
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLIPS: FEW-SHOT FINGERPRINTING OF LLMS VIA
PSEUDORANDOM SEQUENCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Identifying online Large Language Models (LLMs) via black-box queries, or fin-
gerprinting, is now an active research problem. The state-of-the-art schemes re-
quire substantial amounts of queries to a model for building their fingerprints,
often implying having it at hand. This precludes a swift fingerprinting of new
models or variants freshly deployed online. In this paper, we propose FLiPS, a
principled approach to LLM fingerprinting, which enables building a fingerprint
using a trace number of queries (which we term few-shot). FLiPS exploits bias
discrepancies in the generation of random binary sequences by LLMs for model
identification. It employs the classical NIST cryptographic test suite to detect
salient and interpretable differences in LLM outputs. We demonstrate that FLiPS
achieves nearly 99% accuracy on a pool of 35 LLMs using as few as 40 queries to
establish the fingerprint and 8 for its later identification. Furthermore, we propose
an open-set environment where some models are unseen and must be labeled as
such, and achieve 92.5% accuracy (with 67.6% on unseen models). This demon-
strates that FLiPS achieves the novel task of the swift few-shot integration of new
models in its operation.

1 INTRODUCTION

Identifying, i.e. fingerprinting, machine learning models executed at third parties has gained traction
recently Zhao et al. (2025b); Godinot et al. (2025); Maho et al. (2023). This primitive for instance
permits tracking potential leaks, with simple queries to these models as a source for identification.
In the case of Large Language Models (LLMs), some works focus on being able to retrieve a partic-
ular model in which a fingerprint was primarily inserted (requiring weights access) Xu et al. (2024);
Nasery et al. (2025); Russinovich & Salem (2024) while some others only use inherent model prop-
erties (i.e., in a forensic way), allowing to identify a large number of models Pasquini et al. (2025);
Kurian et al. (2025). In all of these work, one either requires weights access (rather than forensic
approach) or a large number of collected samples to build the fingerprint. Collecting such a number
of samples may 1) prevent the possibility of considering a swift integration of new LLMs. This is
a clear impediment when considering the current release rate of new LLMs. Moreover, 2) exces-
sive querying may trigger defense mechanisms based on rate limiting as pointed out in Zhao et al.
(2025a). Table 2 summarizes this point, highlighting that no existing work copes with only a handful
of queries for its training operation in the forensic setup. This paper thus proposes FLIPS, a novel
fingerprinting scheme remedying this lack.

The LLMmap scheme for instance Pasquini et al. (2025) processes LLM outputs corresponding to
crafted queries for their discriminative power. These outputs are then encoded by a pre-trained text
embedder (BERT-like Transformer) and used as features for classifier training. Once trained, the
classifier can accurately identify the source model using only a small set of outputs (typically eight).
In such a setup, the weight is on the construction of the fingerprint, a process in which a classifier
is trained with a significant number of output sequences, so that effective discrimination between
models is possible.

Independently, and in the aim to better understand the inner workings of LLMs, other research do-
mains focus on quantifying to what extent LLMs are capable of generating random sequences when
prompted for it Harrison (2024); Hopkins & Renda (2023); Van Koevering & Kleinberg (2024);
Coronado-Blázquez (2025). They conclude that while most of prompted models show capabilities

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

? LLM
 A ...

0101101001 ...

C()

(,"A")
(,"B")
(,"C")
(,"D")

Query Answer
Convert

NIST Test Features

Store fingerprint Update Classifier

Pick t = , t =A B

? LLM
 ?? ...

0110001011 ...
C()

Query Answer
Convert

NIST Test Features
Input Prediction "A"

1. Initialize

2. Extract Fingerprint

3. Read Fingerprint

Figure 1: The FLIPS fingerprinting method. Two tokens
tA and tB are selected (1) to query the model, which gen-
erates random binary sequences. Each sequence is then
converted into a bit sequence to pass the NIST randomness
test suite. The resulting test statistics serve as features to
an XGBoost classifier (2). To read the fingerprint of a new
black-box, new random sequences of the same two tokens
are queried and fed to the trained classifier (3).

Method Few-Shot Forensic
FLIPS (Ours) ✓ (40) ✓

(Pasquini et al., 2025) ✗ (∼1K) ✓

(Kurian et al., 2025) ✗ (∼3.7K) ✓

(Xu et al., 2024) N/A
(≤60,

requires insertion)

✗
(fine-tuning)

(Nasery et al., 2025) N/A
(up to 24K,

requires insertion)

✗
(fine-tuning)

(Russinovich & Salem, 2024) N/A
(10–100,

requires insertion)

✗
(fine-tuning)

Figure 2: Comparison of fingerprint
construction schemes for LLMs, con-
sidering their requirements in terms of
queries to build fingerprint (Few-Shot),
and the LLM weights access (Foren-
sic). The bottom three methods re-
quire first to have a complete access to
the LLM, to insert information for later
fingerprint reading in the wild.

in that task, there is important room for improvement. Traditionally, model discrepancies in tasks
are often a fertile ground for their identification; be it simply on accuracy or classification failure
patterns of simple input images Maho et al. (2023), or peculiar forms of semantic answers Pasquini
et al. (2025) for instance. In that light, this work leverages the discriminative power of generated
random sequences, for fingerpriting LLMs with FLIPS.

Relying on queries for random sequences has a native advantage over other fingerprinting tech-
niques. Neural-network–based classifiers are often opaque, and this lack of transparency becomes
even more pronounced when analyzing semantic sequences, such as phrases generated by LLMs
Kim et al. (2020). A salient difference between LLM fingerprinting schemes such as LLMmap and
random sequences (FLIPS) lies on outputs embedding. Where LLMmap uses a pretrained text em-
bedder, FLIPS relies on the standard NIST Test Suite Bassham et al. (2010) for its classification.
NIST is a celebrated cryptographic test suite for assessing the quality of pseudorandom sequences,
and has been used for decades. FLIPS therefore relies on this set of explainable tests, assigning
identified deviations from randomness to particular LLMs.

This paper makes the following contributions: 1) Our study motivates the development and demon-
strates the possibility of a resource-efficient, few-shot fingerprinting technique for the seamless and
stealthy integration of unseen LLMs in fingerprinting tasks. 2) We review and motivate why discrep-
ancies in the generation of random sequences by LLMs are an attractive option for fingerprinting
them. We propose to leverage the NIST suite for that task. For this, we introduce FLIPS, summa-
rized in Figure 1, a three-step few-shot method to build and read the fingerprint of an LLM. Finally,
3) we evaluate on a pool of 35 modern LLMs, among which several state-of-the-art models, and
quantify the benefits of FLIPS in a reproducible setup under two scenarios, closed and open-set.

The remainder of this paper is organized as follows. Section 2 presents the setting we are operating
in. FLIPS is then presented in Section 3, before it is extensively evaluated in Section 4. We then
discuss limitations and future work in Section 5, before related work is presented in Section 6. We
make our reproducibility statement in Section 7 and then conclude.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PROBLEM SETTING

In a fingerprinting task, the attacker’s objective is to infer a specific LLM version, placed for instance
by its manufacturer, or by a malicious operator having leaked a protected model, on a remote server
most frequently intermediated by an API. This paper operates with the following constraints in mind.

Strict Black-box Access Setup. n the black-box model, the attacker has query access to the model.
They can only issue queries and retrieve the raw textual generation of the model, without any internal
information (such as architecture, weights or even logits).

Closed and Open-Set Scenarios. Two scenarios are considered in this paper, closed set and open
set. In a closed-set scenario, the black-box model belongs to a predefined set of known models. In an
open-set scenario, the model may not belong to the known set, and should be classified as ”unseen”
rather than erroneously taken for a model in the closed-set.

Few-Shot Fingerprint Construction. A fingerprinting scheme must allow for the integration of
unseen models by leveraging a small number of queries, for resource and computational efficiency.

Excessive Query Detection. Excessive querying patterns may trigger anomaly detection systems
or rate-limiting mechanisms deployed by the target platform, as pointed out in Zhao et al. (2025a),
potentially exposing the fingerprinting attempt and enabling defensive countermeasures. Thus, the
fingerprinting scheme should minimize the number of queries when building the fingerprint of the
source model and the number of reading queries issued to the target model. Few-shot training
capability is therefore a crucial feature for a fingerprinting scheme, and to the best of our knowledge,
this paper is the first work addressing it.

