of cells that belong to G(t−1)

i and has a smaller pseudotime than
ci. The reported accuracy of TOC is averaged across all tuning points and lineages. ❺ Temporal
Trajectory Error (TTE) is the average distance between cells to their corresponding projection on the
temporal trajectory, i.e.,

∑n′

i=0

√
∥ci − P(ci, C(u))∥2. Other details like TAROT’s training setups

are in Appendix B.
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Figure 7: Gene expression dynamics over the cell pseudotime. Four kinds of special gene patterns, from left to
right, are increased, increased then decreased, decreased then increased, and decreased gene waves.

5.2 SUPERIOR PERFORMANCE OF TAROT IN LINEAGE AND PSEUDOTIME INFERENCE

In this section, we examine the quality of lineage and pseudotime produced by our proposed TAROT.
Three representative baselines, i.e., Slingshot (Street et al., 2018), Monocle-3 (Cao et al., 2019),
and MOSCOT (Klein et al., 2023), are adopted for throughout comparisons. They are distinctive
frameworks based on minimum spanning trees, principal graphs, and optimal transport algorithms,
respectively. Experimental results on Mouse-RGC and Mouse-CCC are presented in Figure 6 and
Table 1, where several consistent observations can be drawn: ❶ Our TAROT demonstrates great
advantages with a clear performance margin compared to Slingshot, Monocle-3 and MOSCOT.
In detail, for evaluation metrics {CT (↑ %), GPT-G (↑ %), GPT-L (↑ %), TOC (↑ %), TTE (↓)},
TAROT obtains {65.03%, 19.70%, 18.11%, 20.82%, 1.75}, {63.02%, 13.70%, 11.56%, 44.28%,
−0.16} and {3.10%, 16.42%, 16.54%, 37.42%, 0.50} performance improvements on Mouse-RGC
and {52.16%, 22, 74%, 11.44%, 25.38%, 0.55}, {27.99%, 35.08%, 27.49%, 34.82%, −0.14} and
{9.61%, 22.86%, 6.16%, 30.88%, 0.59} on Mouse-MCC, respectively. Note that a negative TTE
gain implies a lower error rate for pseudotime optimization. Such impressive outcomes validate the
effectiveness of our proposal. ❷ Although Monocle-3 obtains a lower Temporal Trajectory Error
(e.g., 0.18 and 0.14 lower), it fails short in terms of Time Order Consistency Test (44.28% and 34.82%
worse for the accuracy), compared to our TAROT. It suggests that Monocle-3 probably sacrifices
the correctness of pseudotime to better fit the B-Splines. In contrast, TAROT achieves higher time
order consistency with a comparable fitting error, making it a superior choice for neuron trajectory
analyses. ❸ Figure 6 presents two examples of inferred lineages and their pseudotime distributions,
where TAROT captures a longer range of neuron developmental trajectories.

5.3 GENE KNOCKOUT SIMULATION - ALGORITHMIC RECOURSE OF TAROT

Figure 8: GSEA results of the identified
gene sets from Slingshot and TAROT. A
higher ratio of gene set overlap and a larger
normalized p-value (|log10(p− value)|)
suggests a stronger association with biologi-
cally meaningful GO terms.

With the superior cell lineage and pseudotime from
TAROT, we are curious about (1) whether they capture
special gene expression patterns; (2) whether these gene
patterns are biologically meaningful; (3) how to manipu-
late them to influence the cell differentiation.

Gene Pattern Identification. It is another important
angle to dissect the effectiveness of TAROT: examining
whether the predicted temporal trajectory can capture clear
gene expression patterns. Given one lineage, we record
four representative patterns of gene “waves”, as presented
in Figure 7. We see that in our inferred lineage, the expres-
sion values of several gene subgroups consistently increase
or decrease, followed by a decrease or vice versa, respec-
tively. For most of TAROT’s lineages, a gene set with
similar expression patterns can be identified, as shown in
Appendix C. The next step is to validate the biological semantics of these located gene groups.

Biologically Meaningful? Do the Pathway Alignment. We use the GSEA (Fang et al., 2023)
for the pathway alignment analysis. It is a method to determine whether the input gene set has
statistically significant relationships with pathway gene sets of GO terms in biology. We apply GSEA
to the selected gene group from TAROT and Slingshot, and GSEA considers 22 different mouse gene
libraries for the alignment. Figure 8 records the top-3 aligned GO terms with the highest gene set
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overlap ratio. Meanwhile, their normalized p-values are also reported in the x-axis. TAROT achieves
markedly higher values of both metrics indicating its superiority in identifying biologically relevant
gene sets.
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Figure 9: The simulated gene knockout. During the tuning point
(red numbers and ⋆) of cell lineage, we knock one of the previously
identified genes, leading to totally different cell differentiation.

