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Abstract

Large language models (LLMs) have achieved001
impressive human-like performance across var-002
ious reasoning tasks. However, their mastery003
of underlying inferential rules still falls short of004
human capabilities. To investigate this, we pro-005
pose a logic scaffolding inferential rule genera-006
tion framework, to construct an inferential rule007
base, ULogic, comprising both primitive and008
compositional rules across five domains. Our009
analysis of GPT-series models over a rule sub-010
set reveals significant gaps in LLMs’ logic un-011
derstanding compared to human performance,012
especially in compositional and structural com-013
plex rules with certain bias patterns. We further014
distill these rules into a smaller-scale inference015
engine for flexible rule generation and enhanc-016
ing downstream reasoning. Through a multi-017
judger evaluation, our inference engine proves018
effective in generating accurate, complex and019
abstract conclusions and premises, and improve020
various commonsense reasoning tasks. Overall,021
our work sheds light on LLMs’ limitations in022
grasping inferential rule and suggests ways to023
enhance their logical reasoning abilities 1.024

1 Introduction025

“Did Leonardo da Vinci ever use a laptop for draw-026

ing pictures?” Large language models can swiftly027

and confidently respond “No" (Geva et al., 2021;028

Wang et al., 2023), demonstrating impressive rea-029

soning ability that rivals human (OpenAI, 2023;030

Ouyang et al., 2022). However, when posed with031

more obscure questions, such as question Q2 in Fig-032

ure 1, LLMs are prone to exhibit uncertainty and033

errors. This inconsistency raises concerns about034

whether LLMs grasp the underlying logic of mat-035

ters as proficiently as humans (Wason, 1968) (see036

“underlying logic" in Figure 1) and highlights chal-037

lenging reasoning situations (like Q2) where cur-038

rent LLMs might struggle.039

1All code and data have been uploaded and will be pub-
lished upon acceptance.

Q1: Did Leonardo da 
Vinci ever use a laptop 
for drawing pictures?

Q2: Jane wrote a novel published by 
Jimmy, a publisher born in 1750. Did 
Jane’s grandmother often work by car?

Underlying Logic:
If Person X died before year A and Object Y was invented in year B, 
and A is earlier than B, then Person X can not access Object Y.

year A year B

Person X Object Y

Figure 1: The underlying logic to answer Q1 and Q2.

Humans naturally abstract underlying logic (e.g., 040

inferential rules) from extensive real-world obser- 041

vations (Barwise, 1993), which is beneficial for 042

addressing diverse reasoning situations. An infer- 043

ential rule is typically defined as a premise with a 044

set of facts (e.g., “Person X died before ... earlier 045

than B”) leading to a conclusion (e.g., ‘‘Person 046

X cannot access Object Y”) (Boghossian, 2014). 047

Grasping this rule enables the deduction that a per- 048

son cannot access an object invented posthumously. 049

This work utilizes symbolic logic as a scaffold to 050

generate challenging reasoning situations for GPT- 051

series LLMs. We observe a discernible gap be- 052

tween LLMs and humans in understanding inferen- 053

tial rules, especially rules with complex premises. 054

However, collecting such inferential rules at 055

scale presents a major challenge. Previous work 056

mainly relies on manual curation (Sap et al., 2019a; 057

Sinha et al., 2019) or inductive logic program- 058

ming (Qu et al., 2020), which are either labor- 059

intensive or limited in diversity. Besides, manually 060

crafted rules often appear simple and overly speci- 061

fied, struggling to move beyond basic intuition or 062

generalize across diverse situations. For example, 063

the rule If X runs out of steam, then X becomes 064

tired from Sap et al. (2019a) has only one premise 065

fact and narrowly specifies exhaustion. 066
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Inferential Rules of Different Complexities
(Complexity=1) If Person X has an adverse reaction to Food Y, 
then Person X cannot eat Food Y.
(Complexity=2) If Person X has inherited Disease Z2 and Food 
Y should be avoided by those with Disease Z2, then Person X 
cannot eat Food Y.
(Complexity=3) If Person X earns Money Z1 and Material Y is 
sold for Money Z2, and Money Z1 is bigger than Money Z2, then 
Person X can buy Material Y.
(Complexity=4) If Person X works at Job A and Job A pays 
Money Z1, and Material Y is sold for Money Z2, and Money Z1 
is bigger than Money Z2, then Person X can purchase Material Y.

Logic Scaffolding

HasAdverseReaction(Person X, Substance Y) :-
Inherit(Person X, Disease Z), ShouldBeAvoid(Substance 
Y, Disease Z);

CanNotEat(Person X, Food Y) :- HasAdverseReaction( 
Person X, Substance Z), Contains(Food Y, Substance Z);

CanNotEat(Person X, Food Y) :- Inherit(Person X, 
Disease A), ShouldBeAvoid(Substance Z, Disease A), 
Contains(Food Y, Substance Z);

Backward Chaining 

Symbolic Inferential Rules

Human significantly outperforms LLMs in 
understanding rules of different complexities.

	P𝟏 	P"	𝑪 +

Illustration of
Backward Chaining

	P# 	P$	P% +

	P𝟑 	P𝟒	𝑪 + 	P"+

Figure 2: Logic scaffolding uncovers challenging reasoning space for LLMs. (Complexity refers to the rule length.)

To this end, we introduce Logic scaffOlding067

Inferential Rule gEneration (LOIRE), a frame-068

work to generate inferential rules of different com-069

plexities. LOIRE operates in two stages: primitive070

rule generation and rule composition. Initially, we071

define “primitive rules” to describe abstract objects072

like Person and Food, and ensure they cannot be073

decomposed into simpler rules, facilitating broad074

generalization and easy generation. We then incor-075

porate GPT-4’s generative capability and human076

expertise to generate primitive rules with high con-077

fidence. This process, consistently guided by sym-078

bolic logic, involves GPT-4 drafting potential con-079

clusions in various domains, and forming premises080

with one or more facts. We ensure rules’ logical081

soundness through the model’s self-critique and082

human manual verification. In the second stage,083

we apply backward chaining (Gallaire and Minker,084

2012; Al-Ajlan, 2015) upon these primitive logi-085

cal rules to automatically construct compositional086

rules of varied lengths and structures at scale.087

Using this framework, we construct ULogic, an088

inferential rule base with around 8, 000 primitive089

rules and over 6, 000 compositional rules. These090

rules span five key domains: object affordance,091

accessibility, interaction, location, and person’s092

need. We hope ULogic will serve as a valuable093

resource, facilitating the assessment of LLMs’ pro-094

ficiency in underlying logic and enhancing flex-095

ible rule generation and downstream reasoning.096

We utilize ULogic to create an entailment prob-097

ing task with a comprehensive and robust evalua-098

tion strategy, to assess LLMs’ grasp of inferential099

rules against human performance. Our analysis100

of GPT-series LLMs, including GPT-4, GPT-3.5-101

Turbo and GPT-3.5-Turbo-Instruct, indicates they102

have a basic understanding of inferential rules but103

fall short of human proficiency, especially in rules104

with complex premises. Specifically, all models105

struggle more as the compositional complexity in-106

creases. While GPT-4 performs consistently on 107

verbalized and symbolic rules, the other models 108

sharply degrade on symbolic rules. Additionally, 109

all models exhibit disparities on various rule struc- 110

tures with Disjunctive-Transitive rules posing the 111

greatest challenges. Moreover, these LLMs display 112

notable polarity biases with GPT-4 showing a nec- 113

essary bias, underscoring areas for improvement. 114

We further distill crafted inferential rules into a 115

smaller-scale inference engine for flexible rule gen- 116

eration and downstream reasoning. We design three 117

tasks: conclusion generation, premise completion 118

and premise generation, to construct an instruction- 119

tuning dataset for inferential rule distillation. Ex- 120

perimental results through a multi-judger evalua- 121

tion mechanism incorporating automatic metrics, 122

LLM evaluators and human preferences show that 123

our inference engine possesses the ability for these 124

three tasks. It outperforms GPT-3.5-Turbo across 125

all dimensions of three tasks and even surpasses 126

GPT-4 in generating more complex and abstract 127

rules. Moreover, it can generate logical rules that 128

enhance downstream commonsense reasoning. 129

2 Logic Scaffolding for Inferential Rule 130

Generation 131

2.1 Preliminary of Inferential Rules 132

To better control the generative capability of LLMs 133

for rule generation, we focus on if-then inferential 134

rules with variables, that can be easily expressed 135

as symbolic logic (Novák and Lehmke, 2006). An 136

inferential rule describes a logical implication from 137

a premise (a set of facts) to a conclusion (a spe- 138

cific fact), where each fact is a predicate expression 139

with two variables, and each variable has a desig- 140

nated variable type. For each rule, we employ logic 141

scaffolding which first generates its symbolic ex- 142

pression to consistently guide its verbalized form. 143

We utilize Prolog (Apt et al., 1997) to formulate 144
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Step-1: Conclusion Preparation