In that light, we address the problem of Excessive Query Detection and Few-shot capabilities with
the proposal of a novel fingerprinting approach, adhering to the black-box setup and considering
both closed and open-sets of LLMs.

3 THE FLIPS FINGERPRINTING SCHEME

3.1 PRELIMINARY DEFINITIONS

Sequence Generation. With FLIPS, we will query LLMs with a fixed prompt template q0 (its
exact formulation is provided in Appendix A), instructing the model to generate a random binary
sequence. The baseline uses the symbols 0 and 1, while alternative prompts substitute these with
different tokens1. The set of all possible tokens is denoted by T.

A model m ∈M is defined such that that for a token pair S ∈ T2, m(S) is a random variable taking
its values in O = {0, 1}∗ where {0, 1}∗ def

=
⋃

K∈N{0, 1}K . Sampling m(S) corresponds to
querying the LLM for a random sequence conditioned on the two tokens in S. Note thatO = {0, 1}∗
rather than {0, 1}K for a fixed K, since different models may produce sequences of varying lengths
and these variations are later exploited for fingerprinting. By defining m(S) as a random variable,
we encompass all stochastic elements of LLM generation, including sampling procedures (e.g., top-
k/top-p) and hardware nondeterminism Atil et al. (2024).

Sequence Embedding. We define the embedding function

f :O −→ Rd

o 7→ (f1(o), . . . , fd(o)) , (1)

with d ∈ N∗, where each component fi corresponds to a test statistic from the NIST Statistical Test
Suite Bassham et al. (2010), except for one dimension reserved for the sequence length |o|. The
specific tests employed are described in Appendix B.

Classification Procedure. We denote by cS,Ntrain the classifier trained on datasets {Dm}m∈M,
where

Dm = {o(m)
i }Ntrain

i=1 with o
(m)
i ∼ m(S) i.i.d. (2)

1If S ≠ 0-1, the token sequence is converted into 0 and 1 by mapping first token to 0 and second to 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and Ntrain ∈ N denotes the number of training samples. The classifier maps outputs o ∈ O to models
m ∈M.

Multi-Query Classification. To do multi-query classification, i.e. using multiple queries for a
single prediction, we aggregate the predictions made by cS,Ntrain on the multiple queries into a single
prediction using a soft-voting procedure (see Appendix C). Importantly, moving from single-query
to n-query classification requires no additional training.

Accuracy Metric. We finally define the accuracy of the n-query classification task as:

acc(cS,Ntrain , n) = P
(
cS,Ntrain(O

(m)) = m
)
m∈M

, (O
(m)
i)1≤i≤n

i.i.d∼ m(S). (3)

3.2 FLIPS OVERVIEW

FLIPS stands in those three steps (also depicted in Figure 1):

1. Initialization. Sample a random pair of tokens (tA, tB) ∈ T2.

2. Fingerprint Training/Extraction.
(a) Collecting Data. Query Ntrain times each LLM m ∈ M with q0(tA, tB), that is the

query asking a random sequence of those two tokens (see Appendix A).
(b) Embedding Convert the output sequences into bit sequences o ∈ {0, 1}∗ (cf Algo 5)

and evaluate them with NIST (cf Appendix B) to get test statistics x = f(o) ∈ Rd.
(c) Classification Training Train a classifier (XGBoost) on the test statistics x, as fea-

tures.

3. Read a Fingerprint. This classifier can fingerprint any black-box model from a new sam-
ple using n queries, for any n ∈ N∗.

With T =
⋂

m∈M{t ∈ Tm, |t| > 1, t ⊂ Σalnum} where Tm is the set of all tokens2 present in the
vocabulary token of LLM m, when available (generally not the case for closed-weights models) and
Σalnum refers to alphanumeric characters.

3.3 FLEXIBILITY ON TOKEN PAIRS

One can use any pair of tokens for binary sequence generation, since the mapping of the generated
sequence to a bit-sequence representation is straightforward. We thereby set the maximum set of
tokens shared by all the models we could (i.e. open-weights models used in the experiment). We
explore that parameter space by investigating performance variability as a function of the sampled
token pair. However, one has to keep the same token-pair at training and reading time (we inves-
tigated on cross token-pairs performances in Appendix D). Therefore, at this stage, this flexibility
allows pivoting the token-pair, and consequently the classifier employed. We leave to future work
the introduction of crossing token pairs within a single fingerprinting scheme.

3.4 NIST TEST STATISTICS

As an illustration of the features FLIPS leverages, we here give a brief overview of the top-5 most
empirically impactful NIST features, for the XGBoost classification procedure. The complete rank-
ing is displayed in Figure 8 in the Appendix. Their description come from Bassham et al. (2010).

The Top-1 test, Run, measures the frequency of transitions between sequences of 0s and 1s. Top-2,
Monobit, evaluates the proportion of zeros and ones across the entire sequence. Top-3 is not a NIST
test but simply reports the output sequence length. Top-4, Overlap 110, counts the occurrences of
the pattern 110 and finally, Top-5, Longest-One Block, measures the length of the longest run of
consecutive 1s within a block (i.e., a subset) of the sequence.

Each test then compares its metric against the expected one under assumption of theoretical random-
ness.

2all decoded tokens

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL EVALUATION

We included 31 open-weights and 4 proprietary models (visible on Table 3) in our experimental
evaluation. Some of these models are state-of-the-art for their manufacturers (e.g., gpt-5-nano,
gemini-2.5-flash-lite or Llama-3.1-70B-Instruct). The generation configuration used can be found
in Appendix E.

4.1 EXPERIMENTAL SETUP

Token Pairs. Our evaluation encompasses a total of 151 token pairs organized into three cate-
gories: 01 pairs: the baseline token pair 0-1; Monochar: 50 Mono-character pairs, sampled from a
variation of T where tokens are a single character, and FLiPS: 100 pairs sampled from T2.

LLM Sequences Gathering. Details of how output sequences of LLMs were collected are pro-
vided in Appendix I. Also, a visualization of the generated sequence lengths is provided in Appendix
J.

Open vs Closed Set Setups. In the open-set setting, the model setM is divided into two subsets:
Known and Unseen. The objective is to construct efficient fingerprints for Known models while
correctly labeling unseen models as Unseen. Our approach leverages the probability distribution
over classes produced by the trained classifier. Indeed, for each input sample, the classifier assigns
a probability to every class. In the closed-set setting, prediction corresponds to selecting the class
with the highest probability. In contrast, for the open-set setting, a threshold is introduced: if the
maximum predicted probability falls below this threshold, the sample is labeled as Unseen. Note
that our thresholding method is tunable, allowing one to prioritize either Unseen or Known models.

Finally, the evaluation process is done within a 10-run cross-validation split with 40 samples for the
test set and 40 for the training one. For closed-set approach, the crossing of splits is made over the
samples while for the open-set, it is done over the samples but also the models. Indeed, within open-
set approach, for each cross split, 5 models are isolated to constitute Unseen while the remaining 30
models make the Known pool. The evaluation procedure is further detailed in Appendix F.

4.2 FLIPS GENERAL PERFORMANCE

Experimental results show that FLIPS achieves almost 99% accuracy in closed-set setting and
92.5% in open-set with as few as 40 training samples per model and 8 queries at reading time,
over a set of 35 LLMs including 4 proprietary models3. See Table 1 for an overview of the results,
and Table 3 in Appendix G for a complete display of the results. In open-set setting, unseen models
are retrieved with 67.6% accuracy, which is lower than for known models, however we propose a
tunable parameter allowing to prioritize either unseen detection or known model identification. If
scaling the number of training samples to 200 (in Closed-set), accuracy reaches 98% with only 3
queries at reading and 90% for a single query (see Figure 6).

The confusion matrix corresponding to the results of Table 3 (Closed-set) is in Figure 3. Interest-
ingly, it explains the excellent results of FLIPS, as it displays the very high separability resulting
from our relying on random sequences, of the models across both manufacturers and model vari-
ants. In particular, the closest proximity occurs between models in the same families, which is
awaited: the two Phi-3-mini models and the two Phi-3-medium exhibit a proximity of 10% and 1%
respectively.

