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ABSTRACT

Federated Graph Learning is rapidly evolving as a privacy-preserving collabora-
tive approach. However, backdoor attacks are increasingly undermining federated
systems by injecting carefully designed triggers that lead the model making in-
correct predictions. Trigger structures and injection locations in Federated Graph
Learning are more diverse, making traditional federated defense methods less ef-
fective. In our work, we propose an effective Federated Graph Backdoor Defense
using Topological Graph Energy (FedTGE). At the client level, it injects distribu-
tion knowledge into the local model, assigning low energy to benign samples and
high energy to the constructed malicious substitutes, and selects benign clients
through clustering. At the server level, the energy elements uploaded by each
client are treated as new nodes to construct a global energy graph for energy prop-
agation, making the selected clients’ energy elements more similar and further ad-
justing the aggregation weights. Our method can handle high data heterogeneity,
does not require a validation dataset, and is effective under both small and large
malicious proportions. Extensive results on various settings of federated graph
scenarios under backdoor attacks validate the effectiveness of this approach. The
code is available at https://github.com/ZitongShi/fedTGE.

1 INTRODUCTION

Federated Learning (FL) (Yang et al., 2019a; Mammen, 2021) has rapidly emerged as a significant
research area in decentralized machine learning. This methodology allows multiple clients to
collaboratively train a shared global model while preserving the privacy of sensitive data, thus
eliminating the need to aggregate distributed data and ensuring adherence to privacy protocols
(Zhang et al., 2021a; Kairouz et al., 2021). Consequently, FL presents a promising solution for
training Graph Neural Networks (GNNs) on isolated graph data. Moreover, some existing work has
utilized FL to train GNNs (Ju et al., 2024a; Kipf & Welling, 2016; Veličković et al., 2017), which
we denote as Federated Graph Learning (FGL). While this distributed nature brings numerous
benefits (Gilmer et al., 2017; Bruna et al., 2013), it also introduces additional vulnerabilities,
particularly in the form of backdoor attacks from malicious participants (Chen et al., 2017; Li et al.,
2022). These attacks involve injecting harmful data or models into the training process, embedding
hidden behaviors that can trigger incorrect model outputs under specific conditions. These attacks
aim to cause local models to learn incorrect information and activate the backdoor at critical times,
resulting in erroneous predictions.

With the objective of better defending against these malicious attacks, defense methods against
backdoor attacks in federated learning have been widely studied (Guerraoui et al., 2018; Yin et al.,
2018a; Pillutla et al., 2022). Certain methods exclude outlier updates based on the statistical
characteristics of model outputs. Some approaches examine pairwise distances among local models
or the distances between local models and the global model to mitigate the influence of anomalous
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clients (Shejwalkar & Houmansadr, 2021). However, these methods often struggle to perform
effectively in FGL environments, where graph data typically exhibit non-iid characteristics and
complex topological structures. Some byzantine-robust federated learning methods require a clean
and representative validation dataset (Cao et al., 2021). Consequently, they are less effective in sce-
narios where collecting a validation data set is challenging, such as in medical (Li et al., 2019b) and
financial (Yang et al., 2019b) scenarios. Although recent studies (Huang et al., 2024b) have explored
graph classification, there remains a significant gap in backdoor defense for node classification.

Figure 1: Problem illustration. We describe the challenges
FGL encounters under backdoor attacks: I) Triggers vary
in size, shape, and location of injection, making them more
hidden. II) The structural heterogeneity introduced by FGL
makes distinguishing between heterogeneous and malicious
entities more difficult.

Based on the aforementioned discussion,
we review the challenges existing in FGL
under backdoor attacks. First of all, to
address the high heterogeneity of the
data, some methods choose to monitor
the similarity of the updates of each client
to adjust their contribution to the global
model (Fung et al., 2018; Pillutla et al.,
2022). However, the inherent topological
complexity of graph data allows the
trigger location and shape to be more arbi-
trary. It can be inserted at any position in
the graph, leading to non-aligned updates,
which hinders the effective identification
of malicious clients and inevitably affects
defense performance, as demonstrated in
Table 1. Based on this observation, we
raise the question: 1) How can we design
a backdoor defense method that can
address scenarios where triggers exhibit
complex topological characteristics?

Secondly, some methods attempt to
simply calculate the distances between clients or the similarity of certain distributions without any
additional processing to differentiate between malicious and benign clients (Cao et al., 2021; Huang
et al., 2023a), or filter out benign clients based on outlier detection (Shejwalkar & Houmansadr,
2021). However, these methods can easily misclassify perturbations caused by heterogeneity as ma-
licious outliers due to their incomplete modeling of the data distribution. The additional structural
heterogeneity introduced by FGL further complicates the ability to capture distributional informa-
tion, inadvertently providing additional protection against backdoor attacks. This ultimately hinders
the ability to effectively distinguish between malicious and benign clients in the metrics used for
measurement, leading to the question: 2) How can we learn structural distributions in a fine-grained
manner and differentiate them from backdoor attacks to better filter out malicious clients?

To address the two mentioned issues, we turn to energy-based models and explore their potential.
Energy is an unnormalized probability likelihood (Song & Kingma, 2021), offering a flexible mod-
eling approach that is not constrained by normalization. The strength of energy-based models lies
in their ability to be integrated with virtually any model architecture. In our work, we combine
energy with GCN to form an Energy-based GCN, preserving GCN’s capability to capture complex
structural information while benefiting from the flexibility of energy-based modeling. We introduce
Topological Energy Client Clustering (TECC) to solve problem 1). TECC quantifies differences
in client data distributions. Clients with significant energy distribution differences are marked as
malicious and excluded from the aggregation process. We enhance local models by incorporating
distribution awareness, combining their predictive capabilities with the ability to distinguish data
energy distributions. Specifically, we add a final step in the training process to ensure the model
assigns lower energy to the benign sample. However, indiscriminately lowering sample energy can
lead to trivial solution. Therefore, we construct perturbed samples to simulate malicious triggers
and raise the energy of these samples. Ultimately decoupling the distributions of benign and mali-
cious samples. We then cluster the client energy distributions, identifying clients with significantly
different energy distributions as potentially malicious.

To solve the second issue, further decoupling the energy distributions of malicious and benign
clients, we propose Topological Energy Similarity Propagation (TESP). We collect the energy
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distributions of each client and establish an energy graph based on the similarity of the energy
distributions uploaded by the clients. Specifically, we consider the energy of samples uploaded by
each client as its energy element. They are considered as new nodes for constructing the global
energy graph. We then establish edges between highly similar energy elements to complete the
construction of the energy graph. We enhance the similarity of energy distributions among clients
that have established edge indices, thereby increasing the distinction between these clients and unse-
lected malicious ones. Concurrently, energy elements with fewer established indices are considered
outliers and are assigned lower transmission and aggregation weights. This energy adjustment in
turn improves the clustering effectiveness of TECC. In synergy, this framework enables the model
to learn effective topological distributions while achieving fine-grained decoupling of malicious
and benign clients. We refer to the combination of these two strategies as FedTGE, an effective
Federated Graph Backdoor Defense via Topological Graph Energy. Our principal contributions are
summarized as follows.

• We study a challenging problem: defending against backdoor attacks in Federated Graph Learn-
ing. Our focus is on mitigating these attacks while overcoming several assumptions made by
existing methods, such as data homogeneity, the availability of validated samples, and the pres-
ence of a moderate proportion of malicious clients.

• We propose FedTGE, an innovative approach that addresses backdoor attacks characterized by
complex topological triggers and highly arbitrary injection positions in FGL from the energy per-
spective. Our method enables clients to model the energy of graph structures at a fine-grained
level, assigning higher aggregation weights to clients with high similarity in their energy distribu-
tions. This enhances the robustness of graph backdoor defenses.

• We conducted experiments on five mainstream datasets under both IID and Non-IID scenarios, as
well as with varying proportions of malicious clients. The results demonstrate that our approach
outperforms the current state-of-the-art methods in traditional FL.

2 RELATED WORK

2.1 FEDERATED GRAPH LEARNING

Federated Graph Learning (FGL) (Fu et al., 2022; Huang et al., 2023b; Li et al., 2023; Wan et al.,
2024; Cai et al., 2024; Li et al., 2025; Fu et al., 2025) combines the characteristics of FL (Ye et al.,
2023; Huang et al., 2024a; Liao et al., 2024) and GNNs (Chen et al., 2023b; Yin et al., 2024; Ju et al.,
2024b), enabling collaborative learning of graph-structured data while preserving data privacy. In
recent years, extensive research has focused on improving the generalization of the global model or
obtaining personalized models that can span different graph domains (Wu et al., 2020; Chen et al.,
2022; 2023a; 2024). However, the inherent heterogeneity and the complex, dynamic topology of
graph data, along with the distributed nature of FGL, create significant vulnerabilities for backdoor
attacks. Although there has been extensive work on effectively backdooring GNNs (Xi et al., 2021;
Zhang et al., 2021c; Sun et al., 2020), there is a scarcity of research on backdoor defense paradigms
specifically suited for FGL. To the best of our knowledge, we are the first to delve into backdoor
defense in FGL, striving to create relevant benchmarks and contribute to this field.