Predicate
Generator

Person,Food
CanNotEat(Person X, Food Y)

CanBuy(Person X, Food Y)
NeedStore(Person X, Food Y)

…

Premise
Generator

Candidate Rules
CanNotEat(Person X, Food Y): 

AllergicTo(Person X, Substance Z),
Contains(Food Y, Substance Z);

…

Step-2: Premise Generation

Heuristically
Ø grammatically 

validity
Ø primitiveness

Self-Critic
Ø logically 

correctness

&

Rule Filter

Step-3: Rule Filtering

Retained Rules
CanAccess(Person X, Plant Y): 

BornIn(Person X, Season Z),
BloomsIn(Plant Y, Season Z);
non-primitive; logically incorrectX

Intermediate 
Rule Generator

Step-4: Rule Diversifying

Diversified
Rules

Step-5: Human Verification

Primitive
Rules

Human 
Annotators 

(AMT)

Logically 
entailed

Forward / Backward 
Chaining 

Figure 3: The pipeline of primitive rule generation.

symbolic rules as Conclusion:-Premise, where145

:- indicates the logical implication. For example,146

CanNotEat(Person X,Food Y ):-147

AllergicTo(Person X, Substance Z),148

Contains(Food Y, Substance Z). (1)149

The left-hand side is the conclusion and the right150

hand lists premise facts connected by commas.151

“CanNotEat”, “AllergicTo” and “Contains” are152

predicate verbs while Person, Food, Substance153

are variable types of variables (X, Y, Z). This sym-154

bolic rule can be verbalized as: If Person X is aller-155

gic to Substance Z and Food Y contains Substance156

Z, then Person X cannot eat Food Y.157

Primitive Rule We aim to generate primitive rules158

for further compositions and potential generaliza-159

tion. We formally define primitive rules as follows:160

(1) they concern abstract objects, like Person and161

Food, rather than specific instances, and their com-162

mon properties; (2) they cannot be decomposed163

into simpler rules. Inspired by superordinate ob-164

jects such as instrument, fruit, tool from165

Rosch and Mervis (1975), we assemble a collec-166

tion of abstract objects. We first identify the most167

common tail nodes of “IsA” relations from Con-168

ceptNet (Speer et al., 2017). For those nodes that169

are still fine-grained, we further seek their general170

hypernyms by searching ConceptNet and Word-171

Net (Miller, 1995). We totally gather a list of 32172

most common abstract objects for primitive rule173

generation, with 18 common properties generated174

by prompting GPT-4, as detailed in Appendix A.1.175

2.2 Primitive Rule Generation Pipeline176

The pipeline of primitive rule generation is illus-177

trated in Figure 3, consisting of five steps. First,178

we randomly select two abstract objects, and gen-179

erate potential predicates between them to form180

conclusions. GPT-4 is prompted to generate cor- 181

responding feasible premises with both single and 182

multiple facts, thereby constructing candidate prim- 183

itive rules. We then apply heuristic methods to filter 184

invalid and non-primitive rules, and utilize GPT-4 185

to select the rules it deems logically correct. We fur- 186

ther diversify rule predicates via backward/forward 187

chaining (Urbani et al., 2011; Shindo et al., 2021) 188

with generated single-fact rules, and filter exces- 189

sively repetitive rules. Finally, the diversified rules 190

undergo manual verification to ensure the final set 191

of high-confidence primitive rules. 192

Step-1: Conclusion Preparation From the set of 193

abstract objects, we select any two, e.g., Person 194

and Food, and prompt GPT-4 to generate potential 195

predicates connecting them as conclusions, e.g., 196

CanEat(Person X, Food Y). We attempt every pos- 197

sible pairing of two, where the selected objects can 198

be identical. For each pair of objects, {object1} and 199

{object2}, we aim to generate conclusions across 200

five domains: {object affordance, accessibility, in- 201

teraction, location and person’s need}, thereby cov- 202

ering diverse scenarios. Explanations and example 203

rules of these domains are listed in Appendix A.2. 204

The prompt for conclusion preparation about af- 205

fordance is below. Besides, we negate the gener- 206

ated predicates to yield both positive and negative 207

conclusions, e.g., CanNotEat(Person X, Food Y), 208

across object affordance, accessibility, and interac- 209
210

Prompt for Conclusion Preparation

According to commonsense knowledge in reality,
please list 5 predicates between the given two objects
to describe the {object affordance}.
Examples:
Object: Show, Artwork
Predicate: CanBeAdaptedFrom(Show X, Artwork Y)

Object: {object1}, {object2}
Predicate:

211
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tion domains, building a complete rule set.212

Step-2: Premise Generation Guided by a sym-213

bolic conclusion, we prompt GPT-4 to generate its214

premises in both symbolic and verbalized forms215

for better controllability. This process involves216

the logit bias setting, motivating premises to de-217

scribe relationships between abstract objects and218

their properties. Specifically, premises are gener-219

ated under the constraint of logit bias, increasing220

the likelihood of these objects and properties ap-221

pearing in the output. For each conclusion, we222

create both single-fact and multi-fact premises to223

yield candidate rules of varying lengths. We tailor224

instructions and demonstrations for each domain225

to prompt GPT-4 for premise generation exploring226

different possibilities, as detailed in Appendix A.3.227

Step-3: Rule Filtering After over-generating can-228

didate primitive rules, we first design several heuris-229

tic methods to filter grammatically invalid or non-230

primitive rules, based on their symbolic forms. For231

grammatically validity, we check whether the vari-232

ables in premises form a connected graph from233

node “X” to node “Y”, as in Appendix A.4. Re-234

garding primitiveness, we exclude rules with non-235

primitive variable types or those comprising more236

than 3 premise facts. Besides, we eliminate triv-237

ial rules that both contain negative words in their238

premise and conclusion, e.g., CanNotEat(Person X,239

Food Y):- CanNotAccess(Person X, Food Z).240

Directly generating logically correct rules is chal-241

lenge. Thus we further adopt a self-critic strat-242

egy (Gou et al., 2023) where GPT-4 critiques the243

accuracy of its self-generated rules in a verbalized244

format, and provides explanations of its judgments.245

When prompting GPT-4, we include two demon-246

strations featuring both correct and incorrect rules247

to mitigate label bias. These demonstrations vary248

across different domains. An example prompt for249

object affordance is in Appendix A.5.250

Step-4: Rule Diversifying To increase the va-251

riety of rule expressions, we diversify predicates252

while maintaining its logical accuracy. Based on253

symbolic rules, we respectively apply forward and254

backward chaining algorithms to their conclusion255

and premise with generated single-fact rules, as256

shown in Figure 4. In forward chaining, we take257

the conclusion as a new premise to generate an258

intermediate single-fact rule, subsequently substi-259

tuting the original conclusion with this newly de-260

rived conclusion. In backward chaining, a premise261

is taken as a conclusion to create an intermediate262

single-fact rule, and replace the original premise 263

with the new-generated one. Intermediate single- 264

fact rules are also generated through Step-2 and 3. 265

Each original rule undergoes one forward and one 266

backward chaining to derive two diversified rules.

fw-predicate!(𝑋, 𝑌) :-
predicate!(X, Y);

predicate"(Z, Y) :-
bw−predicate"(Z, Y);

fw−predicate!(X, Y) :-
predicate"(X, Z), predicate#(Z, Y);

predicate!(X, Y) :-
predicate"(X, Z), bw−predicate#(Z, Y);

Forward chaining Backward chaining

Original Rule:

Diversified Rules:

Intermediate
Single-fact
rules:

predicate!(X, Y) :- predicate#(X, Z), predicate"(Z, Y);

Figure 4: The forward and backward chaining process
for diversifying rules.