4.3 FLIPS VS MONOCHAR AND 0-1 BASELINES

We now investigate whether certain token formats yield superior performance. We focus on how
much the bits format 0-1 performs differently from the token pairs of T2 that are more conceptually

3Accuracy scores are computed using a two-stage averaging process. For each of the 151 token pairs, we
first calculated the mean accuracy across its 10 cross-validation splits. Subsequently, to obtain category-level
performance metrics for 01, Monochar, and FLIPS token pairs, we computed the mean and standard deviation
of these accuracy scores within each category. An exception is made for the baseline 01 as there is only one
token pair in this group, so the standard deviation is shown over the 10 cross-validation splits.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model Closed-set Open-set

CohereForAI/c4ai-command-r-v01 99.02% (±0.69%) 95.60% (±2.06%)
CohereLabs/aya-23-35B 99.40% (±0.45%) 96.80% (±1.71%)
HuggingFaceH4/zephyr-7b-beta 98.32% (±1.29%) 95.89% (±2.24%)
Qwen/Qwen2-72B-Instruct 98.58% (±0.86%) 91.84% (±2.84%)
abacusai/Smaug-Llama-3-70B-Instruct 97.66% (±1.02%) 86.78% (±3.70%)
anthropic/claude-3-haiku 99.76% (±0.36%) 98.32% (±1.42%)
deepseek/deepseek-chat 98.22% (±0.91%) 91.12% (±3.02%)
google/gemini-2.5-flash-lite 98.34% (±1.79%) 94.31% (±2.80%)
google/gemma-2-27b-it 98.86% (±0.48%) 88.44% (±3.24%)
meta-llama/Meta-Llama-3.1-70B-Instruct 98.70% (±0.76%) 93.07% (±2.42%)
microsoft/Phi-3-medium-128k-instruct 96.52% (±1.58%) 82.58% (±4.99%)
mistralai/Mistral-7B-Instruct-v0.3 98.32% (±1.14%) 91.49% (±3.16%)
openai/gpt-4.1-nano 98.26% (±0.97%) 90.65% (±3.48%)
openai/gpt-5-nano 99.74% (±0.26%) 97.24% (±1.21%)
qwen/qwen3-next-80b-a3b-instruct 99.34% (±0.54%) 95.93% (±1.59%)
upstage/SOLAR-10.7B-Instruct-v1.0 97.24% (±1.40%) 91.76% (±3.77%)
Unseen — 67.58% (±2.08%)

Average (on all 35 LLMs, see Table 3) 98.72% (±0.77%) 92.54% (±2.52%)

Table 1: Short list of the 17 most advanced (model size by manufacturer) LLMs in our experiments
(see Table 3 for the complete list of 35 LLMs). Fingerprinting accuracy of each model averaged
over the 100 token pairs of FLIPS, evaluated under two scenarios: (i) closed-set, where the target
model belongs to a known set of models, and (ii) open-set, where the target model may be unseen
and must be correctly identified as such if unseen and as the right one if known. Performance is
reported using 40 training samples to build the fingerprint and eight queries to read it.

exotic formats like avid-ple or cards-quad (see more examples of T2 in appendix H). Indeed, there
is almost no chance that any sequence of these formats is present in a LLM’s training set while
it is almost sure that there are a lot of bit sequences as they represent binary data, making the
comparison interesting. We also investigate the difference between tokens of a single character

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Prediction

0 : c4ai-command-r-v01
1 : CohereLabs/aya-23-35B
2 : CohereLabs/aya-23-8B
3 : zephyr-7b-beta
4 : Nous-Hermes-2-Mixtral-...
5 : Qwen/Qwen2-1.5B-Instruct
6 : Qwen/Qwen2-72B-Instruct
7 : Qwen/Qwen2-7B-Instruct
8 : Smaug-Llama-3-70B-Inst...
9 : anthropic/claude-3-haiku
10: DeepSeek-Coder-V2-Lite...
11: deepseek/deepseek-chat
12: gemini-2.5-flash-lite
13: google/gemma-1.1-7b-it
14: google/gemma-2-27b-it
15: google/gemma-2-9b-it
16: Llama-3-8B-Instruct-Gr...
17: Llama-2-70b-chat-hf
18: Llama-3.1-8B-Instruct
19: Meta-Llama-3-8B-Instruct
20: Meta-Llama-3.1-70B-Ins...
21: Phi-3-medium-128k-inst...
22: Phi-3-medium-4k-instruct
23: Phi-3-mini-128k-instruct
24: Phi-3-mini-4k-instruct
25: Mistral-7B-Instruct-v0.1
26: Mistral-7B-Instruct-v0.2
27: Mistral-7B-Instruct-v0.3
28: Mixtral-8x7B-Instruct-...
29: Llama3-ChatQA-1.5-8B
30: openai/gpt-4.1-nano
31: openai/gpt-5-nano
32: qwen3-next-80b-a3b-ins...
33: Llama-2-7B-32K-Instruct
34: SOLAR-10.7B-Instruct-v...

Tr
ue

 L
ab

el

0.000

0.005

0.010

0.100

0.200

0.400

0.600

0.800

1.000

Figure 3: Confusion matrix in the closed-set setup. Averaged over the 100 token pairs of FLIPS.
All rows sum to 1.0 (true labels are balanced over the classes).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(coined as Monochar) and tokens of T that are more than 1 character. Focus being on FLIPS, we
halve the Monochar token pairs for computational efficiency.

Figure 4 and 5 compare the performances of FLIPS with the Monochar setting and 0-1 the baseline
bit sequences. Overall FLIPS performs better, though very close to Monochar while the baseline
pair 0-1 demonstrates notably inferior performance. This gap with the two other settings aligns with
the conceptual distinction discussed above. However, no prior prediction was made regarding the
direction of this gap.

Figure 4 shows the performances according to the number of queries used to read the fingerprint
(the training samples remain 40). Performance improves substantially when increasing from 1 to 6
queries, but seem to plateau around 7–8 queries, indicating limited gains from additional queries.
Figure 5 reflects the distribution of single-query accuracy achieved by individual token pairs across
the three different settings. The exact bottom and top 5 token-pairs are available in Appendix H. Both
FLIPS and Monochar categories demonstrate similar normal distributions, with FLIPS showing
slightly superior mean performance.

1 2 3 4 5 6 7 8
Number of Queries

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

FLiPS
Monochar
0-1 (baseline)

Figure 4: (Closed-set) Accuracy vs the number
of queries used to predict the model. Mean and
standard deviation are computed over all token
pairs of the corresponding group of token pairs.

0.4
8
0.5

2
0.5

5
0.5

9
0.6

3
0.6

7
0.7

1
0.7

4
0.7

8
0.8

2
0.8

6
0.9

0
0.9

3

Accuracy

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
op

or
tio

n
of

 To
ke

n
Pa

irs

0.
47

FLiPS
Monochar
0-1 (baseline)

Figure 5: (Closed-set) Accuracy histograms
achieved by each token pair, in a single-query
scenario, and by the three different Token Pair
competitors. See Appendix H for specific Bot-
tom and Top-5 token pairs.

10203040 60 80 120 160 200
Training Samples

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Number of Queries

n=1
n=2
n=3
n=5
n=8

Figure 6: (Closed-set) Accuracy of FLIPS to-
ken pairs, as a function of different training sam-
ples (Ntrain). Each curve represents a different
number of queries used for prediction. Mean
and standard deviation are computed over the
100 token pairs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Temperature

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0-1 (baseline)
Monochar
FLiPS

Figure 7: (Closed-set) Temperature influence on
accuracy, within single-query used for predic-
tion. Mean and standard deviation are computed
over all token pairs of the corresponding group
of token pairs.

4.4 ABLATION STUDIES

We finally quantify the impact on FLIPS performances of the two following aspects.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Influence of Training Samples Figure 6 illustrates model performance as a function of the num-
ber of available training samples (in closed-set setting). Performance appears to plateau after approx-
imately 120 samples, particularly for n ≥ 3, indicating that strong results can be achieved without
requiring very large training sets (e.g., 98.49% accuracy with n = 3 and Ntrain = 200). Conversely,
in very low-sample regimes (Ntrain = 10), accuracy ranges from still high values: 77.10% (n = 1)
to 96.63% (n = 8).

Impact of LLMs Temperature. Figure 7 shows how FLIPS is impacted by an increasing tem-
perature, varying from 0.1 to 1.0. While the very purpose of the temperature parameter at a provider
aims at introducing more randomness in the selection of next-tokens, we remark that it impacts neg-
atively the 0-1 baseline; FLIPS and Monochar are also concerned, yet with a very small impact on
both and in particular on FLIPS. Lowering the temperature parameter of LLM reduces the entropy
of the output distribution, thereby narrowing the range of possible generations. The LLM then pro-
duces sequences that are more consistent across sequences. This increased regularity facilitates the
classifier in learning and exploiting these biases.