2.2 BACKDOOR DEFENSE IN FEDERATED LEARNING

Malicious backdoor attackers pose a serious threat to federated systems (Huang et al., 2024b). To
tackle the problem, researchers have proposed numerous defense methods, such as vector filtering
techniques such as Bulyan (Guerraoui et al., 2018), RFA (Pillutla et al., 2022), and DnC (Shejwalkar
& Houmansadr, 2021). Additionally, some defense methods utilize proxy data to further leverage
server knowledge to defend against attacks, such as FLTrust (Cao et al., 2021) and Sageflow (Park
et al., 2021). While most of these approaches can ensure successful defense under certain assump-
tions, they fail to provide stable defense performance in scenarios with non-iid data, difficulty in
collecting proxy datasets, or a large number of attackers. Compared to traditional FL, FGL backdoor
attacks often have triggers with higher randomness and greater stealth due to the more complex topo-
logical structure of graph data, making them more susceptible to attacks. While an excellent defense
study has been proposed in FGL (Yang et al., 2024), it primarily focuses on graph classification
tasks, and is not directly applicable to node classification tasks. We propose using energy as a bridge
to address the aforementioned issues and fill the gap in backdoor defense for node classification.
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2.3 ENERGY-BASED MODEL

The Energy-Based Model (EBM) is a generative model that directly models the unnormalized
probability density function of the underlying data distribution. EBM represent the probability
distribution of data by defining an energy function. A key feature of EBM is their flexibility:
the energy function can be implemented using various forms of neural networks without strict
structural constraints. This allows EBM to be adapted to a wide range of data types and tasks,
including images, videos, and text (Deng et al., 2020; Arbel et al., 2020). In the domain of graphs,
EBM have been applied to tasks such as substructure-preserving molecule design, molecular graph
generation, and scene graph generation (Roy et al., 2023; Wu et al., 2023). The success of EBM
in learning high-dimensional and complex molecular structures, such as proteins, underscores their
powerful modeling capabilities (Cao & Shen, 2020; Xiao et al., 2023). In our work, we develop
an Energy-Based GCN on the client side to model the energy of the entire graph. Benign samples
that conform to the data distribution are assigned lower energy values. These energy distributions
are subsequently uploaded, and on the server side, we further align the energy distributions among
the selected clients. This alignment increases the separation between the energy elements of benign
and malicious clients, thereby establishing a robust defense system against malicious attacks.

3 PRELIMINARY

3.1 FEDERATED GRAPH LEARNING

We follow the general paradigm of federated graph learning, where multiple clients collaboratively
train a shared global model. Consider K clients, indexed by k and defined as C = {ck}Kk=1. At
the beginning of the tth communication round, we denote the current global model as Mt with
parameters wt, and the local model as Mt

k with corresponding parameters wt
k. Each client ck

possesses private data Gk = (Vk, Ek), where Vk = {vi}Nk
i represents the set of nodes containing

|Vk| = Nk nodes, and Ek = {emn}m,n denotes the set of edges. The adjacency matrix of Gk is
defined as Ak = {Aij}i,j , where Aij = 1 if there is an edge between nodes vi and vj , and Aij = 0
otherwise. Similarly, Xk represents node features, and Yk represents the corresponding label set.

3.2 ENERGY-BASED MODEL

Consider a sample x ∈ RD. The energy-based model builds a function E(x, y) : RD → R that maps
input instances with given labels to a scalar value, known as energy. The Boltzmann distribution
expressed in terms of energy is represented as:

p(y|x) = exp(−E(x, y))∑
y∗ exp(−E(X, y∗))

, (1)

where
∑

y∗ exp(−E(X, y∗)) is the partition function. Observe that in Eq. (1), it is very similar to
our discriminative neural classifier. To relate the two, we set E(x, y) = −f(x)[y], where f(x)[y] is
the logits output of the model, and the energy function E(x) can be formulated as follows:

E(x) = − log
∑
y∗

exp(−E(x, y∗)) = − log
∑
y

exp(f(x)[y]). (2)

4 METHODOLOGY

4.1 OVERVIEW

The overall framework of FedTGE is illustrated in Figure 2, and its algorithmic pseudocode is pre-
sented in Algorithm 1. At the client level, We inject structural energy awareness into the local
models, lowering the energy of benign samples and raising that of malicious samples, respectively.
At the server level, we cluster based on the differences in energy elements across clients to identify
benign clusters. From a global perspective, we further construct an energy graph to enhance the sim-
ilarity of the energy elements of the selected clients and adjust the aggregation weights accordingly.

4.2 TOPOLOGICAL ENERGY DIFFERENCE CLUSTERING

Motivation. In FGL backdoor attacks, the intricate topological structure of the graph data introduces
considerable uncertainty in the methods used for trigger injection. This uncertainty is evident in both
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Figure 2: Architecture illustration of FedTGE. We used blue and red arrows to represent the two components
of our method, TEDC and TESP, respectively. Best viewed in color. Zoom in for details.

the selection of injection positions and the diverse shapes that the triggers can assume. Although
there are many effective defense paradigms in traditional FL, they often rely on impractical assump-
tions and are unable to handle triggers with complex topologies and diverse injection positions.

Meta Energy. We develop an Energy-Based GCN on the client side to model the energy of the entire
graph, enhancing the model by injecting distributional knowledge of the samples. This enables the
network to perform both node classification and distinguish the meta-energy of benign and malicious
samples. First, we construct an energy-based model on top of the trained classifier:

Eθ(x) = − log
∑
y

exp(fθ(x)[y]). (3)

For a node vi, we define its output in the energy-based model simply as its meta energy:
Me(vi) = Eθ(vi). The meta energy represents the unnormalized likelihood of the sample point.
Lower energy corresponds to higher likelihood and consequently a greater probability of the sample
being benign. We then introduce the concept of perturbed meta energy, M̃e(ṽi) = Eθ(ṽ

adv
i ), where

ṽadvi represents the perturbed version of vi. Specifically, ṽadvi is generated by arbitrarily adding or
removing edges connected to vi and perturbing both its features and those of its neighbors. The
objective is to inject a meta energy distribution into the original model by lowering Me(vi) and
raising M̃e(ṽ

adv
i ). Let di represent the degree of vi, and p denote the perturbation percentage. The

generation of Xadv is achieved by perturbing the features of X. Additionally, the adjacency matrix
Aadv for ṽadvi can be formulated as follows:{

Aadv
it = 1, t ̸= i where Ait = 0.

Aadv
ij = 0, j ̸= i where Aij = 1.

(4)

Meta Energy Calibration Objective. The density function of the energy-based model is given
by: pθ(x) = exp(−Eθ(x))/Zθ. Directly maximizing pθ(vi) to minimize Eθ(vi) seems like a
straightforward approach, but the normalization partition function Zθ =

∫
exp(−Eθ(x)) dx is

typically very difficult to compute. Therefore, we consider using score matching to train the EBM.

Score matching is a technique for training EBMs by aligning the gradient of the log probability den-
sity function. By converting the distribution into its equivalent score, we can train EBMs more ef-
ficiently, as ∇x log pθ(x) = −∇xEθ(x) eliminates the need for a normalization constant Zθ. How-
ever, traditional score matching only focuses on learning the data distribution and does not address
the alignment of sample energy. This limitation, combined with the challenges posed by the highly
discrete and topological nature of graph data, makes designing an effective score all the more critical.
Definition 4.1. (Meta Energy Score): For vi, we define the score assigned by the energy model as
the meta energy score, which we use as a gradient surrogate in the discrete space:

Ms
θ (vi) = ∇Eθ(vi) =

[
Me(v1)− M̃e(ṽ1)

Me(v1)
, · · · , Me(vH)− M̃e(ṽH)

Me(vH)

]
. (5)

In fact, Eq. (6) is equivalent to the following equation:

Ms
θ (vi) = ∇Eθ(vi) =

[
log pθ(v1)− log pθ(ṽ1)

log pθ(v1)
, · · · , log pθ(vH)− log pθ(ṽH)

log pθ(vH)

]
. (6)
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Theoretically, the number of possible ṽ generated in this manner is infinite. We denote H as the
number of ṽ participating in the score calculation. This implies that using the gradient surrogate
∇Eθ enables the model to learn the energy density distribution of the real data pdata(vi). With an ef-
fective score proxy for the gradient in place, we still follow the traditional score matching objective:

DF (pdata(x) ∥ pθ(x)) = Epdata(x)

[
1

2
||∇x log pdata(x)−∇x log pθ(x)||2

]
. (7)

With the energy score surrogate, our optimization objective is formulated as:

DF (pdata(vi) ∥ pθ(vi)) = Epdata(vi)

[
1

2
||Ms

data(vi)−Ms
θ (vi)||2

]
. (8)

However, since the Ms
data(vi) of the real data is unknown during the actual training of the model,

we need to further optimize Eq. (8). Following (Hyvärinen & Dayan, 2005) and incorporating my
gradient proxy while reducing computational complexity, we rewrite it as follows:

LMEC =
1

N

N∑
i=1

[
∇viM

s
θ (vi)

T∇viM
s
θ (vi) +

1

2
∥Ms

θ (vi)∥2
]
. (9)

In the loss function, we smooth the model output and minimize ∇viEθ(vi). As demonstrated in
Definition 4.1, we effectively increase M̃e(ṽi)/Me(vi). This aligns perfectly with our goal of in-
corporating knowledge of the data distribution into the model, allowing us to assign lower energy to
benign samples and higher energy to malicious ones.

Energy Element Discrepancy Cluster. We calculate the meta energy for each sample of each
client and refer to the collection of meta energy for each client as the energy element set, denoted as
Ek. We mark those energy elements that have significant differences from other clients and higher
energy values as malicious clients and exclude them from the aggregation process. To systematically
identify these anomalies, we use unsupervised FINCH clustering to filter out malicious clients. A
comparison with popular clustering methods is provided in Table 3. As an example with three
malicious clients, the pseudocode for the algorithm is shown in Algorithm 1.