267
Step-5: Human Verification To obtain more reli- 268

able inferential rules, we utilize Amazon Mechan- 269

ical Turk (AMT) to recruit human annotators for 270

manual verification. For each rule, three annotators 271

are asked to assess the clarity and comprehensibil- 272

ity of its premise and conclusion, as well as the 273

logical entailment from the premise to the conclu- 274

sion. Only the rules unanimously validated by all 275

three annotators are preserved. The AMT template 276

for human verification and the overall rates of rule 277

acceptance are listed in Appendix A.6. 278

2.3 Rule Composition 279

We create more compositional rules by applying 280

backward chaining upon primitive rules with differ- 281

ent chaining steps. In each step, we select a premise 282

fact from the current rule as a conclusion, deriving 283

a new primitive rule that describes its multi-fact 284

premise. This selected fact is then replaced with 285

the newly generate premise. This process is itera- 286

tively conducted 1 to 3 times, creating rules with 287

varying compositional levels (1 to 3). An example 288

of one backward chaining step is shown in Figure 5. 289

The intermediate primitive rules used in backward 290

chaining are generated via the pipeline described 291

in Sec. 2.2, thus also contributing to our primitive 292

rule set. As the composition of logically correct 293

sub-rules is also logically correct, there is no need 294

to verify these compositional rules separately. 295

2.4 Rule Statistics 296

Using Logic-RGC framework, we construct an 297

inferential rule base ULogic comprising 14, 647 298

rules, with 7, 967 primitive and 6, 680 composi- 299

tional ones. These rules span five key domains: 300
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Primitive Rule:
CanPark(Person X, Vehicle Y) :-Have(Person X, Space A),

RequireForParking(Vehicle Y, Space B), BiggerThan(Space A, Space B);

Have(Person X, Space Y) :-
Rent(Person X, Facility Z), Contain(Facility Z, Space Y);

CanPark(Person X, Vehicle Y) :-
Rent(Person X, Facility Z), Contain(Facility Z, Space A), 

RequireForParking(Vehicle Y, Space B), BiggerThan(Space A, Space B);

Compositional Rule (level=1):

……

Intermediate Rule:

More steps:

Figure 5: Illustration of one backward chaining step.

object affordance, accessibility, interaction, loca-301

tion and person’s need. They vary in compositional302

depth from 0 to 3, with rule lengths ranging from 1303

to 6. Detailed statistics are in Table 1.

Domain Aff. Acc. Int. Loc. Need Total

Primitive rules 7,967

Single-fact 328 513 440 194 87 1,562
Multi-fact 387 638 2,527 166 128 3,846

Intermediate 417 590 1,286 165 101 2,559

Compositional rules 6,680

Comp.=1 322 675 936 111 91 2,135
Comp.=2 199 773 744 100 136 1,952
Comp.=3 229 1052 896 217 199 2,593

Table 1: Statistics of constructed rule base. Aff., Acc.,
Int., Loc., Comp. are abbreviations of Affordance, Ac-
cessibility, Interaction, Location and Compositionality.304

3 Assessing LLMs’ Proficiency in305

Capturing Inferential Rules306

We utilize ULogic for a systematic evaluation of307

LLMs’ proficiency in underlying logic compared to308

human competence. Specifically, we select a high-309

quality probing subset with 1,104 diverse rules310

from our rule base 2, and create a binary entailment311

classification task for assessing whether LLMs cap-312

ture the entailment within inferential rules.313

3.1 Analysis Setup314

Considering LLMs’ sensitivity to various input for-315

mulations and shortcut biases, we design a com-316

prehensive and robust assessment mechanism to317

ensure reliable analysis. For each inferential rule,318

we convert it into five distinct probing questions319

to mitigate template bias, as summarized in Ap-320

pendix B.1. We report the average accuracy and321

variance (the error line of each bar) across five322

2These high-quality probing rules are verified by authors,
covering various lengths, polarities and structures.

templates. Besides, we adopt a two-shot chain of 323

thought (CoT) prompting strategy (Wei et al., 2022) 324

requiring the model to generate a rationale after pre- 325

senting its answer, using ”and also explain why.” 326

We include one correct rule and one incorrect rule 327

in the two demonstrations to minimize label bias. 328

Following the Law of Non-Contradiction (Priest 329

et al., 2006), the propositions "If X, then Y" and 330

"If X, then not Y" are mutually exclusive that can- 331

not both be true at the same time. To enhance 332

the reliability of our probing, we flip each rule by 333

negating its conclusion, and simultaneously probe 334

both the original rule and its flipped version. A rule 335

is accurately classified only if the original rule is 336

affirmed (True/Right/Yes) and its flipped counter- 337

part is negated (False/Wrong/No), as shown below. 338

A specific example is in Appendix B.2. This dual- 339

sided probing is applied to both human and LLMs. 340

If Premise, then Conclusion_original. True/Right/Yes
If Premise, then Conclusion_flipped. False/Wrong/No

341

3.2 Empirical Analysis 342

We conduct analysis on GPT-series LLMs, includ- 343

ing GPT-4, GPT-3.5-Turbo and GPT-3.5-Turbo- 344

Instruct3, aiming to investigate LLMs’ proficiency 345

of inferential rules against human performance by 346

exploring the following questions. The human per- 347

formance is obtained by asking AMT annotators 348

whether the input rule is logical correct with high 349

probability. Each performance presented in follow- 350

ing bar charts is calculated based on 150 instances 351

randomly sampled from our probing subset. 352

(1) How does model performance vary with in- 353

creasing compositional complexity? We con- 354

duct rule probing in terms of different com- 355

postional lengths, as illustrated in Figure 6a. 356

“Length=1,2,3,4” respectively denote rules with 357

1∼4 facts in their premises. The analysis of dif- 358

ferent compostional depths is also provided in Ap- 359

pendix B.3. They both reveal that as compositional 360

complexity increases, the performance of both hu- 361

man and all models drops. The primary reason 362

is that compositional complex rules typically ne- 363

cessitate the aggregation of multi-step reasoning, 364

which escalates higher-order relationships under- 365

standing and exponential error accumulation with 366

each additional step (Dziri et al., 2023). Besides, 367

there is a persistent performance gap between all 368

models and human, particularly pronounced with 369

3Substituting the now-deprecated Text-davinci-003.
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Figure 6: Probing results across varied lengths.
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Figure 7: Result of varied structures.

compositional complex rules, suggesting signifi-370

cant potential for enhancement in this area.371

(2) Are LLMs proficient in capturing both sym-372

bolic and verbalized rules? We further analyze373

the performance of LLMs on symbolic rules (see374

Figure 6b), and compared it to the verbalized result375

in Figure 12. We observe that GPT-4 achieves376

consistent performance on verbalized and sym-377

bolic rules, whereas GPT-3.5-Turbo and GPT-3.5-378

Instruct sharply degrade on symbolic rules. This379

suggests that the GPT-3.5 series may have limita-380

tions in generalizing across varied types of linguis-381

tic structures beyond natural language, whereas382

GPT-4 likely have undergone specific optimiza-383

tions for symbolic interpretations.384

(3) Are there performance disparities among385

models concerning different rule structures?386

Our generated multi-fact rules (Length > 1) have387

three intrinsic structures: Transitive, Disjunctive388

and Disjunctive-Transitive. Specific illustrations389

and examples of each structure are detailed in390

Appendix B.4. Figure 7 shows that Disjunctive-391

Transitive rules pose greater challenges compared392

to Transitive and Disjunctive ones, especially for393

GPT-3.5-Turbo and GPT-3.5-Instruct. We hypoth-394

esize that this discrepancy stems from increased395

compositional complexity and LLMs’ insufficient396

learning of logical structures in natural language.397

(4) Do LLMs exhibit a polarity bias over inferen-398

tial rules? Our inferential rules contain both posi-399

tive and negative conclusions. We conduct a com-400

parative analysis of polarity discrepancy, as shown401

in Figure 8a. GPT-4 and GPT-3.5-Instruct exhibit402

a pronounced positive bias, performing better on403

rules with positive conclusions. This bias may orig-404

inate from the imbalanced distribution of LLMs’405

training data (Garg et al., 2022), with a higher pro-406

portion of positive statements. We further explore407

different CoT strategies with GPT-4: (1) first an-408

swer then explain (Answer-Explain), (2) first think 409

then answer (Think-Answer), (3) self-consistently 410

think then answer (Self-Consistency) (Wang et al., 411

2022). Various CoT prompts are listed in Ap- 412

pendix B.5. Figure 8b shows that although ad- 413

vanced CoT strategies can mitigate the positive 414

bias, they adversely impact the performance on 415

rules with both positive and negative conclusions.

