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Abstract001

Large language models (LLMs) have achieved002
great success, but their occasional content fab-003
rication, or hallucination, limits their practi-004
cal application. Hallucination arises because005
LLMs struggle to admit ignorance due to inad-006
equate training on knowledge boundaries. We007
call it a limitation of LLMs that they can not008
accurately express their knowledge boundary,009
answering questions they know while admit-010
ting ignorance to questions they do not know.011
In this paper, we aim to teach LLMs to recog-012
nize and express their knowledge boundary, so013
they can reduce hallucinations caused by fab-014
ricating when they do not know. We propose015
COKE, which first probes LLMs’ knowledge016
boundary via internal confidence given a set017
of questions, and then leverages the probing018
results to elicit the expression of the knowledge019
boundary. Extensive experiments show COKE020
helps LLMs express knowledge boundaries, an-021
swering known questions while declining un-022
known ones, significantly improving in-domain023
and out-of-domain performance.024

1 Introduction025

Large language models (LLMs) have emerged as026

an increasingly pivotal cornerstone for the develop-027

ment of artificial general intelligence. They exhibit028

powerful intellectual capabilities and vast storage029

of knowledge (Brown et al., 2020; Ouyang et al.,030

2022; Achiam et al., 2023), which enables them to031

generate valuable content. Recent research demon-032

strates that LLMs excel in passing various profes-033

sional examinations requiring expert knowledge034

in domains like medical (Jin et al., 2021) and le-035

gal (Cui et al., 2023). Nevertheless, human users036

are hardly willing to seek professional suggestions037

from LLMs, due greatly to hallucinations in LLMs.038

Hallucinations in LLMs refer to the phenomenon039

that existing LLMs frequently generate untruthful040

information (Zhang et al., 2023b; Ji et al., 2023),041
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Figure 1: The evolution of the Known-Unknown Quad-
rant. The yellow portion represents the model’s para-
metric knowledge. Our method increases the “Known
Unknows”, helping the model recognize and articulate
its knowledge limitations.

which greatly undermines people’s trust and accep- 042

tance of LLM-generated content. 043

An important cause of hallucinations is the 044

model’s insufficiency in knowledge boundary 045

expression, which originates from the learning 046

paradigm of LLMs. Pre-training and instruction 047

fine-tuning serve as the two indispensable learning 048

stages for current LLMs. The learning mechanism 049

of these stages is to encourage LLMs to generate 050

the provided text, which also makes LLMs prone to 051

fabricating content when LLMs do not possess rel- 052

evant knowledge (joh, 2023; Gekhman et al., 2024). 053

Hence, LLMs are hardly instructed to express their 054

ignorance, which is a lack of accurate knowledge 055

boundary expression. Given a specific LLM and 056

a question set, the corresponding question-answer 057

pairs can be categorized based on two factors: (1) 058

whether the model has corresponding parametric 059
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knowledge (knows v.s. unknows), and (2) whether060

