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ABSTRACT

The implicit bias of optimization algorithms such as gradient descent (GD) is be-
lieved to play an important role in generalization of modern machine learning
methods such as deep learning. This paper provides a fine-grained analysis of
the dynamics of GD for the matrix sensing problem, whose goal is to recover
a low-rank ground-truth matrix from near-isotropic linear measurements. With
small initialization, we that GD behaves similarly to the greedy low-rank learning
heuristics (Li et al., 2020) and follows an incremental learning procedure (Gissin
et al., 2019). That is, GD sequentially learns solutions with increasing ranks until
it recovers the ground-truth matrix. Compared to existing works which only an-
alyze the first learning phase for rank-1 solutions, our result is stronger because
it characterizes the whole learning process. Moreover, our analysis of the incre-
mental learning procedure applies to the under-parameterized regime as well. As
a key ingredient of our analysis, we observe that GD always follows an approx-
imately low-rank trajectory and develops novel landscape properties for matrix
sensing with low-rank parameterization. Finally, we conduct numerical experi-
ments which confirm our theoretical findings.

1 INTRODUCTION

Understanding the optimization and generalization properties of optimization algorithms is one of
the central topics in deep learning theory (Zhang et al., 2021; Sun, 2019). It has long been a mystery
why simple algorithms such as Gradient Descent (GD) or Stochastic Gradient Descent (SGD) can
find global minima even for highly non-convex functions (Du et al., 2019), and why the global
minima being found can generalize well (Hardt et al., 2016).

One influential line of works provides theoretical analysis of the implicit bias of GD/SGD. These
results typically exhibit theoretical settings where the low-loss solutions found by GD/SGD attain
certain optimality conditions of a particular generalization metric, e.g., the parameter norm (or the
classifier margin) (Soudry et al., 2018; Gunasekar et al., 2018; Nacson et al., 2019; Lyu & Li, 2020;
Ji & Telgarsky, 2020), the sharpness of local loss landscape (Blanc et al., 2020; Damian et al., 2021;
Li et al., 2022; Lyu et al., 2022).

Among these works, a line of works seek to characterize the implicit bias even when the training
is away from convergence. Kalimeris et al. (2019) empirically observed that SGD learns model
from simple ones, such as linear classifiers, to more complex ones. This behavior, usually referred
to as the simplicity bias/incremental learning of GD/SGD, can help prevent overfitting for highly
over-parameterized models since it tries to fit the training data with minimal complexity. Hu et al.
(2020); Lyu et al. (2021); Frei et al. (2021) theoretically establish that GD on two-layer nets learns
linear classifiers first.

The goal of this paper is to demonstrate this simplicity bias/incremental learning in the matrix sens-
ing problem, a non-convex optimization problem that arises in a wide range of real-world applica-
tions, e.g., image reconstruction (Zhao et al., 2010; Peng et al., 2014), object detection (Shen & Wu,
2012; Zou et al., 2013) and array processing systems (Kalogerias & Petropulu, 2013). Moreover,
this problem serves as a standard test-bed of the implicit bias of GD/SGD in deep learning theory,
since it retains many of the key phenomena in deep learning while being simpler to analyze.

1



Under review as a conference paper at ICLR 2023

Formally, the matrix sensing problem asks for recovering a ground-truth matrix Z∗ ∈ Rd×d given
m observations y1, . . . , ym. Each observation yi here is resulted from a linear measurement yi =
⟨Ai,Z

∗⟩, where {Ai}1≤i≤m is a collection of symmetric measurement matrices. In this paper,
we focus on the case where Z∗ is positive semi-definite (PSD) and is of low-rank: Z∗ ⪰ 0 and
rank (Z∗) = r∗ ≪ d.

An intriguing approach to solve this matrix sensing problem is to use the Burer-Monteiro type de-
composition Z∗ = UU⊤ with U ∈ Rd×r̂, and minimize the squared loss with GD:

min
U∈Rd×r̂

f(U) :=
1

4m

m∑
i=1

(
yi −

〈
Ai,UU⊤〉)2 . (1)

In the ideal case, the number of columns of U , denoted as r̂ above, should be set to r∗, but r∗ may
not be known in advance. This leads to two training regimes that are more likely to happen: the
under-parameterized regime where r̂ < r∗, and the over-parameterized regime where r̂ > r∗.

The over-parameterized regime may lead to overfitting at first glance, but surprisingly, with small
initialization, GD induces a good implicit bias towards solutions with exact or approximate recovery
of the ground truth. It was first conjectured in Gunasekar et al. (2017) that GD with small initial-
ization finds the matrix with minimum nuclear norm. However, a series of works point out that this
nuclear norm minimization view cannot capture the simplicity bias/incremental learning behavior
of GD. In the matrix sensing setting, this term particularly refers to the phenomenon that GD tends
learn solutions with rank gradually increasing with training steps. Arora et al. (2019) exhibits this
phenomenon when there is only one observation (m = 1). Gissin et al. (2019); Jiang et al. (2022)
study the full-observation case, where every entry of the ground truth is measured independently
f(U) = 1

4d2 ∥Z∗ −UU⊤∥2F, and GD is shown to sequentially recover singular components of the
ground truth from the largest singular value to the smallest one. Li et al. (2020) provide theoretical
evidence that the incremental learning behavior generally occurs for matrix sensing. They also give
a concrete counterexample for Gunasekar et al. (2017)’s conjecture, where the simplicity bias drives
GD to a rank-1 solution that has a large nuclear norm.

In spite of these progresses, theoretical understanding of the simplicity bias of GD remains limited.
Indeed, a vast majority of existing analysis only shows that GD is initially biased towards learning a
rank-1 solution, but their analysis cannot be generalized to higher ranks, unless additional assump-
tions on the GD dynamics are made (Li et al., 2020, Appendix H), (Belabbas, 2020; Jacot et al.,
2021; Razin et al., 2021; 2022).

1.1 OUR CONTRIBUTIONS

In this paper, we take a step towards understanding the generalization of GD with small initialization
by firmly demonstrating the simplicity bias/incremental learning behavior in the matrix sensing
setting, assuming the Restricted Isometry Property (RIP). Our main result is informally stated below.
See Theorem 4.1 for the formal version.

Definition 1.1 (Best Rank-s Solution) We define the best rank-s solution as the unique global min-
imizer Z∗

s of the following constrained optimization problem:

min
Z∈Rd×d

1

4m

m∑
i=1

(yi − ⟨Ai,Z⟩)2 s.t. Z ⪰ 0, rank (Z) ≤ s. (2)

Theorem 1.1 (Informal version of Theorem 4.1) Consider the matrix sensing problem (1) with
rank-r∗ ground-truth matrix Z∗ and measurements {Ai}mi=1. Assume that the measurements sat-
isfy the RIP condition (Definition 3.2). With small learning rate µ > 0 and small initialization
Uα,0 = αU ∈ Rd×r̂, the trajectory of Uα,tU

⊤
α,t during GD training enters an o(1)-neighbourhood

of each of the best rank-s solutions in the order of s = 1, 2, . . . , r̂ ∧ r∗ when α → 0.

It is shown in Li et al. (2018); Stöger & Soltanolkotabi (2021) that GD exactly recovers the ground
truth under the RIP condition, but our theorem goes beyond this result in a number of ways. First,
in the over-parameterized regime (i.e., r̂ ≥ r∗), it implies that the trajectory of GD exhibits an
incremental learning phenomenon: learning solutions with increasing ranks until it finds the ground
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truth. Second, this result also shows that in the under-parameterized regime (i.e., r̂ < r∗), GD
exhibits the same implicit bias, but finally it converges to the best low-rank solution of the matrix
sensing loss. By contrast, to the best of our knowledge, only the over-parameterized setting is
analyzed in existing literature.

Theorem 1.1 can also be considered as a generalization of previous results in Gissin et al. (2019);
Jiang et al. (2022) which show that Uα,tU

⊤
α,t passes by the best low-rank solutions one by one in

the full observation case of matrix sensing f(U) = 1
4d2 ∥Z∗ − UU⊤∥2F. However, our setting

has two major challenges which significantly complicate our analysis. First, since our setting only
gives partial measurements, the decomposition of signal and error terms in Gissin et al. (2019);
Jiang et al. (2022) cannot be applied. Instead, we adopt a different approach which is motivated by
Stöger & Soltanolkotabi (2021); intuitive explanations of our approach is discussed in Appendix B.
Second, it is well-known that the optimal rank-s solution of matrix factorization is Xs (defined in
Section 3), but little is known for Z∗

s . In Section 5 we analyze the landscape of (2), establishing
the uniqueness of Z∗

s and local landscape properties under the RIP condition. We find that when
Uα,tU

⊤
α,t ≈ Z∗

s , GD follows an approximate low-rank trajectory, so that it behaves similarly to GD
in the under-parameterized regime. Using our landscape results, we can finally prove Theorem 1.1.

Organization. We review additional related works in Section 2. In Section 3, we provide an
overview of necessary background and notations. We then present our main results in Section 4
where we also give a proof sketch. In Section 5, we outline the key landscape results that we use
to prove Theorem 4.1. Experimental results are presented in Section 6 which verify our theoretical
findings. Finally, in Section 7, we summarize our main contributions and discuss some promising
future directions. Complete proofs of all results in this paper are given in the Appendix.

2 RELATED WORK

Low-rank matrix recovery. The goal of low-rank matrix recovery is to recover an unknown low-
rank matrix from a finite number of (possibly noisy) measurements. Examples include matrix sens-
ing (Recht et al., 2010), matrix completion (Candès & Recht, 2009; Candes & Plan, 2010) and
robust PCA (Xu et al., 2010; Candès et al., 2011). Fornasier et al. (2011); Ngo & Saad (2012);
Wei et al. (2016); Tong et al. (2021) study efficient optimization algorithms with convergence guar-
antees. Interested readers can refer to Davenport & Romberg (2016) for an overview of low rank
matrix recovery.

Simplicity bias/incremental learning of gradient descent. Besides the works mentioned in the
introduction, other works study the simplicity bias/incremental learning of GD/SGD on tensor fac-
torization (Razin et al., 2021; 2022), deep linear networks (Gidel et al., 2019), two-layer nets with
orthogonal inputs (Boursier et al., 2022).

Landscape analysis of non-convex low-rank problems. The strict saddle property (Ge et al., 2016;
2015; Lee et al., 2016) was established for non-convex low-rank problems in a unified framework by
Ge et al. (2017). Tu et al. (2016) proved a local PL property for matrix sensing with exact parame-
terization (i.e. the rank of parameterization and ground-truth matrix are the same). The optimization
geometry of general objective function with Burer-Monteiro type factorization is studied in Zhu
et al. (2018); Li et al. (2019); Zhu et al. (2021). We provide a comprehensive analysis in this regime
for matrix factorization as well as matrix sensing that improves over their results.

3 PRELIMINARIES

In this section, we first list the notations used in this paper, and then provide details of our theoretical
setup and necessary preliminary results.

3.1 NOTATIONS

We write min{a, b} as a∧b for short. For any matrix A, we use ∥A∥F to denote the Frobenius norm
of A, use ∥A∥ to denote the spectral norm ∥A∥2, and use σmin(A) to denote the smallest singular
value of A. We use the following notation for Singular Value Decomposition (SVD):
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Definition 3.1 (Singular Value Decomposition) For any matrix A ∈ Rd1×d2 of rank r, we
use A = VAΣAW⊤

A to denote a Singular Value Decomposition (SVD) of A, where VA ∈
Rd1×r,WA ∈ Rd2×r satisfy V ⊤

A VA = I,WAW⊤
A = I , and ΣA ∈ Rr×r is diagonal.

For the matrix sensing problem (1), we write the ground-truth matrix as Z∗ = XX⊤ for some
X = [v1,v2, · · · ,vr∗ ] ∈ Rd×r∗ with orthogonal columns. We denote the singular values of X
as σ1, σ2, . . . , σr∗ , then the singular values of Z∗ are σ2

1 , σ
2
2 , . . . , σ

2
r∗ . We set σr∗+1 := 0 for

convenience. For simplicity, we only consider the case where Z∗ has distinct singular values, i.e.,
σ2
1 > σ2

2 > · · · > σ2
r∗ > 0. We use κ :=

σ2
1

min1≤s≤r∗{σ2
s−σ2

s+1}
to quantify the degeneracy of the

singular values of Z∗. We also use the notatiowrite Xs = [v1,v2, · · · ,vs] for the matrix consisting
of the first s columns of X . Note that Z∗

s (Definition 1.1) does not equal XsX
⊤
s in general.

We write the results of the measurements {Ai}mi=1 as a linear mapping A : Rd×d 7→ Rm,
where [A(Z)]i = 1√

m
⟨Ai,Z⟩ for all 1 ≤ i ≤ m. We use A∗ : Rm → Rd×d,A∗(w) =

1√
m

∑m
i=1 wiAi to denote the adjoint operator of A. Our loss function (1) can then be written

as f(U) = 1
4

∥∥A (Z∗ −UU⊤)∥∥2
2
. The gradient is given by ∇f(U) = A∗ (y −A(UU⊤)

)
U =

A∗A
(
XX⊤ −UU⊤)Ut.

In this paper, we consider GD with learning rate µ > 0 starting from U0. The update rule is
Ut+1 = Ut − µ∇f (Ut) =: (I + µMt)Ut, (3)

where Mt = A∗A
(
XXT −UtU

T
t

)
. We specifically focus on GD with small initialization: letting

U0 = αŪ for some matrix Ū ∈ Rd×r with ∥Ū∥ = 1, we are interested in the trajectory of GD
when α → 0. Sometimes we write Ut as Uα,t to highlight the dependence of the trajectory on α.

3.2 ASSUMPTIONS

For our theoretical analysis of the matrix sensing problem, we make the following standard assump-
tion in the matrix sensing literature:

Definition 3.2 (Restricted Isometry Property) We say that a measurement operator A satisfies
the (δ, r)-RIP condition if (1 − δ)∥Z∥2F ≤ ∥A(Z)∥22 ≤ (1 + δ)∥Z∥2F for all matrices Z ∈ Rd×d

with rank (Z) ≤ r.

Assumption 3.1 The measurement operator A satisfies the (2r∗ + 1, δ)-RIP property, where r∗ =
rank (Z∗) and δ ≤ 10−7κ−4r−1

∗ .

The RIP condition is the key to ensure the ground truth to be recoverable with partial observations.
An important consequence of RIP is that it guarantees A∗A(Z) = 1

m

∑m
i=1 ⟨Ai,Z⟩Ai ≈ Z when

Z is low-rank. This is made rigorous in the following proposition.

Proposition 3.1 (Stöger & Soltanolkotabi, 2021, Lemma 7.3) Suppose that A satisfies (r, δ)-RIP
with r ≥ 2, then for all symmetric Z,

(1). if rank (Z) ≤ r − 1, we have ∥(A∗A− I)Z∥2 ≤
√
rδ∥Z∥.