Pos Neg
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(a) Answer-Explain strategy.
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Pos Neg

(b) Various CoT strategies.

Figure 8: Rule Polarity Comparison.

416
(5) Why does GPT-4 significantly underperform 417

GPT-3.5-Turbo on transitive rules? Previous 418

analysis shows that GPT-4 generally outperforms 419

or equals the other models, but this superiority dis- 420

appears on transitive rules, as evidenced in Fig- 421

ure 7. We investigate this question in Appendix B.6, 422

which reveals that GPT-4 exhibits a “necessary bias” 423

that tend to consider all necessary conditions reach- 424

ing a conclusion, avoiding definite judgement. This 425

conservative style may come from LLMs’ pref- 426

erence alignment during Reinforcement Learning 427

with Human Feedback (Ouyang et al., 2022). 428

Overall, GPT-4 performs best in grasping infer- 429

ential rules. But compared to human performance, 430

there still remains substantial room for improve- 431

ment across all models, especially in highly com- 432

positional, symbolic and structural complex rules. 433

Besides, all models tend to exhibit a polarity bias 434

towards rules with positive conclusions with GPT- 435

4 also showing a necessary bias. These findings 436

suggest potential areas for future enhancements. 437
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4 Rule Distillation as Inference Engine438

4.1 Instruction Dataset & Model Tuning439

For flexible rule generation and benefiting down-440

stream reasoning, we distill our crafted rules into441

a smaller-scale inference engine as illustrated in442

Appendix C.1. We tailor three tasks: conclusion443

generation, premise completion and premise gener-444

ation, to construct an instruction-tuning dataset for445

inferential rule distillation. The detailed definitions446

of these tasks are also described in Appendix C.1.447

We gather all primitive rules and partial compo-448

sitional rules to formulate the instruction-tuning449

dataset, as compositional rules are constructed450

from primitive ones. We take 10,703 rules for451

training and 943 for testing. Altogether, we create452

39,887 instances for instruction tuning, including453

10,703, 18,500 and 10,684 for conclusion genera-454

tion, premise completion and premise generation.455

We have 3,500 testing instances, divided as 943,456

1,614 and 943 for these three tasks. We use Mistral-457

7b (Jiang et al., 2023) as the backbone model and458

fine-tune it with our constructed instruction dataset459

as our inference engine. The training details and460

demo page can be found in Appendix C.2.461

4.2 Rule Generation Evaluation462

We compare our inference engine against GPT-4463

and GPT-3.5-Turbo across three tasks to assess rule464

generation. For a fair comparison, we prompt GPT-465

4 and GPT-3.5-Turbo to simultaneously generate466

symbolic and verbalized responses, using similar467

prompts as in Step-2 of Sec. 2.2. Detailed prompts468

are in Appendix C.3. We introduce a multi-judger469

evaluation mechanism, incorporating automatic470

metrics, LLM evaluator and human preference. We471

evaluate the logical accuracy for conclusion gener-472

ation and premise completion. For premise genera-473

tion task with a specified number of facts, we gen-474

erate three potential premises for each conclusion,475

and compare these premises in accuracy, diversity,476

complexity and abstractness. Detailed definition of477

these metrics are described in Appendix C.4.478

Automatic Evaluation For automatic accuracy479

evaluation of three tasks, we calculate BLEU480

score (Papineni et al., 2002) against reference re-481

sponses. For complexity of premise generation, we482

assess the average fact number of three generated483

premises. For diversity, we compute average Self-484

BLEU (Shu et al., 2019; Tevet and Berant, 2020)485

between three generated premises. Specifically,486

Self-BLEU measures the BLEU score of a gener-487

ated premise against another, and a high average 488

Self-BLEU indicates low diversity. Abstractness is 489

not easy to evaluate automatically, so we leave it to 490

LLM evaluation. The results are shown in Table 2. 491

Task Conc Gen Prem Comp Prem Gen

Metrics BLEU BLEU BLEU Self-BLEU Fact Num.

Engine 0.739 0.527 0.411 0.687 3.42
GPT-4 0.414 0.179 0.149 0.805 2.58

GPT-3.5 0.338 0.248 0.084 0.739 1.72

Table 2: Automatic evaluation results. “Conc Gen”,
“Prem Comp” and “Prem Gen” are abbreviations of con-
clusion generation, premise completion and generation.

492

LLM Evaluation We adopt GPT-4 as an evalu- 493

ator to rate the generated responses on a scale 494

from 1 to 3. The criteria of each rating along with 495

examples are provided to the evaluator. Please 496

see Appendix C.5 for detailed prompts. For each 497

task, we select 100 instances for LLM evalua- 498

tion, ensuring a balance across all domains and 499

all types (including single-fact, multi-fact, inter- 500

mediate, composition=1∼3 rules) as detailed in 501

Table 1. The rating results are presented in Table 3. 502

Task Conc Gen Prem Comp Prem Gen

Metrics Acc Acc Acc Div. Cpx. Abs.

Engine 2.44 2.78 2.34 1.89 1.62 2.43
GPT-4 2.53 2.72 2.77 2.64 1.40 2.32

GPT-3.5 2.38 1.57 1.91 1.72 1.06 2.30

Table 3: LLM evaluation results.
503

Human Evaluation To better assess premise gen- 504

eration in line with human value, we further recruit 505

two annotators for each instance to compare their 506

accuracy. We implement a pairwise comparison set- 507

ting, asking annotators to determine which group 508

of generated premise is more accurate in terms 509

of logical consistency with the given conclusion, 510

commonsense alignment and correctness of fact 511

numbers. The results are shown in Fiure 9.

19%

54%

27%

Ours v.s. GPT-4

Ours GPT-4 Tie

76%

9%

15%

Ours v.s. GPT-3.5-turbo

Ours GPT-3.5-turbo Tie

Figure 9: Human comparison results.
512

From all evaluation, we can see that our infer- 513

ence engine enables the smaller-scale LLM with 514
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the capability for conclusion generation, premise515

completion and premise generation. It performs516

better than GPT-3.5-Turbo across all metrics in517

three tasks, and even outperforms GPT-4 to gener-518

ate more complex and abstract rules.519

4.3 Downstream Reasoning Evaluation520

We further analyze the effectiveness of our infer-521

ence engine in generating logical rules or expla-522

nations to enhance downstream reasoning tasks.523

We evaluate on following commonsense reasoning524

datasets: StrategyQA (Geva et al., 2021), SOCIAL525

IQA (Sap et al., 2019b), LINK (Li et al., 2023),526

PIQA (Bisk et al., 2020) and CSQA2.0 (Talmor527

et al., 2022). We use a zero-shot CoT strategy to528

prompt two baseline models, Mistral-7B-Instruct-529

v0.1 and Llama-2-7b-chat (Touvron et al., 2023), to530

answer questions with following explanations. We531

then utilize our inference engine to generate logical532

rules or explanations relevant to answer questions,533

and supplement these generated rationals to base-534

line models as input to enhance their performance.535

We compare the prediction accuracy of our infer-536

ence engine augmented models against baselines.537

The comparative results are shown in Tabel 4.538

Our inference engine can generate logical rules539

or explanations that benefit multiple downstream540

commonsense reasoning tasks on top of different541

backbone models. For the lack of clear advantage542

on PIQA and performance decline on CSQA2.0,543

we speculate that PIQA may be contaminated dur-544

ing Mistral’s training process, and CSQA2.0’s fo-545

cus is mainly on longtail commonsense knowledge546

rather than requiring logical rules inference, like547

"Is cotton candy sometimes made out of cotton?"