the model is aware of the first factor (known v.s. un-061

known), as is depicted in Figure 1. Hallucinations062

frequently occur in the “Unknown Unknows” sce-063

narios, where the model is unaware that it should064

explain its ignorance like humans, instead of strug-065

gling to give a hallucinated response.066

Fine-tuning models to express knowledge bound-067

aries faces two significant challenges. The first068

challenge is how to efficiently obtain data that re-069

flects the internal knowledge of a specific model.070

Even if evaluation questions are easy to construct,071

obtaining expert-level answers in certain fields is072

costly. Additionally, since the model might pro-073

duce correct answers in different forms from the074

reference answers, evaluating their correctness is075

also challenging (Kadavath et al., 2022; Zou et al.,076

2023). The second challenge is enabling the model077

to express its knowledge boundary robustly (Ren078

et al., 2023). We expect consistent knowledge079

boundary expression across prompts and general-080

ization across domains.081

To address the above two challenges, we propose082

COKE, an Confidence-derived Knowledge bound-083

ary Expression method which teaches LLMs to ex-084

press knowledge boundaries and decline unanswer-085

able questions, leveraging their internal signals.086

Our method consists of two stages: a probing stage087

and a training stage. In the probing stage, we use088

the model’s internal signals reflecting confidence to089

distinguish between answerable and unanswerable090

questions, avoiding reliance on external annota-091

tions. This allows for easy collection of large data092

and avoids conflicts between the model’s internal093

knowledge and annotations. In the training stage,094

we construct prompts for each question using three095

representative types: prior awareness, direct aware-096

ness, and posterior awareness. Then, we apply097

regularization by incorporating the squared differ-098

ences in confidence across different prompts for099

the same question into the loss function to enhance100

consistency. This training setup helps the model101

semantically learn to express knowledge boundary102

better, thereby enhancing its generalization ability.103

To evaluate the model’s knowledge boundary ex-104

pression capability, we design an evaluation frame-105

work that comprehensively assesses the model’s106

performance in both “knows” and “unknows” sce-107

narios. We conduct extensive experiments on both108

in-domain and out-of-domain datasets. Results109

show that the model learns to use internal signals110

to help express knowledge boundary. Compared to111

directly using model signals for determination, the 112

models trained with our method demonstrate better 113

performance and generalization. 114

In summary, our contributions are: 115

• We explore the effectiveness of internal model 116

signals in indicating confidence and demonstrate 117

the model can learn to use its signals to express 118

its knowledge boundaries after training. 119

• We propose a novel unsupervised method that 120

leverages internal model signals and multi- 121

prompt consistency regularization to enable the 122

model to express its knowledge boundary clearly. 123

• We develop a framework for evaluating a model’s 124

ability to express its knowledge boundary, and ex- 125

perimental results demonstrate that the model can 126

learn signals about the confidence of its knowl- 127

edge and articulate its knowledge boundary. 128

2 Related Work 129

2.1 Knowledge Boundary Perception 130

While models are equipped with extensive paramet- 131

ric knowledge, some studies indicate their inability 132

to discern the knowledge they possess from what 133

they lack, thus failing to articulate their knowl- 134

edge boundary (Yin et al., 2023; Ren et al., 2023). 135

In terms of enhancing a model’s awareness of 136

its knowledge boundary, efforts can be catego- 137

rized into two parts: one focuses on enabling 138

the model to fully utilize its inherent knowledge, 139

thereby shrinking the ratio of the model’s “Un- 140

known Knows” (Wei et al., 2022; Li et al., 2023; 141

Tian et al., 2024). The other part focuses on en- 142

abling the model to acknowledge the knowledge it 143

lacks, thereby reducing the ratio of the model’s 144

“Unknown Unknows”. R-tuning (Zhang et al., 145

2023a) uses labeled data to judge the correctness of 146

model responses and trains the model using the SFT 147

method. Yang et al. (2023) and Kang et al. (2024) 148

explore training methods based on RL. Focused on 149

this aspect, our work investigates how to enable 150

models to express knowledge boundaries without 151

annotated data, while also considering consistent 152

knowledge boundary expression across prompts 153

and generalization across domains. 154

2.2 Uncertainty-based Hallucination 155

Detection 156

Some work on hallucination detection focuses on 157

obtaining calibrated confidence from LLMs. One 158

segment of work involves utilizing the information 159

from these models to compute a score that signifies 160
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Figure 2: The procedure of COKE, which consists of two stages. In the first stage, the model makes predictions for
unlabeled questions. We obtain two parts, Dk and Dunk, based on the model confidence. In the second stage, we
train with different prompts for the same question and use unsupervised loss and consistency loss to teach the model
to express the knowledge boundary.

the model’s uncertainty about knowledge (Man-161

akul et al., 2023; Kuhn et al., 2023; Varshney et al.,162

2023; Duan et al., 2024). Another segment of work163

seeks to enable the model to express verbalized164

uncertainty (Lin et al., 2022; Xiong et al., 2023;165

Tian et al., 2023). Our work concentrates on en-166

abling the model to explicitly express whether it167

is capable of answering, rather than generating a168

probability score. By allowing the model to ex-169

press its knowledge boundary autonomously, users170

no longer need to concern themselves with detect-171

ing hallucinations, such as by setting uncertainty172

thresholds.173

3 Knowledge Boundary Expression174

3.1 Problem Formulation175

We focus on exploring LLMs’ capacity to perceive176

their internal knowledge. For a series of questions177

Q = {q1, q2, . . . , qn}, we categorize the questions178

based on whether the model has the knowledge179

required to answer them into two parts: questions180

that can be answered Qk and questions that cannot181

be answered Qunk. To minimize the interference182

from the model’s reasoning ability, the questions183

used for testing the model are all single-hop ques-184

tions that inquire about factual knowledge. For a185

given question q, the model M generates a predic-186

tion based on its parameter knowledge Kθ, repre-187

sented as y = M(Kθ, q). We measure the model’s188

awareness of its knowledge from two aspects: the189

awareness of the knowledge it possesses and the190

knowledge it does not possess. The former is repre-191

sented as the ratio of the model’s “Know Knows” to192

“Knows”, denoted as Rk, while the latter is repre- 193

sented as the ratio of the model’s “Know Unknows” 194

to “Unknows”, denoted as Runk. Given a question 195

q ∈ Qk, RK is set to 1 if the model’s response 196

y aligns with the knowledge k, and to 0 if the 197

model either expresses uncertainty or provides an 198

incorrect answer. For a question where q ∈ Qunk, 199

Runk is assigned 1 if the model expresses uncer- 200

tainty, and 0 if it fabricates an incorrect answer. 201

We evaluate the model’s awareness of its knowl- 202

edge by testing on two types of q and calculating 203

Saware =
1
2(Rk +Runk). The model’s awareness 204

of its knowledge is more accurate as Saware ap- 205

proaches 1, and less accurate as it approaches 0. 206

3.2 Method 207

Our insight is that the learning mechanism of LLM 208

enables the model to search for the nearest knowl- 209

edge k in its parameters as the answer to the query 210

q. Although training allows the model to measure 211

distances accurately, it does not teach it to refuse to 212

answer based on the distance. Therefore, we hope 213

the model can learn to use its signals to recognize 214

when a large distance indicates a lack of knowl- 215

edge to answer q. Our method involves two steps 216

as shown in Figure 2: First, we use the model’s 217

own signals to detect knows and unknows; Second, 218

we guide the model to learn these signals through 219

instruction tuning, enabling it to express its knowl- 220

edge boundary clearly. 221

3.2.1 Internal Knowledge Identification 222

To identify whether the model possesses the knowl- 223

edge required to answer question q, we calculate 224
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the model’s confidence about its prediction. The225