(2). ∥(A∗A− I)Z∥2 ≤ δ∥Z∥∗, where ∥ · ∥∗ is the nuclear norm.

We also need the following regularity condition on the initialization.

Assumption 3.2 For all 1 ≤ s ≤ r̂ ∧ r∗, σmin

(
V ⊤
Xs

Ū
)
≥ ρ for some positive constant ρ, where

VXs is defined as Definition 3.1.

The following proposition implies that Assumption 3.2 is satisfied with high probability with a
Gaussian initialization.

Proposition 3.2 Suppose that all entries of U ∈ Rd×r̂ are independently drawn from N
(
0, 1√

r̂

)
and ρ = ϵ

√
r̂−

√
r̂∧r∗−1√
r̂

≥ ϵ
2r∗

, then σmin

(
V ⊤
Xs

U
)
≥ ρ holds for all 1 ≤ s ≤ r̂∧r∗ with probability

at least 1− r̂
(
Cϵ+ e−cr̂

)
, where c, C > 0 are universal constants.
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4 MAIN RESULTS

In this section, we present our main theorem, following the theoretical setup in Section 3.

Theorem 4.1 Under Assumptions 3.1 and 3.2, consider GD (3) with learning rate µ ≤ 1
103∥Z∗∥

and initialization Uα,0 = αŪ for solving the matrix sensing problem (1). There exists universal
constants c,M > 0, a constant C (depending on r̂ and κ) and a sequence of time points T 1

α < T 2
α <

· · · < T r̂∧r∗
α such that for all 1 ≤ s ≤ r̂ ∧ r∗, the following holds when α = O

(
(ρr∗)

−cκ
)

:∥∥∥Uα,T s
α
U⊤

α,T s
α
−Z∗

s

∥∥∥
F
≤ Cα

1
Mκ2 , (4)

where we recall that Z∗
s is the best rank-s solution defined in Definition 1.1. Moreover, GD follows

an incremental learning procedure: we have limα→0 max1≤t≤T s
α
σs+1(Uα,t) = 0 for all 1 ≤ s ≤

r̂ ∧ r∗, where σi(A) denotes the i-th largest singular value of a matrix A.

Compared with existing works (Li et al., 2018; Stöger & Soltanolkotabi, 2021) in the same setting,
our result characterizes the complete learning dynamics of GD and reveals an incremental learn-
ing mechanism, i.e., GD starts from learning simple solutions and then gradually increasing the
complexity of search space until it finds the ground truth.

Now we outline the proof of our main theorem. In the following, we fix an integer 1 ≤ s ≤ r̂ ∧ r∗

and show the existence of T s
α > 0 satisfying that limα→0

∥∥∥Uα,T s
α
U⊤

α,T s
α
−Z∗

s

∥∥∥
F

= 0. We then
show that T s

α is monotone increasing in s for any fixed α.

Our first result states that with small initialization, GD can get into a small neighbourhood of Z∗
s .

Lemma 4.1 Under Assumptions 3.1 and 3.2, there exists T̂ s
α > 0 for all α > 0 and 1 ≤ s ≤ r̂ ∧ r∗

such that limα→0 max1≤t≤T̂ s
α
σs+1(Uα,t) = 0. Furthermore, it holds that

∥∥∥UT̂ s
α
U⊤

T̂ s
α

−Z∗
s

∥∥∥
F

=

O
(
κ3√r∗δ∥X∥2

)
.

Proof sketch: The proof is motivated by the three-phase analysis in Stöger & Soltanolkotabi (2021)
but has some technical modifications. Starting from a small initialization, GD initially behaves sim-
ilarly to power iteration since Ut+1 = (I + µMt)Ut ≈ (I + µM)Ut, where M := A∗A(XX⊤)

is a symmetric matrix. Let M =
∑d

k=1 σ̂
2
kv̂kv̂

⊤
k be the eigendecomposition of M . Then we have

UT ≈ (I + µM)TU0 =

d∑
i=1

(1 + µσ̂2
i )

T v̂iv̂
⊤
i U0 ≈

s∑
i=1

(1 + µσ̂2
i )

T v̂iv̂
⊤
i U0 (5)

where the last step holds because it can be shown that 1+µσ̂s > 1+µσ̂s+1, causing an exponential
separation between the magnitude of the top-s and the remaining components.

When (5) no longer holds, we enter a new phase which we call the parallel improvement phase. We
consider the decomposition Ut = UtWtW

⊤
t +UtWt,⊥W

⊤
t,⊥, where Wt := WV ⊤

Xs
Ut

∈ Rr̂×s is

the matrix consisting of the right singular vectors of V ⊤
Xs

Ut (Definition 3.1) and Wt,⊥ ∈ Rr̂×(r̂−s)

is an orthogonal complement of Wt.

Assume Xs = [σ1e1, · · · , σses] without loss of generality. The columns of Wt is an orthogonal
basis of the subspace spanned by the first s rows of Ut. Each vector in Rr can be decomposed as a
parallel component and an orthogonal component w.r.t. this subspace. Intuitively, the row vectors of
UtWt are the parallel components of the row vectors in Ut; we call UtWt the parallel component.
For similar reasons, UtWt,⊥ will be referred to as the orthogonal component. More discussions for
this decomposition are given in Appendix B.

By the end of the spectral phase we have σmin (UtWt) ≫ ∥UtWt,⊥∥. We show in Appendix C.2
that afterwards, σmin(UtWt)

∥UtWt,⊥∥ grows exponentially in t, until the former reaches a constant scale, while
the latter stays o(1) (α → 0).

After σmin (UtWt) = Θ(1), we enter the refinement phase where we show in Appendix C.4
that

∥∥XsX
⊤
s −UtU

⊤
t

∥∥
F

keeps decreasing until it is O
(
δκ2√r∗∥X∥2

)
(see Lemma 5.1). On
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the other hand, we can show that best rank-s solution is close to the matrix factorization min-
imizer i.e.

∥∥Z∗
s −XsX

⊤
s

∥∥
F

= O
(
δκ

√
r∗∥X∥2

)
. We thus obtain that

∥∥Z∗
s −UtU

⊤
t

∥∥
F

=

O
(
δκ2√r∗∥X∥2

)
. Finally, since rank (UtWt) ≤ s, we have σs+1(Ut) ≤ ∥UtWt,⊥∥ = o(1),

as desired. □

Lemma 4.1 shows that UtU
⊤
t would enter a neighbourhood of Z∗

s with constant radius. However,
there is still a gap between Lemma 4.1 and Theorem 4.1, since the latter states that UtU

⊤
t would

actually get o(1)-close to Z∗
s . To illustrate our proof idea of this result, we first consider the simpler

setting where the model is under-parameterized, i.e., r̂ ≤ r∗ and show that UtU
⊤
t would eventually

converge to Z∗
r̂ .

Proposition 4.1 (Convergence in the under-parameterized regime) Suppose that r̂ ≤ r∗, then
there exists a constant c = c(r̂, κ) > 0 such that when α < c, we have limt→+∞ Uα,tU

⊤
α,t = Z∗

r̂ .

Proof sketch: We can deduce from Lemma 4.1 by taking s = r̂ that there exists a global minimizer
U∗

r̂ of (1) (equivalently, a matrix in Rd×s satisfying U∗
r̂U

∗
r̂
⊤ = Z∗), such that

∥∥∥Uα,T̂ r̂
α
−U∗

r̂

∥∥∥ =

O(κ3√r∗δ∥X∥) (cf. Corollary F.1). On the other hand, by taking s = r̂ in Theorem 5.1, we
can see that within a neighbourhood of U∗

r̂ with constant radius, f satisfies a Polyak-Łojasiewicz
(PL) type condition with respect to the procrutes distance defined in Definition 5.1, and the global
minimizer of f is unique up to orthogonal transformation. When δ is sufficiently small, Uα,T r̂

α
lies

in this neighbourhood, and the PL condition implies that GD converges linearly to the set of global
minimizers, which yields the desired conclusion. □

Now we turn to the over-parameterized regime, where f is not necessarily local PL, and thus we
cannot directly derive convergence as in Proposition 4.1. To proceed, we use a low-rank approxima-
tion for Ut and associate the dynamics in this neighborhood with the GD dynamics of the following
under-parameterized matrix sensing loss:

fs(U) =
1

4

∥∥A(Z∗ −UU⊤)
∥∥2
2
, U ∈ Rd×s, (6)

It can be shown that when δ is sufficiently small, the global minimizer of fs is unique up to rotation,
i.e., if Û∗

s is a global minimizer of fs, then any other global minimizer can be written as Û∗
sR for

some orthogonal matrix R ∈ Rs×s. The main observation is that GD follows an approximate low-
rank trajectory until it gets into a small neighbourhood of Z∗

s , so that we can still use our landscape
results in the low-rank regime.

Proof sketch of Theorem 4.1: For all t ≥ −T̂ s
α, define Ûα,t = Uα,t+T̂ s

α
Wα,t+T̂ s

α
∈ Rd×s, where

Wα,t = WV ⊤
Xs

Ut
as defined in the proof sketch of Lemma 4.1. Note that Lemma 4.1 implies that

Uα,T s
α

is approximately rank-s, so within a time period after T̂ s
α, the GD trajectory remains close to

another GD initialized at Ûα,0 for the rank-s matrix sensing loss (6) until t = Θ
(
log 1

α

)
, i.e.

Ûα,tÛ
⊤
α,t ≈ Uα,T̂ s

α+tU
⊤
α,T̂ s

α+t
. (7)

Again by Lemma 4.1, the initialization Ûα,0 is within a small neighbourhood of the global min-
ima of fs(U). Furthermore, Theorem 5.1 implies that fs(U) satisfies a local PL-like condi-
tion, so that GD with good initialization would converge linearly to its global minima (Karimi
et al., 2016). We need to choose a time t such that (7) remains true while this linear con-
vergence takes place for sufficiently many steps. We can show that there always exists some
t = tsα such that both

∥∥∥Ûα,tÛ
⊤
α,t −Uα,T̂ s

α+tU
⊤
α,T̂ s

α+t

∥∥∥
F

and
∥∥∥Ûα,t −U∗

s

∥∥∥
F

are O
(
α

1
Mκ2

)
. Hence∥∥Uα,tU

⊤
α,t −Z∗

s

∥∥
F
≲ α

1
Mκ2 for t = T s

α := T̂ s
α + tsα.

For all 1 ≤ s < r̂ ∧ r∗, since (7) always holds for t ≤ tsα and rank
(
Ûα,t

)
≤ s, we must

have max1≤t≤T s
α
σs+1 (Uα,t) = o(1) as α → 0. Finally,

∥∥Z∗
s+1 −Xs+1X

⊤
s+1

∥∥ = O(δ) (cf.
Lemma E.5), so σs+1

(
Z∗

s+1

)
= Θ(1). Therefore, Uα,tU

⊤
α,t cannot be close to Z∗

s+1 when t ≤ T s
α,

so we must have T s+1
α > T s

α. This completes the proof of Theorem 4.1.
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5 CONVERGENCE IN UNDER-PARAMETERIZED MATRIX SENSING

In this section, we analyze the properties of the landscape of the matrix sensing loss (1), which plays
a crucial role in proving results in Section 4. While the landscape of over-parameterized matrix
sensing (i.e. r̂ ≥ r∗) is well-studied (Tu et al., 2016; Ge et al., 2017), few results are known for
the under-parameterized case. Our results provide useful tools for analyzing the convergence of
gradient-based algorithms for solving problems like low-rank matrix approximation and might have
independent interests.

To prove convergence results like Proposition 4.1, we first study the landscape of fs defined in
(6) near the set of global minimizers. One major difficulty here is that fs is not locally strongly-
convex, because if U ∈ Rd×s is a global minimizer of fs, then UR is also a global minimizer, for
any orthogonal matrix R ∈ Rs×s . Nonetheless, we can establish a Polyak-Łojasiewicz (PL) like
condition, Theorem 5.1, which is the main result of this section.

Definition 5.1 (Procrutes distance) For any d, s ∈ N+ and U1,U2 ∈ Rd×s, we define
dist(U1,U2) = min {∥U1 −U2R∥F : R ∈ Rs×s is orthogonal}.

We note that the procrutes distance is well-defined because the s × s orthogonal matrices are a
compact set and thus ∥U1 −U2R∥F is continuous in R. It can be verified that procrutes distance
is a pseudo metric, i.e., it is symmetric and satisfies the triangle inequality.

Theorem 5.1 (Landscape of under-parameterized matrix sensing) The global minimizer of fs
is unique up to an orthogonal transformation, i.e. the set of global minimizers of fs is
{U∗

sR : R ∈ Rs×s is orthogonal} where U∗
s is an arbitrary global minimizer. Moreover, let

U ∈ Rd×s and U∗
s be a global minimizer of fs such that ∥U −U∗

s ∥F = dist(U ,U∗
s ). Sup-

pose that Assumption 3.1 holds and ∥U −U∗
s ∥ ≤ 10−2κ−1∥X∥, then ⟨∇fs(U),U −U∗

s ⟩ ≥
0.1τdist2(U ,U∗

s ).

Remark 5.1 Recall PL condition means there exists some constant µ > 0, such that ∥∇g(x)∥2 ≥
2µ (g(x)−miny∈Rn g(y)) holds for all x. Since fs is locally smooth around U∗

s , there exists a
constant c1 > 0 such that fs(U)− fs(U

∗
s ) ≤ c1 ∥U −U∗

s ∥
2
F . Moreover, Theorem 5.1 implies that

∥U −U∗
s ∥

2
F ≤ 100τ−2 ∥∇fs(U)∥2F , so we have ∥∇fs(U)∥2F ≥ 10−2τ2c−1

1 (fs(U)− fs(U
∗
s )).

In other words, Theorem 5.1 implies that the matrix sensing loss (1) is locally PL.

When δ = 0, fs reduces to the matrix factorization loss Fs : Rd×s → R, Fs(U) =
1

4d2

∥∥UU⊤ −Z∗
∥∥2
F

. The following corollary immediately follows from Theorem 5.1.

Corollary 5.1 (Landscape of under-parameterized matrix factorization) The set of global min-
imizers of Fs is {XsR : R ∈ Rs×s is orthogonal}. Moreover, under Assumption 3.1, given
U ∈ Rd×s and let R be an orthogonal matrix such that ∥U −XsR∥F = dist(U ,Xs). If
dist(U ,Xs) ≤ 10−2κ−1∥X∥, then ⟨∇F (U),U −XsR⟩ ≥ 0.1τdist2(U ,Xs).

We end this section with the following lemma that formalizes the intuition that all global minimizers
of the fs must be close to Xs under the procrutes distance, which is used in the proof sketch of
Theorem 4.1 in Section 4.

Lemma 5.1 Under Assumption 3.1, we have dist(U∗
s ,Xs) ≤ 40δκ∥X∥F for any global minimizer

U∗
s of fs. Moreover,

∥∥Z∗
s −XsX

⊤
s

∥∥
F
≤ 80δκ

√
r∗∥X∥2.