Algorithm 1 FedTGE
Input: Communication rounds T , participant scale K, kth client private model wk, and local data
Gk Output: The final global modelMT

for t = 1, 2, · · · , T do
Client Side: for k = 1 to K in parallel do

fk(·)← LocalUpdating(wt,Gk) // Original training strategy
f t
k(·)← EnergyCalibrating(fk(·),Gk) // Injecting distribution knowledge
Et

k = {E(f t
k(vi))}

Nk
i=1 // Calculating energy elements

Server Side: // Cluster and find the cluster with the smaller mean
{Et

a,E
t
b} and {Et

k}Nk ̸=a,b where mean(Et
a,E

t
b) ≥ mean({Et

k}Nk ̸=a,b)

St = {Stmn}Nmn = cos(Et
m,Et

n)m,n ̸=a,b // Calculating energy elements similarity
Ge = (Ve, Ee)← (τ,St) // Constructing energy graph
Et∗

k ← (βt
k, {Et

k}Nk ̸=a,b) // Energy graph similarity propagation
Itk ← (βt

k, {Et∗
k }Nk ̸=a,b) // Energy disparity aggregation

wt+1 =
∑N

l=1 Ikwt
k // Model parameter update

returnMT

4.3 TOPOLOGICAL ENERGY SIMILARITY PROPAGATION

Motivation. Some defense methods simply measure certain distances between clients or certain
distribution similarities without any additional processing to differentiate between malicious and
benign clients. In scenarios with moderate to high proportions of malicious clients, these methods
are susceptible to the combined effects of heterogeneity and backdoor attacks. This results in their
inability to accurately filter out malicious clients, and in some cases, they even misclassify benign
clients as malicious due to the heterogeneity.

6



Published as a conference paper at ICLR 2025

Construct Global Energy Graph. Excluding the identified malicious clients, we utilize the energy
elements of benign clients to compute the cosine similarity between each pair and construct a cosine
similarity matrix, denoted as S. We define the similarity between clients cm and cn as the element
Smn in the m-th row and n-th column of the matrix S. Additionally, we set a threshold, denoted
as τ , to determine which samples are considered similar. When the value of Sij is less than τ , we
consider the energy sequences of these two clients to be sufficiently similar. This implies that we
can add an edge between these two clients in the global energy graph:

S = [Smn]
N
m,n=1 , where Smn =

Em ·En

∥Em∥∥En∥
. (10)

Ee = [emn]
N
m,n=1 , where emn =

{
1, if Smn ≥ τ.

0, if Smn < τ.
(11)

Here, N denotes the number of selected clients. The notation ∥Ek∥ represents the norm of the
energy sequence for client ck. emn represents the edge between energy distributions Em and En,
and τ is the set threshold. If emn = 1, it indicates that the two clients are sufficiently similar, and an
edge will be established between them; otherwise, emn = 0.

Energy Graph Similarity Propagation. After establishing edge indices in the previous step, we
obtain a global energy Graph with N nodes. From the above analysis, it is evident that Ek with
more established indices has higher similarity with other clients. We consider these clients to be
more benign and assign them higher propagation weights. We define energy transmission to occur
over multiple rounds, and we consider the update rule for energy transmission as follows:

E∗
k = αEkβk +

(1− α)

n

n∑
l=1

El
kβl, where βk =

dk∑N
l=1 dl

. (12)

Here, n represents the number of indices established by Ek. El
k denotes the l-th neighbor of Ek,

and βk represents the energy propagation weight of Ek.

Energy Disparity Aggregation. Conventional parameter aggregation treats all elements equally,
failing to recognize their varying impacts on the target distribution. In our framework, we consider
samples with lower energy to be more typical. Commonly, low-energy samples are viewed as better
fitting the model distribution, indicating they may be more suitable for training the model. Further-
more, a client with lower energy suggests a lower likelihood of malicious intent. Meanwhile, the
more indices a client establishes, the higher the likelihood of it being benign. Therefore, we assign
higher aggregation weights to such clients. This can be formalized as follows:

Ik =
exp(−E∗

k)∑
l∈N exp(−E∗

l )
βk. (13)

Here, Ik represents the aggregation weight assigned to client k.

wt+1 =

N∑
l=1

Ikw
t
k. (14)

In this section, we consider two problematic scenarios: 1) If client ck shows insufficient similarity
with certain clients cm,n,l, we consider it a suspected misclassification (csusk ) and revoke its qualifi-
cation to establish connections with Ẽsus

k and Em,n,l. 2) If a client ck has a similarity with all other
clients below τ , we consider ck a malicious client that has been mistakenly clustered with benign
clients, revoking its right to participate in parameter aggregation.

Discussion. Energy-based models have been widely studied in various domains, including images
(Song & Kingma, 2021), videos (LeCun et al., 2006), text (Deng et al., 2020), and graphs (Liu et al.,
2021). The energy of a sample partially reflects the cost required for the model to learn that sample.
The work Yuan et al. (2024) leverages the Energy-Based model to adapt to test-time samples. In
contrast, our method filters out malicious client parameters and assigns higher aggregation weights
to clients with lower energy. This results in higher purity of classification accuracy. Conversely,
without filtering clients or employing conventional aggregation methods, backdoor samples may
contribute to the classification accuracy, thereby falling into traps designed by attackers.
Limitation. At the micro level, our approach adjusts the energy of benign and malicious samples,
while at the macro level, it performs unsupervised clustering of energy elements across different
clients. Additionally, it further decouples benign and malicious energy elements and adjusts ag-
gregation weights by constructing an energy graph from a global perspective. However, like many
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Table 1: Comparison with state-of-the-art backdoor defense solutions in traditional federated learning over
five mainstream datasets under both IID (upper) and Non-IID-Louvain (lower) settings. The best and second
results are highlighted with bold and underline, respectively. Please see additional analysis in Section 5.2

Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

IID with a malicious proportion of Υ = 0.3 and a trigger type of renyi
Vanilla 74.25 19.47 46.86 86.12 4.26 45.19 85.90 20.47 53.19 93.51 16.37 54.94 81.61 5.33 43.47
FLTrust 73.75 60.00 66.88 83.45 31.30 57.38 86.22 57.76 71.99 94.19 40.72 67.46 82.82 83.07 82.95

RSA 72.42 46.40 59.41 85.42 6.16 46.29 85.75 13.92 52.34 93.93 22.61 58.27 84.79 23.81 53.30
RLR 76.00 13.07 44.53 86.77 14.7 8 50.78 84.02 15.37 49.70 93.56 14.53 54.05 78.26 6.84 42.55

FLAME 74.17 44.00 59.09 84.73 41.95 63.34 86.01 66.89 76.45 92.95 40.77 66.86 81.08 69.61 75.35
G2uard 73.75 66.00 69.88 84.54 27.65 56.10 86.18 44.23 65.21 92.83 38.23 65.53 81.43 51.34 66.39

Trim Median 73.67 30.93 52.30 85.84 7.61 46.73 86.01 7.87 46.94 93.46 17.25 55.52 82.47 6.32 44.40
Trimmed Mean 73.17 25.60 49.38 86.08 5.72 45.90 86.11 6.05 46.09 93.35 17.55 55.45 81.74 6.32 44.03

FreqFed 76.25 18.67 47.56 86.16 7.25 46.71 86.93 10.93 48.93 93.38 6.78 50.08 81.76 4.33 43.05
RFA 78.42 40.27 59.34 87.12 11.28 49.20 85.49 9.07 47.28 93.35 14.47 53.91 84.26 7.27 45.77

MMA 75.00 36.27 55.63 86.98 6.67 46.83 87.04 13.77 50.41 93.87 22.16 58.02 85.55 23.81 54.68
FoolsGold 77.25 33.87 55.56 87.33 13.44 50.39 85.69 10.60 48.15 93.33 23.94 58.63 84.82 5.02 44.92

DnC 66.25 76.00 71.13 86.05 24.09 55.07 85.89 66.12 76.01 93.17 41.35 67.26 71.76 16.36 44.06
FedCPA 74.42 24.27 49.34 85.60 8.77 47.19 86.87 15.12 51.00 93.99 19.32 56.66 80.76 4.33 42.55
Sageflow 75.08 39.47 57.28 87.17 6.13 46.65 86.03 14.50 52.76 94.17 23.32 58.75 84.92 25.97 53.28
FedTGE 75.00 70.47 72.83 85.79 57.19 71.49 85.63 70.45 78.04 93.99 57.02 75.51 80.81 97.92 89.37

Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Louvain with a malicious proportion of Υ = 0.3 and a trigger type of renyi
Vanilla 61.81 25.24 43.53 85.81 5.85 45.83 90.57 39.87 65.22 94.61 39.58 67.09 71.98 66.88 69.43
FLTrust 79.88 58.05 68.97 86.28 56.52 71.40 90.94 57.32 74.13 93.67 41.17 67.42 76.88 86.35 81.62

RSA 75.09 43.52 59.31 85.58 7.28 46.43 91.75 47.90 69.82 95.37 35.30 65.33 72.61 55.93 64.27
RLR 79.09 33.94 56.52 86.54 15.28 50.91 87.78 37.56 62.67 95.29 30.33 62.81 78.87 51.75 65.31

FLAME 75.05 55.23 65.14 84.56 52.78 68.67 87.49 66.23 76.86 92.23 57.76 75.00 69.65 88.78 79.22
G2uard 73.66 47.82 60.74 83.34 33.47 58.41 88.15 55.89 72.02 93.38 41.87 67.63 72.34 67.29 69.82

Trim Median 63.85 22.15 43.00 86.01 17.85 51.93 87.68 50.84 69.26 69.26 45.96 70.24 63.45 76.13 69.79
Trimmed Mean 65.40 25.72 45.56 85.19 10.02 47.60 87.55 49.54 68.55 94.50 42.34 68.42 68.07 74.36 71.21