confidence of the model’s prediction serves as a226

measure of the distance between query q and knowl-227

edge k. On the unlabeled question set Q, we let228

model M generate phrase-form predictions for each229

question. We only consider the distance between230

query q and the closest prediction; therefore, we231

use greedy decoding to obtain the prediction.232

We use three model signals to represent the233

model’s confidence: Min-Prob, Fst-Prob, and Prod-234

Prob. Min-Prob denotes the minimum probability235

among the m tokens that make up the model’s pre-236

diction, c = min(p1, p2, ..., pm). Fst-Prob and237

Prod-Prob respectively represent the probability of238

the first token in the prediction and the product239

of all probabilities. Two conservative thresholds,240

δk and δunk, are established to decide whether the241

model has enough knowledge to answer a ques-242

tion. For questions with c below the threshold243

δunk, indicating the model is fabricating an an-244

swer due to insufficient knowledge, we define245

this subset as Dunk = {(qi, yi, ci) | ci < δunk}246

and use it to train the model to express its lack247

of knowledge. For questions with c above the248

threshold δk, indicating the model possesses the249

necessary knowledge, we define this subset as250

Dk = {(qi, yi, ci) | ci > δk} and use it to train251

the model to express that it knows the answer with252

increased confidence.253

3.2.2 Knowledge Boundary Expression254

Learning255

We guide the model in learning to express its knowl-256

edge boundaries clearly based on its own signals257

through instruction tuning. We believe that the258

model’s expression of knowledge boundary aware-259

ness should possess two properties: honesty and260

consistency. Honesty requires the model to express261

whether it knows the answer to a question based on262

its certainty about the knowledge. For instance, it263

should not answer “I don’t know” to questions it is264

certain about. For honesty, we fine-tune the model265

on the dataset obtained in the first step, enabling the266

model to admit its ignorance on Dunk and main-267

tain its answers on Dk. Consistency requires the268

model to have the same semantic expression about269

whether it knows the same knowledge under differ-270

ent prompt formulations.271

For consistency, we consider three different272

prompts for knowledge boundary awareness in-273

quiries, which we refer to as prior awareness, di-274

rect awareness, and posterior awareness (Ren et al.,275

2023). Prior awareness involves the model as- 276

sessing its ability to answer a question before 277

actually providing an answer, with prompts like 278

“Do you know the answer to the question 279

‘panda is a national animal of which 280

country’ honestly?”. Direct awareness in- 281

volves the model responding directly to a query, 282

supplying the answer if it possesses the knowl- 283

edge, and admitting ignorance if it doesn’t, with 284

prompts like “Answer the question ‘panda is 285

a national animal of which country’ ”. 286

Posterior awareness involves the model’s capac- 287

ity to evaluate the certainty of its answers, with 288

prompts like “Are you sure that the answer 289

to the ‘panda is a national animal of 290

which country’ is ‘China’ ”. 291

We hope that the model can express the same 292

knowledge boundary under different prompts for 293

the same question. It means that if the model de- 294

termines that it possesses the knowledge under 295

the prompt of prior awareness, it should be able 296

to provide the answer when queried, and express 297

confidence in its response when reflecting upon 298

its answer. We teach the model to recognize its 299

knowledge boundary by constructing three types 300

of prompts for the same question. We incorporate 301

the difference in probabilities of identical seman- 302

tic responses under various prompts into the loss 303

function, thereby ensuring the model’s consistency 304

across different prompts. Specifically, the loss func- 305

tion is defined as a combination of two components: 306

Lunsup, which captures the discrepancy between 307

the model’s expression and the labels generated 308

by its internal signals, and Lcon, which ensures 309

consistency of identical responses under different 310

prompts: 311

Lunsup = −
∑

1≤i≤3

logP (yi|xi) (1) 312

Lcon =
∑

1≤i,j≤3

∥P (yi|xi)− P (yj |xj)∥2 (2) 313

L = Lunsup + Lcon (3) 314

Previous research emphasizes that the MLP layer 315

is a key component for storing knowledge in the 316

transformer architecture LLM (Geva et al., 2021; 317

Meng et al., 2022; Dai et al., 2022). Guided by 318

these insights, we only fine-tune the weight matrix 319

of the attention layer using LoRA (Hu et al., 2022). 320

This strategy allows us not to change the internal 321

knowledge of the model, but just let the model learn 322

to express the of knowledge boundary based on the 323
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Method TriviaQA NQ PopQA

Kaware Uaware Saware Kaware Uaware Saware Kaware Uaware Saware

L
la

m
a2

-C
ha

t-
7B

Orig. 100 0 50.0 100 0 50.0 100 0 50.0
Fine-tune 93.9 6.2 50.1 88.6 3.1 45.8 93.5 1.9 47.7
IDK-FT 80.8 78.0 79.4 45.5 87.6 66.6 62.8 83.6 73.2

Uncertainty-Based
Min-Prob 61.8 86.2 74.0 33.4 91.4 62.4 57.7 89.3 73.5
Fst-Prob 74.6 69.8 72.2 51.5 79.1 65.3 65.1 82.6 73.9
Prod-Prob 68.3 81.2 74.8 45.8 87.0 66.4 63.7 86.4 75.1

Prompt-Based
Prior 96.3 7.5 51.9 97.0 10.3 53.6 65.4 31.8 48.6
Posterior 70.5 57.9 64.2 62.7 55.6 59.1 31.6 82.8 57.2
IC-IDK 86.4 25.8 56.1 53.6 65.1 59.3 42.3 85.3 63.8
Verb 14.3 95.8 55.1 17.5 95.0 56.3 17.6 97.3 57.4