Dataset
Mistral Mistral+rules LLama LLama+rules

(Mistral-7b) (LLama2-7b)

StrategyQA 54.50 56.75 58.00 60.48
SOCIAL IQA 64.00 68.50 53.50 60.50

LINK head 53.68 68.38 58.09 70.59
LINK longtail 53.33 67.50 55.83 65.00

PIQA 65.00 65.00 58.5 62.0
CSQA2.0 59.00 62.50 64.00 60.00

Table 4: Downstream reasoning performance.
548

5 Related Work549

Logical Rule Generation Logical inferential rules550

are crucial for everyday reasoning (Geva et al.,551

2021; Talmor et al., 2022), and collecting these552

inferential rules is challenging. Prior work mainly553

adopts inductive logic programming (ILP) (Yang 554

and Song, 2019; Qu et al., 2020; Sen et al., 2022) 555

for rule generation. However, they can only gener- 556

ate rules from existing knowledge graphs and the 557

generated rules has potential inaccuracies. Alterna- 558

tively, Sinha et al. (2019) manually create a set of 559

inferential rules for inductive reasoning, but their 560

scope is limited to kinship. Sap et al. (2019a) con- 561

struct a commonsense inferential rule base through 562

crowdsourcing, but these rules tend to be overly 563

simple and specific, struggling to move beyond 564

basic intuition and generalize to varied situations. 565

Abstract and complex rules are essential in tack- 566

ling diverse complex questions, paving the way for 567

complex reasoning and decision-making. Although 568

LLMs have opened new avenues for generating in- 569

ferential rules (Zhu et al., 2023), they still struggle 570

to automatically craft abstract and complex rules. 571

Integration of Logical Rules and LLMs Recently, 572

the integration of inferential rules with neural net- 573

works, particularly LLMs, has gained significant 574

attention. This approach combines the logical in- 575

terpretability of symbolic reasoning and adaptive 576

power of neural computing, improving LLMs’ log- 577

ical reasoning ability. Wang et al. (2021); Olaus- 578

son et al. (2023) transform textual statements into 579

logical expressions and conduct symbolic reason- 580

ing following logical rules. Weir and Van Durme 581

(2022) train neural models using a set of inferential 582

rules for dynamic application. This direction broad- 583

ens LLMs’ ability with flexible rule generation and 584

application for complex reasoning. 585

6 Conclusion 586

This paper examines the proficiency of GPT-series 587

LLMs in capturing logical inferential rules and 588

probes their challenging reasoning space. We in- 589

troduce a logic scaffolding inferential rule gener- 590

ation (LOIRE) framework to create an inferential 591

rule base ULogic, including nearly 8,000 primitive 592

rules and over 6,000 compositional rules across 593

five domains. Our evaluations using a subset of 594

ULogic show that even advanced models like GPT- 595

4 struggle with compositional and structural com- 596

plex rules and exhibit certain biases. Furthermore, 597

we distill ULogic into a smaller inference engine 598

that performs well in generating inferential rules 599

and benefit downstream reasoning tasks. Our work 600

points out where LLMs need to improve in logical 601

reasoning and offers a pathway to enhance their 602

reasoning capabilities. 603
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Limitations604

Limitation on inferential rule coverage. Com-605

monsense inferential rules may exist in diverse for-606

mats and span various domains. Our work mainly607

focuses on rules formatted as if-then statements,608

covering five domains: object affordance, accessi-609

bility, interaction, location and person’s need. In610

future work, we will expand our scope to include611

inferential rules of other formats and explore addi-612

tional domains for broader coverage.613

Limitation on probing open-source models.614

Our work does not probe and analyze open-source615

models. While GPT-4 and GPT-3.5-turbo are con-616

sidered as the most advanced models, open-source617

counterparts may exhibit different behaviors or pat-618

terns in understanding inferential rules with varying619

complexities. These aspects will be the subject of620

future exploration.621

Risk of environmental impact A significant risk622

associated with our framework and analysis is the623

potential increase in environmental burdens due624

to the extensive use of OpenAI’s APIs for LLMs.625

This impact can be mitigated by replacing GPT-4626

with future smaller-scale open-source models that627

are more efficient with less environmental impact.628

Potential error in rule generation. Generating629

inferential rules with specific requirements poses630

a significant challenge. As the majority of our631

framework’s pipeline are powered by GPT-4, it may632

inevitably generate inferential rules with logical633

inaccuracies even incorporating human verification.634

This might result in less accurate probing of LLMs.635

Ethical Consideration636

All rules we collected through LLMs are released637

publicly for usage and its probing subset for profi-638

ciency analysis have been subjected to a thorough639

review by the authors. The code of our generation640

pipeline and probing experiments will also be pub-641

licly released. This setting guarantees transparency642

and reproducibility in our experiments, allowing643

other researchers to evaluate and expand upon our644

work. Our logic scaffolding framework is strictly645

limited to be used for rule generation that follow the646

ethical guidelines of the community. The authors647

emphatically denounce the use of our framework648

for generating inaccurate or harmful rules.649
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A Primitive Rule Generation Pipeline 827

A.1 Abstract Objects and Common 828

Properties 829

Table 5 list 32 most common abstract objects and 830

18 common properties for primitive rule generation. 831

Type Words

Abstract
Objects

“Person”, “Animal”, “Plant”, “Food”, “Alcohol”,
“Disease”, “Drug”, “Natural Phenomenon”, “Con-
dition”, “Material”, “Substance”, “Furniture”, “Pub-
lication”, “Organization”, “Authorization”, “Facil-
ity”, “Natural Place”, “Event”, “Show”, “Artwork”,
“Job”, “Game”, “Vehicle”, “Tool”, “Technology”,
“Electronic Device”, “Platform”, “Financial Product”,
“Skill”, “Legislation”, “Region”, “Time Period”

Common
Properties

“Age”, “Price”, “Money”, “Height”, “Length”,
“Weight”, “Strength”, “Size”, “Density”, “Volume”,
“Temperature”, “Hardness”, “Speed”, “BoilingPoint”,
“MeltingPoint”, “Frequency”, “Decibel”, “Space”

Table 5: List of pre-defined abstract objects and com-
mon properties.

832

A.2 Rule Domains 833

Table 6 illustrates the detailed explanations, exam- 834

ple predicates and rules across five domains. 835

A.3 Prompts for Premise Generation 836

For premise generation in each domain, we design 837

an instruction followed by two demonstrations to 838

iteratively prompt GPT-4, and the underlined sen- 839

tence is the rule description which varies according 840

to the specific domain, as shown in Table 7. 841

A.4 Grammatical Validity for Rule Filtering 842

As Figure 10, we check whether the variables in 843

premises form a connected graph from node “X” to 844

node “Y” to filter grammatically invalid rules.

X

Y

A

B

X

Y
Z

X

Y

A

B

Figure 10: Grammatically valid and invalid rule graphs.

