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Abstract

Differential privacy (DP) limits the impact of individual training data samples by
bounding their gradient norms through clipping. Conventional clipping operations
assign unequal scaling factors to sample gradients with different norms, leading
to a direction mismatch between the true batch gradient and the aggregation of
the clipped gradients. Applying a smaller but identical scaling factor to all sample
gradients alleviates this direction mismatch; however, it intensifies the magnitude
mismatch by excessively reducing the aggregation norm. This work proposes a
novel clipping method, termed adaptive sigmoid (AdaSig), which uses a sigmoid
function with an adjustable saturation slope to clip the sample gradients. The
slope is adaptively adjusted during the training process to balance the trade-off
between direction mismatch and magnitude mismatch, as the statistics of sample
gradients evolve over the training iterations. Despite AdaSig’s adaptive nature, our
convergence analysis demonstrates that differentially private stochastic gradient
descent (DP-SGD) with AdaSig clipping retains the best-known convergence
rate under non-convex loss functions. Evaluating AdaSig on sentence and image
classification tasks across different datasets shows that it consistently improves
learning performance compared with established clipping methods.

1 Introduction

Deep learning models can expose individual data samples to privacy risks and are vulnerable to
multiple types of practical attacks [2} 1526, 29]]. To mitigate these risks, differential privacy (DP)
[10] has emerged as a widely adopted standard in machine learning. Differentially private training
constrains the impact of individual data samples on the training process, ensuring that the resulting
model statistically resembles the one trained by the exclusion of an arbitrary data sample. As a result,
inferring the presence of an individual data sample in the training set becomes challenging when
observing the model during training. Differentially private stochastic gradient descent (DP-SGD) is a
prominent privacy-preserving algorithm that incorporates DP into the SGD algorithm through two
steps: (i) bounding sensitivity through clipping, and (ii) introducing uncertainty by adding Gaussian
noise [[1]]. The first step limits the ¢5-sensitivity of the batch gradient against the addition or removal
of data samples by upper bounding the magnitude of the sample gradients using a clipping operation.
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A widely used clipping operation, which we refer to as vanilla clipping [1. 8], scales each sample
gradient g; , with a norm greater than C' to constrain its norm to C, as
goo = goomin (1 ). (M
[foa
where the constant C' is termed the clipping threshold. In the second step, a zero-mean Gaussian noise
is added to the aggregation of the clipped gradients with a standard deviation that is proportional to
the clipping threshold.

Applying the clipping operation to sample gradients introduces a deviation between the aggregation
of clipped gradients, i.e., Zie B, 8¢, and the true batch gradient, i.e., Zie B, 8its which is referred
to as bias [3, 113, [19]. The bias caused by clipping manifests in two forms: (i) direction deviation,
and (ii) magnitude deviation from the true batch gradient. Direction deviation can be particularly
severe in many classical clipping methods that are based on vanilla clipping operation in (). This
follows from the fact that the vanilla clipping maps all gradient norms greater than C' to C, and hence
neglects the information contained in the diversity of the sample gradient norms within the batch.
This can be interpreted as assigning unequal weights to sample gradients, which causes a significant
direction deviation. This misalignment can steer training steps towards undesired regions of the loss
landscape and hinder training convergence [7} [L1].

In response, the per-sample adaptive clipping
(PSAC) method [36] was proposed to mitigate
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with different magnitudes. We observe that the  Figure 1: Clipped gradient norm vs. gradient norm.
vanilla clipping method hard-clips the magni- Comparing linear regions for different clipping
tude of sample gradients that are larger than methods. PSAC has a wider linear region com-
C, resulting in a limited linear region'|on the  pared with the vanilla clipping. The linear region
curve. Using Auto-S, the hard-thresholding be-  of AdaSig can be adjusted by altering c.

havior of the vanilla method is slightly reduced;

nonetheless, its restricted linear region leads to a similar scaling as the vanilla method. In contrast,
the PSAC clipping method has a wider linear region than vanilla clipping and Auto-S, as it preserves
the same scaling factor across a broader range of sample gradient norms, thereby providing a more
accurate approximation of equal scaling.

While expanding the linear region can reduce direction deviation, it also decreases the norm of
the aggregation of the clipped gradients compared with that of the true batch gradient (i.e., larger
magnitude deviation). This occurs because the wide linear region of the clipping curve results in a
small scaling factor, causing sample gradients with smaller magnitudes to have excessively small
norms after scaling. This suggests that the span of the linear region on the clipping curve needs
to be carefully adjusted to better balance the trade-off between direction deviation and magnitude
deviation. Moreover, since the sample gradient statistics change across different training iterations,
it is necessary to adaptively adjust the linear region to balance the trade-off throughout the training
process.

Contributions Motivated by the above observation, we propose a novel clipping method called
Adaptive Sigmoid (AdaSig), where the magnitude of the clipped gradient is determined from the
original gradient magnitude using a scaled and shifted sigmoid function. AdaSig features a saturation
slope parameter that adaptively adjusts the span of the linear region throughout training to balance
the trade-off between direction and magnitude mismatches.

““Linear region” is used in contrast to the “lazy region” to refer to the part of the curve that can be well
approximated by a straight line passing through the origin.
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Figure [T] also shows the clipping curves for two choices of the saturation slope (denoted by «)
in AdaSig. As « shrinks, the linear region of the clipping operation expands resulting in better
approximation of equal gradient scaling and thus smaller direction deviation. Conversely, larger
a preserves the magnitude of smaller sample gradients thus reducing the magnitude deviation. To
adaptively adjust the clipping operation based on the gradient statistics throughout training, we treat o
as a learnable parameter and update it in each iteration to minimize the empirical loss. To the best of
our knowledge, this is the first study that designs a clipping method to balance the trade-off between
the magnitude deviation and direction deviation. This work makes the following contributions:

* We introduce AdaSig, a novel clipping strategy that allows balancing the direction deviation
and magnitude deviation by adjusting a parameter a. We treat « as a learnable parameter
and derive its SGD-based update for empirical loss minimization.

* We develop a new algorithm for DP-SGD with AdaSig clipping (DP-SGD-AdaSig), by
establishing an update rule for « that effectively preserves privacy.

* AdaSig’s unique clipping structure and varying slope complicate its convergence analysis
such that existing analyses are inapplicable. However, we derive a convergence bound
for DP-SGD-AdaSig in non-convex loss settings, showing that its privacy—utility trade-off
matches the best-known bound in the literature.

* We conduct experiments on image and sentence classification tasks. Performance compari-
son with existing clipping methods shows the efficacy of AdaSig in learning enhancement
through a proper balance between direction deviation and magnitude deviation.

2 Related Work

Extensions of Vanilla Clipping In vanilla clipping, the clipping threshold substantially impacts
training performance [[19]]. Large C' results in large privacy noise variance, while small C' leads
to aggressive gradient clipping, causing a significant bias. Several studies adaptively adjust C' to
improve the bias—variance trade-off. In [3]], the optimal threshold is estimated using gradient quantiles
during training. In [13]], the clipping threshold is treated as a learnable parameter, allowing it to be
optimized dynamically over the training iterations. However, these works focus on the bias—variance
trade-off for vanilla clipping and cannot balance the magnitude and direction deviations introduced by
the bias for a fixed variance level. This limitation arises from the inherent nature of vanilla clipping,
where reducing the direction deviation (increasing C') inevitably increases the variance.

Some studies combine vanilla clipping with error feedback to mitigate the bias introduced by clipping
[41,[16]. This technique is applicable to any clipping method, including ours, and is orthogonal to
the focus of this study.

Other Clipping Methods Automatic clipping (Auto-S) [4]] and normalized SGD (NSGD) [39] are
similar approaches that aim to eliminate the need for tuning the clipping threshold. Their key idea is
to normalize gradients as g; ; = ”gcfﬁ for some small positive constant r. Although these methods
are effective for their main goal, they suffer considerably from direction deviation, as they assign
larger weights to gradients with smaller magnitudes. These small gradients are often opposite to the
true batch gradient direction, as empirically shown in [36]]. To address the direction deviation issue,

PSAC [36]] modifies the clipping operation to g; ; = ”glﬁ% for a positive r. This adjustment

’ i,t r
reduces the weights assigned to small gradients and thus mitigates the direction deviation. While
PSAC effectively reduces the direction deviation, it cannot adaptively balance the trade-off between
magnitude and direction deviations during training because its linear region span remains fixed
throughout the process (Figure[I)). To address this limitation, we propose AdaSig, which dynamically
adjusts its saturation slope to better balance this trade-off.

3 Background and Preliminaries

Learning Model and SGD We consider a supervised setting, where the training dataset consists of
N samples, denoted as D = {(z;,y;)}},, with z; € X representing the vector of input features
and y; € ) denoting the corresponding target output. The goal is to learn a model fo : X — ),
with parameters @ € R?, that maps input features to the target outputs. The discrepancy between



the predicted outputs 3; = fg(z;) and the actual targets y; is measured by the sample loss function,
denotedas ¢ : Y x) — R. Let h' (0) denote the loss of sample ¢ as a function of the model parameters,
i.e., h'(0) = ((fo(x;),y;). The population loss is defined as L(0) = E (., ~p [¢(fo(z),y)], where
‘P denotes the unknown data distribution. In iteration ¢, stochastic gradient descent (SGD) updates
the model parameters using the average gradient of the loss over the samples within a batch of data as

A .
0t+1 = Bt - E Z Vghl(e)’
1E€EB

@

)
0=06,

where Vgh'(8) denotes the gradient of the loss function with respect to (w.r.t.) the model parameters,
6, denotes the model at iteration ¢, 3; C D is the batch of data at iteration ¢, B denotes the expected
batch size, and A is the learning rate.