COKE 76.1 74.0 75.0 56.0 84.2 70.1 71.1 83.0 77.0

L
la

m
a2

-C
ha

t-
13

B

Orig. 100 0 50.0 100 0 50.0 100 0 50.0
Fine-tune 96.7 7.1 51.9 95.0 2.8 48.9 95.7 2.9 49.1
IDK-FT 82.5 81.6 82.0 53.9 84.6 69.3 65.4 82.0 73.6

Uncertainty-Based
Min-Prob 91.6 44.5 68.1 88.1 43.4 65.8 84.6 57.2 70.9
Fst-Prob 92.9 34.1 63.5 90.6 30.7 60.7 87.4 51.0 69.2
Prod-Prob 65.8 80.9 73.3 59.1 75.5 67.3 57.6 81.7 69.6

Prompt-Based
Prior 88.6 14.2 51.4 81.3 26.5 53.9 38.2 81.8 60.0
Posterior 100 0.30 50.0 100 0.0 50.0 100 0.10 50.0
IC-IDK 99.7 1.5 50.6 96.8 6.7 51.7 90.8 25.1 58.0
Verb 60.0 68.9 64.4 44.7 89.8 67.3 50.8 81.8 66.3

COKE 71.6 74.9 73.3 68.3 70.2 69.2 70.1 82.6 76.4

Table 1: Comparison of the performance of our method and the baseline method across an in-domain dataset
(TriviaQA) and out-of-domain datasets (NQ and PopQA). We present results on two model scales: Llama2-Chat-7B
and Llama2-Chat-13B.

Metric Definition

Kaware Proportion of correct answers on Tk

Uaware Proportion of expressions of unknown or
correct answers on Tunk

Saware
1
2
(Kaware + Uaware)

Table 2: Knowledge awareness metrics.

confidence of the knowledge.324

4 Experimental Setup325

Datasets We consider three open-domain QA326

datasets: TriviaQA (Joshi et al., 2017), Natu-327

ral Questions (Kwiatkowski et al., 2019), and328

PopQA (Mallen et al., 2023). These datasets are329

broad-coverage, knowledge-intensive QA datasets,330

making them well-suited for evaluating LLMs’ ca-331

pacity to perceive their internal knowledge. We332

utilize the train set of TriviaQA as our training333

data, treating it as unsupervised data by not using334

the labels. Natural Questions and PopQA serve335

as the out-of-domain test sets since they were not 336

involved during the training process. 337

Metrics As mentioned in the Section 3.1, we 338

evaluate the model’s awareness of its knowledge 339

from two aspects: the awareness of the knowledge 340

it possesses and the awareness of the knowledge 341

it does not possess. Since we cannot directly ac- 342

cess the model’s internal knowledge Kθ, we divide 343

the test sets into two parts based on whether the 344

model’s predictions match the groundtruth: Tk rep- 345

resents the “Known Knows” of the model; Tunk 346

contains both the “Unknown Unknows” and “Un- 347

known Knows” cases. We expect the model to 348

maintain correct answers on Tk, representing the 349

retention of the “Known Knows” area of the model. 350

At the same time, we expect the model to either ex- 351

press unknown on Tunk, signifying a reduction in 352

the “Unknown Unknows” area, or provide correct 353

answers, representing a decrease in the “Unknown 354

Knows” area. We define the evaluation metrics as 355
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Method
TriviaQA NQ PopQA

Brier↓ ECE↓ smECE↓ AUROC↑ Brier↓ ECE↓ smECE↓ AUROC↑ Brier↓ ECE↓ smECE↓ AUROC↑

Fst-Prob 0.29 0.31 0.20 0.79 0.36 0.45 0.25 0.73 0.29 0.38 0.22 0.83

Prob-Prob 0.38 0.42 0.23 0.83 0.55 0.65 0.31 0.73 0.46 0.57 0.28 0.85

Min-Prob 0.24 0.26 0.19 0.83 0.29 0.39 0.23 0.77 0.25 0.34 0.20 0.85

Table 3: Calibration results for different internal signals in Llama2-Chat-7B on TriviaQA, NQ, and PopQA.