6 EXPERIMENTS

In this section, we perform some numerical experiments to illustrate our theoretical findings.

Experimental setup. Consistent with our theory, we consider the matrix sensing problem (1) with
d = 50, r∗ = 5, α ∈ {1, 0.1, 0.01, 0.001}, m ∈ {1000, 2000, 5000}. We will consider different
choices for r̂ in the experiments. The ground-truth Z∗ = XX⊤ is generated such that the entries

7
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(a) α = 1, 1000 measurements. (b) α = 0.1, 1000 measurements.

(c) α = 0.01, 1000 measurements. (d) α = 0.001, 1000 measurements.

(e) α = 0.001, 2000 measurements. (f) α = 0.001, 5000 measurements.

Figure 1: The evolution of relative error against the best solution of different ranks over time.

of X are i.i.d. standard Gaussian variables. Throughout our experiments, we use the same ground-
truth to compare different choices of parameters. For i = 1, 2, · · · ,m, all entries of the measurement
Ai ∈ Rd×d are chosen i.i.d. from the standard Gaussian N (0, 1). When m ≳ dr∗δ

−2, this set of
measurements satisfies the RIP with high probability (Recht et al., 2010, Theorem 4.2).

We solve the problem (1) via running GD for T = 104 iterations starting with small initial-
ization with scale α. Specifically, we choose U0 = αU where the entries of U ∈ Rd×r̂ are
drawn i.i.d. from standard Gaussian distribution. We consider both the over-parameterized and the
exact/under-parameterized regime. The learning rate of GD is set to be µ = 0.005.

6.1 IMPLICIT LOW-RANK BIAS

In this subsection, we consider the over-parameterized setting with r = 50. For each iteration

t ∈ [T ] and rank s ∈ [r∗], we define the relative error Es(t) =
∥UtU

⊤
t −XsX

⊤
s ∥2

F

∥XsX⊤
s ∥2

F

to measure the
proximity of the GD iterates to Xs. We plot the relative error in Figure 1 for different choices of α
and m (which affects the measurement error δ).

Small initialization. The implicit low-rank bias of GD is evident when the initialization scale α
is small. Indeed, one can observe that GD first visits a small neighbourhood of X1, spends a long
period of time near it, and then moves towards X2. It then proceeds to learn X3,X4, · · · in a similar
way, until it finally fits the ground truth. This is in align with Theorem 4.1. By contrast, for large
initialization we do not have this implicit bias.

8
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(a) α = 1, 1000 measurements. (b) α = 0.1, 1000 measurements.

(c) α = 0.01, 1000 measurements. (d) α = 0.001, 1000 measurements.

Figure 2: The evolution of the loss and relative error against best solution of different ranks in the
exact-parameterized case r = 5.

The effect of measurement error. For fixed α, one can observe the the relative error becomes
smaller when the number of measurement increases. This is in align with Lemma 4.1 in which the
bound depends on δ. In particular, for the case s = r∗, although GD with fixed initialization does
not converge to global minima, but the distance to the set of global minima scales as poly(α).

6.2 MATRIX SENSING WITH EXACT PARAMETERIZATION

Now we study the behavior of GD in the exact parameterization regime (r = r∗). We fix m = 1000
and r = r∗ = 5 and run GD for T = 500 iterations. We plot the relative error in Figure 2. We
can see that GD exhibits an implicit low-rank bias when α is small. However, choosing a very
small α would slow down the convergence speed. This is because GD would get into a poly(α)-
neighbourhood of the saddle point Zs and spend a long time escaping the saddle. Also, convergence
to global minimizers is guaranteed as long as α is below a certain threshold (see Proposition 4.1).

7 CONCLUSION

In this paper, we study the matrix sensing problem with RIP measurements and show that GD with
small initialization follows an incremental learning procedure, where GD finds near-optimal solu-
tions with increasing ranks until it finds the ground-truth. We take a step towards understanding the
optimization and generalization aspects of simple optimization methods, thereby providing insights
into their success in modern applications such as deep learning (Goodfellow et al., 2016). Also, we
provide a detailed landscape analysis in the under-parameterized regime, which to the best of our
knowledge is the first analysis of this kind.

Although we focus on matrix sensing in this paper, it has been revealed in a line of works that the im-
plicit regularization effect may vary for different models, including deep matrix factorization (Arora
et al., 2019) and nonlinear ReLU/LeakyReLU networks (Lyu et al., 2021; Timor et al., 2022). Also,
it is shown in Woodworth et al. (2020) that different initialization scales can lead to distinct induc-
tive bias and affect the generalization and optimization behaviors. All these results indicate that we
need further studies to comprehensively understand gradient-based optimization methods from the
generalization aspect.

9
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The appendix is organized as follows: in Appendix A we present a number of results that will be
used for later proof. Appendix B sketches the main idea for proving our main results. Appendix C
is devoted to a rigorous proof of Lemma B.1 ,with some auxiliary lemmas proved in Appendix D. In
Appendix E we analyze the landscape of low-rank matrix sensing and prove our results in Section 5.
These results are then used in Appendix F to prove Theorem 4.1. Finally, Appendix G studies the
landscape of rank-1 matrix sensing, which enjoys a strongly convex property, as we mentioned in
Section 5 without proof.

A PRELIMINARIES

In this section, we present some useful results that is needed in subsequent analysis.

A.1 THE RIP CONDITION AND ITS PROPERTIES

In this subsection, we collect a few useful properties of the RIP condition, which we recall below:

Definition A.1 We say that the measurement A satisfies the (δ, r)-RIP condition if for all matrices
Z ∈ Rd×d with rank (Z) ≤ r, we have

(1− δ)∥Z∥2F ≤ ∥A(Z)∥22 ≤ (1− δ)∥Z∥2F .

The key intuition behind RIP is that A∗A ≈ I , where A∗ : v 7→ 1√
m

∑m
i=1 viAi is the adjoint of

A. This intuition is made rigorous by the following proposition:

Proposition A.1 (Stöger & Soltanolkotabi, 2021, Lemma 7.3) Suppose that A satisfies (r, δ)-RIP,
then for all symmetric matrix Z of rank ≤ r − 1, we have

∥(A∗A− I)Z∥ ≤
√
rδ∥Z∥.

A.2 MATRIX ANALYSIS

The following lemma is a direct corollary of Proposition A.1 and will be frequently used in our
proof.

Lemma A.1 Suppose that the measurement A satisfies (δ, 2r∗ + 1)-RIP condition, then for all
matrices U ∈ Rd×r such that rank (U) ≤ r∗, we have∥∥(A∗A− I) (XX⊤ −UU⊤)

∥∥ ≤ δ
√
r∗
(
∥X∥2 + ∥U∥2

)
.

In our proof we will frequently make use of the Weyl’s inequality for singular values:

Lemma A.2 (Weyl’s inequality) Let A,∆ ∈ Rd×d be two matrices, then for all 1 ≤ k ≤ d, we
have

|σk(A)− σk(A+∆)| ≤ ∥∆∥.

We will also need the Wedin’s sin theorem for singular value decomposition:

Lemma A.3 (Wedin, 1972, Section 3) Define R(·) to be the column space of a matrix. Suppose
that matrices B = A+ T , A1, B1 are the top-s components in the SVD of A and B respectively,
and A0 = A−A1,B0 = B −B1. If δ = σmin(B1)− σmax(A0) > 0, then we have

∥sinΘ (R(A1), R(B1))∥ ≤ ∥T∥
δ

where Θ(·, ·) denotes the angle between two subspaces.

Equipped with Lemma A.1, we can have the following characterization of the eigenvalues of M
(recall that M = A∗A(XX⊤)):
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Lemma A.4 Let M := A∗A(XX⊤) and M =
∑d

k=1 σ̂
2
kv̂kv̂

⊤
k be the eigen-decomposition of

M . For 1 ≤ i ≤ d we have ∣∣σ2
i − σ̂2

i

∣∣ ≤ δ∥X∥2.

Proof :By Weyl’s inequality we have∣∣σ2
i − σ̂2

i

∣∣ ≤ ∥∥M −XX⊤∥∥ ≤ δ∥X∥2

as desired. □

A.3 OPTIMIZATION

Lemma A.5 Suppose that a smooth function f ∈ Rm 7→ R with minimum value f∗ > −∞ satisfies
the following conditions with some ϵ > 0:

(1). lim∥x∥→+∞ f(x) = +∞.

(2). There exists an open subset S ⊂ Rm such that the set S∗ of global minima of f is contained in
S, and for all stationary points x of f in Rm −S, we have f(x)− f∗ ≥ 2ϵ. Moreover, we also
have f(x)− f∗ ≥ 2ϵ on ∂S.

Then we have
{x ∈ Rm : f(x)− f∗ ≤ ϵ} ⊂ S.

Proof : Let x∗ be the minimizer of f on Rm − S. By condition (1) we can deduce that x∗ always
exists. Moreover, since any local minimizer of a function defined on a compact set must either be a
stationary point or lie on the boundary of its domain, we can see that either x∗ ∈ ∂S or ∇f(x∗) = 0
holds. By condition (2), either cases would imply that f(x∗)− f∗ ≥ 2ϵ, as desired. □

Lemma A.6 Let {xk}, {yk} ⊂ Rn be two sequences generated by xk+1 = xk − µ∇f(xk) and
yk+1 = yk − µ∇f(yk). Suppose that ∥xk∥ ≤ B and ∥yk∥ ≤ B for all k and f is L-smooth in
{x ∈ Rn : ∥x∥ ≤ B}, then we have

∥xk − yk∥ ≤ (1 + µL)k ∥x0 − y0∥ .

Proof : The update rule implies that
∥xk+1 − yk+1∥ = ∥xk − yk − µ∇f(xk) + µ∇f(yk)∥

≤ ∥xk − yk∥+ µ ∥∇f(xk)− f(yk)∥
≤ (1 + µL)∥xk − yk∥

which yields the desired inequality. □

A.4 PROOF OF PROPOSITION 3.2

Proposition 3.2 immediately follows from the following result:

Proposition A.2 (Rudelson & Vershynin, 2009) Suppose that all entries of U ∈ Rd×r are indepen-
dently drawn from N

(
0, 1√

r

)
and ρ = ϵ

√
r−

√
s−1√
r

, then σmin

(
V ⊤
Xs

U
)
≥ ρ with probability at

least 1− e−cr − (Cϵ)
r−s+1. Here c, C > 0 are universal constants.

By Proposition A.2, we have

P
[
∃1 ≤ s ≤ r ∧ r∗ s.t. σmin

(
V ⊤
Xs

U
)
<

2ϵ

r

]
≤

r∧r∗∑
s=1

P
[
σmin

(
V ⊤
Xs

U
)
< ϵ

√
r −

√
s− 1√
r

]

≤
r∧r∗∑
s=1

(
e−cr + (Cϵ)r−s+1

)
≤ r

(
e−cr + Cϵ

)
which concludes the proof of Proposition 3.2.
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B MAIN IDEA FOR THE PROOF OF THEOREM 4.1

In this section, we briefly introduce our main ideas for proving Theorem 4.1. Motivated by Stöger
& Soltanolkotabi (2021), we decompose the matrix Ut into a parallel component and an orthogonal
component. Specifically, we write

Ut = UtWtW
⊤
t︸ ︷︷ ︸

parallel component

+ UtWt,⊥W
⊤
t,⊥︸ ︷︷ ︸

orthogonal component

, (8)

where Wt := WV ⊤
Xs

Ut
∈ Rr̂×s is the matrix consisting of the right singular vectors of V ⊤

Xs
Ut

(Definition 3.1) and Wt,⊥ ∈ Rr̂×(r̂−s) is an orthogonal complement of Wt. Our goal is to prove
that at some time t, we have V ⊤

Xs

(
UtU

⊤
t −XsX

⊤
s

)
≈ 0 and ∥UtWt,⊥∥ ≈ 0. As we will see

later, these imply that
∥∥UtU

⊤
t −XsX

⊤
s

∥∥ ≈ 0. The remaining part of this section is organized as
follows: in Appendix B.1 we give a heuristic explanation for considering (8), and in Appendix B.2,
we present our proof outline.

Additional Notations. Let VXs,⊥ ∈ Rd×(d−s) be an orthogonal complement of VXs
∈ Rd×s.

Let Σs = diag(σ1, . . . , σs) and Σs,⊥ = diag(σs+1, . . . , σd). We use ∆t := (A∗A− I)(XX⊤ −
UtU

⊤
t ) to denote the vector consisting of measurement errors for XX⊤ −UtU

⊤
t .

B.1 HEURISTIC EXPLANATIONS OF THE DECOMPOSITION

A simple and intuitive approach for showing the implicit low rank bias is to directly analyze the
growth of V ⊤

Xs
Ut versus V ⊤

Xs,⊥Ut. Ideally, the former grows faster than the latter, so that GD only
learns the components in Xs.

By the update rule of GD (3),

V ⊤
Xs,⊥Ut+1 = V ⊤

Xs,⊥
[
I + µA∗A(XX⊤ −UtU

⊤
t )
]
Ut

= V ⊤
Xs,⊥

[
I + µXX⊤ − µUtU

⊤
t

]
Ut︸ ︷︷ ︸

=:Gt,1

+µV ⊤
Xs,⊥∆tUt︸ ︷︷ ︸
=:Gt,2

= Gt,1 + µGt,2.

For the first term Gt,1, we have

Gt,1 = (I + µΣ2
s,⊥)V

⊤
Xs,⊥Ut − µV ⊤

Xs,⊥UtU
⊤
t Ut

= (I + µΣ2
s,⊥)V

⊤
Xs,⊥Ut(I − µUtU

⊤
t ) +O(µ2),

where the last term O(µ2) is negligible when µ is sufficiently small. Since ∥Σs,⊥∥ = σs+1, the
spectral norm of Gt,1 can be bounded by

∥Gt,1∥ ≤ ∥I + µΣ2
s,⊥∥ · ∥V ⊤

Xs,⊥Ut∥ · ∥I − µUtU
⊤
t ∥+O(µ2)

≤ (1 + µσ2
s+1)∥V ⊤

Xs,⊥Ut∥+O(µ2).

However, the main difference with the full-observation case (Jiang et al., 2022) is the second term
Gt,2 := V ⊤

Xs,⊥∆tUt. Since the measurement errors ∆t are small but arbitrary, it is hard to compare
this term with V ⊤

Xs,⊥Ut+1. As a result, we cannot directly bound the growth of ∥V ⊤
Xs,⊥Ut∥.

However, the aforementioned problem disappears if we turn to bound the growth of
∥V ⊤

Xs,⊥Ut+1Wt,⊥∥. To see this, first we deduce the following by repeatedly using V ⊤
Xs

UtWt,⊥ =
0 due to the definition of Wt,⊥.