FreqFed 76.92 37.78 57.35 86.67 10.23 48.45 89.65 38.33 63.99 79.18 8.49 43.84 58.23 68.14 63.19
RFA 79.48 36.34 57.91 86.83 11.28 49.06 90.69 49.92 70.30 95.22 39.54 67.38 72.82 56.99 64.91

MMA 75.97 56.75 66.36 87.86 25.70 56.78 87.14 50.70 68.92 95.07 52.91 73.99 78.77 68.73 73.75
FoolsGold 76.86 38.24 57.55 86.77 13.27 50.02 90.96 43.09 67.02 95.34 35.22 65.28 84.99 51.23 68.11

DnC 41.21 80.05 60.63 60.40 13.12 36.76 53.21 77.43 65.32 85.48 64.69 75.08 45.90 94.09 69.99
FedCPA 77.60 40.14 58.87 86.70 22.36 54.53 89.31 43.14 66.23 95.31 35.45 65.38 77.36 54.69 66.03
Sageflow 79.80 54.38 67.09 87.88 23.47 55.67 89.42 53.86 71.64 93.26 53.36 73.31 77.10 64.75 70.93
FedTGE 77.32 55.85 66.58 86.79 67.22 77.01 88.15 72.10 80.13 94.06 57.98 76.02 77.46 94.81 86.14

popular solutions in FL, our method cannot effectively eliminate pre-existing poisoned parameters
embedded in the model. Furthermore, our approach introduces some additional computational
overhead due to the need to compute the energy distribution of samples, but it remains acceptable
with a complexity of O(|N |).

5 EXPERIMENTS

We conducted experiments under both IID and Non-IID-Louvain (Wang et al., 2022; Zhang et al.,
2021b) s2222ettings on five datasets to validate the superiority of our proposed FedTGE.

5.1 EXPERIMENTAL SETUP

Datasets. Adhering to (Liu et al., 2023), we evaluate the efficacy and robustness in three scenarios:
Citation Network (Yang et al., 2016a), Co-authorship (Shchur et al., 2018), and Amz-purchase
(McAuley et al., 2015). Detailed information about the datasets is provided in appendix A.

Comparison Methods. We compare FedTGE with several state-of-the-art methods in traditional
FL: (1) FedAvg (McMahan et al., 2017b); (2) Trimmed Median and (3) Trimmed Mean (Yin et al.,
2018b); (4) FoolsGold (Fung et al., 2018); (5) DnC (Shejwalkar & Houmansadr, 2021); (6) Sage-
Flow (Park et al., 2021); (7) MMA (Huang et al., 2023a); (8) RFA (Pillutla et al., 2022); and (9)
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Figure 3: Comparison of final metric (V) during the training process on Pubmed with Υ = 0.3 and 0.5 in both
IID and Non-IID Louvain environments. Please see additional analysis in Section 5.2

RLR (Ozdayi et al., 2021); (10) RSA (Li et al., 2019a); (11) Freqfed (Fereidooni et al., 2023); (12)
FedCPA (Han et al., 2023); (13) FLAME (Nguyen et al., 2022); (14) FLTrust (Cao et al., 2021); (15)
G2uard (Yu et al., 2023). Detailed descriptions of these methods can be found in Appendix C.
Network Structure. Following the common approach in FGL(Dai et al., 2023), we utilize GCN
as the 2 layers feature extractor and classifier, with the hidden layer size of 32 for all datasets.
Backdoor Attack. We demonstrate the effectiveness of the proposed method under the popular
paradigm (Liu et al., 2023; Xu et al., 2021; Zheng et al., 2023). Considering the stealth of the
backdoor attacks, The number of nodes in the trigger size is limited to 4 for all experiments, and
its type and location is renyi and random, respectively. We set the malicious client ratio Υ as {0.1,
0.3, 0.5}, and conduct experiments under both IID and Non-IID-Louvain settings. Table 1 shows
the results for Υ = 0.3. Additional experimental results are provided in Appendix B, along with
extensive energy distribution visualizations in Appendix E.
Implement Details. We provide the details from three views as:
• Dataset Split: In this paper, we conduct experiments on the node classification task. Following

(Xu et al., 2021; Zheng et al., 2023), we partition the original training dataset (labeled) into train-
ing, validation, testing sets, comprising 60%, 20%, and 20% of the total nodes, respectively. Unla-
beled nodes are leveraged for trigger injection and are subsequently relabeled with the target class.

• Training Setting: We repeat each experiment five times for each federated approaches to ensure
the robustness and reliability of the results. The Adam optimizer (Kingma, 2014) with a learning
rate of 0.01 is used to train the GNN models.

• Evaluation Metric: Following (Liu et al., 2023; Li et al., 2020; McMahan et al., 2017a), we use
node classification accuracy (A) and backdoor failure rate (R) as our experimental metrics,
as defined in Eq. (15). We define V as the final metric to evaluate the trade-off between accuracy
and defense effectiveness.

A =
1

N

N∑
k=1

∑
ξ∈Dtest

k
(max(z) = y)

|Dtest
k |

, R =
1

Ñ

Ñ∑
k=1

(
1−

∑
ξ̃∈D̃test

k
(max(z̃) = ỹ)

|D̃test
k |

)
, V =

1

2
(A+R)

(15)
We define a query instance ξ with logits output z =Mt(ξ), whereMt denotes the globally shared
model. The mean accuracy across N clients is denoted by A. Similarly, backdoor queries ξ̃ and test
samples D̃test

k yield a mean backdoor failure rateR across Ñ malicious clients. The final evaluation
metric V is defined as the average of A andR.

5.2 EXPERIMENTAL RESULTS

Performance Comparison. Table 1 shows the defense performance of conventional backdoor de-
fense methods in traditional FL compared to our FedTGE approach under various settings. The
results indicate that FedTGE consistently outperforms under both IID and Non-IID-Louvain con-
ditions, demonstrating its effectiveness against diverse attack patterns in federated graph learning.
Model Refinement Defenses such as RSA and RLR fail to detect the stealthy injection of triggers,
rendering their defenses ineffective. Traditional defenses based on statistical distributions and stan-
dard distance metrics do not effectively learn structural distributions, leading to incorrect centroid
calculations in heterogeneous environments or an inability to filter malicious entities due to metric
coupling. In contrast, FedTGE maintained its defensive capabilities under these conditions.

Convergence Analysis. We plotted the curves of V during the training process on the Pubmed
dataset with a malicious proportion of Υ = 0.3 and 0.5. The results are shown in Figure 3, where 1)
and 2) represent the Υ = 0.3 setting, and 3) and 4) represent the Υ = 0.5 setting. We observe that
FedTGE exhibits outstanding performance across all settings. Additionally, under high poisoning
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rates, traditional FL methods essentially lose their defense capabilities, showing performance close
to that of the standard FedAvg aggregation method.

5.3 DIAGNOSTIC ANALYSIS

Key Components. We conducted an ablation study on the key components of our method using the
Cora and PubMed datasets, with a malicious client proportion of Υ = 30%. The results, demon-
strating the effectiveness of each component, are presented in Table 2. TEDC significantly increases
the backdoor failure rate R, while TESP alleviates backdoor attacks to some extent on the server
side through energy propagation and adjustment of aggregation weights.
Different Cluster Methods. We compared FINCH with several mainstream clustering strategies,
including K-Means (Arthur & Vassilvitskii, 2006; Macqueen, 1967), DBSCAN (Ester et al., 1996),
and OT (Cuturi, 2013; Solomon et al., 2015). The results are presented in Table 3. Both K-Means
and DBSCAN require careful tuning of their respective hyper-parameters, which limits their effec-
tiveness in heterogeneous federated environments. In contrast, the OT method is more sensitive
to noise and has a higher computational complexity. On the other hand, FINCH does not require
any hyper-parameter tuning and operates with near-linear complexity, making it more suitable for
heterogeneous or federated systems with unknown scales.
Table 2: Ablation on key components for
FedTGE on PubMed and Photo under Non-IID-
Louvain. Please see details in Section 5.3

TEDC TESP PubMed Photo
Sec.5.3 Sec.5.3 A R V A R V

✗ ✗ 86.12 4.26 45.19 71.98 66.88 69.43
✓ ✗ 85.42 66.96 76.19 73.03 89.36 81.19
✗ ✓ 85.85 19.22 52.53 75.81 69.36 72.58
✓ ✓ 86.79 67.22 77.01 77.46 94.81 86.14

Table 3: Ablation on popular clustering methods
for FedTGE on PubMed and Photo under Non-IID-
Louvain. Please see details in Section 5.3

Method
PubMed Photo

Method A R V A R V
K-Means 87.32 60.19 73.75 72.44 91.50 81.97
DBSCAN 86.11 25.30 55.69 69.38 74.22 71.80

OT 69.34 13.99 41.66 79.57 71.34 75.45
FINCH 86.79 67.22 77.01 77.46 94.81 88.14

Hyper-Parameters. We performed a hyper-parameter ablation analysis on the Cora, PubMed, and
Photo datasets. The analysis focused on key hyper-parameters: the number of energy calibration
epochs at the client level (energy-epochs) and the threshold τ for edge index establishment at
the server level. We observed that the choice of hyperparameters does not lead to significant
fluctuations in the evaluation metrics. In most of our experiments, we set the default values as 10
for energy-epochs and 0.8 for τ .

Figure 4: Ablation Analysis of Energy-Epochs and τ on the Cora, Pubmed, and Photo datasets under both IID
and Non-IID settings with Υ = 0.3. The results illustrate node classification accuracy A (left two panels) and
backdoor failure rate R (right two panels).