Differential Privacy The randomized mechanism M : & — R with domain S and range R satisfies
(e, §)-differential privacy (DP) if, for any two neighboring datasets S, S’ € S, i.e., S’ is formed by
adding or removing a single sample from S, and for any output set R C R,

Pr[M(S) € R] < ePr[M(S') € R] + 6, 3)

where Pr[A] denotes the probability of the event A. Inequality () implies that for small € and J, the
output distributions of the mechanism under neighboring datasets approach each other, making it
harder to detect the contribution of an individual sample from the mechanism’s output.

Differentially Private SGD (DP-SGD) Let g, ; € R? denote the gradient of loss for sample i at
iteration ¢, i.e., gy = Vgh'(0)|s—s,. DP-SGD achieves privacy protection via two steps: (i) The
gradient samples within the batch are first passed through a clipping method that returns a clipped
gradient g; + whose />-norm is bounded by a constant C'. Basic DP-SGD uses the vanilla clipping
method in (I). The aim of clipping is to bound the ¢5-sensitivity of the aggregation of the gradients
by C. (ii) After aggregating the clipped gradients over the batch, zero-mean Gaussian privacy noise
is added to introduce uncertainty. To ensure the privacy of training, the variance of the noise process
is scaled with C2. Consequently, in iteration ¢ of DP-SGD, we update the model parameters as

0111 =06, — %( Z it + nt), 4)

i€By

where n; ~ N (0, C?021,) is the Gaussian privacy noise with o being the noise multiplier determined
by the privacy budget (e, d).

4 AdaSig Clipping

Vanilla clipping in (I) outputs a vector with the smallest error norm relative to the input vector. It
however introduces a notable direction deviation between the true batch gradient and the sum of
clipped gradients due to unequal scaling of different sample gradients. A naive solution to this issue
is to scale all sample gradients by the same coefficient such that all resulting norms fall below the
clipping threshold. This approach requires the scaling coefficient to be small enough so that the largest
gradient norm is reduced to the clipping threshold. As a result, gradients with smaller norms are scaled
down to very small norms, leading to an aggregation with excessively small magnitude (magnitude
deviation). Since the privacy noise is proportional to the clipping threshold, this low-magnitude
aggregation results in a very low signal-to-noise ratio, which hinders training performance.

In light of the above discussion, a proper clipping operation should not only have a bounded range to
constrain the ¢ sensitivity, but it should also ensure that the output norm is monotonically increasing
w.r.t. the input norm, with an adjustable linear region span that balances the trade-off between
direction and magnitude deviations. Since the sigmoid function, with an adjustable saturation slope,
satisfies both of these properties, we propose a clipping operation based on the sigmoid function,
termed adaptive sigmoid (AdaSig). Further details on the choice of the sigmoid function for clipping
are provided in Appendix [A] This operation is illustrated in the sequel.

Clipping with Sigmoid Function For the clipping threshold C, we define AdaSig clipping as

Yal@) = O+ — 1), )
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Figure 2: Illustrative example: sample gradients are shown by solid arrows and their aggregation is
indicated by a dashed arrow. The horizontal and vertical axes correspond to the first and second entries
of the two-dimensional vectors, respectively. (a) shows true gradients and their summation. (b) shows
the gradients clipped by the vanilla method and their aggregation in orange. (c) and (d) show the
gradients clipped by AdaSig for o = 15 and o = 8 in green and red, respectively. The adjustability
of o enables AdaSig to balance the trade-off between direction and magnitude deviations.

where o > 0 is the saturation slope. Using the AdaSig function, the sample gradient g; ; is clipped as

&0 = v lgiel) o ©)
it
One can see that this clipping addresses the two mentioned desired properties: (i) since ¥, (z) € [0,C)
for x > 0, the sum of the clipped gradients by AdaSig has a bounded ¢»-sensitivity equal to C.
(ii) The scaling is a monotonic function of the input norm and can adjust its linear region by varying
«. Figure [I] shows the clipping curves of AdaSig for two choices of a. As the figure shows, the
parameter « enables us to sketch an adjustable trade-off between the two extreme cases of clipping:
by increasing «, the curve approaches the vanilla clipping method, which results in a larger magnitude
after aggregating the clipped gradients at the expense of higher direction deviation. Conversely,
decreasing « leads to a better approximation of equal scaling, and thus less direction deviation, while
reducing the magnitude of the sum of the clipped gradients (i.e., larger magnitude deviation).

Illustrative Example Before developing our differentially private training algorithm via AdaSig, we
provide a numerical example to illustrate AdaSig’s capability to balance direction and magnitude
deviations. Let’s consider sample gradients as

0.3 —0.08
that are shown by solid blue arrows in Figure @ The sum vector, i.e., true batch gradient, is shown
with a dashed blue arrow. The clipped gradients using the vanilla method with C' = 0.1, and their

aggregation are shown in orange by solid and dashed arrows, respectively. Comparing the sum of the
clipped gradients with the true batch gradient, we observe a notable direction deviation.

We next consider AdaSig clipping with the same threshold C' = 0.1 and two different choices of
the saturation slope, namely, o = 15 and a = 8. The result for o« = 15 is shown by green arrows
with the dashed one indicating the sum of the clipped gradients. Evidently, the direction deviation is
slightly reduced in this case compared with the vanilla method. As we reduce o to o = 8, shown by
red arrows, the direction deviation is further reduced. It is however observed that better alignment
in this case is achieved at the cost of a smaller magnitude of the aggregated vector. This explains
the natural trade-off between direction deviation and magnitude deviation. Appendix provides
additional insights into the effect of « on this trade-off.

5 DP-SGD with AdaSig Clipping

We develop a DP-SGD algorithm with AdaSig clipping, which we refer to as DP-SGD-AdaSig.
Nonetheless, AdaSig can be readily incorporated into other differentially private optimizers. DP-



SGD-AdaSig consists of two steps: (i) Differentially private update of the model parameters, and
(i1) Differentially private update of the saturation slope a.

5.1 Differentially Private Update of Model Parameters

Rewriting AdaSig clipping in terms of o in (6], we have

it
t = Vo, (ngtH) s (®)
@it
where we add the subscript ¢ to the slope, i.e., o, to indicate that it is an adjustable parameter and
changes over iterations. We further define s(0;, ay; B;) as the aggregation of clipped gradients in
iteration ¢, and use 3(0:, as; By) to represent the private estimation of batch gradient, i.e.,

(0t7 Oét,Bt Z wat ||gl tH) ng t” (93)
1€B;
(0, s Be) = (0, 5 By) + ng, (9b)

where n ~ N(0, C?021,) is privacy noise with per-coordlnate variance C2?¢2. It is worth mention-
ing that s(0;, a; Bt) includes 6; as an argument, since it depends on 6, through sample gradient g; ¢
computed at 0.

Using the above notation, the differentially private SGD update of model parameters 6, is
AL
011 =0; — ES(Ot, at; By). (10)

Note that in (I0)), the parameter C' can be absorbed into the learning rate A, since 5(0;, cvy; By ) linearly
scales with C'. In fact, the noise term n{ and all clipped gradients in s(6;, a;; B;) are scaled by C
(see (3], and note that the variance of n{ is C%202). We hence simplify the parameter space in the
remainder of this work by setting C' = 1.

5.2 Differentially Private Update of Saturation Slope

At iteration ¢, we aim to update o to minimize the empirical loss. To this end, we update « in
the descent direction of the loss gradient. Developing a differentially private update rule for oy
therefore involves two main steps: (i) computing the derivative of the loss w.r.t. o, and (ii) obtaining a
differentially private estimate of this derivative. Based on this estimate, a differentially private update
rule can then be constructed using one-step gradient descent. We detail these steps in the subsequent
sections.

Loss Derivative with Respect to o Let %ﬁft) denote the derivative of the loss on sample ¢ w.r.t. &
at iteration . We approximate it as

ORi(6;) A

G~ 7§g;|:t7’(9t_1,06t—1§3t—1)7 (n
t
where
2efmllgi,t|\g-
) N B - VA
(0, o; By) = 2 (14 e—oellsicll)2” 42
1€by

The derivation of the approximation in is provided in Appendix

ah(et)

Let denote the batch-averaged loss derivative w.r.t. « at iteration . We approximate it as

Oh(0y) Oh'(6:)
_BZ

aOét icB aat
@ A T
~ _ﬁ( Z gi,t) (61, 15 B 1), (13
€8,

where (a) applies the approximation in (L1)).



Differentially Private Estimate of Loss Derivative We next compute a differentially private estimate
of the loss derivative approximation in (I3). The right-hand side (RHS) of comprises two
factors. For the first factor, i.e., ), 5, 8i,t» @ private estimate is given by 5(0¢, a; By), which is
computed for update of 6, in (I0). We can hence obtain a differentially private estimate for %f:)
by finding a private estimate of the second factor, i.e., 7(0;_1, a;—1; B;—1). The standard approach
for differentially private estimation is to (i) restrict the ¢o-sensitivity of (0, as; By), and (ii) add a
privacy noise term, whose standard deviation is proportional to the bounded ¢5-sensitivity. However,
the former step is not required in this case, as the ¢5-sensitivity of 7(0;, c; B;) is bounded. This is

shown in the following lemma.
Lemma 5.1. The {s-sensitivity of (0, a; Bt) is bounded from above by A, = 0.448/a.