5 DISCUSSION

Considering the many aspects at play in the fingerprinting of modern LLMs, we now discuss the
most salient ones, for potential FLIPS limitations but also future work.

Multi-Token Pair Classification for Enhanced Performance. Appendix D demonstrates that
classifiers trained on token pair S1 fail to generalize to examples from a distinct token pair S2. This
non-transferability property interestingly reveals that models exhibit distinct random biases when
generating text conditioned on different token pairs. Since these bias variations encode complemen-
tary information signatures, employing multi-query classification across diverse token pairs could
improve our fingerprinting scheme as future work.

LLMs Accessing Tools. The advent of code execution capabilities in frontier LLMs, in particu-
lar with agents, might suggest that they can generate random outputs through computational means
rather than relying on their inherent stochastic processes. However, current implementations main-
tain transparency and user control: web interfaces and APIs clearly indicate when code is being
executed, preserving the foundational assumptions that make our fingerprinting approach viable.

In the same vein, the rise of agentic AI systems introduces new challenges for fingerprinting
tasks. These systems remain nevertheless fundamentally enabled by LLMs, enabling fingerprint-
ing through conventional text generation queries irrespective of their sophisticated scaffolding or
multi-LLM configurations.

LLM Capabilities Expansion. As LLMs advance, they may develop enhanced random genera-
tion capabilities without requiring code execution, reducing the discrepancies that FLIPS leverages.
For instance, recent research has demonstrated that LLMs can internally embed deterministic algo-
rithms within their weights, such as addition and multiplication schemes Kantamneni & Tegmark
(2025); Maltoni & Ferrara (2024). However, this challenge can be addressed through progressively
sophisticated randomness tasks: transitioning from binary to decimal integer generation, requiring
adherence to specific probability distributions such as Poisson processes, or demanding complex
random graph generation. Such escalating challenges could maintain FLIPS viability even against
increasingly capable models, similar to the persistently useful fingerprinting schemes for image
classifiers, still accurate despite the general increase in model accuracy Maho et al. (2023).

6 RELATED WORK

6.1 FINGERPRINTING IN THE CONTEXT OF LLMS

We start by clarifying the process of fingerprinting models with the related process of watermarking
them. Fingerprinting employs a retrospective, forensic analysis of the object’s existing characteris-
tics to infer unique identifiers, without requiring any prior embedding. It relies on detecting inherent

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

patterns occurring in the system of interest Peng et al. (2022), Cao et al. (2021) and Pan et al. (2022).
Most notably, the process of watermarking involves the intentional embedding of identifying fea-
tures into the object to enable its identification, given knowledge of the embedding scheme. This
proactive approach inserts markers to signal origin, authorship, or authenticity (See e.g., section 4
of Cox et al. (2006) or Kalker (2001))

LLM specific methods In the context of LLMs, fingerprinting and watermarking techniques can
be subdivided into two levels: models and generated content. We outline these levels to clarify the
scope of what this paper does and does not address:

Model Fingerprinting (or Active Fingerprinting) uses carefully crafted inputs to elicit distinctive
model behaviors. This approach is exemplified by our method and by Pasquini et al. (2025).

Generated Content Fingerprinting (or Passive Fingerprinting) identifies models by analyzing inher-
ent features of generated content. Examples include methods based on logits statistics like perplexity
Hans et al. (2024) and its curvature Mitchell et al. (2023), or log-rank information Su et al. (2023).

Model Watermarking embeds signals into model outputs for specific inputs, so that possession of
the input and key to read the signal’s output allows verification of the model’s identity. Techniques
include e.g. logit-distribution modifications on targeted inputs Xu et al. (2024); Nasery et al. (2025)
and input–output hashing schemes Russinovich & Salem (2024). Although these works may use
the term “model fingerprinting,” we advocate for “model watermarking” to maintain alignment with
prior literature and avoid confusion with the distinct concept of Model Fingerprinting as defined
above.

Generated Text Watermarking Alters the LLM so it directly imprints signals into its generated out-
puts, typically via logit distribution biases Kirchenbauer et al. (2023) or more recently by selecting
iteratively from multiple generation streams Giboulot & Furon (2024).

6.2 BIASES IN GENERATING RANDOM NUMBERS BY HUMANS AND LLMS

Hopkins & Renda (2023) were the first to investigate the random number generation capabilities of
LLMs, highlighting the challenges they face in this task. Interestingly, researchers in neurosensory
sciences have shown that humans are identifiable according to their deviation from mathematical
randomness when asked to generate some random numbers Schulz et al. (2021). Harrison (2024)
remarks that ChatGPT-3.5 is better at the task than humans, yet lacks the ”perfect evenness charac-
teristic of pseudorandomly generated sequences.” This is confirmed in earlier work Van Koevering
& Kleinberg (2024). Finally, Coronado-Blázquez (2025) confirms that six models they tested have
their own biases. These discrepancies in the task by LLMs motivated our work for an accurate
fingerprint scheme, in which we are the first to consider the standard NIST suite for a principled
analysis of pseudorandom outputs.

7 REPRODUCIBILITY STATEMENT

Experimental Section 4 and Appendices A, B, E, F and I provide sufficient information to reproduce
the experiments. FLIPS code will be made available on GitHub should the paper be accepted.

8 CONCLUSION

As opposed to model-modifying watermarking schemes, fingerprinting schemes leverage particular
traits in the outputs of the models they aim to identify. With FLIPS, we made the case for consid-
ering the discrepancy in the generation of random sequences by LLMs, for we demonstrated that
they give excellent accuracy in the task, while permitting to train fingerprints with unseen models
detection with a few tens of queries only. We believe this opens up an avenue for future works that
are discriminative enough to seamlessly integrate the always evolving variety of modern LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Berk Atil, Sarp Aykent, Alexa Chittams, Lisheng Fu, Rebecca J Passonneau, Evan Radcliffe,
Guru Rajan Rajagopal, Adam Sloan, Tomasz Tudrej, Ferhan Ture, et al. Non-determinism of”
deterministic” llm settings. arXiv preprint arXiv:2408.04667, 2024.

Lawrence E Bassham, Andrew L Rukhin, Juan Soto, James R Nechvatal, Miles E Smid, Stefan D
Leigh, M Levenson, M Vangel, Nathanael A Heckert, and D L Banks. A statistical test suite for
random and pseudorandom number generators for cryptographic applications. 2010.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard: Protecting intellectual property of
deep neural networks via fingerprinting the classification boundary. In Proceedings of the 2021
ACM asia conference on computer and communications security, pp. 14–25, 2021.

Javier Coronado-Blázquez. Deterministic or probabilistic? the psychology of llms as random num-
ber generators. arXiv preprint arXiv:2502.19965, 2025.

Ingemar J Cox, Gwenaël Doërr, and Teddy Furon. Watermarking is not cryptography. In Interna-
tional workshop on digital watermarking, pp. 1–15. Springer, 2006.

Eva Giboulot and Teddy Furon. Watermax: breaking the llm watermark detectability-robustness-
quality trade-off. Advances in Neural Information Processing Systems, 37:18848–18881, 2024.

Augustin Godinot, Erwan Le Merrer, Camilla Penzo, François Taı̈ani, and Gilles Trédan. Queries,
representation & detection: The next 100 model fingerprinting schemes. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 16817–16825, 2025.

Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha,
Micah Goldblum, Jonas Geiping, and Tom Goldstein. Spotting llms with binoculars: Zero-shot
detection of machine-generated text. arXiv preprint arXiv:2401.12070, 2024.

Rachel M Harrison. A comparison of large language model and human performance on random
number generation tasks. arXiv preprint arXiv:2408.09656, 2024.

Aspen K Hopkins and Alex Renda. Can llms generate random numbers? evaluating llm sampling
in controlled domains. Sampling and Optimization in Discrete Space (SODS) ICML 2023 Work-
shop, 2023.

Ton Kalker. Considerations on watermarking security. In 2001 IEEE Fourth Workshop on Multime-
dia Signal Processing (Cat. No. 01TH8564), pp. 201–206. IEEE, 2001.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Buomsoo Kim, Jinsoo Park, and Jihae Suh. Transparency and accountability in ai decision support:
Explaining and visualizing convolutional neural networks for text information. Decision Support
Systems, 134:113302, 2020.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023.

Kevin Kurian, Ethan Holland, and Sean Oesch. Attacks and defenses against llm fingerprinting.
arXiv preprint arXiv:2508.09021, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023.