Algorithmic Recourse for TAROT
- Simulating the Gene Knockout.
To testify to the importance of found
genes for cellular temporal trajectory
and differentiation, we perform an al-
gorithmic recourse of TAROT by re-
moving these genes during the trajec-
tory optimization to simulate the gene
knockout. TAROT results with and
without the gene removal are summa-
rized in Figure 9. We can see the tra-
jectory (or differentiation) is signifi-
cantly altered after even only remov-
ing one gene (e.g., TPT1).

A Real Case Study of Gene
Knockout. The next key question
is whether our simulated results
echo with the wet lab experiment.
Rekhtman et al. (1999) provides
a real experimental validation on
the Mouse-iPE dataset (Capellera-
Garcia et al., 2016) and proves that
knockout genes GATA1, SPI1, and
LMO2 will discourage the conversion from murine and human fibroblasts to induced erythroid pro-
genitor or precursor cells (iEPs). Impressively, we find that TAROT offers aligned simulation results:
removing these genes impedes the mapping (cell differentiation) to the original iEPs. In details, the
initial mappings from TAROT are {cell: Meg→ Bas; cell: Neu→ Mon}. If we remove gene GATA1
and SPI1, the simulated results become {cell: Meg→ Bas, GMP-like, MEP-like; cell: Neu→ Mon,
Bas, GMP-like}. It implies that TAROT successfully reveals a seesaw-effect regulation between
SPI1 and GATA1 in driving the GMP-like and MEP-like lineages.

5.4 ABLATION STUDY

To investigate the contribution of each component in TAROT, comprehensive ablations are conducted
on Mouse-RGC. We study the effects of different cell representations, biology prior regularization,
continuous trajectory optimization, and the automatic thresholding methods in TAROT, please refer
Appendix C.5, Appendix C.6, and Appendix C.4 for more details. We also investigate the relationship
between TAROT and cluster quality in Appendix C.3.

6 CONCLUSIONS

Modeling and inferring single-cell transcriptional patterns is crucial to understanding cell differen-
tiation in developmental biology. This paper presents a novel angle to formulate this fundamental
biology problem into a well-defined machine learning formulation - temporal trajectory analysis. We
propose a large-scale single-cell dataset of mouse retinal ganglion (Mouse-RGC) and an innovative
algorithmic framework TAROT to: (1) extract superior cell representations; (2) match feature distri-
butions across time stages; (3) optimize and produce continuous temporal trajectories. Extensive
investigations validate that our proposals achieve substantial improvements over baseline methods.
Lastly, various gene knockout simulations and a real case study are conducted, where the impressive
results imply the potential of TAROT in providing meaningful biology landscapes. Future work
includes more physical validations of mouse gene knockout and potential applications like gene
therapy and cell longevity engineering.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214–223. PMLR, 2017.

Christian F Baumgartner, Lisa M Koch, Kerem Can Tezcan, Jia Xi Ang, and Ender Konukoglu. Visual
feature attribution using wasserstein gans. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8309–8319, 2018.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Rasmus Bro and Age K Smilde. Principal component analysis. Analytical methods, 6(9):2812–2831,
2014.

Veit R Buchholz, Ton NM Schumacher, and Dirk H Busch. T cell fate at the single-cell level. Annual
review of immunology, 34:65–92, 2016.

Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating
single-cell transcriptomic data across different conditions, technologies, and species. Nature
biotechnology, 36(5):411–420, 2018.

Zixuan Cang, Yangyang Wang, Qixuan Wang, Ken WY Cho, William Holmes, and Qing Nie. A
multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early
mammalian embryo development. PLoS computational biology, 17(3):e1008571, 2021.

Junyue Cao, Malte Spielmann, Xiaojie Qiu, Xingfan Huang, Daniel M Ibrahim, Andrew J Hill, Fan
Zhang, Stefan Mundlos, Lena Christiansen, Frank J Steemers, et al. The single-cell transcriptional
landscape of mammalian organogenesis. Nature, 566(7745):496–502, 2019.