Proof. See Appendix O

Using Lemma we compute the private estimate of (6, «;; B;) as
F(Or, s By) = 1(6, o3 Be) + my, (14)

where n} ~ N(0, AithId) is the Gaussian privacy noise with the noise multiplier o,. Replacing
the first and second factors in (I3) with their private estimates §(0;, o; By) and #(0;—1, oz 15 B—1),

respectively, we obtain the differentially private update for o, as

Ao, T
iy = o + ﬁs(gt, o Be) #(0i-1, ap—1; Bi-1), (15)
for some learning rate \. Since both §(0;, ay; B;) and #(0;_1, az—1; By—1) are noisy, their product
can deviate notably from the derivative approximation in (I3). To make the update rule robust, we
consider only the sign of their product, which is more resilient to noise. Also, to ensure that the value
of «; remains positive, we adopt a standard exponential update, by rewriting (T3] in the exponential
form as

i 3 . Ta .
at—i—l — Oét.eA(yMgn(S(etaOétth) T(et—lyat—lysf,—l)). (16)

The DP-SGD-AdaSig algorithm is outlined in Algorithm [T} DP-SGD-AdaSig incurs negligible extra
computational and memory costs compared with the vanilla clipping method. A complexity analysis
is provided in Appendix [B]

Algorithm 1 DP-SGD-AdaSig

1: Input: D, T, g > 0, A\s, A, B, 05, 0, O
2: Output: {6,}1

3 #(0-1,0-1;8-1) =0 // Initialization
4: fort € {0,...,T — 1} do

5:  Form B; via Poisson sampling with rate B/N. // Poisson sampling
6:  for (z;,y;) € B; in parallel do

T Bir = v (gl By

—atllegg, ¢l
2e—otllei ¢ it

8: Pit = (1+C—"tHgi,t“)2
9:  end for
10: A, =228 // Sensitivity bound

11 80y, a0 Br) = Y, 8t + N (0,0214)
12: 70,043 By) = ZieBt pi.t + N (0, Aitafld)
13: 0t+1 = 0t - %§(0t, Qg Bt) // Model update

Ao sign (§(et,at;BL)T7A'(9t—17at71;Bt71))

14: o4 = g€ /l o update

15: end for

6 Privacy Analysis of DP-SGD-AdaSig

The privacy guarantee of the proposed algorithm is provided directly by extending the results for
DP-SGD. To this end, we first recall that each iteration of the DP-SGD algorithm is a Gaussian



mechanism. The entire DP-SGD algorithm is then viewed as a composition of these Gaussian
mechanisms, where each iteration’s output serves as the input for the next iteration. The privacy
accountant method is then used to obtain the noise multiplier ¢ in (@), which ensures the algorithm
satisfies (¢, 0)-DP after T iterations [1]]. We denote this guarantee as o = Accountant(q, T, ¢, J),
where ¢ = B/N is the batch sampling probability.

Unlike the DP-SGD algorithm, DP-SGD-AdaSig in each iteration consists of two parallel Gaussian
mechanisms: the first one returns the Gaussian approximation of the batch gradient, §(0;, «; B;), that
is used for updating both the model in (I0) and the saturation slope o in (T6). The second mechanism
returns the Gaussian approximation of 7(6;_1, a;z—1; B;—1) denoted by #(0;_1, az—1;Bi—1), which
is used to update oy in (I6). From a privacy perspective, these two parallel Gaussian mechanisms
together behave as a single Gaussian mechanism [3| Theorem 1]. This is formalized in Proposition|[6.1]

Proposition 6.1. In each iteration of DP-SGD-AdasSig, the two parallel Gaussian mechanisms §(-)
and 7(-), with noise multipliers o, and o,., are equivalent to a single Gaussian mechanism with noise

multiplier o = (0,72 + 05_2)_1/ 2. Hence, each iteration of DP-SGD-AdaSig incurs the same privacy
cost as an iteration of DP-SGD with noise multiplier o.

Compared with Theorem 1 in [3]], Propositionuses o, instead of 20, for privatizing the second
mechanism. This is because the privacy noise of the second mechanism in [3]] privatizes a positive
scalar, but in our algorithm, the noise privatizes r(0;, ay; 15;) which may have non-positive entries.

7 Convergence Analysis of DP-SGD-AdaSig

Since the clipping structure of AdaSig is substantially different from established methods in the
literature, existing convergence analyses are not directly applicable. Furthermore, the adaptive
adjustment of o adds complexity to the analysis of training convergence. In this section, we
provide theoretical guarantees on the convergence of DP-SGD-AdaSig. We consider the following

assumptions on the population loss L(8) and its gradient, denoted by g; = V L(8;).
Assumption 7.1. (Lower bounded loss) There exists a scalar L* such that L(0) > L*,V 0 € R4,
Assumption 7.2. (Smoothness) L(0) is S-smooth, i.e., 358 > 0 such that

L(01) < L(02) + <VL(02),91 — 92> + §||01 — 92||27V01,92 € Rd. 17

Assumption 7.3. (Bounded gradient). The ¢3-norm of the gradient of L(0) is bounded, i.e., there
exists G > 0, such that ||g;|| < G for any §; € R%.

Assumption 7.4. (Unbiased per-sample gradient). The per-sample gradients, i.e., g; ; for i € By,
are i.i.d. and are unbiased estimators of g;. This means g; ; ~ vy, Vi, where vy = g; + Ay, Vt, with

E[A;] = 0. Additionally, g; ; is distributed centrally symmetric around g, i.e., A, L —A,.

Assumptions and are standard assumptions used for analyzing the convergence of first-order
optimization algorithms [4} [7, (35| 41]]. Assumption[7.3]is widely used for analysis of clipping in DP
algorithms [32, 35| 41]]. Assumption [7.4] (unbiasedness and symmetric distribution) is commonly
used in both literature not concerned with DP [6, 130} 33} [38]] and DP literature [4]]. Specifically, the
symmetric per-sample gradient distribution assumption is also empirically verified in [7, Figure 3].

We next present the main convergence result in Theorem[7.5] which shows that DP-SGD-AdaSig
yields a bounded weighted average of the expected squared gradient norms. The bound is expressed
explicitly in terms of the privacy budget and other parameters.

Theorem 7.5. Let Assumptionshold. For a constant r > G, let oy < 1/r. Moreover, let
2N2¢2 (L(8o)—~L*)

3T(2N2e2+du§T log (%

constant vg > 0 such that DP-SGD-AdaSig satisfies the following inequality:

Ao X 1/T and X = )) . Then, under the privacy budget (¢, 0), there exist a

T—1
1 ~
= > Pr{llad < r}Elel? < 2rGV/BT, (18)

t=0



for some constant G > 0, where

J 2

L(6y) — L* (1 dz/leog(%)> (19)

T 2N2¢2
Proof. See Appendix [E.2] O

We note regarding the bound in Theorem (i) The weight of expected gradient norm squared in
the expression on the left-hand side (LHS) of (I8) corresponds to the probability that the magnitude
of the deviation of sample gradients from g; does not exceed 7. (ii) Tighter privacy guarantees, i.e.,
smaller values of (e, d), lead to higher values on the RHS. This reflects the trade-off between privacy
and learning performance. In Corollary [7.6] below, we observe that DP-SGD-AdaSig achieves the

asymptotic convergence rate of O(%—E), which matches the known privacy—utility trade-off bound in
the literature for vanilla clipping that does not allow adaptation [7, [12]].

Corollary 7.6. As T approaches infinity, the RHS of (18) converges to 0(7W).

When the sample gradients have a bounded variance, the weights in the LHS of the expression in
Theorem 7.5 can be further simplified. This yields an upper bound for the average of the expected
gradient norm squared, which is given in the following corollary.

Corollary 7.7. Let E||A;||? < ¢? for any iteration t. Then, the bound in Theorem reduces to

T—-1

1 -

T ZO Ellg:|® < 2RG/BT, (20)
t—=

where R £ rﬁC’ and r, = max{2¢, G}.

Proof. See Appendix [E.3] O

8 Experiments

We evaluate AdaSig on image and sentence classification tasks || Under equal privacy budget (¢, §),
we compare the performance of AdaSig against four baselines?’| (i) Vanilla method [1]], (ii) method
proposed in [3], (iii) Auto-S [4]], and (iv) PSAC [36]. We further present an ablation study for AdaSig
in Appendix [H] where we compare the performance of AdaSig with sigmoid clipping using a fixed a.

8.1 Image Classification Task

We conduct experiments on five image classification datasets including MNIST [20], FashionMNIST
[37], CIFAR-10 [18]], ImageNette [15] (a 10-class subset of ImageNet [9]), and CelebA [23]].

Setting For MNIST, FashionMNIST and CIFAR-10, we train the CNN architectures used in [27,
34,141, i.e., a 4-layer CNN for MNIST and FashionMNIST, and an 8-layer CNN for CIFAR-10. The
simulation setup and hyperparameters are adopted from [34]]. For ImageNette, we use ResNet-9 with
group normalization (instead of batch normalization) and without scale normalization, following
the setup considered in [[L7, 4], with the minor exception that the learning rate does not decay. For
CelebA, we use the same ResNet-9 architecture as for ImageNette, with the same simulation setup
as in [4]. Since each image in CelebA dataset has 40 labels, we run two sets of experiments on this
dataset: (i) We consider a binary classification problem that aims to predict the 'Smiling' label only.
(i1) We consider the problem of multi-label classification with all the available 40 labels in the dataset.
The detailed settings, including hyperparameters for each method, are provided in Appendix

Performance Comparison Table [T] (first six rows) shows the average test accuracy across five differ-
ent runs of each dataset. AdaSig outperforms all baselines by achieving higher average accuracies

>The GitHub repository for our implementation is available at https://github.com/faezemoradik/
AdaptiveSigmoidClipping.git!