Gt,1Wt,⊥ = V ⊤
Xs,⊥

[
I + µXX⊤ − µUtU

⊤
t

]
UtWt,⊥

= V ⊤
Xs,⊥(I + µXX⊤)UtWt,⊥ − µV ⊤

Xs,⊥UtU
⊤
t UtWt,⊥

= (I + µΣ2
s,⊥)V

⊤
Xs,⊥UtWt,⊥ − µV ⊤

Xs,⊥Ut(WtW
⊤
t +Wt,⊥W

⊤
t,⊥)U

⊤
t UtWt,⊥

= (I + µΣ2
s,⊥)V

⊤
Xs,⊥UtWt,⊥(I − µW⊤

t,⊥U
⊤
t UtWt,⊥)

− µV ⊤
Xs,⊥UtWtW

⊤
t U⊤

t UtWt,⊥ +O(µ2),
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Gt,2Wt,⊥ = V ⊤
Xs,⊥∆tUtWt,⊥ = V ⊤

Xs,⊥∆tVXs,⊥V
⊤
Xs,⊥UtWt,⊥,

So we have the following recursion:
V ⊤
Xs,⊥Ut+1Wt,⊥ = (I + µΣ2

s,⊥ + µV ⊤
Xs,⊥∆tVXs,⊥)V

⊤
Xs,⊥UtWt,⊥(I − µW⊤

t,⊥U
⊤
t UtWt,⊥)

− µV ⊤
Xs,⊥UtWtW

⊤
t U⊤

t UtWt,⊥ +O(µ2),

We further note that
V ⊤
Xs,⊥Ut+1Wt+1,⊥ = V ⊤

Xs,⊥Ut+1WtW
⊤
t Wt+1,⊥ + V ⊤

Xs,⊥Ut+1Wt,⊥W
⊤
t,⊥Wt+1,⊥, (9)

which establishes the relationship between V ⊤
Xs,⊥Ut+1Wt,⊥ and V ⊤

Xs,⊥Ut+1Wt+1,⊥. To complete
the proof we need to prove the following:

• The minimal eigenvalue of the parallel component UtWtW
⊤
t grows at a linear rate with

speed strictly faster than σs+1.

• The term
∥∥∥V ⊤

Xs,⊥VUtWt

∥∥∥≪ 1, which implies that the first term in (9) is negligible.

B.2 PROOF OUTLINE

An important intermediate step of our proof is the following result:

Lemma B.1 Under Assumptions 3.1 and 3.2, if the initialization scale α is sufficiently small, then
for all 1 ≤ s ≤ r̂ ∧ r∗ there exists a time T s

α ∈ Z+ such that∥∥∥XsX
⊤
s −UT s

α
U⊤

T s
α

∥∥∥
F
≤ κ2√r∗∥X∥2δ.

We begin with the spectral alignment phase, where we can make the following approximation
Ut+1 ≈ (I + µM)Ut (10)

since Ut is initially small. At some time t = T0, Ut would become approximately aligned with
the first s components, as long as there is a positive gap between the s-th and (s + 1)-th largest
eigenvalues of M . The choice of T0 is subject to a trade-off such that the alignment takes effect
while (10) does not induce large error.

We then enter the second phase which we call the parallel matching phase, in which the parallel
components grow to a constant magnitude and is well-matched with the ground-truth (the orthog-
onal components remain small). Specifically, for small constants ci, 1 ≤ i ≤ 3, we show that the
followings are true in this phase:

(1). σmin(V
⊤
Xs

Ut) grows exponentially fast until it reaches c · σs for some constant c at some time
Ts. Specifically, we have

σmin(V
⊤
Xs

Ut+1Wt) ≥ σmin(V
⊤
Xs

Ut)
(
1 + µσ2

s − c1 − µσ2
min(V

⊤
Xs

Ut)
)
.

(2). When t ≤ Ts, the growth speed of ∥UtWt,⊥∥ is slower than σ2
min(V

⊤
Xs

Ut):

∥Ut+1Wt+1,⊥∥ ≤
(
1 + µσ2

s+1 + c2
)
∥UtWt,⊥∥ .

(3).
∥∥∥V ⊤

Xs,⊥VUtWt

∥∥∥ ≤ c3 remains true until t = Ts.

These statements will be proven by induction. At t = Ts, we have σmin(V
⊤
Xs

Ut) = Θ(1), and
we enter the refinement phase in which we show that the quantity

∥∥V ⊤
Xs

(
UtU

⊤
t −XsX

⊤
s

)∥∥
F

decrease exponentially until it reaches O(δ). Note that in general GD would not converge to
an o(1)-neighbourhood of XsX

⊤
s as the initialization scale α → 0, because XsX

⊤
s is not the

rank-s minima of the RIP loss. As a result, in the refinement phase we can only expect to obtain∥∥UtU
⊤
t −XsX

⊤
s

∥∥
F
≤ poly(r) · δ.

To conclude the proof of Theorem 4.1, we prove in Section 5 that the landscape of the matrix
sensing loss with rank-s parameterization, though non-convex, satisfies a local Polyak-Lojasiewicz
(PL) condition within a neighborhood of constant radius. As a result, for sufficiently small δ, GD
converges linearly to global minima with good initialization. We then show that within a time period
after the refinement phase, the GD trajectory is close to the trajectory of well-initialized GD for rank-
s parameterized matrix sensing. The length of this period goes to infinity when α → 0, thereby
implying that GD finds the rank-s minimizer with o(1) error. The details are given in Appendix F.
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C PROOF OF LEMMA B.1

In this section, we give the full proof of Lemma B.1, with some additional technical lemmas left
to Appendix D. Appendices C.1 and C.2 are devoted to analyzing the spectral phase and parallel
improvement phase, respectively. Appendix C.3 uses induction to characterize the low-rank GD
trajectory in the parallel improvement phase. In Appendix C.4 we study the refinement phase, which
allows us to derive Lemma B.1.

C.1 THE SPECTRAL PHASE

Starting from a small U0 = αU , α ≪ 1, we first enter the spectral phase where GD behaves similar
to power iteration. As in Stöger & Soltanolkotabi (2021), we refer to this phase as the spectral phase.
Specifically, we have in the spectral phase that

Ut+1 =
(
I + µ (A∗A) (XX⊤ −UtU

⊤
t )
)
Ut ≈

(
I + µ (A∗A) (XX⊤)

)
Ut.

The approximation holds with high accuracy as long as ∥Ut∥ ≪ 1. Moreover we have M :=
(A∗A) (XX⊤) ≈ XX⊤ by the RIP condition; when δ is sufficiently small, we can still ensure
a positive eigen-gap of M . As a result, with small initialization Ut would become approximately
aligned with the top eigenvector u1 of M . Since ∥M −XX⊤∥ = O(δ

√
r∗) by Proposition A.1,

we have ∥u1 − v1∥ = O(δ
√
r∗) so that ∥V ⊤

Xs
VUtWt

∥ = O(δ
√
r∗). This proves the base case for

the induction.

Formally, we define M = A∗A(XX⊤), Zt = (I + µM)t and Ũt = ZtU0. Suppose that
M =

∑rank(M)
i=1 σ̂2

i v̂iv̂
⊤
i is the spectral decomposition of M . We additionally define Ms =∑min{s,rank(M)}

i=1 σ̂2
i v̂iv̂

⊤
i . By Lemma A.4 and δ

√
r∗ ≤ 10−3κ as stated in Lemma B.1, we have

σ̂s ≥ σs − 0.01τ and σ̂s+1 ≥ σs+1 + 0.01τ , where τ = σs − σs+1 > 0. Additionally, let Lt be the
span of the top-s left singular vectors of Ut. We make the following assumption on the initialization,
which holds with high probability when it is i.i.d. Gaussian:

Assumption C.1 The matrix V ⊤
Ms

U ∈ Rs×r has full row-rank i.e. ρ = σmin

(
V ⊤
Ms

U
)
> 0.

Let
t⋆ := min

{
i ∈ N :

∥∥∥Ũi−1 −Ui−1

∥∥∥ >
∥∥∥Ũi−1

∥∥∥} ,

the following lemma bounds the error of approximating Ut via Ũt:

Lemma C.1 (Stöger & Soltanolkotabi, 2021, Lemma 8.1) Suppose that A satisfies the rank-1 RIP
with constant δ1. For all integers t such that 1 ≤ t ≤ t⋆ it holds that

∥Et∥ =
∥∥∥Ut − Ũt

∥∥∥ ≤ 4σ̂−2
1 α3r∗ (1 + δ1)

(
1 + µσ̂2

1

)3t ∥U∥3. (11)

Corollary C.1 We have

t∗ ≥
logα−1 + 1

2 log
ρσ̂2

1

4(1+δ1)r∗

log (1 + µσ̂2
1)

.

Proof : By Lemma C.1 we have

∥Et∥ ≤ 4σ̂−2
1 α3r∗ (1 + δ1)

(
1 + µσ̂2

1

)3t ∥U∥3.
for all t ≤ t∗. On the other hand, we have

∥Ũt∥ = α
∥∥(I + µM)tU

∥∥
≥ α(1 + µσ̂2

1)
t
∥∥v̂1v̂

⊤
1 U

∥∥
≥
(
1 + µσ̂2

1

)t
αρ.

Thus, it follows from ∥Et∗∥ ≥ ∥Ũt∗∥ that

(
1 + µσ̂2

1

)t∗ ≥

√
ρσ̂2

1

4(1 + δ1)r∗∥U∥3
· α−1 ⇒ t∗ ≥

logα−1 + 1
2 log

ρσ̂2
1

4(1+δ1)r∗

log (1 + µσ̂2
1)

as desired. □
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Lemma C.2 There exists a time

t = T0 :=
2 logα−1 + log

ρσ̂2
1

4r∗(1+δ)

3 log(1 + µσ̂2
1)− log(1 + µσ̂2

s+1)
≤ t∗

such that ∥∥∥∥∥Ut −
s∑

i=1

α(1 + µσ̂2
i )

tv̂iv̂
⊤
i U

∥∥∥∥∥ ≲ αγ

where γ = 1− 2 log(1+µσ̂2
1)

3 log(1+µσ̂2
1)−log(1+µσ̂2

s+1)
.

Proof : It’s easy to check that T0 ≤ t∗ by applying Corollary C.1.

We consider the following decomposition:∥∥∥∥∥Ut −
s∑

i=1

α(1 + µσ̂2
i )

tv̂iv̂
⊤
i U

∥∥∥∥∥ ≤
∥∥∥Ut − Ũt

∥∥∥+ ∥∥∥∥∥Ũt −
s∑

i=1

α(1 + µσ̂2
i )

tv̂iv̂
⊤
i U

∥∥∥∥∥ .
When t ≤ t∗, the first term can be bounded as

∥Et∥ ≤ 4σ̂−2
1 α3r∗ (1 + δ1)

(
1 + µσ̂2

1

)3t
.

For the second term we have∥∥∥∥∥Ũt −
s∑

i=1

α(1 + µσ̂2
i )

tv̂iv̂
⊤
i U

∥∥∥∥∥ ≤

∥∥∥∥∥
r∗∑

i=s+1

α(1 + µσ̂2
i )

tv̂iv̂
⊤
i U

∥∥∥∥∥ ≤ α
(
1 + µσ̂2

s+1

)t
.

In particular, the definition of T0 implies that∥∥∥∥∥Ut −
s∑

i=1

α(1 + µσ̂2
i )

tv̂iv̂
⊤
i U

∥∥∥∥∥ ≲ αγ

as desired. □

We conclude this section with the following lemma, which states that initially the parallel component
UtWt would grow much faster than the noise term, and would become well-aligned with Xs.

Lemma C.3 The following inequalities hold for t = T0 when α ≲ ρ−4κ is sufficiently small:

∥Ut∥ ≤ ∥X∥ (12a)

σmin (UT0
WT0

) ≥ ρ · poly(r∗)−1 · α
1− 2 log(1+µσ̂2

s)

3 log(1+µσ̂2
1)−log(1+µσ̂2

s+1
) (12b)

∥UT0WT0,⊥∥ ≤ poly(r∗) · α
1−

2 log(1+µσ̂2
s+1)

3 log(1+µσ̂2
1)−log(1+µσ̂2

s+1
) (12c)∥∥V ⊤

Xs,⊥VUT0
WT0

∥∥ ≤ 200δ (12d)

Proof : We prove this lemma by applying Corollary D.1 to t = T0 defined in the previous lemma.

The inequality (12a) can be directly verified by using Lemma C.2:

∥Ut∥ ≤ α
(
1 + µσ̂2

i

)T0
+ αγ ≲ poly(r∗) · αγ/3 ≤ ∥X∥.

For the remaining inequalities, we first verify that the assumption in Corollary D.1:

ασs(Zt) > 10 (ασs+1(Zt) + ∥Et∥) . (13)

By definition of Zt, we can see that

ασs+1(ZT0
) + ∥ET0

∥ ≤ α
(
1 + µσ̂2

s+1

)T0
+ ∥ET0

∥

≲ αγ ≲ 0.1ρα
1− 2 log(1+µσ̂2

s)

3 log(1+µσ̂2
1)−log(1+µσ̂2

s+1
)

≤ 0.1ασs(ZT0
)
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when α ≤ poly(r∗)
−1, so that (13) holds. As a result, we have

σs (UtWt) ⩾ 0.4ασs (Zt)σmin

(
V T
L U

)
≥ 0.4poly(r∗)

−1 · αρ
(
1 + µσ̂2

s

)T0

≳ ρ · α
1− 2 log(1+µσ̂2

s)

3 log(1+µσ̂1)−log(1+µσ̂2
s+1

)

∥UtWt,⊥∥ ⩽ 2
(
ασ2

s+1 (Zt) ∥U∥+ ∥Et∥
)

≲ α
1−

2 log(1+µσ̂2
s+1)

3 log(1+µσ̂2
1)−log(1+µσ̂2

s+1
)∥∥V T

Xs,⊥VUtWt

∥∥ ⩽ 100

(
δ +

ασs+1 (Zt) ∥U∥+ ∥Et∥
αρσs (Zt)

)
≤ 100

(
δα

2 log(1+µσ̂2
s)−2 log(1+µσ̂2

s+1)

3 log(1+µσ̂2
1)−log(1+µσ̂2

s+1
)

)
≤ 200δ.

(14)

The conclusion follows. □

C.2 THE PARALLEL IMPROVEMENT PHASE

C.2.1 THE SIGNAL TERM

In the following we estimate σmin

(
V ⊤
Xs

Ut+1Wt

)
. We state our main result of this section in the

lemma below.

Lemma C.4 Suppose that V ⊤
Xs

Ut ∈ Rs×r is of full rank, µ < 10−4∥X∥−2, c3 < 10−3κ−1,∥∥(A∗A− I) (XX⊤ −UtU
⊤
t )
∥∥ < 10−3κ−1∥X∥2 and ∥VX⊥

s
VUtWt∥ ≤ c3, then we have

σmin(V
⊤
Xs

Ut+1) ≥ σmin(V
⊤
Xs

Ut+1Wt)

≥
(
1 + µ

(
σ2
s − (5c3 + 20δ)∥X∥2

)
− 500µ2∥X∥4

) (
1− µσ2

min(V
⊤
Xs

Ut)
)
σmin(V

⊤
Xs

Ut).