shown in Table 2.356

Baselines We consider two different types of357

baselines: uncertainty-based methods (white-box)358

and prompt-based methods (black-box). We also359

compared the original model (Orig.), the model360

fine-tuned with questions and their label (Fine-361

tune), and the model fine-tuned with question-label362

pairs, where responses to unknown questions are363

replaced by “Unknow” (IDK-FT). See Appendix A364

for more details.365

Uncertainty-based methods directly use the366

model’s internal signals to determine its self-367

awareness. The model’s response consists of multi-368

ple tokens, and we experimented with three types369

of methods to calculate the final confidence score370

from the probabilities of these tokens:371

• Min token probability (Min-Prob): Use the372

smallest token probability in the model’s predic-373

tion as the confidence score.374

• Product token probability (Prod-Prob): Use375

the product of the probabilities of all tokens in376

the model’s prediction as the confidence score.377

• First token probability (Fst-Prob): Use the378

probability of the first token in the model’s pre-379

diction as the confidence score.380

Prompt-based methods use prompts to let mod-381

els express their own knowledge boundary in natu-382

ral language.383

• Prior prompt: Similar to Ren et al. (2023) eval-384

uating whether the model gives up on answering,385

we use the prompt to directly ask the model if it386

knows the answer to the question.387

• Posterior prompt: Kadavath et al. (2022) shows388

the model can evaluate the certainty of its an-389

swers. We use the prompt to ask the model about390

the certainty of its answers.391

• In-context IDK (IC-IDK): Following Cohen392

et al. (2023), by integrating demonstrations into393

the prompt, we enable the model to express its394

knowledge boundary through in-context learn-395

ing.396

• Verbalize uncertainty (Verb): Resent 397

work (Tian et al., 2023) suggests that LLMs’ 398

verbalized uncertainty exhibits a degree of 399

calibration. We let the model output verbalized 400

uncertainty, and search for the optimal threshold 401

in the training set. 402

5 Results and Analysis 403

5.1 Overall Performance 404

We present our main results on the in-domain and 405

out-of-domain datasets in Table 1. Generally, we 406

have the following findings: 407

Across all settings, we outperform prompt- 408

based methods by a large gap. On Llama2-Chat- 409

7B, COKE obtains an Saware of 75.0 compared to 410

≤ 64.2 by prompt-based methods on TriviaQA, and 411

obtains an Saware of 77.0 compared to ≤ 63.8 by 412

prompt-based methods on PopQA. Models struggle 413

to accurately express knowledge boundaries when 414

it comes to the prior prompt, in-context learning, 415

and posterior prompts. Meanwhile, models can 416

express verbalized uncertainty through prompts, 417

and their accuracy improves with larger models, 418

but remains limited for models with fewer than 13 419

billion parameters. Interestingly, while accuracy 420

improves with larger model sizes, self-awareness 421

does not show significant gains in most cases. We 422

believe that this capability may require even larger 423

models to become evident. 424

Compared to uncertainty-based methods, 425

COKE can outperform in most settings. This 426

demonstrates that COKE enables the model to 427

effectively learn its confidence signals and gen- 428

eralize beyond the training signals. On out-of- 429

domain datasets, COKE significantly outperforms 430

uncertainty-based methods, indicating that thresh- 431

olds derived from a dataset have poor transferabil- 432

ity, while COKE exhibits better generalization. 433

Compared to methods requiring labeled data 434

for fine-tuning, COKE demonstrates better gen- 435

eralization. Although COKE performs worse than 436

IDK-FT on in-domain test sets, it significantly out- 437
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Figure 3: Model’s “Unknow” expression ratio in question groups under different confidence scores (using minimum
token probability). As the model’s confidence score decreases, the ratio of “Unknow” expressions increases. The
model exhibits a higher “Unknow” expression ratio on Tunk compared to Tk.

Training Signal TriviaQA NQ PopQA

Fst-Prob 74.9 69.3 76.2
Prod-Prob 73.9 69.8 76.3
Min-Prob 75.0 70.1 77.0

Table 4: Different signals serve as the model’s confi-
dence score in training the expression of knowledge
boundary. The metric is represented by the Saware.

performs this supervised fine-tuning approach on438

out-of-domain datasets. This indicates that by lever-439

aging the model’s internal signals to teach LLMs440

to express knowledge boundaries, COKE not only441

avoids reliance on labeled data but also achieves442

better generalization.443

5.2 Effectiveness of Model Signals444

We demonstrate the effectiveness of model inter-445

nal signals in reflecting the model’s knowledge446

boundaries through an evaluation of these signals.447

We used the same metrics as (Ulmer et al., 2024),448

including Brier score (BRIER, 1950), expected cal-449

ibration error (ECE; Pakdaman Naeini et al., 2015),450

and smooth ECE (smECE; Blasiok and Nakkiran,451

2024) to evaluate the model signals’ calibration452

ability, and used AUROC to measure the model’s453

ability to identify questions it doesn’t know. As454

shown in Table 3, model internal signals perform455

poorly in terms of calibration, with high Brier and456

ECE scores. However, model internal signals per-457

form well in determining whether the model is458

ignorant, with high AUROC scores, which is also459

reflected in the uncertainty-based methods in Ta-460

ble 1. By employing strict thresholds, our method461

mitigates signal noise while leveraging the signals’462

ability to discriminate between knowledge and ig-463

norance.464

We also analyze the effectiveness of different 465

internal signals as training signals. As a training 466

signal, the use of the minimum probability of multi- 467

token outperforms other signals on both in-domain 468

and out-of-domain datasets, as illustrated in Table 4. 469

We consider that the minimum probability of multi- 470

token is more easily mastered by the model. We 471

leave the discovery of better signals reflecting the 472

model’s knowledge boundary and the utilization of 473

multi-signal training for future work. 474

5.3 Leverage Internal Signals for Knowledge 475

Boundary Expression 476

We investigated how our model utilizes confidence 477

scores to express its knowledge boundary. Fig- 478

ure 3 illustrates the relationship between confi- 479

dence scores and the model’s tendency to respond 480

with “Unknow”. The results show a clear pattern: 481

the model rarely answers “Unknow” at high confi- 482

dence levels, while frequently doing so at low con- 483

fidence levels. For example, with confidence scores 484

below 0.4, the model almost always responds “Un- 485

know”, whereas it confidently provides answers 486

when scores approach 1.0. This demonstrates that 487

the model effectively uses confidence scores to 488

delineate its knowledge boundaries and general- 489

izes well to out-of-domain data. 490

Interestingly, we observed that for the same con- 491

fidence level, the model responds “Unknow” more 492

frequently to questions in Tunk compared to Tk. 493

This suggests that the model has learned to uti- 494

lize additional implicit information beyond just 495

the confidence score, which helps mitigate the 496

problem of overconfidence in incorrect answers. 497

By incorporating the model’s confidence as a super- 498

visory signal during training, we reduce the noise 499

associated with using minimum token probabil- 500
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Method Tk Tunk