845

A.5 Prompts for Rule Filtering 846

Table 8 is an example prompt for rule filtering in 847

object affordance domain. 848
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Domain Explanation Predicates Examples

Object
Affordance

Whether a person can take an
action over an object based on
its property and requirement

CanDrive(Person X, Vehicle Y);
CanCreate(Person X, Artwork Y);
CanAttend(Person X, Event Y);

CanDrive(Person X, Vehicle Y):- Have(Person
X, Age Z1), RequireMinimumAge(Vehicle Y,
Age Z2), BiggerThan(Age Z1, Age Z2);

Object
Accessibility

Whether an object can ac-
cess the other object based on
its physical condition, spatial
and temporal restriction

CanAccess(Person X, Show Y);
CanAccess(Animal X, Tool Y);
CanAccess(Animal X, Animal Y);

CanAccess(Person X, Show Y):- Locate-
dIn(Person X, Region Z), BroadcastIn(Show
Y, Region Z); CanNotAccess(Person X,
Tool Y):- AllergicTo(Person X, Material Z),
MadeOf(Tool Y, Material Z);

Object
Interaction

How an object can interact
with the other object based on
their physical, spatial or tem-
poral properties

CanSubmergeIn(Substance X,
Substance Y); CanAdapted-
From(Show X, Artwork Y);
CanFitIn(Tool X, Tool Y);

CanSubmergeIn(Substance X, Substance
Y):- DensityOf(Substance X, Density Z1),
DensityOf(Substance Y, Density Z2), Big-
gerThan(Density Z1, Density Z2);

Object
Location

The location description of an
object

OriginatedFrom(Food X, Region
Y); BannedIn(Drug X, Region Y);
BornIn(Person X, Region Y);

OriginatedFrom(Food X, Region Y):- Pro-
cessedIn(Food X, Facility Z), LocatedIn(Facility
Z, Region Y);

Person’s
Need

Person need to take an action
over objects under a specific
circumstance

NeedToConsume(Person X, Drug
Y);
NeedToWater(Person X, Plant Y);

NeedToConsume(Person X, Drug Y):-
Has(Person X, Disease Z), CanTreat(Drug Y,
Disease Z);

Table 6: The explanations, example predicates and rules of five different domains.

Instruction for Premise Generation (Object Affordance)

According to commonsense knowledge in realistic scenarios, please generate 2 logical rules in both Prolog and
natural langauge to describe the premises of the given conclusion. The rules in Prolog should have the same meaning
with the rules in natural language.
Each rule should contain multiple premises and each premise should contain two variables in (X, Y, Z, Z1, Z2).
The rules should describe object affordance based on its property (such as height, age, price) and requirement (such
as required skill, source, tool).
The premises should not contain negative words such as ’not’, ’no’, ’never’ and ’un-’

Conclusion: {conclusion}
Rules:

Demonstrations for Premise Generation (Object Affordance)

Conclusion: CanCook(Person X, Food Y)
Rules:
1. CanCook(Person X, Food Y):- CanUse(Person X, Tool Z), UsedForCook(Tool Z, Food Y);
If Person X can use Tool Z which is used for cooking Food Y, then Person X can cook Food Y.
2. CanCook(Person X, Food Y):- Master(Person X, Skill Z), RequiredForCooking(Skill Z, Food Y);
If Person X has mastered Skill Z which is required for cooking Food Y, then Person X can cook Food Y.

Conclusion: CanDrive(Person X, Vehicle Y)
Rules:
1. CanDrive(Person X, Vehicle Y):- Have(Person X, Age Z1), RequireMinimumAge(Vehicle Y, Age Z2),
BiggerThan(Age Z1, Age Z2);
If Person X has Age Z1 and the minimum age requirement for driving Vehicle Y is Age Z2, Age Z1 is bigger than
Age Z2, then Person X can drive Vehicle Y.
2. CanDrive(Person X, Vehicle Y):- Obtain(Person X, Authorization Z), RequiredForDriving(Authorization Z,
Vehicle Y);
If Person X have obtained a specific Authorization Z and Authorization Z is required for driving Vehicle Y, then
Person X can drive Vehicle Y.

Domain Rule Description

Object Affordance The rules should describe object affordance based on its property (such as height, age, price) and requirement
(such as required skill, source, tool).

Object Accessibility The rules should describe object accessibility based on its physical condition, spatial and temporal restriction.

Object Interaction The rules should describe object interaction based on its physical, spatial or temporal properties (such as
speed, hardness, density, height, time period).

Object Location The rules should describe the location information of an object.
Person’s Need The rules should describe person’s need to take an action over the object.

Table 7: Prompts for rule generation in different domains.
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Prompt for Rule Filtering

True or False? Please predict whether the input rule is accurate or not according to commonsense knowledge in
realistic scenarios, and also explain why.
Examples:
Input: If Person X has an Age Z1 and Vehicle Y requires an Age above Z2 for driving, with ...
Output: True. Because Person X has achieved the ...
Input: If Person X was born in Season Z and Plant Y blooms in the same Season Z, then Person X can access Plant Y.
Output: False. Because a person’s birth season and a plant’s blooming season has no logical connection.

Input: {candidate rule}
Output:

Table 8: A prompt for rule filtering in object affordance.

Figure 11: AMT template for human verification of primitive rules.

A.6 Human Verification Templates and Rates849

Before human verification, we first craft a qual-850

ification task to select AMT annotators from all851

English-speaking countries (US, UK, New Zealand,852

Australia, Canada). The prospective workers are853

presented with three representative test cases and854

need to predict whether the premise and conclusion855

are clearly readable, and if the premise logically856

entails the conclusion. Only those workers cor-857

rectly passing all the test cases are recruited. The858

detailed template for human verification is shown859

as Figure 11. This template is also used for get- 860

ting human performance in rule probing analysis, 861

wherein a separate cohort of workers is qualified for 862

manual rule probing. Besides, the overall rates of 863

rule acceptance in different domains during human 864

verification are listed Table 9. 865

B Rule Probing 866

B.1 Rule Probing Templates 867

Table 10 lists five different templates for unbiased 868

rule probing. 869
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Affordance Accessibility Interaction Location Person’s Need

Yield Rate 48.09 37.28 52.81 53.74 49.45

Table 9: The rule yield rates (%) of human verification.

Template Label

1
True or False? Please predict whether the
input rule is very likely to be true.

True/False

2
Right or Wrong? Please predict whether the
input rule is valid and correct.

Right/Wrong

3
Yes or No? Please predict whether the
premise entails the conclusion.

Yes/No

4
Premise:..., Conclusion:... Does premise en-
tail conclusion? Please answer Yes or No.

Yes/No

5
Given the observations ..., can we draw the
conclusion ...? Please answer Yes or No.

Yes/No

Table 10: Five templates for rule probing.

B.2 Dual-side Rule Probing Setting870

Table 11 illustrate a concrete example of dual-side871

rule probing.

If Premise, then Conclusion_original. True/Right/Yes
If Premise, then Conclusion_flipped. False/Wrong/No

Example

If Person X is allergic to Substance Z
and Food Y contains Substance Z, then
Person X cannot eat Food Y.

True/Right/Yes

If Person X is allergic to Substance Z
and Food Y contains Substance Z, then
Person X can eat Food Y.

False/Wrong/No

Table 11: A specific example of dual-side rule probing.

872

B.3 Rule Depths Probing873

The analysis of GPT-series LLMs and human on874

different compostional depths is presented as Fig-875

ure 12. “Depth=0” represents primitive rules and876

“Depth=1,2,3” denote compositional rules involv-877

ing 1 to 3 backward chaining steps.878

B.4 Illustrations of Rule Structures879

Figure 13 displays several examples showcasing880

both symbolic and verbalized rules across different881

structure types.882

B.5 Different CoT Prompts883

Table 12 lists different prompts of three CoT strate-884

gies for rule probing.885
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Verbalized Rules

Human GPT-4 GPT-3.5-turbo GPT-3.5-Instruct

Figure 12: Probing results of varied depths.

CoT strategy Prompt

Answer-
Explain

True or False? Please predict whether the input
rule is very likely to be true, and also explain why.

Answer-
Explain

True or False? Please predict whether the input
rule is very likely to be true. Please first briefly
explain your thought process in one sentence, and
then give your answer.

Self-
Consistency

True or False? Please predict whether the input
rule is very likely to be true. Please first gener-
ate three different sentences to respectively ex-
plain your three thought processes briefly, and
then based on the corresponding thought to give
your answer. Finally, output the final answer ac-
cording to majority voting.

Table 12: Three CoT prompts for rule probing.