*Methods such as [41]] are not directly comparable, as they do not propose a new clipping strategy but instead
incorporate error feedback into existing ones, which can be applied to any clipping method, including AdaSig.


https://github.com/faezemoradik/AdaptiveSigmoidClipping.git
https://github.com/faezemoradik/AdaptiveSigmoidClipping.git

Table 1: Average test accuracy (in percentages) with 95% confidence intervals on five runs. Bold
numbers indicate p-value < 0.05 in the t-test performed to identify statistical significance.

DATASET MODEL (e,6) VANILLA METHOD IN [3] AuTO-S PSAC ADASIG
MNIST 4-LAYER CNN (3,107) 98.11 £0.04 | 98.13+0.03 98.04 £0.04 | 98.12 £ 0.04 | 98.14 £ 0.05
FASHIONMNIST 4-LAYER CNN (3,1079) 86.27 £0.24 | 86.28+£0.19 | 86.20+£0.26 | 86.35+0.19 | 86.68 + 0.04
CIFAR-10 8-LAYER CNN (3,1079) 61.49+£0.13 | 61.53+0.11 |61.21 £0.25|61.93+0.14 | 62.54 +£0.20
IMAGENETTE RESNET-9 (8,107%) 62.02 £0.91 62.07+0.78 61.44 £0.69 | 62.30 = 0.42 | 64.65 + 0.34

CELEBA (MULTI-LABEL) RESNET-9 (8,5x1079) | 88.51 £0.03 | 88.53+0.02 | 88.48+0.03 | 88.46+0.02 | 88.78 + 0.03

CELEBA (SMILING) RESNET-9 (8,5x107%) | 90.87 £0.28 | 90.88 £0.26 | 90.73 £0.19 | 90.90 £ 0.26 | 90.95 + 0.14
SST-2 ROBERTA-BASE (3, ﬁ) 87.43 +£0.49 87.46 + 0.47 87.18 £ 0.56 | 87.48 +0.32 | 88.44 + 0.17
QNLI ROBERTA-BASE (3, j) 84.32 £ 0.16 84.36 +£0.17 84.51 £0.13 | 84.58 £ 0.14 | 84.92 £ 0.12
[ AdaSig | [ AdaSig = AdaSig [ AdaSig
..0.10{ =1 Auto-s m 0.10f == PSAC Fm 0.10{ £=3 Vanilla Jﬂ 0.10{ =3 Method in [3] Iﬂ
li Tl | Ll
©
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Figure 3: Comparison of cosine similarity during training ResNet-9 on ImageNette.

across all datasets. Conducting a statistical t-test further confirms the statistical significance of this
improvement (p-value < 0.05) on 4 out of 6 datasets [14].

Cosine Similarity Analysis To assess AdaSig’s ability to balance the direction deviation and magni-
tude deviation, we measure the cosine similarity between the true batch gradient and the aggregation
of clipped gradients. The results are shown in Figure[3] where we compare the histogram of the cosine
similarity while training ResNet-9 on ImageNette. Notably, AdaSig’s histogram is concentrated
at larger cosine similarities as compared with the baselines, which indicates the effectiveness of
AdaSig clipping in reducing the direction deviation. Additional results are presented in Appendix [G]
to elaborate on the trade-off between the direction and magnitude deviations.

8.2 Sentence Classification Task

We conduct sentence classification experiments on SST-2 [31]], for sentiment classification, and QNLI
[28], for question-answering inference both taken from the GLUE benchmark.

Setting We use the pre-trained RoBERTa-base model and conduct full parameter fine-tuning with DP
consideration following the same setting as in [21} 4]. The detailed settings, including hyperparame-
ters for each method, are provided in Appendix [F.3]

Performance Comparison Table|l|(last two rows) shows the average test accuracy over five runs
for each dataset. We observe that AdaSig achieves statistically significantly (p-value < 0.05) higher
average test accuracies as compared with all baselines on both datasets.

9 Conclusions

We proposed AdaSig clipping, a novel clipping operation for differentially private training that
balances the trade-off between direction and magnitude deviations incurred by clipping. It achieves
this balance by adaptively adjusting its saturation slope throughout training based on information
obtained from sample gradients. Our convergence analysis demonstrates that DP-SGD with AdaSig
clipping retains the best-known convergence rate in the non-convex loss setting. Experiments on
image and sentence classification tasks demonstrate that AdaSig clipping consistently improves
training performance compared to existing clipping methods.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of the work is proposing AdaSig, a clipping method
for balancing direction—magnitude mismatch trade-off in differentially private learning. We
explain this trade-off, limitations of existing methods, and how our AdaSig addresses them.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clarify the existence of a trade-off between direction and magnitude
deviation and discuss even though our method can balance this trade-off, these deviations
cannot be eliminated simultaneously. We also clarify the scope of the work, which is
differentially-private learning, making non differentially-private training beyond its scope.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We state all assumptions for our theoretical proofs and convergence analysis,
which are all established assumptions that were used in previous works too. All theorems in
the work are also supported by a proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete explanations on our experimental setup such as the
datasets used, model architectures, etc. in Section B} We also explain our hardware and
software information.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release all our implementation code to enable reproducibility. All datasets
that were used in this work are established benchmarks that are publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed explanations on our experimental settings in Section [§]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments were repeated five times and the confidence intervals for
the five runs are also provided. Furthermore, the statistical significance of the improved
performance offered by our method was validated for each dataset by conducting a statistical
t-test.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on both software and hardware used to
conduct experiments in this work.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines)?

Answer: [Yes]

Justification: This work is in complete alignment with the NeurIPS Code of Ethics. It does
not involve any human studies, is in complete agreement with the data-related criteria, and
there’s no anticipated societal impact associated with it.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our study proposes a method for improving privacy-preserving training of ML
models, which we consider a positive societal impact. We do not anticipate any negative
societal impact for our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any data or model that has a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our work is licensed under CC BY-SA 4.0, and we are aware of its terms of
use.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[Yes]

Justification: Our proposed methodology as well as the released software are well-
documented.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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paperswithcode.com/datasets

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The methodology presented in this paper does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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APPENDIX

The appendix is structured as follows: Appendix [A] presents details on the choice of the sigmoid
function for clipping. The complexity analysis for DP-SGD-AdaSig is given in Appendix [B] An
approximation of the sample loss derivative is provided in Appendix |Cl The proof of Lemma
is presented in Appendix [D] The proof of Theorem[7.5|and the preliminary lemmas and theorems
related to the convergence analysis are included in Appendix [E} The detailed experimental setup is
presented in Appendix [F] A numerical analysis of the direction and magnitude deviations is provided
in Appendix [G] The ablation study of AdaSig is presented in Appendix [H] Finally, Appendix [[Jand
Appendix [Jjreport the variation of o across training iterations and the numerical convergence results,
respectively.

A Details on the Choice of Sigmoid Function for Clipping

The sigmoid function is simple yet well-suited to our goal of adaptively balancing the trade-off
between direction and magnitude deviations. In particular, it enables control over the range of the
linear span in Figure [I] through the parameter .. Although PSAC [36] and Auto-S [4] could be
extended to variants that adjust their linear region span by varying the constant parameter r throughout
training, the sigmoid function provides greater flexibility and control.

Specifically, in the PSAC clipping function, varying r alters the span of its linear region; however,
the change in this span is confined to a limited range. This behavior can be illustrated by analyzing

L . . Ceg, . .
the PSAC clipping function, g; ; = W, in extreme cases. Due to the term m in
’ gi,t+r J

the denominator, varying r from 0 to co causes the clipped gradient norm curve ||g; ;|| (shown in

Figure to transition only between two limiting curves: C and Hcg‘_lﬁl'ﬂll . Consequently, the span of

the linear region in PSAC is restricted to lie between these two curves, and adaptively updating r
cannot effectively balance the trade-off between direction and magnitude deviations. In contrast, in
the AdaSig clipping function of (6), the clipped gradient norm curve ||g; ¢|| (illustrated in Figure[T))
can vary from C' (as « — oo) down to values arbitrarily close to 0 (as a — 0), thereby providing
greater flexibility in adjusting the span of the linear region.

While the Auto-S clipping function, g; ; = ng%%’ does not have the restricted variation of the

linear region span seen in PSAC, it is still less flexible than the sigmoid function. Its linear region
span is less responsive to changes in r than the sigmoid function is to «, so larger adjustments of r
are required to produce a noticeable effect. In contrast, the sigmoid function, with its exponential
dependence on «, offers more flexible control over the linear region and thus the direction—-magnitude
mismatch trade-off.

B Complexity Analysis

Compared with DP-SGD (with vanilla clipping), one can observe that DP-SGD-AdaSig (Algorithm
[I) introduces a negligible increase in computational and memory costs. Specifically, with respect
to computation, the algorithm performs lines 8, 12, and 14 in addition to the standard operations in
vanilla clipping. Line 8 is carried out efficiently using the per-sample gradient norms computed in line
7, the computational cost of step 12 is identical to that of step 11, and line 14 incurs only a constant
additional cost per iteration. Consequently, the overall computational cost introduced by these
additional steps is dominated by other operations and the cost of per-sample gradient computation,
making the additional overall computational cost minimal.