Correct (↑) IDK (↓) Wrong (↓) Probs Correct (↑) IDK (↑) Wrong (↓) Probs

Orig. 100 0 0 0.86/ - / - 0 0 100 - / - /0.58
Min-Prob 61.8 38.2 0 0.98/0.68/ - 0 86.2 13.8 - /0.53/0.96
Posterior 70.5 29.5 0 0.86/0.85/ - 0 57.9 42.1 - /0.55/0.63
COKE 76.1 22.3 1.6 0.92/0.68/0.60 3.7 70.3 26.0 0.64/0.52/0.75

Table 5: Percentage distribution of Llama-Chat-7B outputs on TriviaQA across three categories: correct answers,
expressions of unknowns, and wrong answers. “Prob” represents the average min-probability for each category.

ity alone, resulting in improved performance com-501

pared to methods based solely on uncertainty.502

5.4 Consistency of Knowledge Boundary503

Expression504

We investigate the benefits of teaching a model to505

express knowledge boundary by using the strat-506

egy of constructing different prompts for the same507

question and applying a consistency regularization508

loss function. By adopting this strategy, we dis-509

cover that it not only improves the model’s abil-510

ity to generalize, but also ensures a consistent ex-511

pression of knowledge boundary under different512

prompts. Results from Table 6 indicate that the513

application of consistency loss, despite causing a514

slight decrease in Saware on the in-domain dataset,515

leads to substantial improvements on the out-of-516

domain dataset, thereby demonstrating enhanced517

generalization. We also reported the consistency518

of the model’s expression of knowledge boundary519

under different prompts, as shown in Table 6. We520

evaluate the model’s consistency by randomly sam-521

pling two different types of prompt templates from522

prompt pools (see Appendix B.2). We notice that523

the model adopted with consistency loss is capable524

of expressing consistent knowledge boundaries for525

most questions under different prompts.526

5.5 Error Analysis527

Enhancing a model’s self-awareness capability in-528

volves a tradeoff between maintaining performance529

on known knowledge (Kaware) and refusing to an-530

swer on unknown knowledge (Uaware). We analyze531

the outputs of COKE and other methods, examin-532

ing the types and proportions of different outputs533

within Tk and Tunk. As shown in Table 3, for the534

Tk portion, COKE is able to maintain correct ex-535

pressions for most questions, and the performance536

drop is due to the model becoming more conser-537

vative, refusing to answer some low-confidence538

questions. In the Tunk portion, the model correctly539

Method TriviaQA NQ PopQA

Saware Con. Saware Con. Saware Con.

orig. 50.0 35.2 50.0 22.2 50.0 39.3
COKE 75.0 92.1 70.1 90.9 77.0 89.6
w/o Con-loss 75.6 46.3 69.2 36.7 74.8 43.6

Table 6: The consistency of knowledge boundary ex-
pressions under different prompts. “Con.” refers to the
percentage of consistent responses when the model is
presented with the same question using different prompt
templates.

refuses to answer most questions it doesn’t know, 540

but issues of overconfidence still exist. Addition- 541

ally, some originally correct answers become incor- 542

rect, and some originally incorrect answers become 543

correct, which might result from the model chang- 544

ing its responses to questions with low confidence. 545

Observing the average probabilities across differ- 546

ent output types, Posterior methods show nearly 547

identical probabilities for different outputs, while 548

COKE demonstrates a clearer alignment between 549

its expression and answer confidence. 550

6 Conclusion 551

In this paper, we target the knowledge boundary 552

expression problem and propose COKE, a novel 553

unsupervised approach for this task. Our approach 554

is built on detecting signals of the model indicat- 555

ing confidence, and teaching the model to use its 556

signals to express knowledge boundary. Through 557

comprehensive experiments on in-domain and out- 558

of-domain datasets, we show that our method can 559

teach the model to use its signals, significantly en- 560

hancing the model’s ability to accurately express 561

knowledge boundary. Our work can be extended by 562

seeking more internal signals that better reflect the 563

model’s confidence and exploring how to combine 564

these signals to train the model, inspiring further re- 565

search into models autonomously improving their 566

ability to express knowledge boundaries without 567

human annotations. 568
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Limitations569

We note three limitations of our current work. First570

is the accuracy of the evaluation methods. Because571

of the lack of a method to discover the internal572

knowledge of the model, we divided Tk and Tunk573

based on whether the model’s answer matches the574

groundtruth, ignoring the impact of the model’s575

erroneous beliefs. Another limitation is that to pre-576

vent exposure bias and the influence of multiple577

pieces of knowledge, we focused on the expression578

of knowledge boundary under short-form answers,579

without investigating the issue of long-form gen-580

eration. Last, we focused on the model’s ability581

to express the boundary of its internal knowledge,582

not extending to scenarios like self-awareness with583

external knowledge (e.g., RAG scenarios) or rea-584

soning abilities (e.g., mathematics or logical rea-585

soning).586

Ethical Statement587

We hereby acknowledge that all authors of this588

work are aware of the provided ACL Code of Ethics589

and honor the code of conduct.590

Risks We propose COKE, which teaches models591

to express their knowledge boundaries using inter-592

nal signals, thereby reducing hallucinations caused593

by fabricating answers when they do not know. Our594

experiments demonstrate that our method signifi-595

cantly reduces the instances of models fabricating596

answers to unknown questions. However, models597

may still occasionally produce fabricated answers598

in certain scenarios. Therefore, in practical applica-599

tions, it is important to note that our method does600

not completely eliminate hallucinations, and there601

remains a risk of models generating fabricated con-602

tent. Caution is advised in fields with stringent603

requirements.604
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A Methodology 841