Proof : The update rule of GD implies that

V ⊤
Xs

Ut+1Wt

= V ⊤
Xs

(
I + µ(XX⊤ −UtU

⊤
t ) + µ∆t

)
UtWt

= V ⊤
Xs

(
I + µ(XsX

⊤
s −UtU

⊤
t ) + µ∆t

)
UtWt (15a)

= (I + µΣ2
s)V

⊤
Xs

UtWt − µV ⊤
Xs

UtU
⊤
t UtWt + µV ⊤

Xs
∆tUtWt (15b)

= (I + µΣ2
s)V

⊤
Xs

UtWt − µV ⊤
XUtU

⊤
t VXs

V ⊤
Xs

UtWt − µV ⊤
XUtU

⊤
t VXs,⊥V

⊤
Xs,⊥UtWt

+ µV ⊤
X∆tUtWt

= (I + µΣ2
s)V

⊤
Xs

UtWt(I − µW⊤
t U⊤

t VXs
V ⊤
Xs

UtWt) + µV ⊤
Xs

∆tUtWt

− µV ⊤
XUtU

⊤
t VXs,⊥V

⊤
Xs,⊥UtWt + µ2Σ2

sV
⊤
Xs

UtWtW
⊤
t U⊤

t VXsV
⊤
Xs

UtWt (15c)

where (15a) follows from V ⊤
Xs

XX⊤ = V ⊤
Xs

XsX
⊤
s + V ⊤

Xs
Xs,⊥X

⊤
s,⊥ and V ⊤

Xs
Xs,⊥ = 0;

(15b) follows from V ⊤
Xs

XsX
⊤
s = V ⊤

Xs
VXs

ΣsV
⊤
Xs

= ΣsV
⊤
Xs

, and (15c) follows from
V ⊤
Xs

Ut = V ⊤
Xs

UtWtW
⊤
t +V ⊤

Xs
UtWt,⊥W

⊤
t,⊥ = V ⊤

Xs
UtWtW

⊤
t by definition of Wt and Wt,⊥.

We now relate the last three terms in (15c) to V ⊤
Xs

UtWt. Since V ⊤
Xs

UtWt is assumed to be invert-
ible, so is V ⊤

Xs
VUtWt

,ΣUtWt
and WUtWt

, thus we have

UtWt = UtWt(V
⊤
Xs

UtWt)
−1V ⊤

Xs
UtWt

= UtWt

(
V ⊤
Xs

VUtWt
ΣUtWt

W⊤
UtWt

)−1
V ⊤
Xs

UtWt

= VUtWt

(
V ⊤
Xs

VUtWt

)−1
V ⊤
Xs

UtWt.

(16)
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Plugging (16) into the second and third terms of (15) and re-arranging, we deduce that

V ⊤
Xs

Ut+1Wt

=
(
I + µ(Σ2

s + P1 + P2)
)
V ⊤
Xs

UtWt(I − µW⊤
t U⊤

t VXsV
⊤
Xs

UtWt)

+ µ2
(
Σ2

s + P1 + P2

)
V ⊤
Xs

UtWtW
⊤
t U⊤

t VXs
V ⊤
Xs

UtWt

=
[
I + µ

(
Σ2

s + P1 + P2

)
+ µ2

(
Σ2

s + P1 + P2

)
V ⊤
Xs

UtWtW
⊤
t U⊤

t VXs

(
I − µV ⊤

Xs
UtWtW

⊤
t U⊤

t VXs

)−1
]
·

V ⊤
Xs

UtWt(I − µW⊤
t U⊤

t VXsV
⊤
Xs

UtWt)
(17)

where we use the equation A = (I − µAA⊤)−1A(I − µA⊤A) with A = V ⊤
Xs

UtWt (when
µ < 1

9∥X∥2 , I − µAA⊤ is invertible), and

P1 = V ⊤
Xs

UtU
⊤
t VXs,⊥V

⊤
Xs,⊥VUtWt

(
V ⊤
Xs

VUtWt

)−1

P2 = V ⊤
Xs

∆tVUtWt

(
V ⊤
Xs

VUtWt

)−1
(18)

By assumption we have

σmin

(
V ⊤
Xs

VUtWt

)
≥
√

1−
∥∥∥V ⊤

Xs,⊥VUtWt

∥∥∥2 ≥ 1

2
,

so that

∥P1∥ ≤
∥∥V ⊤

Xs
UtU

⊤
t VXs,⊥

∥∥ ·∥∥V ⊤
Xs,⊥VUtWt

∥∥ ·∥∥∥(V ⊤
Xs

VUtWt

)−1
∥∥∥ ≤ 5c3∥X∥2 ≤ 5∥X∥2 (19)

and by our assumption we have

∥P2∥ ≤
∥∥∥(V ⊤

Xs
VUtWt

)−1
∥∥∥ · ∥∆t∥ ≤ 10−2κ−1r−

1
2 . (20)

Moreover, note that ∥Σs∥2 = ∥X∥2, and when µ < 1
10∥X∥2 we have∥∥∥(I − µV ⊤

Xs
UtWtW

⊤
t U⊤

t VXs

)−1
∥∥∥ < 2. Thus∥∥∥(Σ2

s + P1 + P2

)
V ⊤
Xs

UtWtW
⊤
t U⊤

t VXs

(
I − µV ⊤

Xs
UtWtW

⊤
t U⊤

t VXs

)−1
∥∥∥ ≤ 500∥X∥4.

The equation (18) implies that

σmin(V
⊤
Xs

Ut+1Wt)

≥ σmin

(
I + µΣ2

s + P1 + P2 +
(
Σ2

s + P1 + P2

)
V ⊤
Xs

UtWtW
⊤
t U⊤

t VXs

(
I − µV ⊤

Xs
UtWtW

⊤
t U⊤

t VXs

)−1
)
·

σmin

(
V ⊤
Xs

UtWt(I − µW⊤
t U⊤

t VXs
V ⊤
Xs

UtWt)
)

≥
(
1 + µσ2

min(Σs)− µ∥P1∥ − µ∥P2∥ − 500µ2∥X∥4
)
σmin(V

⊤
Xs

Ut)
(
1− µσ2

min(V
⊤
Xs

Ut)
)

=
(
1 + µσ2

s − µ∥P1∥ − µ∥P2∥ − 500µ2∥X∥4
)
σmin(V

⊤
Xs

Ut)
(
1− µσ2

min(V
⊤
Xs

Ut)
)

Recall that P1 and P2 are bounded in (19) and (20) respectively, so we have that

σmin(V
⊤
Xs

Ut+1)

≥ σmin(V
⊤
Xs

Ut+1Wt)

≥
(
1 + µ

(
σ2
s − (5c3 + 20δ)∥X∥2

)
− 500µ2∥X∥4

) (
1− µσ2

min(V
⊤
Xs

Ut)
)
σmin(V

⊤
Xs

Ut).

The conclusion follows. □

The corollaries below immediately follow from Lemma C.4.

Corollary C.2 Under the conditions in Lemma C.4, if σ2
min(V

⊤
Xs

Ut) < 0.3(σ2
s − σ2

s+1) =

0.3κ−1∥X∥2, then we have

σmin(V
⊤
Xs

Ut+1) ≥
(
1 + 0.5µ(σ2

s + σ2
s+1)

)
σmin(V

⊤
Xs

Ut).

Corollary C.3 Under the conditions in Lemma C.4, if

σ2
min(V

⊤
Xs

Ut) ≤ σ2
s − 50(c3 + δ

√
r)∥X∥2,

then we have that σmin(V
⊤
Xs

Ut+1) ≥ σmin(V
⊤
Xs

Ut).
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C.2.2 THE NOISE TERM

In this section we turn to analyze the noise term.The main result of this section is presented in the
following:

Lemma C.5 Suppose that V ⊤
Xs

Ut+1Wt ∈ Rs×r is of full rank,

∥VXs,⊥VUtWt
∥ ≤ c3 < 10−3κ−1

and ∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥ ≤ 10−3κ−1c3∥X∥2,

then we have

∥Ut+1Wt+1,⊥∥ ≤
(
1 + µσ2

s+1 + 30µ∥X∥2c3 + 0.1µ2∥X∥4
)
∥UtWt,⊥∥ .

Proof : By the definition of Wt,⊥, we have V ⊤
Xs

UtWt,⊥ = 0, thus ∥UtWt,⊥∥ =∥∥∥V ⊤
Xs,⊥UtWt,⊥

∥∥∥. The latter can be decomposed as follows:

V ⊤
Xs,⊥Ut+1Wt+1,⊥ = V ⊤

Xs,⊥Ut+1WtW
⊤
t Wt+1,⊥︸ ︷︷ ︸

=(a)

+V ⊤
Xs,⊥Ut+1Wt,⊥W

⊤
t,⊥Wt+1,⊥︸ ︷︷ ︸

=(b)

.

In the following, we are going to show that the term (a) is bounded by c · µ where c is a small
constant, while (b) grows linearly with a slow speed.

Bounding summand (a). Since

0 = V ⊤
Xs

Ut+1Wt+1,⊥ = V ⊤
Xs

Ut+1WtW
⊤
t Wt+1,⊥ + V ⊤

Xs
Ut+1Wt,⊥W

⊤
t,⊥Wt+1,⊥

by definition, we have

W⊤
t Wt+1,⊥ = −

(
V ⊤
Xs

Ut+1Wt

)−1
V ⊤
Xs

Ut+1Wt,⊥W
⊤
t,⊥Wt+1,⊥. (21)

Thus the summand (a) can be rewritten as follows:

V ⊤
Xs,⊥Ut+1WtW

⊤
t Wt+1,⊥

= −V ⊤
Xs,⊥Ut+1Wt

(
V ⊤
Xs

Ut+1Wt

)−1
V ⊤
Xs

Ut+1Wt,⊥W
⊤
t,⊥Wt+1,⊥ (22a)

= −V ⊤
Xs,⊥Ut+1Wt

(
V ⊤
Xs

VUt+1Wt
ΣUt+1Wt

WUt+1Wt

)−1
V ⊤
Xs

Ut+1Wt,⊥W
⊤
t,⊥Wt+1,⊥

= −V ⊤
Xs,⊥VUt+1Wt

(
V ⊤
Xs

VUt+1Wt

)−1
V ⊤
Xs

Ut+1Wt,⊥W
⊤
t,⊥Wt+1,⊥ (22b)

= −V ⊤
Xs,⊥VUt+1Wt

(
V ⊤
Xs

VUt+1Wt

)−1
V ⊤
Xs

(
I + µA∗A

(
XX⊤ −UtU

⊤
t

))
UtWt,⊥W

⊤
t,⊥Wt+1,⊥

= −µV ⊤
Xs,⊥VUt+1Wt

(
V ⊤
Xs

VUt+1Wt

)−1
V ⊤
Xs

[(
XX⊤ −UtU

⊤
t

)
+∆t

]
UtWt,⊥W

⊤
t,⊥Wt+1,⊥

(22c)

= µV ⊤
Xs,⊥VUt+1Wt

(
V ⊤
Xs

VUt+1Wt

)−1
V ⊤
Xs

[
UtU

⊤
t −∆t

]
UtWt,⊥W

⊤
t,⊥Wt+1,⊥

= µV ⊤
Xs,⊥VUt+1Wt

(
V ⊤
Xs

VUt+1Wt

)−1
M1V

⊤
Xs,⊥UtWt,⊥W

⊤
t,⊥Wt+1,⊥,

where M1 = V ⊤
Xs

[
UtU

⊤
t VXs,⊥ −∆tVXs,⊥

]
. In (22), (22a) follows from (21), (22b) holds since

ΣUt+1WtW
⊤
Ut+1Wt

∈ Rs×s is invertible, and in (22c) we use V ⊤
Xs

UtWt,⊥ = 0. It follows that

∥(a)∥ ≤ µ
∥∥V ⊤

Xs,⊥VUt+1Wt

∥∥ · ∥∥∥(V ⊤
Xs

VUt+1Wt

)−1
∥∥∥ ∥M1∥

∥∥V ⊤
Xs,⊥UtWt,⊥

∥∥ . (23)

By Lemma D.4 we have
∥∥∥V ⊤

Xs,⊥VUt+1Wt

∥∥∥ ≤ 0.01, which implies that∥∥∥(V ⊤
Xs

VUt+1Wt

)−1
∥∥∥ = σ−1

min

(
V ⊤
Xs

VUt+1Wt

)
=
(
1−

∥∥V ⊤
Xs,⊥VUt+1Wt

∥∥2)− 1
2 ≥ 1

2
. (24)
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Lastly, we bound M1 as follows:

∥M1∥ ≤
∥∥V ⊤

Xs
UtU

⊤
t VXs,⊥

∥∥+ ∥∥(A∗A− I)
(
XX⊤ −UtU

⊤
t

)∥∥
≤
∥∥V ⊤

Xs
UtWt

∥∥ · ∥∥V ⊤
Xs,⊥UtWt

∥∥+ 10−3κ−1c3∥X∥2

≤ 10∥X∥2c3.
(25)

where the second inequality follows from our assumption on
∥∥(A∗A− I)

(
XX⊤ −UtU

⊤
t

)∥∥.
Combining (23), (24) and (25) yields

∥(a)∥ ≤ 20µ∥X∥2c3∥UtWt,⊥∥.

Bounding summand (b). This is the main component in the error term. We’ll see that although
this term can grow exponentially fast, the growth speed is slower than the minimal eigenvalue of the
parallel component.