Sandra Capellera-Garcia, Julian Pulecio, Kishori Dhulipala, Kavitha Siva, Violeta Rayon-Estrada,
Sofie Singbrant, Mikael NE Sommarin, Carl R Walkley, Shamit Soneji, Göran Karlsson, et al.
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IMPACT STATEMENTS

Our research primarily advances the scientific understanding of cellular development and its complex
temporal dynamics, with potential implications for fields such as regenerative medicine and oncology.
While the societal impacts of these advancements may be far-reaching, specific consequences
are beyond the scope of this study and require careful consideration by experts in the relevant
fields. We encourage interdisciplinary collaboration to explore the practical applications and ethical
considerations of our findings in real-world contexts. While our work has various potential societal
implications, we do not identify any specific consequences that warrant particular emphasis in this
context.

A MORE TECHNIQUE DETAILS

Details about Entropy Weight Search. The entropy weight λ is a critical factor that affects the
final Sinkhorn algorithm transport result; an inadequate λ makes the transport prone to random
mapping. We design a non-linear entropy weight search algorithm to decide an adequate λ for the
Sinkhorn algorithm. The Pytorch-style pseudo code is presented in Algorithm 1.

Algorithm 1 Non-Linear Entropy Weight Search
Require: Initial entropy weight λ.
Require: The best optimal transport cost Fbest ←∞
Require: The current optimal transport cost Fcur

1: λi ← λ
2: while Fbest ≥ Fcur do
3: Fcur, T ← minT < T ,D > −λE(D) // Solving the Optimal Transport optimization by the

Sinkhorn algorithm.
4: if sum(T ) ≤ 1 then
5: λi =← λi ∗ 10
6: else if Fcur ≤ Fbest then
7: Fbest ← Fcur

8: λ← λi

9: λi ← λi − λi ∗ 0.1
10: end if
11: end while
12: return λ

A.1 DETAILS OF THE BASE FUNCTION IN B-SPLINES

B-Spline is constructed based on the base function, and the base function is defined recursively:

Ni,0(u) =

{
1, ui ≤ u ≤ ui+1

0, otherwise
, (3)

Ni,k =
u− ui

ui+k − ui
Ni,k−1(u) +

ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u), (4)

where the {ui}ni=0 are the knots of the B-Spline. For more details about adapting the B-Spline for
pseudotime trajectory optimization, please check Appendix B.

B MORE IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS OF TAROT

B.2 CELL CLUSTERING

For each dataset, we perform cell clustering on cells from all time-stages. Initially, principal
component analysis (PCA) is applied to reduce the cell feature dimensionality to 55. Subsequently,
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we utilize the Louvain clustering algorithm with “resolution” set to 1.0 for the Mouse-RGC dataset
and 1.5 for the Mouse-RCC dataset. The hyper-parameter “resolution” is fine-tuned to ensure that
the number of clusters matches the number of cell types in each dataset. Notably, the preprocessing
for the Mouse-RCC dataset mirrors that of the Mouse-RGC. To be specific, we retained cells
that expressed at least 1, 500 and less than 10500 genes. We remove cells that have more than 5%
mitochondrial genes and genes expressed in fewer than 10 cells. The same normalization and batch
correction methods used for the Mouse-RGC are then applied to the Mouse-RCC dataset to identify
5, 000 anchor genes per cell.

B.3 BIOLOGY PRIORS INTEGRATION
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Figure 10: Gene expression dynamics over
the cell pseudotime left to right. From top
to bottom are the heatmap of different genes
that increase, decrease, increase followed de-
crease, and decrease followed increase.

Developmental Cost. When the cluster j from Gt at
time t, the Ddev

i,j will be set to max(D)/Di,j + 1 if the
cluster j from Gt+1 is an ancestor of the cluster i from Gt
at time t, otherwise Ddev

i,j = 1.

Gene Expression Cost. According to the labeled time
stage, we calculate the Pearson correlation between gene
expression value and cell time stage. For each gene, we
record the Pearson product-moment correlation coefficient
and the p-value associated with the gene. The Pearson
product-moment correlation coefficient Pcci indicates the
monotonicity of the gene i, and the p-value Pvi denotes
the degree of the monotonicity. We selected 400 genes
with the largest p-value as the gene group for Dfuc. The
calculation of the Dfuc can be found in Algorithm 2,
where G cur is Gt+1, G prev denotes {G1,G2, . . . ,Gt},
GeneGroup denotes the gene group, Pcc denotes the
Pearson product-moment correlation coefficient of the gene group, Pv denotes the p-value of above
mentioned gene group, and D fuc is the Dfuc.