6 CONCLUSION
In this paper, we are pioneers in innovatively exploring the problem of backdoor defenses in feder-
ated graph learning. We propose a novel framework called FedTGE, an effective Federated Graph
Backdoor Defense via Topological Graph Energy. At the client level, we inject the local models
with energy-awareness, allowing them to learn the energy distribution of real data, assigning lower
energy to benign samples and relatively higher energy to malicious samples. At the server level, We
cluster clients based on their energy elements and determine their aggregation weights according to
the similarity of energy elements between clients and the magnitude of each client’s total energy.
This method has demonstrated effectiveness and robustness across multiple scenarios. We hope this
work offers a novel perspective for future research on federated graph backdoor defenses.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Guancheng Wan, Wenke Huang, and Mang Ye. Federated graph learning under domain shift with
generalizable prototypes. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 15429–15437, 2024.

Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and Jingren Zhou.
Federatedscope-gnn: Towards a unified, comprehensive and efficient package for federated graph
learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 4110–4120, 2022.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Qitian Wu, Yiting Chen, Chenxiao Yang, and Junchi Yan. Energy-based out-of-distribution detection
for graph neural networks. arXiv preprint arXiv:2302.02914, 2023.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In 30th USENIX Security
Symposium (USENIX Security 21), pp. 1523–1540, 2021.

Zehao Xiao, Xiantong Zhen, Shengcai Liao, and Cees GM Snoek. Energy-based test sample adap-
tation for domain generalization. arXiv preprint arXiv:2302.11215, 2023.

14



Published as a conference paper at ICLR 2025

Jing Xu, Minhui Xue, and Stjepan Picek. Explainability-based backdoor attacks against graph neural
networks. In Proceedings of the 3rd ACM workshop on wireless security and machine learning,
pp. 31–36, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019a.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19,
2019b.

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang. Distributed backdoor attacks
on federated graph learning and certified defenses. arXiv preprint arXiv:2407.08935, 2024.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016a.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016b.

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated learning:
State-of-the-art and research challenges. CSUR, 2023.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International conference on machine learning, pp.
5650–5659. Pmlr, 2018a.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International conference on machine learning, pp.
5650–5659. Pmlr, 2018b.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
spiking graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 16495–16503, 2024.

Hao Yu, Chuan Ma, Meng Liu, Tianyu Du, Ming Ding, Tao Xiang, Shouling Ji, and Xinwang Liu. G
2̂ uardfl: Safeguarding federated learning against backdoor attacks through attributed client graph
clustering. arXiv preprint arXiv:2306.04984, 2023.

Yige Yuan, Bingbing Xu, Liang Hou, Fei Sun, and Huawei Shen. Tea: Test-time energy adaptation,
2024. URL http://arxiv.org/abs/2311.14402.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021a.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning
with missing neighbor generation. Advances in Neural Information Processing Systems, 34:6671–
6682, 2021b.

Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor attacks to graph
neural networks. In Proceedings of the 26th ACM Symposium on Access Control Models and
Technologies, pp. 15–26, 2021c.

Haibin Zheng, Haiyang Xiong, Jinyin Chen, Haonan Ma, and Guohan Huang. Motif-backdoor:
Rethinking the backdoor attack on graph neural networks via motifs. IEEE Transactions on
Computational Social Systems, 11(2):2479–2493, 2023.

15

http://arxiv.org/abs/2311.14402


Published as a conference paper at ICLR 2025

A DATASETS DETAILS
The statistics of the datasets used in our experiments are provided in Table 4.
• Citation Network (Cora, PubMed): The citation network datasets, such as Cora and PubMed,

consist of interconnected research papers where nodes represent studies and edges denote citation
relationships. They are often used in tasks such as classification of research papers and the con-
struction of knowledge graphs, providing valuable information on research trends and hot topics
within academic domains (Yang et al., 2016b).

• Co-authorship (CS, Physics): The co-authorship datasets, including those for fields such as
Computer Science (CS) and Physics, are derived from the Microsoft Academic Graph. In these
datasets, nodes represent authors, and edges signify co-author relationships. These datasets are
used to predict the research fields of authors, aiding in the analysis of research collaboration net-
works, distribution of research areas, and academic influence (Shchur et al., 2018).

• Amz-purchase (Photo): The Amz-purchase datasets, such as the Photo dataset, are based on
Amazon’s co-purchase relations. In these datasets, nodes represent products, and edges indicate
co-purchase relationships. The primary objective is to predict the category of each product, often
used in recommendation systems and market analysis studies (McAuley et al., 2015).

B ADDITIONAL EXPERIMENT DETAILS

In this section, we conducted additional experiments to validate the superiority of FedTGE, covering
different Non-IID settings (i.e., non-iid-louvain, non-iid-label-skew, non-iid-feature-skew), varying
malicious ratios, and different trigger types. We introduce the key characteristics of these trigger
types below:

• Renyi Trigger (Zhang et al., 2021c): Based on the Erdős–Rényi random graph model, the Renyi
trigger introduces random nodes and edges into the graph. Each edge is created with an indepen-
dent probability, resulting in a structure that lacks discernible patterns. This randomness offers
strong obfuscation, making detection difficult.

• GTA Trigger (Xi et al., 2021): The GTA trigger employs well-designed, structured subgraphs
(e.g., star or ring shapes) injected into the graph. By simultaneously modifying the features of the
inserted nodes, the attacker amplifies their influence on targeted classifications. While this design
leads to high attack success rates, its structural regularity increases the likelihood of detection by
defense mechanisms.

• WS Trigger (Watts & Strogatz, 1998): Built on the Watts-Strogatz small-world model, the WS
trigger introduces subgraphs characterized by high clustering coefficients and short average path
lengths. These properties resemble real-world networks, enhancing their stealthiness. The high
local clustering can significantly affect the graph’s global properties, thereby improving attack
efficacy. However, the attack success depends on carefully choosing parameters like rewiring
probabilities.

• BA Trigger (Barabási & Albert, 1999): Derived from the Barabási-Albert scale-free network
model, the BA trigger generates subgraphs with a power-law degree distribution, where a few
”hub” nodes exhibit high connectivity. These hubs effectively propagate the backdoor effect across
the graph, leveraging their high connectivity for stronger attacks. While this structure closely
mimics real-world networks, the insertion of highly connected hub nodes might require extensive
graph modifications, potentially impacting efficiency.
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Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

IID with a malicious proportion of Υ = 0.5 and a trigger type of renyi

Vanilla 72.00 15.36 43.68 85.91 5.97 45.94 90.09 12.48 51.28 93.88 16.33 55.11 90.53 20.36 55.45

FLTrust 70.00 45.60 57.80 82.59 21.42 52.01 90.05 62.24 76.15 94.10 57.88 75.99 88.42 74.03 81.23

RSA 72.50 25.76 49.13 87.17 5.12 46.14 90.82 12.46 51.64 94.22 14.76 54.49 91.26 17.25 54.25

RLR 76.33 12.48 44.41 87.28 5.50 46.39 91.56 11.93 51.75 94.53 11.61 53.07 91.16 11.48 51.32

FLAME 70.92 28.00 49.46 84.61 24.77 54.69 90.41 55.36 72.89 93.45 56.06 74.76 87.76 76.66 82.21

G2uard 69.17 45.60 57.38 83.47 28.58 56.03 88.74 65.79 77.27 93.61 52.89 73.26 89.92 64.56 77.24

Trim Median 69.17 11.68 40.42 85.58 5.02 45.30 90.37 9.36 49.86 93.46 11.85 52.65 89.71 18.29 54.00

Trimmed Mean 70.75 18.72 44.74 85.98 5.44 45.71 90.03 10.71 50.37 93.83 14.98 54.41 90.45 21.25 55.85

FreqFed 74.05 28.61 51.33 85.21 5.28 45.24 90.77 9.29 50.03 93.05 11.88 52.56 90.05 15.06 52.59

RFA 75.67 17.12 46.39 87.25 5.87 46.56 90.71 11.17 50.94 93.35 15.94 55.14 91.39 11.48 51.44

MMA 75.33 15.36 45.35 87.39 5.42 46.41 90.98 11.26 51.12 94.18 18.52 56.35 91.08 20.42 55.75

FoolsGold 73.83 15.52 44.68 87.17 5.56 46.37 90.87 11.89 51.38 94.19 15.01 54.60 91.13 10.13 50.63

DnC 62.33 55.04 58.69 83.77 4.65 44.21 87.61 82.19 84.75 92.65 57.45 75.05 87.29 20.68 53.98

FedCPA 74.17 11.20 42.68 86.01 5.18 45.59 90.60 10.93 50.77 93.37 13.22 53.30 90.05 9.61 49.83

Sageflow 75.58 26.24 50.91 87.14 5.28 46.21 90.55 5.46 48.01 92.99 17.33 55.16 91.18 17.25 54.22

FedTGE 72.80 73.76 73.28 85.47 53.56 69.52 90.21 80.63 85.42 93.69 62.52 78.10 90.55 92.62 91.59

Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Louvain with a malicious proportion of Υ = 0.5 and a trigger type of renyi

Vanilla 60.13 22.37 41.25 85.44 12.21 48.82 89.75 36.69 63.22 92.24 33.85 63.05 66.16 52.89 59.53

FLTrust 78.07 50.87 64.47 84.44 44.71 64.58 90.29 62.24 76.27 93.27 65.93 79.60 71.12 75.08 73.10

RSA 72.91 24.83 48.87 87.67 16.44 52.05 90.91 48.38 69.64 94.36 40.64 68.00 74.26 35.44 54.85

RLR 80.38 28.85 54.62 87.68 18.75 53.21 89.60 42.96 66.28 95.24 36.17 65.70 61.02 30.99 46.00

FLAME 66.39 55.58 60.99 84.57 43.58 64.08 88.33 66.51 77.42 93.93 65.82 79.88 72.09 88.76 80.43

G2uard 63.46 44.63 54.05 84.58 34.73 59.66 88.02 68.51 78.27 92.30 63.01 77.66 70.23 76.69 73.46