Thibault Maho, Teddy Furon, and Erwan Le Merrer. Model fingerprinting with benign inputs. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Davide Maltoni and Matteo Ferrara. Arithmetic with language models: From memorization to
computation. Neural Networks, 179:106550, 2024.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectgpt: Zero-shot machine-generated text detection using probability curvature. In International
conference on machine learning, pp. 24950–24962. PMLR, 2023.

Anshul Nasery, Jonathan Hayase, Creston Brooks, Peiyao Sheng, Himanshu Tyagi, Pramod
Viswanath, and Sewoong Oh. Scalable fingerprinting of large language models. arXiv preprint
arXiv:2502.07760, 2025.

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. Metav: A meta-verifier approach to task-agnostic
model fingerprinting. In Proceedings of the 28th ACM SIGKDD conference on knowledge dis-
covery and data mining, pp. 1327–1336, 2022.

Dario Pasquini, Evgenios M. Kornaropoulos, and Giuseppe Ateniese. Llmmap: Fingerprinting for
large language models, 2025. URL https://arxiv.org/abs/2407.15847.

Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. Fingerprint-
ing deep neural networks globally via universal adversarial perturbations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 13430–13439, 2022.

Mark Russinovich and Ahmed Salem. Hey, that’s my model! introducing chain & hash, an llm
fingerprinting technique. arXiv preprint arXiv:2407.10887, 2024.

Marc-André Schulz, Sebastian Baier, Benjamin Timmermann, Danilo Bzdok, and Karsten Witt. A
cognitive fingerprint in human random number generation. Scientific reports, 11(1):20217, 2021.

Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectllm: Leveraging log rank informa-
tion for zero-shot detection of machine-generated text. arXiv preprint arXiv:2306.05540, 2023.

Katherine Van Koevering and Jon Kleinberg. How random is random? evaluating the randomness
and humaness of llms’ coin flips. arXiv preprint arXiv:2406.00092, 2024.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instruc-
tional fingerprinting of large language models. arXiv preprint arXiv:2401.12255, 2024.

Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, and Yushun Dong. A
systematic survey of model extraction attacks and defenses: State-of-the-art and perspectives,
2025a. URL https://arxiv.org/abs/2508.15031.

Zhengyue Zhao, Xiaogeng Liu, Somesh Jha, Patrick McDaniel, Bo Li, and Chaowei Xiao. Can
watermarks be used to detect large language model intellectual property infringement for free?
In 13th International Conference on Learning Representations, ICLR 2025, pp. 52368–52384.
International Conference on Learning Representations, ICLR, 2025b.

11

https://arxiv.org/abs/2407.15847
https://arxiv.org/abs/2508.15031

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A PROMPT q0(tA, tB)

Random Binary Sequence Generation Prompt

Generate a sequence of 1000 symbols, each independently and uniformly sampled from the
set {tA, tB}.
Do not include any explanations, formatting, or additional text—only output the raw se-
quence.
For reference, a sample sequence of 30 symbols is shown below:
tA,tA,tB ,tA,tA,tA,tA,tA,tB ,tA,tA,tA,tA,tA,tA,tA,tB , tA,tB ,tB ,tA,tA,tB ,tB ,tB ,tA,tA,tB ,tA,tA
Now, produce a sequence of 1000 such symbols:

q0(tA, tB), where (tA, tB) are placeholders for token pairs such as those described in Appendix H.

B NIST TESTS OF EXPERIMENTAL SETUP

The experiments were conducted using the following Python NIST implementation: https://
github.com/stevenang/randomness_testsuite.

Table 2 presents all the NIST tests used to embed our sequences.

Although this paper does not focus on evaluating randomness quality, it should be noted that, due to
the limited sequence lengths, the results obtained from the evaluated LLMs are insufficient to assess
their randomness quality. Indeed NIST Test Suite is often calibrated for sequence of length 106 and
more.

Table 2: NIST tests used in experiment

Test Parameter Value
Block Frequency Block size (M) 30, 100
Non-overlapping Template Match-
ing

Pattern lengths; block size 2, 3; 75

Overlapping Template Matching Pattern lengths; block size 2, 3; 75
Cumulative Sums Digits 1s, 2s

Monobit (Frequency) — —
Runs — —
Longest Run of Ones — —
Binary Matrix Rank — —
Spectral (DFT) — —
Approximate Entropy — —
Linear Complexity — —
Random Excursions — —

For the Overlapping and Non-overlapping Template Matching tests, pattern lengths of 2 and 3 indi-
cate that all aperiodic patterns of size 2 and 3 were used i.e. 8 patterns, yielding as many tests. Tests
marked with “—” do not require specific parameters.

C FORMAL DETAILS ON THE MULTI-QUERY CLASSIFICATION TASK

Formally, we defined a classifier c as:

12

https://github.com/stevenang/randomness_testsuite
https://github.com/stevenang/randomness_testsuite

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

no
n o

ve
rla

p 0
1

line
ar

com
ple

xit
y

no
n o

ve
rla

p 0
10

ov
erl

ap
 10

1

no
n o

ve
rla

p 1
0

no
n o

ve
rla

p 1
00

ap
pro

xim
ate

 en
tro

py

cum
ula

tiv
e s

um
s 1

s

no
n o

ve
rla

p 0
01

ov
erl

ap
 10

ov
erl

ap
 01

0

ov
erl

ap
 10

0

ov
erl

ap
 01

1

blo
ck

fre
q 1

00

blo
ck

fre
q 3

0

no
n o

ve
rla

p 1
10

cum
ula

tiv
e s

um
s 2

s

ov
erl

ap
 00

1

no
n o

ve
rla

p 0
11

ov
erl

ap
 01

lon
ge

st
on

e b
loc

k

ov
erl

ap
 11

0

seq
 le

ng
th

mon
ob

it run
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
Im

po
rta

nc
e

Figure 8: The top 25 most important features reported by the XGBoost classification. This ranking
is made on averaged feature importance over all tested token pairs. The interquartile range is also
reported as error bars.

c : O −→M (4)
o 7→ arg max

m∈M
[g(f(o))]

where

g : Rd −→ [0, 1]M (5)

x 7→
(
P (m1|x), . . . , P (m|M||x)

)
is a scoring function that maps feature representations to probability distributions over the model set
M. P (mi|x) represents the probability that model mi generated the output from which derives the
feature vector x.

We extend the single-query classifier to handle multiple outputs simultaneously. Each prediction
is made by the single-query trained classifier, and are aggregated within a soft-voting procedure to
make a final prediction. Soft-voting simply consists in averaging all probability distributions and
then selecting the maximum value:

cS : On −→M (6)

(o1, o2, . . . , on) 7→ arg max
m∈M

n∑
i=1

gS(f(oi))m

where (oi)i are s.t. ∃m ∈ M,∀i ∈ {1, . . . , n} oi ∼ m(S), gS is the scoring function trained on
S and gS(f(oi))m represents the probability, for gS , that output oi originates from model m when
queried with S.

D TOKEN-PAIR CROSSING

In this work, we convert generated sequences of token pairs into bit sequences and evaluate whether
classifiers trained conditioned on one token pair Strain generalize to sequences conditioned on a
different token pair Stest. In the heatmap in Figure 9, each row shows the accuracies of a classifier
trained on a single Strain when tested across many Stest (columns)4. The diagonal entries correspond
to the within-pair case Strain = Stest and therefore give the highest accuracies.

4To clarify, the number of classifier trainings equals the number of rows.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0-1 Monochar FLiPS
Test Dataset Group

0-1

Monochar

FLiPS

Tr
ai

n
Da

ta
se

t G
ro

up

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Figure 9: Classifier accuracy when trained on Strain (rows) and tested on Stest (columns). Diago-
nal entries are within-pair accuracies; off-diagonals show cross-pair transfer. (Experimental setup:
Ntrain = 40, single-query n = 1; token pairs partitioned into three groups; subset sampled for
display.)

Token pairs were partitioned into three groups; because there are up to 151 possible pairs, we ran-
domly sampled a subset from each group for the heatmap. Overall, transferability across token pairs
is negligible: off-diagonal accuracies are substantially lower than within-pair accuracies, indicating
that the random biases of generated sequences depend strongly on the conditioning token pair.

There is modestly increased transferability when Strain and Stest belong to the same group, an effect
more pronounced for the Monochar group.