Algorithm 2 The Gene Expression Cost Calculation.
Require: Gcur ← Gt+1

Require: Gprev ← {G1,G2, . . . ,Gt}
Require: The Pearson product-moment correlation Pcc
Require: the gene group GeneGroup
Require: the p-value of GeneGroup Pv
Require: Dfuc

1: λi ← λ
2: Bonus← []
3: for gene in GeneGroup do
4: if Gprev, Gcur is monotone monotonic then
5: Bonus.append(Pv[gene])
6: end if
7: Dfuc[gene]← 1
8: Dfuc[gene]← 1−mean(Bonus)
9: end for

10: return Dfuc

Pre-Transport - MAE training TAROT employs a customized transformer network comprising 6
encoder layers and 6 decoder layers. The encoder layers boast a dimension of 256 with 8 attention
heads, while the decoder layer has a hidden dimension of 512 and is also equipped with 8 attention
heads. Our MAE uses AdamW (Loshchilov & Hutter, 2019) optimizer with the weight decay of
1e−5, the learning rate of 1e−4, and the training step of 50K, wherein the initial 2.5K iterations as
a warmup. For the single-cell data, we divide each cell’s genes into 128 patches, where each patch
contains 64 consecutive gene expression values. The final cell representation {ci}ni=1 is obtained by
feeding the encoder output into PCA, which reduces the dimension from 256 to 55.
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During Transport - Regularized OT We use Pearson correlation as the vanilla cost function
corr(·, ·). The final entropy weight λ of each optimal transport is obtained by Algorithm 1.

Post-Transport - B-Splines Trajectory Optimization The curve parameter is predefined before
the trajectory optimization. We use 3-degree B-Spline with 300 knots, and the number of learnable
control points J is set with 1. The optimization is solved via gradient descent, the learning rate is
1 × 10−2, and the optimization stop condition is the loss fluctuation is less than 1 × 10−4% with
most 1, 000 optimization steps.

B.4 DETAILS ABOUT METRIC

For further clarification of differences between GPT-G and GPT-P, we provide the PyTorch-style
pseudo codes for both two metrics in Algorithm 3 and 4 respectively.

Algorithm 3 Gene Pattern Test per Gene.
Require: All lineage we have A
Require: All cells C
Require: Specified gene group Sg

1: Gr← []// The gene ratio recorder
2: for lineage a in A do
3: gr← NGenesInLineage(a,C, Sg)// Calcuate the percentage of genes in Sg, which steady

increase/decrease over this lineage
4: Gr.append(gr)
5: end for
6: return mean(Gr)

C MORE EXPERIMENTAL RESULTS

C.1 MORE RESULTS OF GENE WAVE VISUALIZATION

To illustrate the capability of TAROT in discovering gene sets with specific patterns from lineages,
we collect more gene waves with such expression patterns and show them in Figure 11 and 10 in
different forms. Results show that TAROT yields more genes with similar expression patterns since
the high-quality lineage and pseudotime inference.

Algorithm 4 Gene Pattern Test per Path.
Require: All lineage we have A
Require: All cells C
Require: Specified gene group Sg

1: Pr← [ ]// The path ratio recorder
2: for gene a in Sg do
3: pr← NPathInLineage(A,C, gene)// Calculate the percentage of paths in A, which the

specific gene steadily increases/decreases over these paths
4: Pr.append(pr)
5: end for
6: return mean(Pr)

C.2 MORE ABLATION RESULTS

Different Options for Pseudotime Trajectory Optimization The number of learnable points J
between two fixed control points greatly affects the B-Spline pseudotime trajectory optimization.
We ablate different J to seek a plausible setting for the pseudotime trajectory optimization. Table 4
indicates that more learnable control points deliver improved TTE but sacrifice TOC, which indicates
better trajectory fitting does not result in better pseudotime trajectory. Therefore, we use “1” learnable
control points per two fixed points. We also compare our method with two other trajectory fitting
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Figure 11: More gene expression dynamics over the cell pseudotime. Four kinds of special gene patterns, from
left to right, are increased, increased then decreased, decreased then increased, and decreased gene waves. Gene
waves in different lines are identified from different lineages.

Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
P-value 66.58 56.30 56.89 92.86 0.23
max. sep. 74.53 60.73 61.17 92.10 0.22

Table 2: Ablations on automatic thresholding.

methods: the “Poly.” method, which uses the polynomial curve for temporal trajectory fitting (the
degree of curve is the number of cell differentiations that happen), and the “Principal” method, which
uses the principal curves algorithm, the same trajectory fitting method with Slingshot (Street et al.,
2018).