Trim Median 62.20 25.01 43.60 85.59 14.57 50.08 89.78 34.92 62.35 91.69 34.76 63.23 66.75 45.42 56.08

Trimmed Mean 62.26 29.26 45.78 85.89 14.46 50.18 89.46 33.69 61.57 93.55 57.33 75.44 66.62 49.24 57.93

FreqFed 73.05 28.61 50.83 85.63 18.55 53.09 90.84 40.36 65.60 94.31 38.82 66.57 73.30 29.45 51.38

RFA 78.14 38.78 58.46 87.63 16.28 51.95 90.81 45.15 67.98 95.41 44.55 69.98 81.29 45.29 63.29

MMA 74.68 37.41 56.04 86.93 22.91 54.92 88.15 41.43 64.79 94.07 50.68 72.37 76.82 38.60 57.71

FoolsGold 76.46 26.88 51.67 87.77 16.10 51.93 90.64 41.38 66.01 95.35 36.38 65.87 78.59 35.48 57.03

DnC 52.62 36.76 44.69 69.12 20.53 44.83 56.26 88.24 72.25 86.65 73.46 80.05 61.56 40.35 50.96

FedCPA 74.54 39.78 57.16 86.68 20.55 53.62 90.50 38.24 64.37 94.34 37.32 65.84 73.52 32.14 52.83

Sageflow 74.47 40.79 57.63 86.43 18.56 52.50 89.14 46.12 67.63 94.78 42.93 68.85 77.36 54.43 65.90

FedTGE 73.45 58.13 62.79 85.52 74.78 80.15 90.71 77.87 84.29 93.45 72.11 82.78 76.86 94.36 85.61
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Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

IID with a malicious proportion of Υ = 0.1 and a trigger type of renyi

Vanilla 74.08 44.80 59.44 85.81 7.21 46.51 90.21 18.58 54.39 93.89 18.84 85.37 90.68 17.92 54.30

FLTrust 72.92 56.00 64.46 84.67 26.90 55.79 90.49 33.72 62.11 94.13 45.62 69.88 89.21 79.61 84.41

RSA 71.19 64.80 68.36 87.30 7.92 47.61 90.28 25.69 57.96 94.20 23.19 58.69 91.42 29.09 60.26

RLR 75.58 72.00 73.79 87.29 10.05 48.67 91.81 18.91 55.36 94.54 15.13 54.84 91.24 20.26 55.75

FLAME 73.91 64.00 68.96 85.12 34.31 59.72 89.83 39.07 64.45 92.27 47.82 70.05 90.56 64.42 77.49

G2uard 74.17 48.00 61.09 84.69 34.87 59.78 89.63 33.46 61.55 93.44 34.69 64.07 89.34 79.61 84.48

Trim Median 69.33 53.60 61.47 85.63 6.60 46.12 90.05 19.45 54.75 93.71 21.16 57.43 90.26 20.26 55.26

Trimmed Mean 73.25 36.80 55.03 85.77 6.60 46.18 90.15 17.38 53.77 93.84 24.29 59.06 90.42 19.74 55.08

FreqFed 75.00 71.99 73.50 86.85 9.14 47.99 90.60 18.58 54.59 93.57 6.78 50.18 90.45 16.88 53.67

RFA 75.42 47.20 61.31 87.16 9.44 48.30 91.66 20.00 55.83 94.11 36.82 65.46 91.66 20.00 55.83

MMA 75.33 63.20 69.27 86.93 8.32 47.63 90.84 20.11 55.48 94.15 19.83 56.99 91.39 48.31 69.85

FoolsGold 76.17 44.00 60.08 87.42 8.63 48.03 90.89 19.13 55.01 94.27 21.10 57.69 91.39 16.62 54.01

DnC 64.50 80.80 72.65 84.38 8.12 46.25 83.44 36.97 60.21 92.67 46.78 69.73 88.26 9.61 48.94

FedCPA 74.17 64.00 49.08 85.29 9.14 47.22 89.98 20.77 55.37 93.20 24.41 58.80 90.66 24.68 57.67

Sageflow 76.08 60.80 68.44 87.04 9.54 48.29 90.09 22.62 56.36 94.14 25.51 59.82 91.50 47.01 69.26

FedTGE 75.42 84.00 79.71 85.12 46.19 65.66 90.31 40.43 65.37 93.28 57.10 70.42 90.76 98.44 94.60

Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Louvain with a malicious proportion of Υ = 0.1 and a trigger type of renyi

Vanilla 62.52 40.69 51.60 85.41 22.19 53.80 90.08 35.30 62.69 92.54 46.91 69.72 74.44 70.79 72.61

FLTust 78.69 68.00 73.35 85.63 84.69 85.16 91.14 69.51 80.33 93.91 62.00 77.96 77.81 72.69 75.25

RSA 74.39 78.68 76.54 88.05 21.79 54.92 91.79 55.16 73.47 95.36 55.16 75.26 74.39 78.68 76.54

RLR 80.46 65.52 72.99 87.95 24.18 56.07 90.04 41.71 65.87 95.52 44.45 69.99 65.85 63.16 65.51

FLAME 75.00 68.89 71.95 85.53 82.78 84.16 89.69 69.51 79.60 93.74 61.73 77.74 73.29 70.28 71.79

G2uard 70.49 66.00 68.25 85.54 83.73 84.64 88.89 65.13 77.01 93.06 58.98 76.02 73.12 73.56 73.34

Trim Median 65.07 46.90 55.98 86.23 21.09 53.66 90.15 41.21 65.68 93.29 53.01 73.15 66.36 65.26 65.81

Trimmed Mean 65.12 44.83 54.97 86.20 20.50 53.35 90.18 38.36 64.27 93.85 50.20 72.02 69.70 67.63 68.67

FreqFed 77.71 55.17 66.44 86.63 25.37 56.50 77.39 61.84 69.61 78.42 40.47 59.44 75.39 61.84 68.61

RFA 79.41 76.55 77.98 87.88 24.98 56.43 91.14 48.19 69.66 95.38 51.68 73.53 80.74 67.37 74.05

MMA 77.49 60.26 68.88 87.60 25.27 56.44 86.72 66.62 76.66 94.88 57.42 76.15 80.20 60.26 70.23

FoolsGold 78.84 62.07 70.45 87.86 25.57 56.77 91.20 46.90 69.05 95.44 51.09 73.26 85.24 62.89 74.07

DnC 41.94 1.00 70.97 57.57 90.95 74.56 56.50 67.40 61.95 86.01 71.13 78.57 44.06 95.53 69.80

FedCPA 77.43 78.76 78.09 86.68 16.55 51.62 90.01 48.54 69.90 94.40 56.64 75.52 75.53 71.05 73.29

Sageflow 76.13 60.53 68.33 87.76 26.77 57.26 86.30 61.28 73.79 95.14 55.00 75.07 76.13 66.84 71.49

FedTGE 78.76 73.68 76.22 86.54 95.52 91.03 89.23 77.37 83.30 94.66 69.75 82.21 75.50 80.26 77.89
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Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Label-Skew with α = 0.5 and a malicious proportion of Υ = 0.3 under a trigger type of renyi.

Vanilla 61.72 73.89 67.80 85.88 11.28 48.58 87.69 59.69 73.69 94.34 39.54 66.94 77.39 54.46 69.93

FLTrust 63.12 59.66 61.39 82.63 8.98 45.80 91.96 64.92 78.44 94.58 31.25 62.92 77.55 72.06 74.81

RSA 67.51 50.15 58.83 85.17 12.03 48.60 91.67 62.98 77.33 94.32 54.61 74.47 78.41 56.35 67.38

RLR 65.62 51.04 58.33 85.33 0.64 42.99 92.03 58.65 75.34 94.67 46.85 70.76 78.93 64.51 71.72

FLAME 63.27 70.08 66.68 84.28 14.43 49.36 86.08 66.29 76.19 90.27 42.64 66.46 77.78 51.78 64.78

G2uard 63.37 63.56 63.47 83.16 7.78 45.47 85.90 68.92 77.41 91.27 37.23 64.25 77.89 58.12 68.01

Trim Median 60.90 58.35 59.62 86.39 7.91 47.15 87.49 51.69 69.59 94.24 30.72 62.48 77.28 58.66 67.97

Trimmed Mean 54.99 66.89 60.94 85.73 2.13 43.93 88.49 44.59 66.54 94.16 33.82 63.99 78.25 58.64 68.45

FreqFed 67.11 50.13 58.62 86.63 10.82 48.73 91.74 63.40 77.57 94.64 47.53 71.09 77.87 55.19 66.53

RFA 65.23 74.39 69.81 86.03 0.30 43.16 91.10 58.93 75.02 94.84 58.90 76.87 76.22 56.32 66.27

MMA 65.67 62.24 63.96 87.48 10.44 48.96 91.80 38.70 65.75 94.80 28.70 61.75 76.33 52.04 64.19

FoolsGold 65.22 63.98 64.60 86.86 10.91 48.88 91.31 61.05 76.18 91.31 61.05 77.18 77.88 62.73 70.31

DnC 54.14 87.58 70.86 69.43 18.11 43.77 78.79 61.66 70.23 90.05 31.81 60.93 68.36 62.64 65.50

FedCPA 66.41 54.43 60.42 85.88 11.39 48.64 91.48 57.24 74.36 94.68 36.41 65.54 78.01 53.74 65.88

Sageflow 65.42 44.91 55.17 86.09 0.35 43.22 91.57 64.46 78.02 94.59 26.51 60.55 78.25 50.51 64.38

FedTGE 64.28 88.91 76.60 86.98 43.65 65.32 91.68 77.96 84.82 94.79 86.79 90.79 79.65 92.65 86.15

Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Feature-Skew with α = 0.5 and a malicious proportion of Υ = 0.3 under a trigger type of renyi.