We have
V ⊤
Xs,⊥Ut+1Wt,⊥

= V ⊤
Xs,⊥

[
I + µ(XX⊤ −UtU

⊤
t ) + µ (A∗A− I)

(
XX⊤ −UtU

⊤
t

)]
UtWt,⊥ (26a)

=

I + µΣ2
s,⊥ − µV ⊤

Xs,⊥UtU
⊤
t VXs,⊥ + µV ⊤

Xs,⊥∆tVXs,⊥︸ ︷︷ ︸
=:M2

V ⊤
Xs,⊥UtWt,⊥ (26b)

=
(
I + µΣ2

s,⊥ − µV ⊤
Xs,⊥UtWtW

⊤
t U⊤

t VXs,⊥ + µM2

)
V ⊤
Xs,⊥UtWt,⊥

(
I − µW⊤

t,⊥U
⊤
t UtWt,⊥

)
(26c)

+ µ2
(
Σ2

s,⊥ − V ⊤
Xs,⊥UtWtW

⊤
t U⊤

t VXs,⊥ +M2

)
V ⊤
Xs,⊥UtWt,⊥W

⊤
t,⊥U

⊤
t UtWt,⊥ (26d)

where we recall that Σ2
s,⊥ = diag

(
σ2
s+1, · · · , σ2

r , 0, · · · , 0
)
∈ R(d−s)×(d−s). In (26), (26a) follows

from the update rule of GD, (26b) is obtained from V ⊤
Xs,⊥XX⊤ = Σ2

s,⊥V
⊤
Xs,⊥ and UtWt,⊥ =

VXs
V ⊤
Xs

UtWt,⊥ + VXs,⊥V
⊤
Xs,⊥UtWt,⊥ = VXs,⊥V

⊤
Xs,⊥UtWt,⊥, and lastly in (26d) we use

V ⊤
Xs,⊥UtU

⊤
t VXs,⊥V

⊤
Xs,⊥UtWt,⊥

= V ⊤
Xs,⊥UtWtW

⊤
t U⊤

t VXs,⊥V
⊤
Xs,⊥UtWt,⊥ + V ⊤

Xs,⊥UtWt,⊥W
⊤
t,⊥U

⊤
t VXs,⊥V

⊤
Xs,⊥UtWt,⊥

= V ⊤
Xs,⊥UtWtW

⊤
t U⊤

t VXs,⊥V
⊤
Xs,⊥UtWt,⊥ + V ⊤

Xs,⊥UtWt,⊥W
⊤
t,⊥U

⊤
t UtWt,⊥.

It follows that∥∥V ⊤
Xs,⊥Ut+1Wt,⊥

∥∥
≤
(∥∥I − µV ⊤

Xs,⊥UtWtW
⊤
t U⊤

t VXs,⊥
∥∥+ µ∥Σs,⊥∥2 + µ∥M2∥

)
∥V ⊤

Xs,⊥UtWt,⊥∥
(
I − µ∥V ⊤

Xs,⊥UtWt,⊥∥2
)

+ µ2 ∥UtWt,⊥∥3
(
σ2
s+1 + ∥Ut∥2 + 10−3κ−1c3∥X∥2

)
≤
(
1 + µσ2

s+1 + µ∥M2∥
)
∥UtWt,⊥∥

(
I − µ∥UtWt,⊥∥2

)
+ 0.1µ2∥X∥4 ∥UtWt,⊥∥

≤ ∥UtWt,⊥∥
(
1 + µσ2

s+1 + 10µδ
√
r∥X∥2 + 0.1µ2∥X∥4

)
To summarize, we have

∥Ut+1Wt+1,⊥∥ ≤
(
1 + µσ2

s+1 + 30µ∥X∥2c3 + 0.1µ2∥X∥4
)
∥UtWt,⊥∥

as desired. □

To bound the growth speed of the orthogonal component, we need to show that the quantity∥∥∥V ⊤
Xs,⊥VUtWt

∥∥∥ remains small. The following lemma serves to complete an induction step from
t to t+ 1:

Lemma C.6 Suppose that ∥VXs,⊥VUtWt
∥ ≤ c3 and ∥UtWt,⊥∥ ≤ c4, with

max
{
c3, c4∥X∥−1

}
≤ 10−3κ−1 and

∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥ ≤ 10−3κ−1c3∥X∥2

(where κ is the condition number defined in Section 3.1) and µ ≤ 10−4κ−1∥X∥−2c3, then we have
∥VXs,⊥VUt+1Wt+1∥ ≤ c3.
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Proof : Let Mt = A∗A(XX⊤ −UtU
⊤
t ), so the update rule of GD implies that

Ut+1Wt+1 = (I + µMt)UtWt+1

= (I + µMt)
(
UtWtW

⊤
t Wt+1 +UtWt,⊥W

⊤
t,⊥Wt+1

)
= (I + µMt)

(
VUtWt

V ⊤
UtWUtWtW

⊤
t Wt+1 +UtWt,⊥W

⊤
t,⊥Wt+1

)
= (I + µMt)(I + P )VUtWt︸ ︷︷ ︸

:=Ẑ

V ⊤
UtWt

UtWtW
⊤
t Wt+1,

where

P = UtWt,⊥W
⊤
t,⊥Wt+1

(
V ⊤
UtWt

UtWtW
⊤
t Wt+1

)−1
V ⊤
UtWt

and V ⊤
UtWt

UtWtW
⊤
t Wt+1 is invertible since V ⊤

UtWt
UtWt is invertible by our as-

sumption that V ⊤
Xs

Ut is of full rank and rank (UtWt) ≥ rank
(
V ⊤
Xs

UtWt

)
=

rank
(
V ⊤
Xs

Ut

)
= s, and W⊤

t Wt+1 is invertible by Lemma D.6 and the assumptions on µ and∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥.

The key observation here is that because the (square) matrix V ⊤
UtWt

UtWtW
⊤
t Wt+1 is invertible,

so that the column space of Ut+1Wt+1 is the same as that of Z. Following the line of proof of
(Stöger & Soltanolkotabi, 2021, Lemma 9.3) (for completeness, we provide details in Lemma D.7),
we deduce that∥∥V ⊤

Xs,⊥VUt+1Wt+1

∥∥ =
∥∥V ⊤

Xs,⊥VẐW
⊤
Ẑ

∥∥
≤
∥∥∥∥V ⊤

Xs,⊥

[(
I +B − 1

2
VUtWtV

⊤
UtWt

(
B +B⊤))VUtWt −BVUtWtV

⊤
UtWt

(
B +B⊤)VUtWt +D

]∥∥∥∥
≤
∥∥∥∥V ⊤

Xs,⊥

(
I +B − 1

2
VUtWt

V ⊤
UtWt

(
B +B⊤))VUtWt

∥∥∥∥+ 2∥B∥2 + ∥D∥

(27)
where B = (I + µMt)(I + P )− I and ∥D∥ ≤ 100∥B∥2. By assumption we have

∥P ∥ ≤ ∥UtWt,⊥∥ ∥Wt,⊥Wt+1∥
σmin(UtWt)σmin(W⊤

t Wt+1)

≤ 2 ∥Wt,⊥Wt+1∥ ,

so that ∥∥B − µ(XX⊤ −UtU
⊤
t )
∥∥

≤ µ∥Mt − (XX⊤ −UtU
⊤
t )∥+ ∥P ∥+ µ∥Mt∥∥P ∥

≤ µ
∥∥(A∗A− I)(XX⊤ −UtU

⊤
t )
∥∥+ 2 ∥Wt,⊥Wt+1∥+ 4µ∥X∥2 ∥Wt,⊥Wt+1∥

≤ µ
∥∥(A∗A− I)(XX⊤ −UtU

⊤
t )
∥∥+ 6 ∥Wt,⊥Wt+1∥

≤ 18µ
(
10µ∥X∥3 + c4

)
c3∥X∥+ 7µ

∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥

≤ 18µ
(
10µ∥X∥3 + c4

)
c3∥X∥+ 0.01µκ−1c3∥X∥2

(28)

where we use Lemma D.6 to bound
∥∥∥W⊤

t,⊥Wt+1

∥∥∥. Let B1 = µ(XX⊤ − UtU
⊤
t ) and R1 =

V ⊤
Xs,⊥

(
I +B1 − VUtWtV

⊤
UtWt

B1

)
VUtWt , then we have

R1 = V ⊤
Xs,⊥

(
I + µ

(
I − VUtWtV

⊤
UtWt

) (
XX⊤ −UtU

⊤
t

))
VUtWt

=
(
I + µΣ2

s,⊥
)
V ⊤
Xs,⊥VUtWt

(
I − µV ⊤

UtWt
XX⊤VUtWt

)
− µV ⊤

Xs,⊥
(
I − VUtWtV

⊤
UtWt

)
UtWt,⊥W

⊤
t,⊥U

⊤
t VXs,⊥V

⊤
Xs,⊥VUtWt

+ µ2Σ2
s,⊥V

⊤
Xs,⊥VUtWt

V ⊤
UtWt

XX⊤VUtWt
.

(29)
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By Weyl’s inequality (cf. Lemma A.2) and our assumption on c3,

σmin

(
V ⊤
UtWt

XX⊤VUtWt

)
≥ σmin

(
V ⊤
UtWt

XsX
⊤
s VUtWt

)
−
∥∥V ⊤

UtWt
Xs,⊥X

⊤
s,⊥VUtWt

∥∥2
≥ σmin

(
V ⊤
UtWt

XsX
⊤
s VUtWt

)
− σ2

s+1

∥∥V ⊤
Xs,⊥VUtWt

∥∥2
≥ σ2

s

∥∥V ⊤
UtWt

VXs

∥∥2 − σ2
s+1c

2
3

= σ2
s − (σ2

s + σ2
s+1)c

2
3 >

1

2

(
σ2
s + σ2

s+1

)
.

So we have

∥R1∥ ≤
(
1− µ

2
(σ2

s − σ2
s+1)

)∥∥V ⊤
Xs,⊥VUtWt

∥∥+ 3µ∥X∥c3c4 + µ2∥X∥4.

It thus follows from (27) that∥∥∥V ⊤
X⊥

s
VUt+1Wt+1

∥∥∥
≤ ∥R1∥+ 2∥B −B1∥+ 102∥B∥2

≤
(
1− µ

2
(σ2

s − σ2
s+1)

)∥∥V ⊤
Xs,⊥VUtWt

∥∥+ 40µc3c4∥X∥+ 0.02µκ−1c3∥X∥2 + 103µ2∥X∥4.

Since
∥∥∥V ⊤

Xs,⊥VUtWt

∥∥∥ ≤ c3, it follows from our assumption on c3, c4 and µ that∥∥∥V ⊤
X⊥

s
VUt+1Wt+1

∥∥∥ ≤ c3 as well, which concludes the proof. □

C.3 INDUCTION

Let
T̃ s
α = min

{
t ⩾ 0 : σ2

min

(
V ⊤
Xs

Uα,t+1

)
> 0.3

(
σ2
s − σ2

s+1

)
=: τs

}
.

In this section, we show that when T0 ≤ t < T̃ s
α, the parallel component grows exponentially faster

than the orthogonal component. We prove this via induction and the base case is already shown in
Lemma C.3.

Lemma C.7 Let max{c3, c4∥X∥−1} ≤ 10−3κ−1 , δ ≤ 10−4κ−1r
− 1

2
∗ c3 and µ ≤

10−4κ−1∥X∥−2. Then the following holds for all T0 ≤ t < T̃α,s as long as α ≤ poly(r)−1:

σmin

(
V ⊤
Xs

Ut+1

)
≥ σmin

(
V ⊤
Xs

Ut+1Wt

)
≥
(
1 + 0.5µ

(
σ2
s + σ2

s+1

))
σmin

(
V ⊤
Xs

Uα,t

)
(30a)

∥Ut+1Wt+1,⊥∥ ≤ min
{(

1 + µ
(
0.4σ2

s + 0.6σ2
s+1

))
∥UtWt,⊥∥ , c4

}
(30b)∥∥V ⊤

Xs,⊥VUt+1Wt+1

∥∥ ≤ c3. (30c)

rank
(
V ⊤
Xs

Ut+1

)
= rank

(
V ⊤
Xs

Ut+1Wt

)
= s. (30d)

Proof : The base case t = T0 is already proved in (12). Now suppose that the lemma holds for t,
we now show that it holds for t+ 1 as well.

To begin with, we bound the term ∥∆t∥ as follows:

∥∆t∥ =
∥∥(A∗A− I)(XX⊤ −UtU

⊤
t )
∥∥

≤
∥∥(A∗A− I)(XX⊤ −UtWtW

⊤
t U⊤

t )
∥∥+ ∥∥(A∗A− I)UtWt,⊥W

⊤
t,⊥U

⊤
t

∥∥
≤ 10δ

√
r∗∥X∥2 + δ

∥∥UtWt,⊥W
⊤
t,⊥U

⊤
t

∥∥
∗

≤ 10δ
√
r∗∥X∥2 + δ

√
d
(
1 + µ(0.4σ2

s + 0.6σ2
s+1)

)t−T0 ∥UT0
WT0,⊥∥

By induction hypothesis, it’s easy to see that

σmin

(
V ⊤
Xs

Ut

)
∥UtWt,⊥∥

≥
σmin

(
V ⊤
Xs

UT0

)
∥UT0WT0,⊥∥

≥ poly(r) · α−γs (31)
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where

γs =
2
(
log
(
1 + µσ̂2

s

)
− log

(
1 + µσ̂2

s+1

))
3 log (1 + µσ̂2

1)− log
(
1 + µσ̂2

s+1

) ≥ 1

4κ
.

Since we must have σmin

(
V ⊤
Xs

Ut

)
≤ 0.3τ = O(1) by definition of T̃α,s, it follows that

∥UtWt,⊥∥ ≤ poly(r)α
1
4κ , so for sufficiently small α ≤ poly(r)−1, ∥∆t∥ ≤ 11δ

√
r∥X∥2 holds.

The above inequality combined with our assumption on δ implies that the conditions on ∥∆t∥ in
Lemmas C.4 to C.6 hold. We now show that (30a) to (30d) hold for t + 1, which completes the
induction step.

First, since t < T̃ s
α, we have σmin

(
V ⊤
Xs

Ut+1

)
≤ τ . Moreover, the induction hypothesis implies that∥∥∥V ⊤

Xs,⊥VUt−1Wt−1

∥∥∥ ≤ c3 and that V ⊤
Xs

Uα,t is of full rank. Thus the conditions of Corollary C.2
are all satisfied, and we deduce that (30a) holds.

Second, the assumptions on c3, c4 and δ, combined with Lemma C.5, immediately implies
∥Ut+1Wt+1,⊥∥ ≤

(
1 + µ

(
0.4σ2

s + 0.6σ2
s+1

))
∥UtWt,⊥∥ .

As a result, similar to (31) we observe that
σmin

(
V ⊤
Xs

Ut+1

)
∥Ut+1Wt+1,⊥∥

≥
σmin

(
V ⊤
Xs

UT0

)
∥UT0

WT0,⊥∥
≥ poly(r) · α− 1

4κ .

Since σmin

(
V ⊤
Xs

Ut+1

)
≤ ∥X∥, when α < poly(r)−1 we must have that ∥Ut+1Wt+1,⊥∥ ≤ c4.

Finally, Lemma C.6 implies that (30c) is true, and (30d) follows from our application of Lemma C.4.
This concludes the proof. □

C.4 THE REFINEMENT PHASE AND CONCLUDING THE PROOF OF LEMMA B.1

We have shown that the parallel component σmin

(
V ⊤
Xs

Ut+1

)
grows exponentially faster than the

orthogonal component ∥UtWt,⊥∥. In this section, we characterize the GD dynamics after T̃ s
α. We

begin with the following lemma, which is straightforward from the proof of Lemma C.7.

Lemma C.8 The following inequality holds when α ≤ poly(r)−1 is sufficiently small:∥∥∥UT̃s
WT̃s,⊥

∥∥∥ ≤ poly(r) · α 1
4κ .

The following lemma states that in a certain time period after T̃ s
α, the parallel and orthogonal com-

ponents still behave similarly to the second (parallel improvement) phase.