With respect to memory, DP-SGD-AdaSig requires extra memory to store 7(6;, oy; B;) (line 12),
which is required for the slope update in the next iteration (line 14). This additional memory cost is
negligible as compared with the memory required for storing the model parameters and per-sample
gradients.
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C Approximation of the Sample Loss Derivative with Respect to «

Since the loss on sample ¢ in iteration ¢, denoted by hZ(Ht) does not directly depend on v, to derive
an update rule for a, we unroll the expression for h*(6;) and write it in terms of ;1 and c;_1. In
particular, using (I0), we obtain

. , R
h'(6;) = h' (91571 - Es(etflaat7158t71))~ (21
For sufficiently small learning rate for « (i.e., A, in (I6), cv;—1 and oy differ only slightly, and hence
we adopt the approximation a;—1 ~ «y. Consequently, the loss derivative at o, ahééft), can be
approximated by the loss derivative at oy, %@, ie.,
Oh'(0 oh'(0
(6:) , Oh'(6:) 22)
8at 60[,5_1
We now apply the chain rule to to compute %ffj) as
(‘3h1(6t) P T 80,5
= (Vg,h' (0 , 23
dayq ( o ( t)) Jayq )

where the first factor in the RHS of (23) is the sample loss gradient w.r.t. model parameters, i.e., g; ;.
To compute the second factor, we write

00, 9(0:-1 — 35(0¢—1,00-1;Be—1))

Oay—1 Oay—q

@ —A ) Moy, (lgii-1l) &iva

i€Br1 Doy llgi,e—1ll
(b) —A 3 2e-clEilg, , |
"B Tz’ (24)
—ar—1]|gi,t—11)2
B 4= (1+e sl

where (a) follows from the definition of §(0;_1, c;—1; B;—1) in (OB}, and (b) is obtained by computing
the derivative of the AdaSig function v, , (). Using the definition of 7(0;, ay; By) in (12), we

rewrite (24) as
00, -

e, = B P11 Bio). (2)
Substituting 23) in 23), we finally get
Oh'(6:) A
oy - _Egltr(at_l’ ar—1; Bi-1)- (26)
Using ([22)) together with (26), we have
ohi (0 A
a«itt) ~ =58 (01,001 By). 27)

D Proof of Lemma 5.1 Sensitivity Bound
Proof. The {y-sensitivity of r(6;, ay; By) w.r.t. the training samples in iteration ¢ is defined as

Ar = max H?“(Bt7 ag; By) — (0, ay; By)

; (28)
2

where BB; and 3] are two adjacent batches of data that differ by exactly one data point. Without loss of
generality, we assume that 3] contains all elements of B; together with an additional data point (2, y'),
where 2’ is the input feature and ¥/’ is its corresponding target output. That is, B, = B, U {(z,y')}.
Moreover, let g’ denote the gradient of sample loss at (z',y’), i.e., 8 = Vol(fo(2'),y').
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Considering the definition of (6, a; B;) in (I2)), we can conclude that the terms under summation in
(04, ay; By) and (0, ay; By) are identical, except a single term that arises due to the extra element
in B;. The ¢5-sensitivity in (28) can hence be upper bounded by the norm of this extra term, i.e.,

2e—at”g/Hg/ H
2

ar < mx | ey .
20018l g
= X e )2 (29%)
a) 1 2%
@~ ax =% (29¢)

ay 220 (1+4e=%)2’

where (a) follows from the variable exchange z = ay||g’||. We next find the solution to the maximiza-
tion in by setting the derivative of the objective to zero, i.e., 2 % = 0, which results in
the following fixed-point equation as

z+1
z—1"

z=1In

(30)

Let’s denote the solution for (30) by z,. Substituting the solution, i.e., z,, into objective (29¢), we
get the upper bound for Ar as

Ay < i 2% z, _ zf — 1.
T (l+e )2 2z.04

3D

Solving (30) numerically for z and substituting z, in 3I)) results in Ar < 0.448/«;, which completes
the proof. O

E Theoretical Convergence Analysis

We first introduce the preliminary lemmas and theorems required for proving the main theorem.

E.1 Preliminaries

Lemma E.1. Suppose that Assumptions[7.2|and[7.4| hold. Under Algorithm[l} the expectation of the
population loss difference in two consecutive iterations is upper-bounded by

do?
2B?

E[L(8141) ~ 1(0,)[6:, 0] < —aTE[( 1) HXZ” 00, 01] + 802 (14 57, 32)

2
1+ e—atllvell N

where g, = VL(0;), E[-|0;, o] denote the expectation over the randomness in iteration t for given
0. and o, and v is the random process from which g; ; is sampled, i.e., g; + ~ V¢ for i € B,.

Proof. Based on Assumption [7.2] the population loss is 3-smooth. Thus, we have
B
L(B141) — L(0:) < g/ (0141 — 0:) + §||9t+1 — 0. (33)

23



Taking expectation from both sides of (33) for given 6, and v, we have

]E[L(OtH) —L(6,) Ot,at}

< gtTIE[(Ot_H — 975) ’9757044 + éE[Het-H - GtHZ’that} (34)

@ _ A gi, s
= TE[Z z/)at ||gl t” ZH +nt Oét:|

)\2 . 2
+ 22 3 vn ||g”H)Hg Lol 65)
@——gtE[Zwm lgiel 7oty |00 o]
i, 2 ﬁ)\Q 2
+ﬁE[HZ¢% Hgi,zll‘ 0t,at}+@E[Hn§H Ot,at] (36)
© A
% Bg:E[Zd)at ||g’L t”)H ’0t7at:|
1€B;
A gzt ﬂ 2
EK;‘%( e ”H) 01,0 ] + 5 s do? (37)
@ A5 _ it 2 (EIB* | do?
< -] E@ oo (gl g 00 | + B3 (S5 + 572 (38)
© A . | do?
< —BgIE[;;m(llgi,tll o0 + (4 57). (39)

where (a) follows from (]EI), (b) comes from the fact that g; ; for i € B, are independent of the
process nj, and the fact that nj is zero-mean, (c) is obtained by applying the Triangle inequality to
the second term in (36) and substituting the variance of n$, (d) results from the upper bound

3 [, (gl g”” | <18, (40)
1€B;

since 1q, (z) < 1for any x € R, and (e) follows from the fact that, under Poisson sampling with rate
B/N, we have

E[|B/*)] B+1 1 1
= ——<14+=<2 41
B2 B N-'TB=® 1)

where the last inequality holds since the expected batch size B > 1.

Based on Assumption@, the sample gradients are identically distributed, i.e., g; + ~ V¢, Vi. We can
hence write

E| 3 vl o0 ae] = B[Vl |0 e “2)
Substituting into (39) and replacing 1, (||v||) with its definition, (32)) is concluded. O
Lemma E.2. Under Assumption i.e., vi = g + Ay, the following equality holds:
[T v 80t = e, Jroemfsest] @
where 3; £ o il s 2 48, ¢ & 2 and
fis.e 2 Tt (v )
e ) @
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Proof. We adopt an approach similar to that proposed in [4]. Let # T and H~ denote the following
two halfspaces:

HT £ {0 e R%g/o >0}, (45)
H™ £ {oeRglo<0}. (46)
Using v = g + Ay, we can write
2 v
T . t
e E[ (e — ) o 61, 01] 47)
2 T A
_Ea, [( B 1) g/ (g + t)} s
1+e_at’|gt+At|| ‘|gt+At||
1 2 T TA
2 14 e~V lgelP+A 2 +2gT A, Vied2 + A2 + 2gT A,

1 2 i A
+*EAt[( _1) 8: 8t + 8 At ‘AteH‘} (49)
1+ e—eeV/I&lPHIA > 2] A Vied? + A2 + 227 A,
RN {( 2 B ) g g +el A
"Ly + e~ aV/llsc P A +28] A, Vied? + A2 + 287 A,
1 2 glg —gl A
+ —Ea, —— — 1
2 1+ oV lglP+1A7 27 A Vel + 1A - 2gf A,
where (a) follows from conditioning the expectation w.r.t. A; on two halfspaces, and using the fact

e . . D . .
that under the symmetric distribution assumption on A; (i.e., A; = —A; in Assumption , we
have

’At € H*}

A, € H*}, (50)

PrA € H'} = Pr{A e H ) = . 51)

and (b) follows again from symmetric distribution assumption on A; and along with the variable
exchange A; = —A, in the second term of (49).

We now rewrite (50) in terms of the random variables s and ¢ € [—1, 1] introduced in the lemma.
Noting that the event A, € HT corresponds to ¢ > 0, we can write

1 2 glg +8l A
7EAt 2 2 T -1 T
2 14 e—aeV/lellP AP +28] A, Vied? + A2 + 2g7 A,

1 2 To, —gTA
24 [( S Tl NS
2 14+ e~V lgePHA 2 —2gT A, Vied? + A2 — 287 A,

A€ ’H*}

(52)
gl 1+ sc 2
= 1&g, | ( ~Do<e<i]
2 TLVT 4+ 524 2sc N e VIFsPH2se
gl { 1—sc ( 2 )‘
Esc —1)0= <1}, 53
T e T —2sc \1 1o it e ses (53)

where the equality follows directly from the definitions of s and c¢. Expressing (33)) in terms of
f(s,¢,7:) yields the result. O

Lemma E.3. The function %T(:r) with o (x) defined in ) is a non-increasing function in x for
a>0,z>0.

Proof. Computing the derivative of the function w.r.t. z and simplifying the terms yields the
following:

Ox T or x ﬁwa(x)

2e” " (qx — sinh ax)
= SR (54
22(1 4 eo)
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where the RHS is a non-positive term, since ax < sinh ax for a > 0, x > 0. Thus, the derivative is
non-positive, which shows that the function is non-increasing. O

Lemma E.4. The function 61/%(96) with 1, () defined in ) is a non-increasing function in x for
a>0,z>0.