Vanilla 62.97 44.79 53.88 84.00 31.60 57.80 88.97 59.52 74.23 94.05 48.23 71.14 77.46 58.43 67.95

FLTrust 60.47 55.56 58.02 83.68 32.17 57.93 89.09 67.97 78.52 94.55 55.36 74.96 78.69 69.05 73.87

RSA 63.10 31.54 47.32 86.79 31.91 59.35 90.49 60.30 75.40 93.79 49.23 71.51 80.78 62.75 71.77

RLR 65.12 33.38 49.25 87.46 19.61 53.54 91.01 57.94 74.48 94.88 46.23 70.56 80.14 66.45 73.30

FLAME 60.30 66.50 63.40 83.48 62.34 72.91 87.24 69.98 78.61 92.85 62.32 77.59 78.52 74.65 76.59

G2uard 59.82 74.19 67.00 82.66 52.65 67.66 86.47 68.67 77.57 92.88 60.11 76.50 79.54 64.60 72.70

Trim Median 62.97 57.44 60.21 84.10 34.23 59.17 88.60 54.11 71.16 93.89 55.23 74.56 78.31 65.27 71.79

Trimmed Mean 64.78 54.10 59.44 84.53 44.23 64.38 88.34 60.47 74.41 93.23 52.36 72.80 78.98 57.19 68.09

FreqFed 66.39 47.99 57.19 85.12 24.71 54.92 90.13 65.25 77.69 94.29 56.69 75.49 90.76 53.37 72.07

RFA 65.23 55.98 60.61 86.89 43.41 65.15 89.15 62.93 76.04 94.56 34.25 65.41 80.57 63.37 71.97

MMA 66.67 60.81 63.74 87.42 51.09 69.26 90.65 58.79 74.72 93.46 28.56 61.01 81.56 64.60 73.08

FoolsGold 66.38 43.21 54.79 86.10 35.35 60.73 89.77 57.14 73.46 94.02 44.58 69.30 80.34 43.37 61.86

DnC 57.53 67.61 62.57 84.60 36.19 60.39 81.62 48.90 65.26 88.71 73.21 80.96 72.11 73.98 73.05

FedCPA 68.07 55.77 61.92 87.76 54.35 71.06 90.91 63.26 77.09 94.94 58.69 76.82 79.89 64.61 72.25

Sageflow 65.98 56.37 61.18 87.99 60.24 74.12 89.64 72.96 81.30 93.81 69.98 81.90 80.67 65.84 73.26

FedTGE 63.69 88.98 76.34 86.53 71.29 78.91 90.23 79.96 85.10 94.40 85.70 90.05 79.63 92.34 85.99
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Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Louvain with a malicious proportion of Υ = 0.3 under a trigger type of gta.

Vanilla 78.54 27.96 53.25 86.86 11.70 49.28 83.92 54.82 69.37 93.42 24.86 59.14 72.32 50.32 61.32

FLTrust 78.21 43.01 60.61 86.36 36.05 61.21 91.23 79.26 85.25 94.21 59.26 76.74 74.12 75.30 74.71

RSA 84.52 18.79 51.65 89.15 16.55 52.85 91.06 47.18 69.12 94.61 42.93 68.77 73.62 35.59 54.61

RLR 83.65 27.48 55.56 88.88 17.20 53.04 91.28 75.42 83.35 94.99 41.56 68.27 72.83 50.45 61.64

FLAME 77.54 67.13 72.34 85.45 40.51 62.98 89.62 78.32 83.97 93.28 50.49 71.89 73.99 92.69 83.34

G2uard 75.31 69.62 72.47 86.12 42.90 64.51 91.31 73.46 82.39 93.22 61.54 77.38 72.14 83.83 77.99

Trim Median 79.49 33.06 56.26 86.63 14.58 50.60 84.16 59.94 72.05 93.55 27.39 60.47 73.76 59.91 66.83

Trimmed Mean 76.50 23.61 50.05 87.23 18.43 52.83 84.37 59.03 71.69 93.91 23.26 58.59 75.25 51.64 63.44

FreqFed 81.91 29.62 55.76 87.86 15.60 51.73 90.49 55.92 73.21 94.95 40.96 67.95 73.20 48.89 61.05

RFA 82.06 29.39 55.73 88.87 16.23 52.55 90.16 62.78 76.47 94.50 45.13 69.81 73.36 43.67 58.52

MMA 79.72 46.95 63.34 88.11 23.91 56.01 90.43 75.92 83.17 94.63 39.62 67.12 71.49 58.13 64.81

FoolsGold 79.56 25.60 52.58 89.15 16.07 52.61 90.78 48.48 69.63 94.68 40.56 67.62 72.97 43.39 58.18

DnC 67.90 56.82 62.36 75.92 32.83 54.37 58.25 90.42 74.33 79.51 58.64 69.07 62.79 95.08 78.93

FedCPA 78.79 24.00 51.40 88.42 14.62 51.52 90.64 60.24 75.44 94.55 40.16 67.35 72.97 38.36 55.67

Sageflow 79.95 29.49 54.72 89.04 16.70 52.87 90.09 70.80 80.45 94.54 54.69 74.62 73.49 42.51 57.99

FedTGE 80.23 75.23 77.73 87.56 55.34 71.45 90.53 87.82 89.18 94.39 72.37 83.38 74.46 97.56 86.01

Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Louvain with a malicious proportion of Υ = 0.3 under a trigger type of ba.

Vanilla 79.05 79.53 79.29 85.55 85.70 85.63 91.01 72.24 81.63 92.95 63.91 78.43 78.68 77.27 77.98

FLTrust 82.01 92.53 87.27 86.02 75.74 80.88 91.20 78.29 84.75 93.90 62.09 77.99 76.47 77.38 76.93

RSA 80.58 75.20 77.89 85.31 80.52 82.92 88.58 72.68 80.63 93.39 67.12 80.26 82.09 75.88 78.99

RLR 79.79 95.23 87.51 87.55 82.77 85.16 91.17 79.65 85.41 94.54 64.29 79.42 80.55 78.20 79.38

FLAME 77.79 89.83 83.81 86.78 74.52 80.65 88.58 78.41 83.50 94.04 58.45 76.24 76.43 79.10 77.77

G2uard 79.96 88.15 84.05 84.84 86.66 85.75 90.35 74.90 82.63 94.21 66.67 80.44 77.91 77.33 77.62

Trim Median 80.18 88.55 84.36 85.21 69.63 77.42 88.41 78.10 83.26 92.86 58.26 75.56 80.27 78.65 79.46

Trimmed Mean 78.67 82.70 80.68 86.35 75.63 80.99 90.21 76.89 83.55 93.58 62.03 77.81 80.99 79.10 80.05

FreqFed 81.44 92.75 87.10 85.87 80.21 83.04 90.69 76.59 83.64 94.44 60.57 77.50 81.44 78.23 79.84

RFA 81.92 89.38 85.65 85.70 77.47 81.59 89.33 75.60 82.47 93.68 64.73 79.20 81.32 79.01 80.17

MMA 80.97 92.53 86.75 85.67 78.27 81.96 87.97 77.81 82.89 92.34 60.50 76.42 78.67 76.88 77.78

FoolsGold 82.12 88.16 85.14 86.21 71.87 79.04 89.76 79.45 84.61 94.38 67.27 80.83 81.17 77.35 79.26

DnC 73.44 93.33 83.39 83.22 72.95 78.09 73.73 77.89 75.81 77.06 71.15 74.11 70.92 78.65 74.79

FedCPA 80.06 87.43 83.75 86.06 79.40 82.73 89.81 73.70 81.76 94.47 60.92 77.70 81.97 77.33 79.65

Sageflow 82.66 91.42 87.04 87.85 75.39 81.62 90.05 79.39 84.72 92.25 68.15 80.20 82.24 79.10 80.67

FedTGE 81.98 92.58 87.28 87.27 91.56 89.42 91.13 86.89 89.01 93.55 75.67 84.61 80.78 88.71 84.75
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Methods
Cora PubMed Coauthor-CS Coauthor-Phy Amz-Photo

Methods
A R V A R V A R V A R V A R V

Non-IID-Louvain with a malicious proportion of Υ = 0.3 under a trigger type of ws.