B.6 Necessary Bias 886

As mentioned in Section 3.2, We investigate why 887

GPT-4 significantly underperforms GPT-3.5-Turbo 888

on transitive rules. Transitive rules typically de- 889

scribe a straightforward logical chain from variable 890

X to Y, where GPT-3.5-Turbo and GPT-3.5-Instruct 891

manage with greater ease. In contrast, we find that 892

GPT-4 exhibits a “necessary bias” that tend to con- 893

sider all necessary conditions reaching a conclu- 894

sion, which avoids drawing a definite judgement. 895

This conservative response is more pronounced in 896

transitive rules, where GPT-4 more frequently re- 897

sponds with hesitations like "it does not necessarily 898

mean" in its explanations. We present a probing 899

example of a transitive rule by GPT-4 in Table 13, 900

including its generated prediction, explanation and 901

the corresponding label. We hypothesize that this 902

conservative style may come from LLMs’ pref- 903

erence alignment during Reinforcement Learning 904
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Disjunctive

Transitive

Disjunctive-
Transitive

CanBuy(Person X, Game Y):- Age(Person X, Age A), RecommendedAge(Game Y, Age B), 
BiggerThan(Age A, Age B);
If Person X is of Age A and the recommended age for Game Y is Age B, and Age A is bigger than 
Age B, then Person X can buy Game Y.
CanNotEat(Person X, Food Y):- Inherit(Person X, Disease Z), Avoid(Food Y, Disease Z);
If Person X has inherited Disease Z and Food Y should be avoided by those with Disease Z, then 
Person X cannot eat Food Y.

CanPlay(Person X, Game Y):- Buy(Person X, Electronic Device Z), RequiredForGame(Electronic 
Device Z, Game Y);
If Person X has bought Electronic Device Z and Electronic Device Z is required for playing Game Y, 
then Person X can play Game Y.

CanPurchase(Person X, Material Y):- WorkAt(Person X, Job C), Pay(Job C, Money A), 
Sell(Material Y, Money B), BiggerThan(Money A, Money B);
If Person X works at Job C and Job C pays Money A, and Material Y is sold for Money B, and 
Money A is bigger than Money B, then Person X can purchase Material Y
CanAccess(Animal X, Substance Y):- LiveIn(Animal X, Natural Place C), LocatedIn(Natural Place 
C, Region Z), GrowsIn(Plant D, Region Z), DerivedFrom(Substance Y, Plant D);
If Animal X lives in Natural Place C, and Natural Place C is located in Region Z, and Plant D 
grows in Region Z, and Substance Y is derived from Plant D, then Animal X can access Substance Y.

X

Y

A

B

X

Y
Z

X YZ

X

Y

A

B

C

X

Y
Z

C

D

Figure 13: Example rules of different structures.

with Human Feedback (Ouyang et al., 2022).905

Input

True or False? Please predict whether the input
rule is very likely to be true, and also explain why.
Rule: If Person X has a job A that requires Skill
Z, and Skill Z is required to cook Food Y, then
Person X can cook Food Y.

Prediction False

Explanation

Just because Person X has a job that requires Skill
Z, it does not necessarily mean they can cook
Food Y. They may have the skill, but cooking also
requires other knowledge of recipes, techniques.

Label True

Table 13: An example probing result of a transitive rules
by GPT-4.

C Inference Engine906

C.1 Illustration of Instruction Tuning907

Figure 14 illustrate the pipeline of instruction tun-908

ing for rule distillation as an inference engine. Our909

inference engine is trained for three tasks: conclu-910

sion generation, premise completion and premise911

generation. The conclusion generation focuses on912

creating a conclusion from a provided premise. For913

premise completion, given a conclusion and its914

partial premise, the inference engine must com-915

plete the remaining premise part to support the916

conclusion. In premise generation, the engine is917

tasked with creating premises of varying complex-918

ity based on a given conclusion, specifically gen-919

erating premises with one, two or even more facts.920

We also provide an inference engine demo for flex-921

ible rule generation as shown in Figure 15.922

Inference 
Engine

(small-scale 
LLM)

Premise

Conclusion
Partial premise

Conclusion

Conclusion

Remaining 
premise

Premise

ULogic

Instruction-Tuning Dataset
• Conclusion Generation
• Premise completion
• Premise Generation

Rule Distillation

Figure 14: Rule distillation for inference engine.

C.2 Implementation Details 923

We fine-tune Mistral-7b with our constructed 924

instruction dataset with Quantization LoRA 925

(QLoRA) method (Hu et al., 2021; Dettmers et al., 926

2023) as our inference engine. We set the learning 927

rate to 7× 10−5, batch size to 8, gradient accumu- 928

lation step to 16, and train the model 2 epochs. We 929

apply QLoRA to all the linear layers of the model, 930

including q_proj, k_proj, v_proj, o_proj, gate_proj, 931

up_proj, down_proj, and lm_head. The α and r of 932

the QLoRA method are both set to 16. 933

C.3 Prompting ChatGPT and GPT-4 for 934

Three Tasks 935

As Step-2 of Sec. 2.2, we utilize two-shot prompts 936

to instruct ChatGPT and GPT-4 in simultaneously 937

generating symbolic and verbalized responses for 938

three tasks, as shown in Table 14, 15, 16. 939
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Prompt for Conclusion Generation

Given the premise, please generate its conclusion between X and Y in both Prolog and natural language.
The conclusion in Prolog should have the same meaning with the conclusion in natural language.
Each conclusion should contain only two variables X and Y without mentioning other variables, like A, B, C, Z.

### Examples:
Premise: If Person X is allergic to Material Z and Furniture Y is made from Material Z.
Conclusion:
[Prolog]: CanNotHold(Person X, Furniture Y);
[Natural Language]: Person X cannot hold Furniture Y.

Premise: If Substance X has a Density Z1, the density of Substance Y is Density Z2, and Density Z1 is bigger than
Density Z2.
Conclusion:
[Prolog]: CanSubmerge(Substance X, Substance Y);
[Natural Language]: Substance X can submerge in Substance Y.

Premise: {premise}
Conclusion:

Table 14: Prompt ChatGPT and GPT-4 for conclusion generation.

C.4 Evaluation Metrics940

We detailed describe the metrics for evaluating our941

inference engine against ChatGPT and GPT-4 for942

the premise generation task.943

• Accuracy: The premise is logically correct to944

infer the conclusion and follow the instruction945

regarding the specific number of facts.946

• Diversity: The degree of variation among the947

three generated rules.948

• Complexity: Assessed only for premise genera-949

tion with more than 2 facts, measuring the fact950

number and the semantic difficulty.951

• Abstractness: The variable types in premises952

are abstract to generalize to diverse instances.953

For example, the variable types “ Region” and954

“Event” are abstrct while “New York” and “The955

FIFA World Cup” are specific entities with low956

abstractness.957

C.5 LLM Evaluation Prompts958

We prompt GPT-4 as the evaluator for rating the ac-959

curacy of conclusion generation and premise com-960

pletion tasks, and the accuracy, diversity, complex-961

ity and abstractness of the premise generation task.962

We adopt one-shot prompts which are shown as Ta-963

ble 17 and Table 18 (with demonstrations omitted).964

965

C.6 Human Evaluation Templates966

For the human evaluation of premise generation ac-967

curacy, we qualify a new cohort of AMT annotators968

to pairwise compare two sets of generated premises 969

in terms of logical consistency with the provided 970

conclusion, alignment with common sense and the 971

inclusion of an accurate number of facts. The de- 972

tailed template for human evaluation is shown as 973

Figure 16. 974

C.7 Downstream Reasoning Datasets 975

StrategyQA and SOCIAL IQA consist of crowd- 976

sourced questions involving reasoning of implicit 977

logic. LINK comprises GPT-4 generated state- 978

ments instantiated from abstract rules, including 979

two subsets: head distribution statements and long- 980

tail knowledge statements. PIQA examines opera- 981

tional commonsense for achieving physical goals 982

and CSQA2.0 features adversarial commonsense 983

examples designed to mislead AI systems. 984
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Figure 15: Inference Engine Demo.
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Prompt for Premise Completion

Given the conclusion and a part of its premise, please complete the remaining portion of the premise in both Prolog and
natural language.
The remaining premise in Prolog should have the same meaning with the remaining premise in natural language.
Each fact in the remaining premise should contain two variables, like X, Y, Z, Z1, Z2, A, B.

### Examples:
Conclusion: Person X cannot use Furniture Y.
Partial Premise: If Person X is allergic to Material Z,
Remaining Premise:
[Prolog]: MadeFrom(Furniture Y, Material Z);
[Natural Language]: Furniture Y is made from Material Z.