In this section, we elaborate on the rationale for 842

selecting the baseline methods in our work, as well 843

as the implementation details. 844

A.1 Uncertainty-based Methods 845

Inspired by works on uncertainty estimation for 846

LLMs, we believe that confidence calculated 847

through the model’s internal signals can effectively 848

reflect the model’s self-awareness. Since we con- 849

trol the model to output only answer phrases in- 850

stead of full sentences through prompting, we do 851

not need to perform additional extraction on the 852

generated content (Varshney et al., 2023; Duan 853

et al., 2024), but instead directly compute using 854

the logits of the tokens in the generated answer 855

phrase. 856

In this work, we consider three methods for cal- 857

culating the model’s confidence using its internal 858

signals: 859

• Min token probability & Product token prob- 860

ability: Varshney et al. (2023) found that the 861

minimum and product of the probabilities of to- 862

kens that form important concepts in a model- 863

generated sentence can effectively reflect the 864

model’s uncertainty. For Min token probability, 865

we directly take the smallest probability among 866

the tokens that compose the model-generated 867

phrase as the model’s confidence. For Product 868

token probability, we calculate the product of the 869

probabilities of each token, and then normalize it 870

by the length to obtain the final confidence score. 871

• First token probability: Considering that the 872

model may store the entire concept’s information 873

in the hidden state of the token at the beginning 874

of the concept phrase (Zhu and Li, 2023), we use 875

the probability of the first token to represent the 876

confidence of the entire response. 877

To directly use the confidence score to predict 878

the model’s knowledge boundary, we determine 879

whether the model expresses uncertainty based on 880

whether the score exceeds a threshold. We deter- 881

mine the optimal threshold for the model’s knowl- 882

edge boundary expression on 100 labeled samples 883

from the TriviaQA training set, aiming to maximize 884

the model’s Saware score. 885

A.2 Prompt-based Methods 886

Prompt-based methods directly prompt LLMs to 887

declare their knowledge boundaries in textual form, 888

without needing to access the internal signals of 889
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Prompt-based Method Prompt

Prior Prompt Do you know the answer to the following question honestly? If you know,
output Yes, otherwise output No, just say one word either Yes or No\n{Q}

Posterior Prompt Are you sure that the answer to the following {Q} is the following {A}?
If you are sure, output Sure, otherwise output Unsure, just say one
word either Sure or Unsure

In-context IDK Answer the following questions like examples. When you do not know
the answer, output Unknow.\nExamples:\nQuestion: Which is the largest
island in the Mediterranean Sea?\nAnswer: Sicily\nQuestion: Which
country will host the 2016 European Nations football finals?\nAnswer:
France\nQuestion: Actress Audrey Hepburn won her only Oscar for
which film?\nAnswer: Roman Holiday\nQuestion: Who leads the Catholic
Church?\nAnswer: Unknow\n\nYou should only output the answer, without
any extra information or explanations. Do not repeat the question. If
there are multiple answers, just output the most likely one. The answer
should not be a sentence, just a phrase part of the answer. Here is
your question: Question: {Q}

Verbalize Uncertainty Provide your best guess and the probability that it is correct (0.0 to
1.0) for the following question. Give ONLY the guess and probability,
no other words or explanation. For example:\n\nGuess: <most likely
guess, as short as possible; not a complete sentence, just the
guess!>\nProbability: <the probability between 0.0 and 1.0 that your
guess is correct, without any extra commentary whatsoever; just the
probability!>\n\nThe question is:\n{Q}.

Table 7: Instructional prompts used in the prompt-based method.

the model. Table 7 shows the prompts we used in890

the prompt-based methods.891

A.3 Fine-tuning Methods892

We consider two conventional fine-tuning meth-893

ods as baselines. These fine-tuning methods use894

the same training set as our approach, but they895

sample training data based on labels rather than896

model signals. Fine-tune is a conventional instruc-897

tion fine-tuning method, where the model is fine-898

tuned directly on question-answer pairs. Regard-899

less of whether the model answers correctly, the900

fine-tuning target is always the ground truth. IDK-901

FT first lets the model predict the answer to a ques-902

tion. The fine-tuning target depends on whether the903

model’s response matches the ground truth. If it904

matches, the ground truth is used as the target; if it905

doesn’t, the target is replaced with "Unknow".906

B Experimental Settings907

B.1 Dataset Details908

We use three QA datasets: TriviaQA (Joshi909

et al., 2017), NQ (Kwiatkowski et al., 2019), and910

PopQA (Mallen et al., 2023) to construct our test911

data for evaluating the model’s self-awareness.912

These datasets consist of single-hop factual ques-913

tions, which do not involve the model’s reasoning914

Model TriviaQA NQ PopQA

Llama2-Chat-7B 45.2 16.6 21.7
Llama2-Chat-13B 52.0 21.9 23.5

Table 8: The accuracy of vanilla LLMs on our test data.
It represents the portion of knowledge that the model
knows and can answer (Known Knows).