Vanilla 77.31 74.74 76.03 85.34 81.97 83.66 86.06 76.63 81.35 93.82 63.03 78.42 74.03 79.01 76.52

FLTrust 76.29 93.51 84.90 86.43 74.67 80.55 90.87 79.65 85.26 93.87 63.19 78.53 76.46 76.37 76.42

RSA 82.90 90.28 86.59 85.05 83.79 84.42 89.76 75.03 82.40 93.05 62.79 77.92 80.34 76.84 78.59

RLR 81.82 97.22 89.52 87.34 76.80 82.07 90.62 77.00 83.81 94.64 66.54 80.59 80.19 76.38 78.29

FLAME 82.25 84.23 82.24 86.26 70.37 78.32 89.32 79.45 84.39 93.37 58.83 76.10 77.51 79.10 78.31

G2uard 77.99 94.86 86.42 85.32 78.74 82.03 90.04 79.29 84.67 93.43 69.18 81.31 77.22 75.01 76.12

Trim Median 77.31 74.74 76.03 85.13 71.39 78.26 90.22 77.79 84.01 92.95 58.41 75.68 80.82 77.75 79.29

Trimmed Mean 81.34 92.38 86.86 85.62 72.11 78.87 90.33 76.83 83.58 93.57 58.74 76.16 81.76 78.65 80.21

FreqFed 83.41 72.78 78.10 86.75 76.32 81.53 90.91 89.65 90.28 93.31 68.81 81.06 80.46 78.49 79.48

RFA 80.19 82.48 81.34 86.55 77.32 81.93 89.86 79.65 84.76 92.59 59.48 76.03 79.50 77.78 78.64

MMA 81.10 91.30 86.20 86.82 80.03 83.42 86.77 79.45 83.11 94.38 65.30 79.84 80.92 75.12 78.02

FoolsGold 82.91 84.72 83.82 87.02 78.28 82.65 90.91 78.12 84.52 94.09 68.29 81.19 80.07 88.68 84.38

DnC 64.89 86.40 75.65 78.75 72.18 75.46 77.75 96.44 87.10 78.34 78.43 78.38 66.78 98.78 82.78

FedCPA 82.20 90.50 86.35 85.81 79.09 82.45 90.24 79.65 84.95 94.57 69.83 82.20 81.02 76.84 78.93

Sageflow 81.81 89.40 85.61 86.10 86.34 86.22 89.54 76.78 83.16 94.00 67.24 80.62 77.76 73.26 75.51

FedTGE 81.76 91.98 86.87 86.23 90.19 88.21 90.83 92.96 91.90 94.45 85.69 90.07 78.69 97.12 87.91
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C DETAILS OF THE COMPARISON METHODS

• FedAvg (McMahan et al., 2017b): The standard federated averaging algorithm, where updates
from all clients are averaged at the server without applying any defense mechanisms. This method
is widely used in federated learning but is vulnerable to adversarial attacks.

• Trimmed Median and Trimmed Mean (Yin et al., 2018b): These methods are designed to mit-
igate the impact of malicious clients by trimming outliers or anomalous parameter updates. The
trimmed median eliminates the extreme values from the client updates, while the trimmed mean
excludes a proportion of the largest and smallest values before aggregation, thereby offering some
protection against Byzantine failures.

• FoolsGold (Fung et al., 2018): A defense strategy aimed at preventing model poisoning attacks by
reducing the weight of clients with highly similar updates. This method assumes that malicious
clients tend to submit similar updates to amplify the impact of the backdoor attack, and thus it
assigns lower aggregation weights to those clients.

• DnC (Shejwalkar & Houmansadr, 2021): This method partitions clients into different clusters
based on their updates and then aggregates the updates within each cluster. By separating clients,
DnC reduces the likelihood of adversarial clients overwhelming the aggregation process, making
it harder for an attacker to influence the global model.

• SageFlow (Park et al., 2021): A distance-based defense method that detects and mitigates mali-
cious updates by measuring the discrepancies between client updates. It ensures that updates that
deviate significantly from the majority are either discarded or given lower aggregation weights,
thus improving robustness against adversarial clients.

• MMA (Huang et al., 2023a): An adaptive defense mechanism that relies on multiple metrics,
such as gradient norms, update similarities, and client performance, to identify and counteract
adversarial behaviors. This method dynamically adjusts the aggregation weights of clients based
on their performance across these metrics.

• RFA (Pillutla et al., 2022): This method uses the geometric median as a robust aggregation tech-
nique to handle outliers in client updates. The geometric median ensures that extreme values
(e.g., from malicious clients) have less influence on the final aggregated model, thereby providing
resilience against adversarial attacks.

• RLR (Robust Learning Rate) (Ozdayi et al., 2021): A defense approach that adaptively adjusts
the learning rate of clients based on the perceived reliability of their updates. Clients that appear
to submit suspicious or noisy updates receive lower learning rates, which helps in mitigating the
influence of malicious clients and stabilizing the global model.

• RSA (Li et al., 2019a): RSA is a method designed to improve robustness in federated learning by
introducing regularization into the aggregation process. It adjusts client updates by penalizing the
updates that deviate significantly from the average, thereby mitigating the influence of malicious
or noisy clients. The regularization term helps smooth out extreme variations in client contribu-
tions, ensuring a more stable and reliable global model. This method is particularly effective in
environments with high heterogeneity, where individual client updates can vary greatly.

• FreqFed (Fereidooni et al., 2023): A frequency analysis-based defense mechanism designed to
mitigate poisoning attacks in federated learning. FreqFed leverages frequency domain transfor-
mations (such as Fourier transforms) to analyze the client updates, identifying and filtering out
malicious updates that exhibit anomalous frequency patterns. By decomposing the updates into
their constituent frequencies, FreqFed can effectively distinguish between benign and adversarial
modifications. This approach enhances the robustness of the global model by ensuring that only
updates with consistent and expected frequency characteristics are aggregated, thereby reducing
the impact of poisoning attacks and improving overall model integrity.

• FedCPA (Han et al., 2023): An attack-tolerant federated learning algorithm that performs critical
parameter analysis to identify and mitigate the influence of malicious client updates. FedCPA
operates by analyzing the importance of each parameter in the global model and selectively ag-
gregating updates based on the criticality of the parameters. By focusing on the most critical pa-
rameters, FedCPA reduces the attack surface available to adversaries and enhances the robustness
of the federated learning process. This method ensures that even if some clients are compromised,
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their ability to significantly alter the global model is limited, thereby maintaining model integrity
and performance.

• FLTrust (Cao et al., 2021): A Byzantine-robust federated learning framework that enhances ro-
bustness through trust bootstrapping. FLTrust assumes the server possesses a small, clean dataset
referred to as the ”root dataset” and maintains a trusted server model based on this dataset. In
each training iteration, the server assigns trust scores to client updates based on their similarity to
the server’s update direction and normalizes the magnitude of client updates. The server then ag-
gregates the normalized updates using a weighted averaging approach to update the global model.
By leveraging a trusted root dataset, FLTrust effectively mitigates the impact of malicious client
updates, improving the overall robustness of federated learning systems.

• FLAME (Nguyen et al., 2022): A defense framework designed to mitigate backdoor attacks in
federated learning. FLAME estimates the required noise injection to eliminate backdoors while
preserving the model’s performance. To minimize the noise required, FLAME incorporates model
clustering and weight pruning techniques. Experimental results demonstrate that FLAME effec-
tively removes backdoor threats across various datasets, with negligible impact on the model’s
normal performance.

• G2uard (Yu et al., 2023): A framework that safeguards federated learning against backdoor at-
tacks through attributed client graph clustering. G2uard reformulates the identification of mali-
cious clients as an attributed graph clustering problem, leveraging client graph clustering meth-
ods to identify adversarial clients. It incorporates adaptive mechanisms to amplify differences
between aggregated models and compromised models, effectively neutralizing embedded back-
doors. Theoretical analyses confirm that G2uard does not compromise the convergence of the
federated learning system. Empirical results further validate its efficacy in significantly reducing
attack success rates under various backdoor attack scenarios, while maintaining minimal impact
on the model’s performance on benign samples.

Table 4: Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,278 7 1,433

Pubmed 19,717 44,324 3 500
Coauthor-CS 18,333 327,576 15 6,805
Amz-Physics 34,493 495,924 5 8415
Amz-Photo 7,650 287,326 8 745

D COMPLEXITY ANALYSIS

In this section, we delve into the computational complexity of FedTGE, which comprises two com-
ponents, TEDC and TESP, analyzed separately. TEDC is employed to adjust the parameters of the
BN layer, denoted as PBN . Let D represent the number of nodes, F the number of features per
node, and E the number of edges. The energy calibration length is denoted as EN . The main
computational complexity of TEDC can be divided into three parts: forward propagation for energy
computation, energy gradient calculation, and directional propagation. The formulas are as follows:

O(E × F ) +O(D × F ) +O(D) +O(PBN ) (16)

In non-dense graphs, E can be considered proportional to D. Considering energy calibration, the
formula can be simplified as:

O(E × F × EN) (17)

We define the number of clients as N , the indexes established between clients as E, and the energy
distribution length as L. The computational complexity of TESP mainly arises from similarity
matrix computation, edge indexing, and energy propagation, which can be formalized as:

O(N2 × L) +O(N2) +O(N) +O(E) +O(K × E) (18)
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Since N and E are usually relatively small constants, the above formula can be further simplified
as:

O(D +K) (19)

This indicates that the two components of our proposed FedTGE scale linearly with the number of
nodes or edges, demonstrating its suitability for large-scale datasets.

E VISUALIZATION RESULTS

To provide a clearer view of TEDC’s energy correction effect, we visualize the energy distribution
of malicious and benign clients across multiple datasets under the non-iid-louvain setting from the
perspective of Kernel Density Estimation Plot (Davis et al., 2011; Parzen, 1962). The default
settings for all visualization experiments are as follows: the total number of clients is 10, with 3
designated as malicious; the trigger size is set to 4; the poisoning intensity is 0.3; the energy epoch
is 10; and the trigger types include renyi (Zhang et al., 2021c), GTA (Xi et al., 2021), BA (Barabási
& Albert, 1999), and WS (Watts & Strogatz, 1998).
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E.1 CORA
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E.2 PUBMED
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E.3 PHOTO
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E.4 CS
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E.5 PHYSICS

F VISUALIZATION OF FEDFREQ

In the non-iid-louvain environment, we used Principal Component Analysis (PCA) to visualize the
low-frequency components extracted by FedFreq. The clustering results were marked with red cir-
cles to highlight the identified groups.
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Visualization reveals that the low-frequency component-based defense proposed by FedFreq is not
suitable for GCNs, as malicious and benign updates are intertwined, and even benign clients are
separated from each other. This limitation prevents FedFreq from correctly filtering malicious up-
dates and may even discard updates from some benign clients, potentially leading to performance
degradation.
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