Lemma C.9 There exists t̃sα = Θ
(
log 1

α

)
when α → 0 (here we omit the dependence of T̃ s

α on α

for simplicity) such that when 0 ≤ t− T̃ s
α ≤ t̃sα, we have

σmin

(
V ⊤
Xs

Ut

)
≥ σmin (UtWt) ≥ 0.3τ (32a)

∥UtWt∥ ≤
(
1 + µ(0.4σ2

s + 0.6σ2
s+1)

)t−T̃ s
α

∥∥∥UT̃ s
α
WT̃ s

α

∥∥∥ (32b)

∥VXs,⊥VUtWt
∥ ≤ c3. (32c)

Proof : We choose t̃sα = min
{
t ≥ 0 : ∥Ut+1Wt+1,⊥∥2 ≤ c5

}
where

c5 = 10−4d−
1
2κ−1c3∥X∥2 (33)

We prove (32) by induction. The proof follows the idea of Lemma C.7, except that we need to bound
∥∆t∥ in each induction step. Concretely, suppose that (32) holds at time t, then

∥∆t∥ =
∥∥(A∗A− I)(XX⊤ −UtU

⊤
t )
∥∥

≤
∥∥(A∗A− I)(XX⊤ −UtWtW

⊤
t U⊤

t )
∥∥+ ∥∥(A∗A− I)UtWt,⊥W

⊤
t,⊥U

⊤
t

∥∥
≤ 10δ

√
r∗∥X∥2 + δ

∥∥UtWt,⊥W
⊤
t,⊥U

⊤
t

∥∥
∗

≤ 10δ
√
r∗∥X∥2 + δc5

√
d ≤ 10−3κ−1c3∥X∥2

(34)
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where we used the definition of c5 in the last step. As a result, we can apply the conclusion of
Lemmas C.4 to C.6 which implies that (32) holds for t + 1. Finally, combining Lemma C.8 and
(32b) yields T̃ s

α = ω(1). □

We now present the main result of this section:

Lemma C.10 Suppose that 0 ≤ t− T̃ s
α ≤ t̃sα,

∥∥∥V ⊤
Xs,⊥VUtWt

∥∥∥ ≤ c3 and the conditions on c3, c4, δ

and µ in Lemma C.7 hold, then we have∥∥V ⊤
Xs

(XX⊤ −Ut+1U
⊤
t+1)

∥∥
F

≤
(
1− 1

2
µτ

)∥∥V ⊤
Xs

(
XX⊤ −UtU

⊤
t

)∥∥
F
+ 20µ∥X∥4 (δ + 5c3) + 2000µ2

√
r∥X∥6.

where we recall that τ = min1≤s≤r̂∧r∗ σ
2
s − σ2

s+1 > 0.

Proof : The update of GD implies that

XX⊤ −Ut+1U
⊤
t+1

= XX⊤ − (I + µMt)UtU
⊤
t (I + µMt)

=
(
I − µUtU

⊤
t

) (
XX⊤ −UtU

⊤
t

) (
I − µUtU

⊤
t

)︸ ︷︷ ︸
=(i)

+µ∆tUtU
⊤
t︸ ︷︷ ︸

=(ii)

+ µUtU
⊤
t ∆t︸ ︷︷ ︸

=(iii)

+µ2 (Et,1 + Et,2) ,

where ∥∥V ⊤
Xs

Et,1
∥∥
F
=
∥∥V ⊤

Xs
UtUt

(
XX⊤ −UtU

⊤
t

)
UtU

⊤
t

∥∥
F

≤
√
r∗
∥∥V ⊤

Xs
UtUt

(
XX⊤ −UtU

⊤
t

)
UtU

⊤
t

∥∥
2

≤ 103
√
r∗∥X∥2

and ∥∥V ⊤
Xs

Et,2
∥∥
F
=
∥∥V ⊤

Xs

[
(A∗A)

(
XX⊤ −UtU

⊤
t

)]
UtU

⊤
t

[
(A∗A)

(
XX⊤ −UtU

⊤
t

)]∥∥
F

≤
√
r∗
∥∥[(A∗A)

(
XX⊤ −UtU

⊤
t

)]
UtU

⊤
t

[
(A∗A)

(
XX⊤ −UtU

⊤
t

)]∥∥
≤ 103

√
r∗∥X∥2.

Note that we would like to bound
∥∥V ⊤

Xs

(
XX⊤ −Ut+1U

⊤
t+1

)∥∥. We deal with the above three
terms separately. For the first term, we have∥∥V ⊤

Xs

(
I − µUtU

⊤
t

) (
XX⊤ −UtU

⊤
t

)
(I − µUtUt)

∥∥
F

=
∥∥V ⊤

Xs

(
I − µUtU

⊤
t

)
VXs

V ⊤
Xs

(
XX⊤ −UtU

⊤
t

) (
I − µUtU

⊤
t

)∥∥
F

+
∥∥V ⊤

Xs

(
I − µUtU

⊤
t

)
VXs,⊥V

⊤
Xs,⊥

(
XX⊤ −UtU

⊤
t

) (
I − µUtU

⊤
t

)∥∥
F

≤
∥∥I − µV ⊤

Xs
UtU

⊤
t VXs

∥∥∥∥V ⊤
Xs

(
XX⊤ −UtU

⊤
t

)∥∥+ µ
∥∥V ⊤

Xs
UtU

⊤
t VXs,⊥V

⊤
Xs,⊥

(
XX⊤ −UtU

⊤
t

)∥∥
F

(35a)

≤
(
1− µσ2

min(UtWt)σ
2
min

(
V ⊤
Xs

VUtWt

)) ∥∥V ⊤
Xs

(
XX⊤ −UtU

⊤
t

)∥∥
F
+ 100µ∥X∥4c3 (35b)

≤
(
1− 1

2
µτ

)∥∥V ⊤
Xs

(
XX⊤ −UtU

⊤
t

)∥∥
F
+ 100µ∥X∥4c3, (35c)

where in (35a) we use
∥∥I − µUtU

⊤
t

∥∥ ≤ 1, (35b) follows from

σmin

(
V ⊤
Xs

UtU
⊤
t VXs

)
= σmin

(
V ⊤
Xs

UtWtW
⊤
t U⊤

t VXs

)
≥ σmin

(
V ⊤
Xs

UtWt

)2
≥ σ2

min(UtWt)σ
2
min

(
V ⊤
Xs

VUtWt

)
and∥∥V ⊤

Xs
UtU

⊤
t VXs,⊥

∥∥ =
∥∥V ⊤

Xs
UtWtW

⊤
t U⊤

t VXs,⊥
∥∥ ≤ ∥Ut∥2

∥∥V ⊤
Xs,⊥UtWt

∥∥ ≤ c3∥Ut∥2,
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and lastly (35c) is obtained from

σ2
min

(
V ⊤
Xs

VUtWt

)
≥ 1−

∥∥V ⊤
Xs,⊥VUtWt

∥∥2 ≥ 1− c23.

For the second and the third terms, we have∥∥[(I −A∗A)
(
XX⊤ −UtUt

)]
UtU

⊤
t +UtU

⊤
t

[
(I −A∗A)

(
XX⊤ −UtU

⊤
t

)]∥∥
≤ 0.1κ−1c3∥X∥4

(36)

where we use the estimate in (34). Combining (35) and (36) yields∥∥V ⊤
Xs

(XX⊤ −Ut+1U
⊤
t+1)

∥∥
≤
(
1− 1

2
µτ

)∥∥V ⊤
Xs

(
XX⊤ −UtU

⊤
t

)∥∥+ 200µ∥X∥4c3 + 110µ2√r∗∥X∥6.

□

To apply the result of Lemma C.10, we need to verify that ∥VXs,⊥VUtWt
∥ ≤ c3 still holds when

t ≥ T̃ s
α. In fact, this is true as long as t− T̃ s

α ≤ O
(
log 1

α

)
.

We are now ready to present our first main result, which states that with small initialization, GD
would visit the O(δ)-neighbourhood of the rank-s minimizer of the full observation loss i.e. XsX

⊤
s .

Theorem C.1 When α < poly(r∗)
−1 and δ = 10−4κ−1c3 with c3 < 10−3κ−1r

− 1
2

∗ , there exists a
time t = T̂ s

α ∈ Z+ such that

∥XsX
⊤
s −UtU

⊤
t ∥ ≤ 103τ−2∥X∥6

√
r∗c3.

Proof : First, observe that for all t ≥ 0,∥∥XsX
⊤
s −UtU

⊤
t

∥∥
F
≤
∥∥(XsX

⊤
s −UtU

⊤
t

)
VXs

V ⊤
Xs

∥∥
F
+
∥∥∥UtU

⊤
t VX⊥

s
V ⊤
X⊥

s

∥∥∥
F

≤
∥∥(XsX

⊤
s −UtU

⊤
t

)
VXsV

⊤
Xs

∥∥
F
+
∥∥∥V ⊤

X⊥
s
UtU

⊤
t VX⊥

s

∥∥∥
F

≤
∥∥V ⊤

Xs

(
XsX

⊤
s −UtU

⊤
t

)∥∥
F
+

√
r∗

∥∥∥V ⊤
X⊥

s
UtWt

∥∥∥2 +√
d
∥∥∥V ⊤

X⊥
s
UtWt,⊥

∥∥∥2
≤
∥∥V ⊤

Xs

(
XsX

⊤
s −UtU

⊤
t

)∥∥+ 9
√
r∗∥X∥2 ∥VXs,⊥VUtWt

∥2 +
√
d∥UtWt,⊥∥2.

(37)
We set δ = 10−3∥X∥−2τc3 and

T̂ s
α = T̃ s

α −
log
(
10−2∥X∥−2τc−1

3

)
log
(
1− 1

2µτ
) , (38)

then for small α we have T̂ s
α ≤ T̃ s

α+T̃ s
α (defined in Lemma C.9). Hence for T̃ s

α ≤ t < T̂ s
α we always

have ∥VXs,⊥VUtWt∥ ≤ c3. By Lemma C.10 and the choice of c3 and δ, we have for T̃ s
α ≤ t < Ts

that∥∥V ⊤
Xs

(
XX⊤ −Ut+1U

⊤
t+1

)∥∥
F
≤
(
1− 1

2
µτs

)∥∥V ⊤
Xs

(
XX⊤ −UtU

⊤
t

)∥∥
F
+ 150µ∥X∥4

√
r∗c3

which implies that ∥∥V ⊤
Xs

(
XX⊤ −UTs

U⊤
Ts

)∥∥
F
≤ 400τ−1∥X∥4

√
r∗c3.

Meanwhile, by Lemma C.9 we have ∥UtWt,⊥∥ ≤ c5 and
∥∥∥V ⊤

Xs,⊥VUtWt

∥∥∥ ≤ c3 at t = T̂ s
α.

Plugging into (37) yields∥∥∥XsX
⊤
s −UT̂ s

α
U⊤

T̂ s
α

∥∥∥
F
≤ 400τ−1∥X∥4

√
r∗c3 + 9∥X∥2c23

√
r∗ + c25

√
d.

By definition of c3 and c5 we deduce that
∥∥∥XsX

⊤
s −UT̂ s

α
U⊤

T̂ s
α

∥∥∥
F

≤ 103τ−2∥X∥6√r∗c3, as de-
sired. □
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Corollary C.4 There exists a constant C1 = C1(κ, r∗) such that

max
0≤t≤T̂ s

α

∥UtWt,⊥∥ ≤ C1α
1
4κ .

Proof : The case of T̃ s
α directly follows from Lemma C.8. For t > T̃ s

α, we know from Lemma C.9
that

∥UtWt,⊥∥ ≤
∥∥∥UT̃ s

α
WT̃ s

α,⊥

∥∥∥ · (1 + µσ2
s

)T̂ s
α−T̃ s

α .

By (38), the second term is a constant independent of α, so the conclusion follows. □

D AUXILIARY RESULTS FOR PROVING LEMMA B.1

This section contains a collection of auxiliary results that are used in the previous section.

D.1 THE SPECTRAL PHASE

In the section, we provide auxiliary results for the analysis in the spectral phase.

Recall that Nt = (I + µM)t and Ut = Ũt + Et = NtU0 + Et and U0 = αU . Also recall
that M =

∑rank(M)
i=1 λ̂iv̂iv̂

⊤
i ; we additionally define Ms =

∑min{s,rank(M)}
i=1 λ̂iv̂iv̂

⊤
i . Similarly,

let Lt be the span of the top-s left singular vectors of Ut. The following lemma shows that power
iteration would result in large eigengap of Ut.

Lemma D.1 Let ρ = σmin

(
V ⊤
Ms

U
)
> 0, then the following three inequalities hold, given that the

denominator of the third is positive.

σs(Ut) ≥ α
(
ρσs

(
Ẑt

)
− σs+1

(
Ẑt

)
∥U∥

)
− ∥Et∥ , (39a)

σs+1(Ut) ≤ ασs+1

(
Ẑt

)
∥U∥+ ∥Et∥ , (39b)

∥∥∥V ⊤
M⊥

s
VLt

∥∥∥ ≤
ασs+1

(
Ẑt

)
∥U∥+ ∥Et∥

αρσs

(
Ẑt

)
− 2

(
ασs+1

(
Ẑt

)
∥U∥+ ∥Et∥

) . (39c)

Proof : By Weyl’s inequality we have

σs+1(Ut) = σs+1

(
(1 + µM)tU0

)
+ ∥Et∥

= ασs+1

(
(1 + µM)tU

)
+ ∥Et∥

≤ ασs+1

(
(1 + µMs)

tU
)
+ α

∥∥[(1 + µM)t − (1 + µMs)
t
]
U
∥∥+ ∥Et∥

≤ α(1 + µλ̂s+1)
t∥U∥+ ∥Et∥.

Thus (39b) holds. Similarly,

σs(Ut) ≥ ασs

(
NtVMs

V ⊤
Ms

U
)
− α(1 + µλ̂s+1)

t∥U∥ − ∥Et∥

≥ ασs (NtVMs)σmin

(
V ⊤
Ms

U
)
− α(1 + µλ̂s+1)

t∥U∥ − ∥Et∥

≥ αρ(1 + µλ̂s)
t − α(1 + µλ̂s+1)

t∥U∥ − ∥Et∥.
Finally, note that we can write

α(1 + µMs)
tU = VMs (1 + µΣMs)

tV ⊤
Ms

U︸ ︷︷ ︸
invertible

,

so that the subspace spanned by the left singular vectors of α(1 + µMs)
tU coincides with the

column span of VMs . Since Lt is the span of top-s left singular vectors of Ut, we apply Wedin’s sin
theorem (Wedin, 1972) and deduce (39c). □

The next lemma relates the quantities studied in Lemma D.1 with those that are needed in the
induction. The proof is the same as (Stöger & Soltanolkotabi, 2021, Lemma 8.4), so we omit it
here.