Conclusion: Substance X can submerge in Substance Y.
Partial Premise: If Substance X has a Density Z1, the density of Substance Y is Density Z2,
Remaining Premise:
[Prolog]: BiggerThan(Density Z1, Density Z2);
[Natural Language]: Density Z1 is bigger than Density Z2.

Conclusion: {conclusion}
Partial Premise: {partial premise}
Remaining Premise:

Table 15: Prompt ChatGPT and GPT-4 for premise completion.

Prompt for Premise Generation

Given the conclusion, please generate three different premises in both Prolog and natural language, ensuring that each
Prolog premise conveys the same meaning as its natural language counterpart.
Each premise should contain a specified number of facts, with each fact comprising only two variables, such as X, Y, Z,
Z1, Z2, A, B.

### Examples:
Fact number: 1 fact
Conclusion: Person X has Skill Y.
Three Premises:
1. [Prolog] Learned(Person X, Skill Y); [Natural Language] If Person X learned Skill Y.
2. [Prolog] Inherit(Person X, Skill Y); [Natural Language] If Person X inherits Skill Y.
3. [Prolog] Acquire(Person X, Skill Y); [Natural Language] If Person X acquires Skill Y.

Fact number: more than 2 facts
Conclusion: Person X cannot attend Event Y.
Three Premises:
1. [Prolog] Have(Person X, Age Z1), RequireMinimumAge(Event Y, Age Z2), BiggerThan(Age Z2, Age Z1); [Natural
Language] If Person X has Age Z1 and the minimum age requirement for attending Event Y is Age Z2, Age Z2 is
bigger than Age Z1.
2. [Prolog] Have(Person X, Height Z1), RequireAbove(Event Y, Height Z2), SmallerThan(Height Z1, Height Z2);
[Natural Language] If Person X has a Height Z1, and Event Y requires a Height above Z2, and Height Z1 is smaller
than Height Z2.
3. [Prolog] HaveCriminalRecord(Person X, Event Z), ProhibitedBy(Event Z, Legislation A), EnforcedIn(Legislation A,
Region B), HeldIn(Event Y, Region B); [Natural Language] If Person X has a criminal record for Event Z and Event Z
is prohibited by Legislation A, which is enforced in Region B, and Event Y is held in Region B.

Fact number: {fact num}
Conclusion: {conclusion}
Three Premises:

Table 16: Prompt ChatGPT and GPT-4 for premise generation.
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Prompt for Rating the Accuracy of Conclusion Generation

You are a helpful scoring assistant.
Please read the provided premise carefully, and rate the accuracy of the candidate conclusion on a scale of 1 to 3:
- 1 (not accurate): The conclusion is clearly unsupported, irrelevant or contradictory to the provided premise.
- 2 (somewhat accurate): The conclusion, despite being supported by the premise, fails to state the definitive link
between X and Y, or contradicts common sense, or lacks clarity.
- 3 (highly accurate): The conclusion correctly states the definitive link between X and Y, and is well-supported by the
premise aligning with both established facts and common sense.
Please first output your rating based on your general knowledge and logical reasoning, and then provide a brief
explaination with no more than 100 words.

[Provided Premise]: {premise}
[Candidate Conclusion]: {conclusion}
[Output]:

Prompt for Rating the Accuracy of Premise Completion

You are a helpful scoring assistant.
Please read the provided conclusion and its partial premise carefully, and rate the accuracy of its remaining premise in
completing the provided premise to reach the conclusion, using a scale from 1 to 3:
- 1 (not accurate): The remaining premise fails to complete the provided premise for deducing the conclusion. It may be
irrelevant or inconsistent with the provided premise or conclusion, or both.
- 2 (somewhat accurate): The remaining premise can somewhat supplement the provided premise but is not entirely
sufficient for a conclusion inference. It may require additional information for comprehensive completion, or contradicts
common sense, or lacks clarity.
- 3 (highly accurate): The remaining premise, combined with the provided partial premise, can correctly lead to the
given conclusion, and also aligns well with common sense.
Please first output your rating based on your general knowledge and logical reasoning, and then provide a brief
explaination with no more than 100 words.

[Conclusion]: {conclusion}
[Partial Premise]: {partial premise}
[Remaining Premise]: {rest premise}
[Output]:

Prompt for Rating the Accuracy of Premise Generation

You are a helpful scoring assistant.
Please carefully read the provided conclusion along with the specified number of facts, and rate the accuracy of
candidate premise in both reaching the conclusion and containing the correct number of facts, using a scale from 1 to 3:
- 1 (not accurate): The premise is logically incorrect, irrelevant or contradictory for deducing the conclusion, or it
contains an incorrect number of facts.
- 2 (somewhat accurate): The premise can partially infer the conclusion but is not entirely sufficient. It may require
additional information, or contradicts common sense, or lacks clarity.
- 3 (highly accurate): The premise can correctly lead to the given conclusion and aligns well with common sense, and
precisely contains the specified number of facts.
Please first output your rating based on your general knowledge and logical reasoning, and then provide a brief
explaination with no more than 100 words.

[Fact Number]: {fact num}
[Conclusion]: {conclusion}
[Premise]: {premise}
[Output]:

Table 17: Prompts for rating the accuracy of three tasks.
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Prompt for Rating the Diversity of Premise Generation

You are a helpful scoring assistant.
Please read the provided conclusion and multiple generated premises carefully, and rate the diversity of these premises
using a scale from 1 to 3:
- 1 (low diversity): The premises show minimal variation, where all three premises largely repeat same perspectives with
slight lexical changes.
- 2 (moderate diversity): The premises exhibit some degree of variation, with two out of the three premises sharing
similar perspectives, expressions and fact numbers while the third presents different content.
- 3 (high diversity): The premises display a high level of diversity, where each premise presents distinct perspective from
the others, or contains different fact numbers.
Please first output your rating, and then provide a brief explaination with no more than 50 words.

[Conclusion]: {conclusion}
[Premise]: {premise1}, {premise2}, {premise3}
[Output]:

Prompt for Rating the Complexity of Premise Generation

You are a helpful scoring assistant.
Please carefully read the provided conclusion, and rate the complexity of candidate premise considering both the
number of facts it comprises and its semantic difficulty, using a scale from 1 to 3:
- 1 (low complexity): The premise is straightforward, incorporating no more than 3 facts with clear and easy-to-
understand semantics and a simple logical structure.
- 2 (moderate complexity): The premise exhibits moderate complexity, which involves 4 facts and somewhat intricate
semantics and a logical structure that require some thought to understand.
- 3 (high complexity): The premise is highly complex with more than 4 facts, which also includes complex semantics
and an abstract logical structure, demanding a high level of understanding.
Please first output your rating based on your general knowledge and logical reasoning, and then provide a brief
explaination with no more than 50 words.

[Conclusion]: {conclusion}
[Premise]: {premise}
[Output]:

Prompt for Rating the Abstractness of Premise Generation

You are a helpful scoring assistant.
Please carefully read the provided conclusion, and rate the abstractness of objects in the candidate premise considering
how broadly they can generalize to various specific instances, using a scale from 1 to 3:
- 1 (low abstractness): The objects in the premise are concrete and specific, making direct and clear reference to
particular instances or examples, which focus on specific people, places, or tangible entities, such as Swimmer, New
York, or SUV.
- 2 (moderate abstractness): The objects in the premise are somewhat abstract, representing a balance between specific
instances and general concepts. They may pertain to fine-grained categories of people, places, or things, such as
Professionals, City, or Car.
- 3 (high abstractness): The objects in the premise are highly abstract, focusing on coarse-grained people, places or
things that are far removed from concrete instances, such as Person, Region, or Event, or general properties like Age
and Height.
Please first output your rating based on your general knowledge and logical reasoning, and then provide a brief
explaination with no more than 50 words.

[Conclusion]: {conclusion}
[Premise]: {premise}
[Output]:

Table 18: Prompts for rating the diversity, complexity and abstractness of premise generation.
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Figure 16: AMT template for human evaluation for premise generation accuracy.
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