Proof. We compute the derivative of the function as

0(0Ya(x)/0x) 200~ .
ox _a<(1+e—ax)2)/a

_ 2., —ax _ a—Qax
_ 20%e™**(1 (Z ), (55)
(1+e—or)

which is non-positive for « > 0 and > 0, which leads to the desired conclusion. O

Lemma E.5. For the function 1, () defined in @), the following holds:
Mo () < Ya(z)

ox T

La>0,2>0. (56)

Proof. We begin with the inequality ax < sinh ax for z > 0 and o > 0. We have

ax < sinh ax gﬁ Qaze T <1 —e 20

n  20e” " 1 2

< = -1
(1 _|_efax)2 - :c(l +e-ow )
g o () < Ya(z)

ox T

e

) (57)

where (a) follows from multiplying both sides of the previous inequality by 2e~**, (b) follows from

dividing both sides by x (1 + e"m) 2, and (c) results from writing both sides in terms of ¥, (x) and

0o (x)
e O

Theorem E.6. Let f(s,c,7:) be the function defined in Lemma Then, the following properties
hold:

1. f(s,c,7y) is non-increasing in s for 0 < ¢ < 1 and v > 0.
2. f(s,c,v) > 0for0<c<1and~ >0.

3. f(s,c,vt) is non-increasing in c on the interval 0 < ¢ < 1, for s > 1 and v > 0.

Proof. We first prove the first property, showing that f (s, ¢, ;) is non-increasing in s. Based on (@4)
in Lemma we rewrite f(s,c,7y;) as

f(87 c, lyt) = fl (87 C)ww ('Tl) + f2(87 C)w% ($2)7 (58)
where we define 1 = /1 + s2 + 2sc, 29 2 V1 + s2 — 2sc, and
A 1+ sc
s,¢) & ——— 59
o) = o 9
1—sc
fals,c) = (60)

V14 s2—2sc
Taking the derivative of f(s, ¢,vy;) w.r.t. s, we have

Bf(s,c, ’Yt) _ 8f1(8,0) aw"/t(‘rl) %

Yoy, (1) + f1(s,¢)

Os Os oy Os
dfa(s;c) My, (z2) Oz
+ as ’(/)’Yt (xQ) + fQ(S,C) 8%2 as . (61)
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Substituting the derivatives into the above expression results in

8f(8, ¢, 'Yt) _ _8(1 - 02) aw% (‘rl) 8(1 - 02)
Js o (1+82+230)%w%(x1)+ Oz (c+ 1+52+280)
—s(1 —¢c?) 0, (z2) s(1—c?)
(1+ 52 —250)%77%"(332)+ 0z (_C+ 1+s2 —250)' ©2)
Rearranging the terms, we have
8f(s,c, ')/t) _ _C(a¢w (IQ) _ 3¢’yt (I1)>
0s - 0xo 0x1
T ER I TENY
1+ 524 2sc T oxy
5(1 B 02) w"/t (‘Z‘Q) 81/)"/1‘, (‘Z‘Q)

1482 250( Ty O ) (63)

The first term in the RHS of (63) is non-positive since, by Lemma|E.4] the derivative of ¢, (z) is a
non-increasing function of x, and we have x5 < x1 for ¢ > 0, s > 0. The second and third terms are
also non-positive because ¢ < 1 and, by Lemma|E3] it holds that

d)'Yt (I) > 31/’% (I)

r Oz

Ve > 0,V > 0. (64)

Thus, we conclude that % < 0, implying that f(s, ¢,7:) is non-increasing in s.

To prove the second property, we first evaluate the limit of the function as s approaches infinity:
lim f(s,¢,%)=0,1>¢>0,7 >0. (65)
S5—00

By the first property, f (s, ¢,7:) is non-increasing in s, which implies that its minimum value is zero.

To establish the third property, we compute the derivative of f(s, ¢,7;) w.r.t. c. Based on (58), we
have

8f(3,0, ’Yt) _ afl(S’C) aw%(xl) % 8f2(3’c)

e A A P A T
61#7 (fEQ) 8.%2
— == 66
+ fZ(s; C) a.’EQ de ( )
Plugging the derivatives into the above expression and rearranging the terms, we obtain
0f(s,c,v) _ g (m) s*(s+¢) by (22) s*(s—c)
Oc 1 1482+ 2sc o 1452 —2sc
O, (1) s(1+50) Oy, (23) (1= s0) “

Oxr1 1482+ 2sc Oxy 1482 —2sc’

Next, we find an upper bound for W. Based on Lemma w%T(:r) is a non-increasing function
in . Thus, we have

1/)’%5 (‘Tl) < ’(/)'Yt (3’)2)

) (63)
A Z2
which follows from the fact that xo < x; for s > 0 and 1 > ¢ > 0. Furthermore, by Lemma@ the
function awgi;(w) is non-increasing in z. Thus, since x2 < x1, it follows that
My, (1) < Oy, (72) _ (69)
8:r1 8x2
Substituting the upper bounds from (68) and (69) into (7)), we obtain
af(s,c,m)
dc
< Py, (2) < s2(s+c) _ S(s—09 ) N Oy, (22) ( s(1+sc)  s(l—sc) )
T 1y 1+52+2s¢c 14+ s2—2sc Oxo 1+s2+2s¢c 14+ s2—2sc
Py, (x2) 2cs2(1 — s?) 3 O, (z2) 2cs2(1 — 5?) (70)
x2 (142 —2sc)(1+ s%+ 2sc) Ory (1482 —2sc)(1+ 82+ 2sc)
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The RHS of the upper bound in (70) is non-positive for s > 1 and 1 > ¢ > 0, since wgti(;ﬁ <

w”‘T(;Z’) by Lemma O

Lemma E.7. Foranyr > ||g:||,

Esc{f(s e ‘0<c<1} >f(|| e ,'yt)Pr{ _@}. (1)

Proof. For any r € R, we have

Es . [f(svcv %)

0<c< 1] >1Esc[f(s ¢ )

o
AN
o
A
l—‘
»
A
<
o
-
— =
V)
IA
<
——

g
0<c<l1,s> }Pr{sz ! } (72)
HgtH ||gt||

+ Es,c |:f(5 c 7t)

gJEw[f(s o~ ‘0<c<13< ! ]Pr{ < T ”} (73)
t

el
QE[(HHC%)

where (a) follows from conditioning the expectation on the events s > “g T and s < ”g B (b) is

concluded by dropping the second term in (72)) and noting that f (s, c,y;) > 0 based on Theorem|E.6|
and (c) follows from the fact that f(s, ¢,7:) is non-increasing in s for any 1 > ¢ > 0 and v > 0 due
to Theorem [E.6l

We now restrict 7 > ||g; || and use the fact from Theorem [E.6|that f(s, ¢, ¢) is non-increasing in ¢
for any s > 1 to conclude that for any r > ||g:||,

s (g e )lo s e 1Jeels < gy 2 £ (e =19) Pr{o < g} 09

which completes the proof. O

ogcgqpr{sgﬁ}, (74)

Lemma E.8. For s > 1, f(s,c = 1,7;) is lower bounded as

f(S,CZL")/t)Z t

cosh(sy;) (76)

Proof. By substituting ¢ = 1 into the definition of f(s, ¢,;) given in Lemmaand simplifying
the expression, we obtain

f(S,C: 1;715)
1 2 1-— 2
___ts ( _ 71)+ i ( _ —1) (77)
V1482428 \1 e nVItsT+2s V1452 —25\1 4 e nVits?=2s

2 2
T1temGtD | 14 e mG-D (78)
2sinh(4)

- cosh(7y;) + cosh(svy;)

(79)
We next note that s > 1. Using the fact that cosh(x) is an increasing function on « > 0, we can
conclude that cosh(sv;) > cosh(7;). We then use the lower bound sinh(z) > z for z > 0 to write

2sinh(y4) S
cosh(~y;) + cosh(sy;) ~ cosh(svy;)’

(80)

which completes the proof. O

LemmaE.9. Let A\, = k1/T and g = ko /7 for some ki > 0 and ko > 0. UnderAlgorithm the
saturation slope is bounded on both sides as

Aea <2 o<t<r—1, 1)
T '

A — A
where k1 2 koe " and ko £ koeF?
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Proof. First, observe that for t = 0 we have oy = %, which satisfies

ﬂ S [e%s) < @7
r r
since k1 > 0. We next show that the same bound also holds for 1 < ¢ < T — 1. Substituting A\, = kT—l
and ag = % into the update rule (T6), we obtain for any ¢ > 1,
k at
ap = 2o, (82)
r
where ¢; is defined as
t—1
g 2 sign(8(0;, 073 B,) (0,1, 0,13 B 1)), (83)
7=0
with #(0_1,a_1;8_1) = 0. Since —t < q; <tand1 <t < T — 1, we have
a 2 @e—klgfl) Z @efk‘l — E (84)
r r r
a S @elﬂ(g*l) S @ekl — @’ (85)
r r r
which completes the proof. O

Theorem E.10. Let Assumptions hold, and suppose that A, < 1/T and oy < 1/7 for some
constant v > G. Then, under the DP-SGD-AdaSig algorithm described in Algorithm[I} the following
inequality holds:

}TZ_:Pr{mtn <rjElgl? <0 (MO e 2y) o)
where G > 0 is a constant.
Proof. Using the results of Lemmas [E-I] [E2} [E7] [E8] and [EJ9] we have
%E[L(Gt) ~ L(001)| 0] + AA(1+ g;)
LemngmgtTE{(l +eigmu 1) H:z” 0] 87
Lemma (2 ||g2t|\ Eve[f(s,cm[0 < e <1] (88)
2l (o=t er{lad <} 69
@%m{mtu <r} (90)
Lem“ﬁm Pr {||At|| < r}, 1)

follows directly from Assumption (i.e., ||lgt]] < G,Vt) together with the assumption r > G.
Inequality (b) is obtained by applying Lemma [E.8| using the bound r > ||g:||, V¢. The last inequality
follows from Lernma since under the assumptions A, o 1/7" and o o 1/r, we can equivalently
write Ao, = k1/T and g = ko/r for some constants k; > 0 and k2 > 0. Substituting these
expressions into the lemma, the inequality holds with k1 = koe 1 S Ko = koekr,

where (a) is obtained by applying Lemma hich requires the bound 7 > ||g;||, V¢. This bound
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Let us now define G £ 2 cosh (k2)/K1. After taking expectation from both sides of the last inequality,
summing over iterations from 0 to 7" — 1, and dividing by 7', we have

1 T-1
—— > pr{lad < r}Bllg?
t=0

rGT =
T—-1 T—-1

1 1 do?
< = o - s
S E[L(8)) — L(Bis1)] + - ;:O A1+ o ) 92)
@ L(0) — L* do?
@ L(6o) — L* (
<= A1+ ) ©3)

where (a) follows from Assumption[7.1] Rearranging the terms yields the inequality in (86). O

E.2 Proof of Theorem (7.5

Proof. We use the result in Theorem and set the noise multiplier o5 such that privacy is
guaranteed. To ensure the privacy guarantee, we use the result in Theorem 1 in [1]]. For clarity, we
first restate Theorem 1 in [[1].