C.3 THE QUALITY OF CLUSTERING

At the outset of TAROT, cell clustering is a critical step in data preprocessing. Consequently,
we investigate the effects of clustering quality and the application of various cluster methods for
TAROT. The results, presented in Table 3, underscore the significance of cluster algorithm for the
performance of TAROT. In parallel, variations in the “resolution” parameter of the Louvain method
influence TAROT’s performance. Nonetheless, altering the “resolution” modulates the cluster count,
complicating the association between clusters and specific cell types, and potentially diminishing the
biological insights gleaned.
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Table 3: Ablations different cluster hyper-parameter and cluster method. The “resolution” parameter
influences the cluster count in the Louvain algorithm Blondel et al. (2008). A smaller “resolution” yields
fewer clusters, whereas a larger “resolution” leads to more clusters.

Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
TAROT,resolution = 1.0 74.53 60.73 61.17 92.10 0.22

Different Clustering Config
TAROT,resolution = 0.5 70.76 60.97 61.20 92.30 0.25
TAROT,resolution = 1.5 74.44 58.64 58.35 90.63 0.21
TAROT,resolution = 2.0 72.97 60.72 59.99 92.37 0.20

Different Cluster Algorithm
KMean 72.68 59.22 59.83 90.22 0.23
Agglomerative clustering 68.93 46.80 46.87 88.75 0.24

Table 4: Result of different trajectory optimization options.

Methods TOC ↑ TTE ↓
Mouse-RGC

Sp-1 93.41 0.22
Sp-2 90.73 0.25
Sp-3 92.03 0.23
Poly. 63.37 1.24
Principal 72.22 2.07

C.4 AUTOMATIC THRESHOLDING WITHIN TAROT

In TAROT, the automatic thresholding method is vital to achieving accurate lineage results. We
proposed two candidate automatic thresholding techniques: the “P-value” method and the “max.
sep.” method (i.e., the maximum separation). The “P-value” method utilizes statistical significance
to identify mappings with a p-value lower than the threshold of 1e−4. Conversely, the “max. sep.”
method selects mappings with close OT costs but notably distinct from other mappings, emulating
human intuition. Table 4 reports TAROT’s results with two thresholding methods, demonstrating that
the “max. sep.” selects lineages with higher quality.

C.5 DIFFERENT CELL REPRESENTATION.

A high-quality cell representation is essential for inferring temporal trajectory. To this end, we
have implemented the TAROT algorithm using various representations derived from a range of
sources, including PCA (Principal Component Analysis), UMAP (Uniform Manifold Approximation
and Projection), VAE (Variational Autoencoder), and MAE (Masked Autoencoder). For the purpose
of fair comparison, PCA has been applied to the features extracted by both VAE and MAE to reduce
their dimensionality to 55 dimensions. The results presented in Table 6 substantiate the superiority of
the MAE-based representation.

C.6 DIFFERENT BIOLOGY PRIOR REGULARIZATIONS.

The TAROT algorithm’s flexibility allow for the integration of various forms of biological prior knowl-
edge during the transport process. We have systematically examined different integration strategies,
the details of which are presented in Table 6. Our analysis reveals that both the developmental cost
Ddev and the funtional cost Dfuc contribute significantly to the performance of TAROT.

Table 5: Ablations on cell representations.
Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
PCA-55 69.10 53.90 54.04 74.55 0.77
UMAP-2 29.44 16.16 16.14 62.69 0.58
VAE 66.43 53.02 53.07 72.17 0.85
MAE 74.53 60.73 61.17 92.10 0.22
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Table 6: Ablations on biology prior regularizations.
Mouse-RGC CT ↑ GPT-G ↑ GPT-L ↑ TOC ↑ TTE ↓
D 66.28 39.60 39.60 73.41 0.64
Ddev ⊙D 69.89 57.52 57.78 80.48 0.66
Dfuc ⊙D 68.71 56.01 55.76 78.62 0.72
(Ddev +Dfuc)⊙D 74.53 60.73 61.17 92.10 0.22

D ETHICAL STATEMENT ABOUT DATASET COLLECTION

For the data collection of Mouse-RGC, mice were maintained in pathogen-free facilities under a
12-hour light-dark schedule with standard housing conditions. Food and water were continuously
supplied. Animals used in this study include both males and females.
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