Figure 10 summarizes these cross-pair results at the model level. For each model, we report the
mean and standard deviation of accuracies across all (Strain,Stest) combinations restricted to each
token-pair group (combinations across groups are excluded). Models exhibit similarly low cross-
pair accuracy, except Llama-2-70b-chat-hf, which attains a higher mean (around 30%) with
large variance, indicating that a few specific (Strain,Stest) pairs transfer substantially better for that
model.

Consequently, if sequences generated from different token pairs encode complementary informa-
tion, classification performance might improve by combining pairs, thereby increasing discrimina-
tive power and enhancing fingerprinting efficiency. However, mixing pairs while keeping the total
number of training samples fixed reduces the number of samples per token pair, potentially leading
to pair-specific underfitting. This trade-off highlights a direction for future work.

E GENERATION PARAMETERS

The target LLM operates under standard default sampling parameters, and without any fine-tuning
operations.

Default Parameters. We adopt the default generation configuration recommended by Hugging
Face, without any fine-tuning operations. We set the maximum number of generated tokens to 750,
as this limit provides a relatively low computational cost while ensuring compatibility with platforms
that impose stricter token constraints. This setup uses sampling with temperature T = 1.0, top-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

c4a
i-co

mman
d-r

-v0
1

Coh
ere

Lab
s/a

ya
-23

-35
B

Coh
ere

Lab
s/a

ya
-23

-8B

zep
hy

r-7
b-b

eta

Nou
s-H

erm
es-

2-M
ixt

ral
-8x

...

Qwen
/Qwen

2-1
.5B

-In
str

uct

Qwen
/Qwen

2-7
2B

-In
str

uct

Qwen
/Qwen

2-7
B-In

str
uct

Sm
au

g-L
lam

a-3
-70

B-In
str

uct

an
thr

op
ic/c

lau
de

-3-
ha

iku

Dee
pS

ee
k-C

od
er-

V2-L
ite

-I..
.

de
ep

see
k/d

ee
pse

ek-
cha

t

ge
mini-

2.5
-fla

sh-
lite

go
og

le/
ge

mma-1
.1-

7b
-it

go
og

le/
ge

mma-2
-27

b-i
t

go
og

le/
ge

mma-2
-9b

-it

Lla
ma-3

-8B
-In

str
uct

-Grad
...

Lla
ma-2

-70
b-c

ha
t-h

f

Lla
ma-3

.1-
8B

-In
str

uct

Meta
-Lla

ma-3
-8B

-In
str

uct

Meta
-Lla

ma-3
.1-

70
B-In

str
...

Ph
i-3

-m
ed

ium
-12

8k
-in

str
uct

Ph
i-3

-m
ed

ium
-4k

-in
str

uct

Ph
i-3

-m
ini-

12
8k

-in
str

uct

Ph
i-3

-m
ini-

4k
-in

str
uct

Mistr
al-

7B
-In

str
uct

-v0
.1

Mistr
al-

7B
-In

str
uct

-v0
.2

Mistr
al-

7B
-In

str
uct

-v0
.3

Mixt
ral

-8x
7B

-In
str

uct
-v0

.1

Lla
ma3

-Cha
tQA-1

.5-
8B

op
en

ai/
gp

t-4
.1-

na
no

op
en

ai/
gp

t-5
-na

no

qw
en

3-n
ext

-80
b-a

3b
-in

str
...

Lla
ma-2

-7B
-32

K-I
nst

ruc
t

SO
LA

R-1
0.7

B-In
str

uct
-v1

.0
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Monochar
FLiPS

Figure 10: Per-model mean and standard deviation of cross-pair accuracies computed over
(Strain,Stest) combinations within each token-pair group (same combinations as the upper left and
lower right squares of Figure 9). (Experimental setup: Ntrain = 20, single-query n = 1.)

k = 50, top-p = 1.0, and a repetition penalty of 1.0. Only the q0 prompt (Appendix A) is used,
without system prompts or other additional components.

Open-weights LLMs. All open-weight models5 are loaded in bfloat16 precision and executed
using the vLLM library Kwon et al. (2023) and a100 GPUs.

Closed-weights LLMs. All closed-weight models are accessed through the OpenRouter API with
reasoning=minimal, since full reasoning suppression is not always available (for instance with
the GPT-o series).

F EVALUATION PROCEDURE

This section describes the detailed evaluation procedure for both closed-set and open-set scenarios.
Algorithm 4 shows that we evaluate each token pair S independently.

Closed-set. The closed-set evaluation for a token pair S is summarized in Algorithm 2. First, we
collect embedded output sequences from the LLM using FLIPS-Sampling (Algorithm 4). Next, we
perform repeated cross-validation: on each split, we train a downstream classifier on the training
fold and evaluate it on the test fold. Evaluation is performed in an n-queries regime for several
values of n, yielding accuracies as a function of the number of queries. As described in Section 3.1,
computing performance for different n does not require retraining: predictions for multiple queries
are aggregated via soft voting.

Open-set. The open-set evaluation is described in Algorithm 3. A subset of models in M is
treated as Known (to be identified exactly) while the remaining models are treated as Unseen (to
be labeled as such). Lines 3–5 collect embedded outputs for the TrainKnown, TestKnown and
TestUnseen sets. We train a classifier on TrainKnown and then classify samples from both
TestKnown and TestUnseen. In order to decide whether a sample is Unseen or not, we choose
to leverage the probability distribution given by the classifier, and selecting a threshold below which
the sample is predicted as unseen. Note that we omit to specify that accuracy is collected for each
n-queries as in Closed-set, for clarity sake.

Thresholding method. Algorithm 6 outlines the procedure for constructing the decision thresh-
old. In principle, one could fix a single threshold in advance using a dedicated (and possibly costly)
procedure. However, in practice, it is more effective to determine the threshold dynamically from
the available samples.

5except for Qwen3-80b that was also called with OpenRouter.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The dynamic approach replicates the open-set setting within the pool of Known models: we artifi-
cially separate them into Known and Unseen subsets to approximate real evaluation conditions. The
objective is to identify a threshold that performs well in this replicated environment and then apply
it to the actual task, hopefully generalizing well.

Concretely, we store the maximum predicted probability (i.e., the classifier’s confidence in its as-
signed label) for each evaluated sample. These values form two distributions: one from correctly
predicted Known samples and another from pseudo-unseen samples. Denote

PK = {p(i)max}i∈Known, correctly predicted, PU = {p(j)max}j∈pseudo-Unseen.

Three natural strategies for selecting the threshold t are:

1. Prioritize Known accuracy (our choice). Choose t as the α-quantile of PK, so that at
most a fraction α of correctly predicted Known samples fall below t. This directly controls
the tolerated fraction of Known samples that are labeled Unseen.

2. Prioritize Unseen detection. Choose t to control the false negative rate on PU (for exam-
ple, set t so that a desired fraction of pseudo-Unseen samples fall below t).

3. Optimize a global criterion. Select t to maximize an ROC-derived operating point, F1
score, or other combined metric computed from PK and PU.

Figure 11 (a) visualizes the empirical distributions of PK (blue) and PU (red). Because the distri-
butions overlap, threshold selection entails a trade-off between incorrectly rejecting Known samples
and failing to detect Unseen samples; the strategies above make that trade-off explicit. Figure 11 (b)
shows that thresholds vary widely, confirming the benefit of dynamic over static selection.