capabilities, making them more suitable for testing 915

the model’s internal knowledge. Additionally, the 916

answers in these datasets are in short-form phrases, 917

avoiding the biases that might be exposed through 918

long-form generation. We use a closed-book, free- 919

form setup to evaluate the models’ ability to ex- 920

press their knowledge boundaries. We use exact 921

match to determine whether the model answers cor- 922

rectly or expresses the unknown. The test sets of 923

TriviaQA, NQ, and PopQA contain 11,313, 3,610, 924

and 14,267 samples, respectively. We randomly 925

sampled 2,000 examples from each of the Trivi- 926

aQA, NQ, and PopQA test sets as our test data. 927

As shown in Figure 8, the model exhibits dif- 928

ferent knowledge boundaries across different 929

datasets, and different models also show vary- 930

ing knowledge boundaries on the same dataset. 931

The proportions of Tk and Tunk differ across the 932

test datasets, but the model’s self-awareness score 933
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Type Prompt

Prior Awareness

1. Do you know the answer to the following question honestly? If you
know, output Yes, otherwise output No, just say one word either Yes or
No\n{Q}

2. Do you have knowledge of the answer to this question? If you do,
reply with Yes; if not, reply with No, just say one word either Yes or
No\n{Q}

3. Is the answer to this question known to you? Reply Yes if it is;
otherwise, reply No, just say one word either Yes or No\n{Q}

4. Do you have enough information to answer the following question? If
yes, answer Yes; if no, answer No, just say one word either Yes or
No\n{Q}

Posterior Awareness

1. Are you certain that ‘A’ is the correct answer to ‘Q’? If certain,
answer Sure; if not, answer Unsure, just say one word either Sure or
Unsure\nQ: {Q}\nA: {A}\n

2. Do you believe with certainty that ‘A’ is the correct answer to ‘Q’?
If yes, answer Sure; if not, answer Unsure, just say one word either
Sure or Unsure\nQ: {Q}\nA: {A}\n

3. Are you certain that your answer ‘A’ to ‘Q’ is based on accurate
information? If so, answer Sure; if not, answer Unsure, just say one
word either Sure or Unsure\nQ: {Q}\nA: {A}\n

4. Do you trust the information that led to your answer ‘A’ to ‘Q’? If
confident, answer Sure; if not, answer Unsure, just say one word either
Sure or Unsure\nQ: {Q}\nA: {A}\n

Table 9: Prompts used to test the consistency of knowledge boundary expression under different prompts.

Saware is calculated by averaging the scores corre-934

sponding to Tk and Tunk, thus not being affected935

by sample imbalance. Since we use the TriviaQA936

training set as the training data, the NQ and PopQA937

datasets, which have distributions different from938

TriviaQA, serve as out-of-distribution test sets with939

varying knowledge boundary distributions.940

B.2 Prompt for Consistency Evaluation941

We used the prompts in Table 9 as the prompt pool942

for testing the consistency of knowledge boundary943

expression under different prompts. We utilized944

GPT-4o to generate different prompts that assess945

the model’s ability to express knowledge bound-946

aries, categorizing them into two types.947

B.3 Implementation Details948

For our experiment, we choose to use the LLaMA2-949

Chat (Touvron et al., 2023) model. Based on the950

pre-trained LLaMA2 model, LLaMA2-Chat is a951

model that has undergone instruction tuning and952

RLHF (Stiennon et al., 2020), thereby acquiring the953

capability to follow instructions. We use the 7B and954

13B versions of the LLaMA2-Chat model. We set955

the thresholds δk and δunk to 0.99 and 0.4, respec- 956

tively. Due to the large number of instances, we sort 957

the confidence scores from the TriviaQA training 958

set and designate the bottom 10% as Dunk and the 959

top 20% as Dk, resulting in approximately 23,000 960

instances in total. We use LoRA for model fine- 961

tuning, setting r=8, alpha=16, and dropout=0.05. 962

During training, we set the initial learning rate to 963

1e-4, the final learning rate to 3e-4, the warmup 964

phase to 300 steps, and we train for 700 steps. We 965

conduct all our experiments on 4 NVIDIA A800 966

80GB GPUs. 967

C Experimental Supplement 968

C.1 Effectiveness of Model Signals 969

We also illustrate the effectiveness of the confi- 970

dence calculation method through an empirical 971

study. We obtain the model confidence for Llama2- 972

chat-7B on the Trivia-QA training set using three 973

different methods. We divide the model’s responses 974

into two parts based on whether the answers are 975

correct and calculate the sample distribution for 976

each part. As shown in Figure 4, there is a sig- 977

nificant difference in the confidence distribution 978
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Figure 4: Distribution of model predictions regarding confidence for Llama2-Chat-7B on Trivia-QA. Confidence is
calculated using Min-Prob, Fst-Prob, and Prod-Prob from left to right.

between the Correct Predictions and Incorrect Pre-979

dictions. Predictions with confidence less than 0.4980

are mostly incorrect, while the confidence of cor-981

rect predictions is generally 1.0. This indicates982

that the model signals can reflect the model’s confi-983

dence, implying whether the model possesses the984

corresponding knowledge.985
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