Theorem E.11 (Theorem 1 of [1l]). There exist constants u and v such that, given the sampling
probability ¢ = B/N, for any ¢ < uq®T, the composition of T Gaussian mechanisms, each with
noise multiplier o, satisfies (¢,6)-DP if

v2¢*T log(1/6)

- 62 .

(94)

According to Theorem [E.11} the composition of 7" Gaussian mechanisms ensures (¢, §)-DP provided
that the noise multiplier o is set to

o V2B%Tlog(1/9)

A

Note that our proposed algorithm (DP-SGD-AdaSig, described in Algorithm [I)) requires two noise

multipliers, o and o, since each iteration involves two Gaussian mechanisms, §(-) and 7(-). Accord-

ing to Proposition [6.1] these two parallel Gaussian mechanisms are equivalent to a single Gaussian
mechanism with noise multiplier o, where

1 1 1
— = + (96)

2T 52 1 52
o oz of

95)

To ensure (e, §)-DP for the overall algorithm after T iterations, we set o5 and o, such that the
equivalent noise multiplier o in (96) satisfies (93). This can be achieved by setting o and o, as
follows:

»  VZB?Tlog(1/0)

0= Nza2 o7
22
o ViB*Tlog(1/9)
s P ©8)
with constants v and v, satisfying
1 1 1

The choices of o, and o, in (@7) and (O8), together with constants v, and v, that satisfy the equality
in (99), ensure that holds and thereby guarantee (e, §)-DP for the DP-SGD-AdaSig algorithm.

Substituting o2 from (97) into (86) in Theorem [E.10} we then optimize its LHS w.r.t. the learning

rate \, which yields
2N2e2 (L — L~
N = € (L(6o) )1 . (100)
BT (2N2e2 + dv2T log (%))

Substituting this learning rate into the LHS concludes the result. O
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E.3 Proof of Corollary[7.7]

Proof. The probability Pr { [ A < r} can be lower bounded as

(@) E|lA
Pr{HAtH < r} >1- M (101)
(b VE|| AL
>1— M (102)
T
© ¢
>1- o (103)

where (a) follows from Markov’s inequality, (b) follows from Jensen’s inequality, and (c) is due to
the bounded variance assumption.

Using the derived probability lower bound in (I03) on the LHS of (I8) in Theorem[7.3] and consider-
ing r > max{(, G}, we divide both sides by 1 — % to obtain:

T-1 = 1
1 . 2Gr? [B(L(6) — L*) dv2T log(})
— < .
T tho Elle:ll” < C\/ T (1 T oN2e ) (104)

We next set r such that the RHS of the above inequality is minimized. Note that when r > (, the
. 2 . . . . . . . .
function -*— achieves its minimum value at » = 2(, and for » > 2(, the function is increasing.

r—

Noting that in Theorem[7.5]r > G, two cases may occur: namely, G < 2¢ or G > 2(¢. By considering
these two cases, separately, we can conclude that

r? 2¢, ifG <2
= 1 = ’ - — 2 . 1
BT ey T — € {G, ifG > ¢~ MO (109
Substituting 7, into (I04) completes the proof. O

F Experiments Settings

This section provides further information on the experimental settings considered in the paper. We
present more details on the datasets and architectures used for the numerical experiments presented
in the paper.

F.1 General Settings

Privacy Settings In all experiments, we fix the DP budget (¢, d), and compute the noise multiplier,
i.e., o, numerically using the Opcaus library [40]], such that the DP budget spent after T iterations (or
equivalently Tq epochs) equals to the fixed budget (e, 6). Considering Proposition for a given o,
different pairs of o5 and o, can be obtained, where decreasing one increases the other. To simplify
the parameter space, we set 05 = 1.010 in all AdaSig experiments, making o smaller than o,.. This
choice prioritizes a more accurate update of the model over the saturation slope, as roughly updating
o in the descent direction is sufficient.

Hyperparameters To ensure fair comparison, we use the same batch size and number of epochs
across all methods. For AdaSig, we tune the learning rates A, A\, and the initial saturation slope
a. For vanilla clipping, we tune C' and A. For Auto-S and PSAC, we use the tuned value of C for
vanilla clipping following their original papers [4}[36]], and tune hyperparameters r and learning rate
. For the method in [3], we tune the initial clipping threshold C?, clipping threshold learning rate
nc, learning rate \, o, and 4.

F.2 Settings for Image Classification

MNIST and FashionMNIST We use the 4-layer CNN with tanh activation proposed in [27] and
described in Table 6 of [34], with cross-entropy loss and the DP-SGD optimizer. The DP budget
is set to (¢,d) = (3,107°). For batch size, number of epochs, and momentum, which are common
across different methods, we use the values reported in [34]. These values are summarized in Table @
Table [3| presents the best values of other hyperparameters for each method.
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Table 2: Common hyperparameters across different methods used for training CNN on MNIST,
FashionMNIST, and CIFAR-10.

Parameter MNIST FashionMNIST CIFAR-10
Batch size (B) 512 2048 4096
Number of epochs (T'q) 40 40 60
Momentum 0.9 0.9 0.9

Table 3: Hyperparameters selected for each method for training CNN on MNIST, FashionMNIST,
and CIFAR-10.

Method Parameter MNIST FashionMNIST CIFAR-10

. C 0.1 0.1 0.1
Vanilla \ 0.5 4.0 3.0

r 0.01 0.01 0.01

Auto-S C 0.1 0.1 0.1

A 0.5 4.0 3.0

r 0.1 0.1 0.1

PSAC C 0.1 0.1 0.1

A 0.5 4.0 3.0

co 0.1 0.1 0.1

A 0.5 4.0 3.0

Method in [3]] e} 0.05 0.01 0.01
o 40.0 30.0 25.0

y 0.5 0.5 1.0

ao 5.0 1.0 1.0

AdaSig A 0.05 0.4 0.25
Ao 0.01 0.01 0.01

CIFAR-10 We use the 8-layer CNN with tanh activation from [27], as detailed in Table 7 of [34]],
with cross-entropy loss and DP-SGD optimizer. The DP budget is set to (¢,d) = (3,1075). We
use the same batch size, number of epochs, and momentum across different methods as reported in
Table [2|*| The best values of other hyperparameters for different methods are reported in Table

ImageNette We use ImageNette, a 10-class subset of ImageNet [9]], with an image size of 160 x 160.
We consider ResNet-9 architecture (about 2.5 million parameters), with the Mish activation function
[25] and cross-entropy loss. For training, the DP-Nesterov-accelerated Adam (DP-NAdam) optimizer
is utilizedE] We consider a DP budget of (¢,6) = (8,107%). We follow [17] by using group
normalization instead of batch normalization without scale normalization. The only difference is that
we do not apply the learning rate decay schedule. The ResNet-9 architecture can be found at [17]E]
All methods use the same batch size and number of epochs, which are set according to the values
reported in [41[36], as shown in Table[d] Table[3]lists the best values of the remaining hyperparameters
for each method.

CelebA We use the same ResNet-9 architecture as for the ImageNette dataset, with the DP-Adam
optimizer. The CelebA dataset contains 40 labels per image and we use it for both single-label and
multi-label classification tasks.

“Note that the batch size and the number of epochs differ from those reported in [34] and used in [4}136]. Our
experiments showed that these hyperparameter changes yield better performance across all baselines compared
with those reported in the references.

SFor ImageNette and CelebA, we use more advanced optimizers than DP-SGD, namely, DP-NAdam and DP-
Adam, respectively, to achieve improved performance for these more challenging datasets. These experiments
further demonstrate the wide applicability of the AdaSig approach with different optimizers.

8Check also https://gist.github.com/gkaissis/ 6db6b7271£93d3459263b6978cfd4146.

32



Table 4: Common hyperparameters across different methods used for training Resnet-9 on ImageNette
and CelebA.

Parameter ImageNette CelebA (Multi-label/Smiling)
Batch size (B) 1024 512
Number of epochs (1'q) 50 10

Table 5: Hyperparameters selected for each method for training ResNet-9 on ImageNette, and CelebA.