Algorithm 1 FLIPS-Evaluation

Require: Number of token pairs J , model setM, number of samples N , number of splits Nsplit,
number of train/test samples Ntrain, Ntest, maximum number of queries Nqueries

1: Sample (Sj)Jj=1
i.i.d.∼ T2 {Draw J token pairs}

2: Accuracy← {}
3: for j = 1 to J do
4: if Closed-set then
5: Acc← Closed-setEval(Sj){Call Algorithm 2}
6: else
7: Acc← Open-setEval(Sj) {Call Algorithm 3}
8: end if
9: Accuracy[Sj]← Acc

10: end for
11: return Accuracies

Algorithm 2 Closed-setEval (Evaluation of S)

Require: model set M, token pair S, number of samples N , number of splits Nsplit, number of
train/test samples Ntrain, Ntest, maximum number of queries Nqueries

1: Accuracies← {}
2: Samples← FLIPS-Sampling(S,M, N) {Call Algorithm 4}
3: for all (TrainSplit,TestSplit) ∈ CrossSplit(Samples, Nsplit, Ntrain, Ntest) do
4: cS,Ntrain ← Train(TrainSplit,XGBoost)
5: for n = 1 to Nqueries do
6: Accuracies[n]← Accuracies[n] ∪ {acc(cS,Ntrain ,TestSplitn)}
7: end for
8: end for
9: return Accuracies

G COMPLETE RESULTS

The full results of the evaluation of FLIPS over the 35 LLMs are displayed in Table 3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 Open-setEval (Evaluation of S)

Require: Model set M, maximum number of training samples per model Ntrain, number of test
samples per model Ntest, token pair S

1: Initialize Acc← []
2: for each (MKnown,MUnseen) in CrossSplit(M) do
3: TrainKnown← FLiPS-Sampling(S,MKnown, Ntrain) {Call Algorithm 4}
4: TestKnown← FLiPS-Sampling(S,MKnown, Ntest)
5: TestUnseen← FLiPS-Sampling(S,MUnseen, Ntest)
6: Threshold← BuildThreshold(TrainKnown,MKnown,S) {Call Algorithm 6}
7: c← Train(TrainKnown,XGBoost) {Classifier training}
8: Acc ← Acc ∪ acc(c,TestKnown ∪ TestUnseen,Threshold) {acc(·) computes closed-set ac-

curacy on known models plus correct rejection rate on unseen models.}
9: end for

10: return Acc

Algorithm 4 FLIPS-Sampling

Require: A Token Pair S, model setM, number of samples N
1: Initialize Samples← {}
2: for each model m ∈M do
3: Initialize FeatureVectors← []
4: for i = 1 to N do
5: Generate raw output ∼ m(q0(S)) {Generate sequence using model m}
6: o← ExtractBit(raw output) {Convert to bit sequence using Algorithm 5}
7: x← f(o) {Extract NIST feature vector}
8: Append x to FeatureVectors
9: end for

10: Samples[m]← FeatureVectors
11: end for
12: return Samples

Algorithm 5 ExtractBits

Require: string ans; binary pair (tA, tB)
Ensure: bit-string o ∈ {0, 1}∗

1: m[tA]←”0”, m[tB]←”1”
2: i← 0, o← ””
3: while i < |ans| do
4: for each item in (tA, tB) do
5: if ans[i : i+ |item|] == item then
6: o+= m[item]; i+= |item|
7: break
8: end if
9: end for

10: if no match then
11: i += 1
12: end if
13: end while
14: return o

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 6 BuildThreshold

1: Require: Training set TrainSet, model setM, token pair S
2: Initialize MaxProbas← {Known : {},Unseen : {}}
3: {Replicating open-set environment by creating pseudo-Unseen models, for threshold estima-

tion.}
4: for each (MKnown,MUnseen) in CrossSplit(M) do
5: TrainKnown,TestKnown ← TrainTestSplit(Filter(TrainSet,MKnown)) {Split subset of

TrainSet corresponding to models ofMKnown}
6: TestUnseen← Filter(Train,MUnseen)
7: c← Train(TrainKnown,XGBoost) {Classifier training}
8: MaxProbas[Known]← MaxProbas[Known] ∪ GetMaxProbas(c,TestKnown)
9: MaxProbas[Unseen]← MaxProbas[Unseen] ∪ GetMaxProbas(c,TestUnseen)

10: end for
11: Return: ExtractThreshold(MaxProbas)

0.2 0.4 0.6 0.8 1.0
Max Probability

0

2

4

6

8

10

De
ns

ity

=0.05

Known Correct
Unseen
Threshold

(a) PK (blue) and PU

(red) with our chosen α = 0.05.

0.3 0.4 0.5 0.6 0.7 0.8
Thresholds

0

1

2

3

4

5

6

De
ns

ity

Mean histogram

(b) Averaged histogram of thresholds, over all token
pairs.

Figure 11: (a) Illustration of an example of maximum probability distribution that needs to be sepa-
rated by a threshold in Open-set. (b) Distribution of all the thresholds obtained with the thresholding
procedure. Classification is made within a single-query here.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model Closed-set Open-set

CohereForAI/c4ai-command-r-v01 99.02% (±0.69%) 95.60% (±2.06%)
CohereLabs/aya-23-35B 99.40% (±0.45%) 96.80% (±1.71%)
CohereLabs/aya-23-8B 99.18% (±0.50%) 97.08% (±1.54%)
HuggingFaceH4/zephyr-7b-beta 98.32% (±1.29%) 95.89% (±2.24%)
NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO 98.46% (±1.07%) 91.43% (±3.27%)
Qwen/Qwen2-1.5B-Instruct 99.70% (±0.27%) 98.60% (±0.94%)
Qwen/Qwen2-72B-Instruct 98.58% (±0.86%) 91.84% (±2.84%)
Qwen/Qwen2-7B-Instruct 98.22% (±0.97%) 87.80% (±3.78%)
abacusai/Smaug-Llama-3-70B-Instruct 97.66% (±1.02%) 86.78% (±3.70%)
anthropic/claude-3-haiku 99.76% (±0.36%) 98.32% (±1.42%)
deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct 99.02% (±0.71%) 93.73% (±2.52%)
deepseek/deepseek-chat 98.22% (±0.91%) 91.12% (±3.02%)
google/gemini-2.5-flash-lite 98.34% (±1.79%) 94.31% (±2.80%)
google/gemma-1.1-7b-it 99.92% (±0.08%) 97.91% (±1.01%)
google/gemma-2-27b-it 98.86% (±0.48%) 88.44% (±3.24%)
google/gemma-2-9b-it 99.62% (±0.30%) 95.67% (±2.05%)
gradientai/Llama-3-8B-Instruct-Gradient-1048k 99.70% (±0.37%) 96.00% (±1.59%)
meta-llama/Llama-2-70b-chat-hf 99.92% (±0.09%) 96.86% (±1.31%)
meta-llama/Llama-3.1-8B-Instruct 98.46% (±0.90%) 92.24% (±2.53%)
meta-llama/Meta-Llama-3-8B-Instruct 98.72% (±0.72%) 91.90% (±3.00%)
meta-llama/Meta-Llama-3.1-70B-Instruct 98.70% (±0.76%) 93.07% (±2.42%)
microsoft/Phi-3-medium-128k-instruct 96.52% (±1.58%) 82.58% (±4.99%)
microsoft/Phi-3-medium-4k-instruct 95.78% (±1.99%) 82.82% (±4.76%)
microsoft/Phi-3-mini-128k-instruct 97.66% (±1.30%) 89.38% (±3.65%)
microsoft/Phi-3-mini-4k-instruct 96.56% (±1.75%) 89.36% (±4.19%)
mistralai/Mistral-7B-Instruct-v0.1 99.56% (±0.46%) 95.75% (±2.30%)
mistralai/Mistral-7B-Instruct-v0.2 99.50% (±0.34%) 95.67% (±1.64%)
mistralai/Mistral-7B-Instruct-v0.3 98.32% (±1.14%) 91.49% (±3.16%)
mistralai/Mixtral-8x7B-Instruct-v0.1 99.12% (±0.62%) 95.48% (±2.17%)
nvidia/Llama3-ChatQA-1.5-8B 99.90% (±0.10%) 96.52% (±1.45%)
openai/gpt-4.1-nano 98.26% (±0.97%) 90.65% (±3.48%)
openai/gpt-5-nano 99.74% (±0.26%) 97.24% (±1.21%)
qwen/qwen3-next-80b-a3b-instruct 99.34% (±0.54%) 95.93% (±1.59%)
togethercomputer/Llama-2-7B-32K-Instruct 99.96% (±0.05%) 97.75% (±1.33%)
upstage/SOLAR-10.7B-Instruct-v1.0 97.24% (±1.40%) 91.76% (±3.77%)
Unseen — 67.58% (±2.08%)

Average 98.72% (±0.77%) 92.54% (±2.52%)

Table 3: Fingerprinting accuracy of each model averaged over the 100 token pairs of FLIPS, evalu-
ated under two scenarios: (i) closed-set, where the target model belongs to a known set of models,
and (ii) open-set, where the target model may be unseen and must be correctly identified as such if
unseen and as the right one if known. Performance is reported using 40 training samples to build the
fingerprint and eight queries to read it.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H TOKEN PAIRS OF T

Token Pair
FLiPS Accuracy Token Pair

Monochar Accuracy

Top 5
ITION -- Fail 0.94 r -- 9 0.89
ufact -- Eng 0.89 m -- 2 0.87
acre -- Should 0.89 I -- 8 0.87
Rich -- ody 0.89 X -- P 0.86
itudes -- oks 0.89 s -- 6 0.85

Bottom 5
um -- RO 0.76 S -- m 0.73
Cart -- ob 0.76 p -- r 0.73
dam -- trigger 0.76 W -- K 0.69
aly -- unc 0.75 6 -- 9 0.68
Pl -- go 0.74 5 -- 2 0.67

Table 4: Top and Bottom 5 Token Pairs by Accuracy for FLiPS and Monochar relative to Figure 5.

I LLM SEQUENCES GATHERING PROCEDURE

This section

Although the final number of training samples is 40, we collected additional samples to study the
effect of sample size and token pairs. For each token pair and each LLM model, we then collected
240 samples, yielding a total of 240× 151× 35 generated sequences.

Since LLMs produce sequences of varying length, we defined a minimum length threshold below
which sequences were deemed too short to provide sufficient discriminative information. To reach
the target of 240 valid samples, shorter sequences were discarded. For most models, very few
sequences were discarded, so the reported number of training samples remains largely unaffected.

In further details, a sequence is considered valid if it contains at least 100 items, where an item is
a token of the token-pair S. During generation, we discard any sequence whose length is below
this threshold and continue sampling until either (i) 240 valid sequences are obtained, or (ii) a per-
experiment generation cap of 1000 sequences is reached.

Figure 12 reports, for each LLM, the average number of valid and discarded sequences across token
pairs. Valid sequences are shown in blue and discarded sequences in red. Error bars indicate the
standard deviation of the discarded-sequence counts across token pairs.

The five rightmost models, which predominantly produced short sequences, were excluded from
the evaluation pool because they failed to generate a sufficient number of valid samples within the
1000-sequence cap. Specifically, all excluded models were either Base models (Mixtral-8x7B-v0.1,
Qwen3-8B, Mistral-7B-v0.1, Orca-2-13B) or very small models (Qwen2-1.5B-Instruct, Gemma-
2B-it). As a particularly illustrative example, Mixtral-8x7B-v0.1 yielded many discarded responses,
whereas its instruct variant produced the fewest discarded responses overall. Therefore, their exclu-
sion does not affect the conclusions regarding larger models.

For models that remained in the pool, some token pairs did not yield the full set of 240 distinct valid
samples. In those cases, we applied upsampling (sampling with replacement) to reach the target of
240 samples; consequently, some sequences may appear multiple times across the training and test
sets.

Finally, note that proprietary models are not included in the previous histogram, as far fewer se-
quences were collected for them in order to save credits. Only 80 samples were requested, and the
number of discarded sequences was very low.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Mixt
ral

-8x
7B

-In
str

uct
-v0

.1

c4a
i-co

mman
d-r

-v0
1

ay
a-2

3-3
5B

Meta
-Lla

ma-3
.1-

70
B-In

str
...

Qwen
2-7

2B
-In

str
uct

Lla
ma-3

.1-
8B

-In
str

uct

Meta
-Lla

ma-3
-8B

-In
str

uct

Dee
pS

ee
k-C

od
er-

V2-L
ite

-I..
.

Sm
au

g-L
lam

a-3
-70

B-In
str

uct

Mistr
al-

7B
-In

str
uct

-v0
.3

zep
hy

r-7
b-b

eta

Ph
i-3

-m
ed

ium
-4k

-in
str

uct

SO
LA

R-1
0.7

B-In
str

uct
-v1

.0

ge
mma-2

-9b
-it

ay
a-2

3-8
B

Nou
s-H

erm
es-

2-M
ixt

ral
-8x

...

ge
mma-2

-27
b-i

t

Ph
i-3

-m
ed

ium
-12

8k
-in

str
uct

Ph
i-3

-m
ini-

4k
-in

str
uct

Qwen
2-7

B-In
str

uct

Lla
ma-2

-70
b-c

ha
t-h

f

Ph
i-3

-m
ini-

12
8k

-in
str

uct

Mistr
al-

7B
-In

str
uct

-v0
.2

ge
mma-1

.1-
7b

-it

Lla
ma-3

-8B
-In

str
uct

-Grad
...

Mistr
al-

7B
-In

str
uct

-v0
.1

Lla
ma3

-Cha
tQA-1

.5-
8B

Lla
ma-2

-7B
-32

K-I
nst

ruc
t

Qwen
2-1

.5B
-In

str
uct

Mixt
ral

-8x
7B

-v0
.1

Qwen
3-8

B

Mistr
al-

7B
-v0

.1

Orca
-2-

13
b

ge
mma-2

b-i
t

0

200

400

600

800

1000

1200

Co
un

t

Valid Count
Discarded Count

Figure 12: Mean number of valid and discarded generated sequences per LLM, averaged over token
pairs. A sequence is valid if it contains ≥ 100 items (items = tokens of the token-pair S). Targets
were 240 valid samples per (LLM,S); generation stopped either when this target was reached or
when a cap of 1000 total sequences was generated. Error bars show the standard deviation of the
discarded counts across token pairs.

J GENERATED SEQUENCE LENGTHS

As described in Appendix I, in practice, LLMs do not generate sequences strictly within {0, 1}∗
or {tA, tB}∗ where (tA, tB) is any token pair. Responses may contain extraneous content such as
instruction acknowledgments, elaborations beyond requirements, or (mostly for base and discarded
models) self-generated variations of the task. However, we extract only the binary elements from
the output to construct the final sequence in {0, 1}∗ (with Algorithm 5).

Figure 13 presents the distribution of sequence lengths for each LLM across all available data. Since
q0 (cf. Appendix A) requires tokens to be comma-separated, it is expected that most LLMs produce
sequences no longer than approximately MaxTokens/2, as each comma may consume one token.
Nevertheless, some models exceed this limit and generate sequences up to MaxTokens. This behav-
ior may arise either from variations in tokenization (where commas are embedded within tokens)
or from non-compliance with the comma-separation instruction, given that Algorithm 5 does not
explicitly enforce the presence of commas.

Finally, a few models produced (rarely) sequences exceeding MaxTokens, indicating that some to-
kens encapsulate multiple occurrences of the requested token.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

100 200 300 400 500 600 700 800 900 1000
Sequence Length

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 S
am

pl
es

 S

eq
ue

nc
e

Le
ng

th

M
ax

To
ke

ns
 =

 7
50M

ax
To

ke
ns

/2
 =

 3
75

.0

c4ai-command-r-v01
aya-23-35B
aya-23-8B
zephyr-7b-beta
Nous-Hermes-2-Mixt...
Qwen2-1.5B-Instruct
Qwen2-72B-Instruct
Qwen2-7B-Instruct
Smaug-Llama-3-70B-...
claude-3-haiku
DeepSeek-Coder-V2-...
deepseek-chat
gemini-2.5-flash-l...
gemma-1.1-7b-it
gemma-2-27b-it
gemma-2-9b-it
Llama-3-8B-Instruc...
Llama-2-70b-chat-hf

Llama-3.1-8B-Instr...
Meta-Llama-3-8B-In...
Meta-Llama-3.1-70B...
Phi-3-medium-128k-...
Phi-3-medium-4k-in...
Phi-3-mini-128k-in...
Phi-3-mini-4k-inst...
Mistral-7B-Instruc...
Mistral-7B-Instruc...
Mistral-7B-Instruc...
Mixtral-8x7B-Instr...
Llama3-ChatQA-1.5-8B
gpt-4.1-nano
gpt-5-nano
qwen3-next-80b-a3b...
Llama-2-7B-32K-Ins...
SOLAR-10.7B-Instru...

Figure 13: Average generated sequence lengths per model after bit extraction, computed over all
token pairs S and the 240 collected samples. The blue and black dotted vertical lines indicate
MaxTokens/2 and MaxTokens, respectively.

22

	Introduction
	Problem Setting
	The FLiPS Fingerprinting Scheme
	Preliminary Definitions
	FLiPS Overview
	Flexibility on Token Pairs
	NIST Test Statistics

	Experimental Evaluation
	Experimental Setup
	FLiPS General Performance
	FLiPS vs Monochar and 0-1 Baselines
	Ablation Studies

	Discussion
	Related Work
	Fingerprinting in the Context of LLMs
	Biases in generating random numbers by humans and LLMs

	Reproducibility Statement
	Conclusion
	Prompt q0(tA,tB)
	NIST Tests of Experimental Setup
	Formal Details on the Multi-query Classification Task
	Token-pair crossing
	Generation Parameters
	Evaluation procedure
	Complete Results
	Token Pairs of T²
	LLM Sequences Gathering Procedure
	Generated Sequence Lengths