Method Parameter ImageNette CelebA(Multi-label) CelebA (Smiling)

. C 1.5 0.1 0.1
Vanilla 5% 10~1 10-3 10-3
r 0.01 0.01 0.01
Auto-S C 1.5 0.1 0.1
A 5x 1074 10-3 10-3
r 0.1 0.1 0.1
PSAC C 1.5 0.1 0.1
A 5x 1074 103 103
o 1.5 0.1 0.1
A 5x 1074 5x 1074 2x 1073
Method in [3] ne 0.01 0.01 0.05
o 30.0 20.0 25.0
v 3.0 1.0 1.0
ap 5.0 1.0 1.0
AdaSig A 1073 5x 1074 5x 1074
bW 0.02 0.001 0.02

* For the single-label task, we perform binary classification considering the label 'Smiling',
where we use the binary cross-entropy loss for training. In this scenario, the output layer of
ResNet-9 consists of a single neuron.

* For the multi-label classification task, all available 40 labels are considered for prediction.
Here, the output layer contains 40 neurons, and we use a scalar loss function that averages
the 40 binary cross-entropy losses from each label.

In both cases, we set the DP budget to (¢,d) = (8,5 x 1076).

The batch size and the number of epochs are set the same across all methods, following the settings
in [4}136]], and are reported in Table 4| The best values of other hyperparameters for each method are
presented in Table[5]

F.3 Setting for Sentence Classification

SST-2 and QNLI We use a pre-trained RoBERTa-base model (about 125 million parameters)
[22] and perform full parameter fine-tuning. We use the cross-entropy loss function. The AdamW
optimizer [24] without weight decay is applied. A learning rate scheduler is used to linearly reduce
the learning rate from its initial value to zero throughout the training process. The DP budget is set to
(€,6) = (3, 55 ), where N is the number of training samples for each dataset. It is worth mentioning
that SST-2 and QNLI contain 67,349 and 104,743 training samples, respectively.

The batch size, number of epochs, and maximum sequence length for all methods are set according
to [21, 4], and are given in Table[6] Table[7]lists the best value of other hyperparameters for each
method.
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Table 6: Common hyperparameters across different methods used for RoOBERTa-base full parameter
fine-tuning on SST-2 and QNLI.

Parameter SST-2 QNLI
Batch size (B) 1000 2000
Number of epochs (1'q) 3 6

Max sequence length 256 256

Table 7: Hyperparameters selected for each method for fine-tuning ROBERTAa-base on SST-2 and
QNLL

Method Parameter SST-2 QNLI

) C 0.1 0.1
Vanilla A 5x 1074 5x 1074
r 0.01 0.01
Auto-S C 0.1 0.1
A 5x107% 5x10~*
r 0.1 0.1
PSAC C 0.1 0.1
A 5x107* 5x10~*
o 0.1 0.1
A 5x107% 5x 1074
Method in [3]] ne 0.01 0.01
o 35.00 25.0
v 1.0 1.0
ap 1.0 1.0
AdaSig A 5x107% 5x107*
Ao 0.005 0.01

F.4 Hardware and Software Information

All experiments are performed on a server equipped with Intel Xeon E5-2683 v4 CPUs, NVIDIA
V100 GPUs, and 251 GiB of memory. The operating system used is AlmaLinux 9.3, and the CUDA
Toolkit version is 12.2. The implementation of all training procedures is based on PyTorch 2.3.0 and
Opacus 1.4.1.

G Numerical Analysis of Direction Deviation and Magnitude Deviation

In this section, we provide additional figures to further assess the direction deviation and magnitude
deviation achieved by the proposed AdaSig clipping method and the baselines.

G.1 Defining Metrics

Cosine Similarity To evaluate the direction deviation, we compute the cosine similarity between
the aggregation of the clipped gradients, i.e., g = Dic 5, 8it, and the true batch gradient, i.e.,

g 2 D ic 5, 8i,t; AS COS Py = m, which measures the cosine of the angle between g; and g;.

SNR To characterize the magnitude deviation, we define the signal-to-noise-ratio (SNR) as a
normalized magnitude of the aggregation of the clipped gradients. Let us denote by ||g;| the

. We
define the SNR to be the ratio of this magnitude to the standard deviation of the added privacy noise
denoted by 0, i.e., SNR = Hf—‘”. For AdaSig, 0,, = 0. For vanilla clipping, Auto-S, and PSAC,

magnitude of the aggregation of the clipped gradients after clipping, i.e., ||g:|| = H ZieBt 8it
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» = Co. For the method in [3]], o, = C?za. This metric can describe the magnitude deviation
against various approaches with potentially different privacy noise variances: as the SNR decreases,
the performance degradation caused by the privacy noise becomes more severe.

G.2 Performance Comparison

ImageNette Figure[d]shows the histogram of the SNR during training on the ImageNette dataset.
The results depict that using AdaSig, the SNR is concentrated around larger values. We further recall
the earlier observations reported in Figure[3]in the main paper. There, we observe that using AdaSig,
direction deviation is reduced compared with the baselines. Considering these two results, i.e., Figure
[]and Figure @] we conclude that using AdaSig, the deteriorating impact of clipping is reduced with
respect to both direction deviation and magnitude deviation. This demonstrates that, for ImageNette,
AdaSig provides highly effective clipping that preserves closeness to the true batch gradient.

CIFAR-10 We next present the results of similar experiments on CIFAR-10. Figures [5] and [6]
show the histogram of cosine similarity and SNR while training the 8-layer CNN on CIFAR-10,
respectively. As observed in these figures, the cosine similarity distribution of AdaSig is skewed
toward higher values relative to the baselines. This means that AdaSig incurs less direction deviation.
Nevertheless, the histogram of the SNR achieved by AdaSig is close to those of the baselines. Thus,
for CIFAR-10, AdaSig clipping is still able to improve the trade-off between the direction deviation
and the magnitude deviation.
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Figure 4: Comparison of normalized magnitude for different approaches during training ResNet-9 on
ImageNette.
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Figure 5: Comparison of cosine similarity for different approaches during training 8-layer CNN on
CIFAR-10.
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Figure 6: Comparison of normalized magnitude for different approaches during training 8-layer CNN
on CIFAR-10.
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H Ablation Study: Sigmoid Clipping with Constant «

An ablation method for the AdaSig approach is to use a fixed « across all iterations, i.e., oy = «, V.
We examine sigmoid clipping with various fixed « values for training an 8-layer CNN on the
CIFAR-10 dataset. The experimental setup is based on Appendix

H.1 Impact of o on Direction Deviation and Magnitude Deviation

In this section, we study the impact of « on the frade-off between direction deviation and magnitude
deviation. Figure[7]shows the histogram of cosine similarity and SNR during the training for three
fixed values of o. As seen, decreasing the « value results in an increase in cosine similarity, while
reducing the SNR. This occurs because decreasing v expands the linear region of the sigmoid
function, providing equal scaling for different gradient samples during clipping (see Figure|[T]in the
main paper), which reduces the direction deviation. This observation also aligns with the numerical
example presented in Section @ of the main paper.
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0.00" 0.00;

0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15
Cosine Similarity SNR

Figure 7: Trade-off between direction deviation and magnitude deviation for several fixed o values
during the training of an 8-layer CNN on CIFAR-10. left: Cosine similarity histogram, right: SNR
histogram.

H.2 Impact of o on Test Accuracy

Next, we present the average final test accuracies for sigmoid clipping with several fixed « values in
Table@ As observed, very low values of « (less than 0.1) result in low accuracy due to a low SNR,
while very large « values (greater than 5) also degrade accuracy due to direction deviation. However,
for o in the middle range, we achieve the highest accuracy, resulting from a balance between direction
deviation and magnitude deviation. It is worth noting that the highest accuracy achieved by v = 1 is
still lower than the accuracy attained by the AdaSig method, as shown in Table[T]in the main paper,
which highlights that adaptively adjusting « over iterations further improves accuracy.

Table 8: Average test accuracies with 95% confidence intervals over five runs for sigmoid clipping
with various fixed « values.
a=0.01 a=0.1 a=10 a=5.0 o = 50.0 o = 100.0
Average test accuracy (%) 4527 £0.67 6174 £021 62.13+£0.12  61.64 £0.27 60.62£0.38 6039 + 0.31

I Variation of o, During Training

In this section, we illustrate how «a; evolves during training on CIFAR-10 for three different random
seeds. As shown in Figure[8] the general trend across seeds is that o initially increases from its
starting value 1.0 up to a peak in the middle of training, and then gradually decreases toward the end.
The exact trajectory varies across seeds since each seed corresponds to a different batch sampling
process, leading to distinct gradient statistics in each run.

When examining o, over training iterations across different datasets and models, we do not observe a
consistent pattern. This behavior arises from the dependence of oy on individual sample gradients,
which vary substantially across datasets and model architectures.
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Figure 8: Evolution of o across training iterations on CIFAR-10 for three random seeds.

J Convergence Plots

In this section, we present convergence plots for several experiments. Figure 0]illustrates the average
test accuracy and test loss over five runs versus epochs during training on the CIFAR-10 dataset. The
shaded regions around the curves represent the 95% confidence intervals. As shown, the increasing
test accuracy in the left plot and the decreasing test loss in the right plot demonstrate convergence for
all methods, including AdaSig. Additionally, the figure highlights that AdaSig achieves a lower final
test loss and higher final test accuracy compared with the baselines.
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Figure 9: Convergence plot for CIFAR-10 dataset, left: Test accuracy vs. epoch, right: Test loss vs.
epoch.

Additionally, Figure[I0|shows the average test loss and accuracy throughout the training on the SST-2
dataset. As observed, all methods progressively reduce the test loss while increasing accuracy, with
AdaSig outperforming the other methods.
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Figure 10: Convergence plot for SST-2 dataset, left: Test accuracy vs. epoch, right: Test loss vs.
epoch.
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