30



Under review as a conference paper at ICLR 2023

Lemma D.2 Suppose that
∥∥∥V ⊤

Xs,⊥VLt

∥∥∥ ≤ 0.1 for some t ≥ 1. Then it holds that

σs (UtWt) ≥
1

2
σs (Ut) , (40a)∥∥V ⊤

Xs,⊥VUtWt

∥∥ ≤ 10
∥∥V ⊤

Xs,⊥VLt

∥∥ , (40b)

∥UtWt,⊥∥ ≤ 2σs+1 (Ut) . (40c)

Combining the above two lemmas, we directly obtain the following corollary:

Corollary D.1 Suppose that ασs(Nt) > 10 (ασs+1(Nt) + ∥Et∥), then we have that

σs (UtWt) ≥ 0.4ασr⋆

(
Ẑt

)
σmin

(
V ⊤
L U

)
∥UtWt,⊥∥ ≤ 2

(
ασs+1

(
Ẑt

)
∥U∥+ ∥Et∥

)
∥∥V ⊤

Xs,⊥VUtWt

∥∥ ≤ 100

(
δ +

ασs+1 (Zt) ∥U∥+ ∥Et∥
αρσs (Zt)

) (41)

D.2 THE PARALLEL IMPROVEMENT PHASE

In the section, we provide auxiliary results for the analysis in the parallel improvement phase.

Lemma D.3 (Stöger & Soltanolkotabi, 2021, Lemma 9.4) For sufficiently small µ and δ, suppose
that ∥Ut∥ ≤ 3∥X∥, then we also have ∥Ut+1∥ ≤ 3∥X∥.

Lemma D.4 Under the assumptions in Lemma C.5, we have∥∥V ⊤
Xs,⊥VUt+1Wt

∥∥ ≤ 2
(
c3 + 10µ∥X∥2

)
≤ 0.01.

Proof : The proof of this lemma is essentially the same as (Stöger & Soltanolkotabi, 2021, Lemma
B.1), and we omit it here. □

Lemma D.5 Under the assumptions in Lemma C.6, we have

σmin

(
V ⊤
Xs

Ut+1

)
≥ 1

2
σmin(UtWt).

Proof : We have

σmin

(
V ⊤
Xs

Ut+1

)
≥ σmin

(
V ⊤
Xs

Ut+1Wt

)
= σmin

(
V ⊤
Xs

(I + µMt)UtWt

)
≥ σmin

(
V ⊤
Xs

(I + µMt)VUtWt

)
· σmin

(
V ⊤
UtWt

UtWt

)
≥
[
σmin

(
V ⊤
Xs

VUtWt

)
− µ∥Mt∥

]
· σmin(UtWt)

≥
(√

1− c23 − 10µ∥X∥2
)
σmin(UtWt) ≥

1

2
σmin(UtWt)

where the last step follows from

σmin

(
V ⊤
Xs

VUtWt

)2 ≥ 1−
∥∥V ⊤

Xs,⊥VUtWt

∥∥2 ≥ 1− c23.

The conclusion follows. □

Lemma D.6 Under the assumptions in Lemma C.6, we have∥∥W⊤
t,⊥Wt+1

∥∥ ≤ 3µ
(
10µ∥X∥2 + c4

)
c3∥X∥+ µ

∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥ .

Proof : The proof roughly follows (Stöger & Soltanolkotabi, 2021, Lemma B.3), but we include it
here for completeness.
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Since V ⊤
Xs

Ut+1 = Vt+1Σt+1Wt+1 and Vt+1Σt+1 ∈ Rs×s is invertible, we have∥∥W⊤
t,⊥Wt+1

∥∥ =
∥∥∥W⊤

t,⊥U
⊤
t+1VXs

(
V ⊤
Xs

Ut+1U
⊤
t+1VXs

)− 1
2

∥∥∥ .
Since

V ⊤
Xs

Ut+1Wt,⊥

= V ⊤
Xs

(
I + µA∗A(XX⊤ −UtU

⊤
t )
)
UtWt,⊥

= V ⊤
Xs

(
I + µ(XX⊤ −UtU

⊤
t )
)
UtWt,⊥ + µV ⊤

Xs
∆tUtWt,⊥

= −µV ⊤
Xs

UtU
⊤
t UtWt,⊥ + µV ⊤

Xs
∆tUtWt,⊥ (42a)

= −µV ⊤
Xs

UtWtW
⊤
t U⊤

t UtWt,⊥ + µV ⊤
Xs

∆tUtWt,⊥ (42b)

= −µV ⊤
Xs

UtWtW
⊤
t U⊤

t VXs,⊥V
⊤
Xs,⊥UtWt,⊥︸ ︷︷ ︸

=:K1

+µV ⊤
Xs

∆tUtWt,⊥︸ ︷︷ ︸
:=K2

(42c)

where (42a) follows from V ⊤
Xs

XX⊤UtWt,⊥ = ΣsV
⊤
Xs

UtWt,⊥ = 0, and in (42b) and (42c) we
use V ⊤

Xs
UtWt,⊥ = 0.

For K1, note that∥∥∥(V ⊤
Xs

Ut+1U
⊤
t+1VXs

)− 1
2 V ⊤

Xs
Ut

∥∥∥
≤
∥∥∥(V ⊤

Xs
Ut+1U

⊤
t+1VXs

)− 1
2 V ⊤

Xs
Ut+1

∥∥∥+ µ
∥∥∥(V ⊤

Xs
Ut+1U

⊤
t+1VXs

)− 1
2 V ⊤

Xs
A∗A(XX⊤ −UtU

⊤
t )Ut

∥∥∥
≤ 1 + 10µ∥X∥3σ−1

min

(
V ⊤
Xs

Ut+1

)
so that∥∥∥(V ⊤

Xs
Ut+1U

⊤
t+1VXs

)− 1
2 K1

∥∥∥ ≤
[
1 + 10µ∥X∥3σ−1

min

(
V ⊤
Xs

Ut+1

)] ∥∥V ⊤
Xs,⊥UtWt

∥∥ ∥UtWt,⊥∥ .

Plugging into (42), we deduce that∥∥W⊤
t,⊥Wt+1

∥∥
≤ 3µ

(
1 + 10µ∥X∥3σ−1

min

(
V ⊤
Xs

Ut+1

)) ∥∥V ⊤
Xs,⊥VUtWt

∥∥ ∥X∥ ∥UtWt,⊥∥
+ µσ−1

min

(
V ⊤
Xs

Ut+1

)
∥UtWt,⊥∥

∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥

≤ 3µ
(
∥UtWt,⊥∥+ 10µ∥X∥3

) ∥∥V ⊤
Xs,⊥VUtWt

∥∥ ∥X∥
+ µσ−1

min

(
V ⊤
Xs

Ut+1

)
∥UtWt,⊥∥

∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥

≤ 3µ
(
10µ∥X∥2 + c4

)
c3∥X∥+ µ

∥∥(A∗A− I)(XX⊤ −UtU
⊤
t )
∥∥ .

where in the last step we use Lemma D.5 and the induction hypothesis which implies that
σmin(UtWt) ≥ ∥UtWt,⊥∥. □

Lemma D.7 The matrix Ẑ defined in the proof of Lemma C.6 satisfies the following:

Ẑ(Ẑ⊤Ẑ)−
1
2 = VUtWt

+BVUtWt
− 1

2
(I +B)VUtWt

V ⊤
UtWt

(
B +B⊤)VUtWt

−D,

where ∥D∥ ≤ 30∥B∥2.

Proof : By definition of Ẑ we have

Ẑ(Ẑ⊤Ẑ)−
1
2

= (I + µM)(I + P )VUtWt

(
V ⊤
UtWt

(
I + P⊤) (I + µM)2(I + P )VUtWt

)− 1
2

= (I +B)VUtWt

[
V ⊤
UtWt

(
I +B⊤ +B +B⊤B

)
VUtWt

]− 1
2

= (I +B)VUtWt

I + V ⊤
UtWt

(
B⊤ +B +B⊤B

)
VUtWt︸ ︷︷ ︸

=:∆


− 1

2

.
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It follows from (28) and our assumptions on c3 and c4 that

∥B∥ ≤ µ
∥∥XX⊤ −UtU

⊤
t

∥∥+ 6µ
(
c3c4∥X∥+ 50∥X∥2δ

)
≤ 10µ∥X∥2 + 6µc3 (c4 + 1) ∥X∥ < 0.1

(note that this step is independent and does not rely on earlier derivations in the proof of Lemma C.6),
so by Taylor’s formula, we have∥∥∥∥(I +∆)−

1
2 − I +

1

2
∆

∥∥∥∥ ≤ 3∥∆∥2.

Hence,∥∥∥∥Ẑ(Ẑ⊤Ẑ)−
1
2 −

(
VUtWt

+BVUtWt
− 1

2
(I +B)VUtWt

V ⊤
UtWt

(
B +B⊤)VUtWt

)∥∥∥∥
=

∥∥∥∥(I +B)VUtWt

(
(I +∆)

− 1
2 − I +

1

2
∆− 1

2
V ⊤
UtWt

B⊤BVUtWt

)∥∥∥∥
≤ (1 + ∥B∥)

(
3∥∆∥2 + 1

2
∥B∥2

)
< 30∥B∥2

as desired. □

E PROOF OF RESULTS IN SECTION 5

Theorem 1.1 states that GD approximately learns the rank-s constrained minimizer of the matrix
sensing loss. However, Theorem C.1 only implies that GD would get into an O(δ) neighborhood of
XsX

⊤
s . As a result, a more fine-grained analysis is needed. Note that it is not even clear whether the

rank-s minimizer of is unique. If it is not, then we may naturally ask which minimizer it converges
to.

In this section, we study the landscape of under-parameterized matrix sensing problem

fs(U) =
1

2

∥∥A(UU⊤ −XX⊤)
∥∥2
2
, U ∈ Rd×s

and establish local convergence of gradient descent. Our key result in this section is Lemma E.6,
which states a local PL condition for the matrix sensing loss. Most existing results only study the
landscape of (1) in the exact- and over-parameterized case. Zhu et al. (2021) studies the landscape
of under-parameterized matrix factorization problem, but they only prove a strict saddle property
without asymptotic convergence rate of GD.

When the measurement satisfies the RIP condition, we can expect that the landscape of f looks
similar to that of the (under-parameterized) matrix factorization loss:

Fs(U) =
1

2

∥∥UU⊤ −XX⊤∥∥2
F
, U ∈ Rd×s

for some s < r. Recall that XX⊤ =
∑r∗

i=1 σ
2
i viv

⊤
i . The critical points of Fs(U) is characterized

by the following lemma:

Lemma E.1 U ∈ Rd×s is a critical point of Fs(U) if and only if there exists an orthogonal matrix
R ∈ Rs×s, such that all columns of UR are in {σivi : 1 ≤ i ≤ r∗}.

Proof : Assume WLOG that XX⊤ = diag(σ2
1 , σ

2
2 , · · · , σ2

r , 0, · · · , 0) =: Σ. Let U be a critical
point of Fs, then we have that

(
UU⊤ −XX⊤)U = 0. Let W = UU⊤, then (Σ−W )W = 0.

Since W is symmetric, so is W 2, and we obtain that ΣW is also symmetric. It’s then easy to
see that that if Σ = diag (λ1Im1

, · · · , λtImt
) with λ1 > λ2 > · · · > λt ≥ 0, then W is also in

block-diagonal form: W = diag (W1,W2, · · · ,Wt) where Wi ∈ Rmi×mi . For each 1 ≤ i ≤ t,
we then have the equation (λiImi −Wi)Wi = 0. Hence, there exists an orthogonal matrix Ri

such that R⊤
i WiRi is a diagonal matrix where the diagonal entries are either 0 or

√
λi = σi. Let
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R = diag (R1,R2, · · · ,Rt), then R⊤WR is diagonal and its nonzero diagonal entries form an
s-subset of the multi-set {σi : 1 ≤ i ≤ r∗}. The conclusion follows. □

In the case of s = 1, the global minimizers of Fs are ±σ1v1, and we can show that Fs is locally
strongly convex around these minimizers. Therefore, we can deduce that f is locally strongly-
convex as well. Since our main focus is on s > 1, we put these details in Appendix G. When s > 1,
Fs(U) is not locally strongly-convex due to rotational invariance: if U is a global minima, then so
is UR for any orthogonal matrix R ∈ Rs×s. Instead, we will establish a local PL property w.r.t the
procrustes distance:

Definition E.1 Let U1,U2 ∈ Rd×s, we define

dist(U1,U2) = inf
{
∥U1 −U2R∥F : R ∈ Rs×s is orthogonal

}
.

The following characterization of the optimal R in Definition 5.1 is known in the literature (see e.g.
(Tu et al., 2016, Section 5.2.1)) but we provide a proof of it for completeness.

Lemma E.2 Let R be the orthogonal matrix which minimizes ∥U1 −U2R∥F , then U⊤
1 U2R is

positive semi-definite.

Proof : Observe that

∥U1 −U2R∥2F = tr
(
(U⊤

1 −R⊤U⊤
2 )(U1 −U2R)

)
= ∥U1∥2F + ∥U2∥2F − 2 tr

(
R⊤U⊤

2 U1

)
.

Let U⊤
2 U1 = AΣB⊤ be its SVD, then

tr
(
R⊤U⊤

2 U1

)
= tr

(
B⊤R⊤AΣ

)
≤
∥∥B⊤R⊤A

∥∥ tr (Σ) = tr (Σ) ,

where the final step is due to orthogonality of B⊤R⊤A ∈ Rs×s, and equality holds if and only if
B⊤R⊤A = I i.e. R = AB⊤. Thus U⊤

1 U2R = BΣB⊤ is positive semi-definite. □

The following lemma states that the minimizer of matrix sensing loss is also near-optimal for the
matrix factorization loss. The main idea for proving this result is to utilize

Lemma E.3 Let Z∗
s be a best rank-s solution as defined in (1), then we have∥∥Z∗

s −XX⊤∥∥2
F
≤
∥∥XsX

⊤
s −XX⊤∥∥2

F
+ 10δ

∥∥XX⊤∥∥2
F
.

Proof : Since U∗
s is the global minimizer of f , by the RIP property we have∥∥XX⊤ −Z∗

s

∥∥2
F
≤ (1− δ)−1

∥∥A (XX⊤ −Z∗
s

)∥∥2
2

≤ (1− δ)−1
∥∥A (XX⊤ −XsX

⊤
s

)∥∥2
2

≤ 1 + δ

1− δ

∥∥XX⊤ −XsX
⊤
s

∥∥2
F

≤
∥∥XX⊤ −XsX

⊤
s

∥∥2
F
+ 10δ∥XX⊤∥2F

as desired. □

The next lemma show that Fs satisfies a local PL property:

Lemma E.4 Given U ∈ Rd×s and let R be an orthogonal matrix such that ∥U −XsR∥F =
dist(U ,Xs). Suppose that dist(U ,Xs) ≤ 0.1∥X∥−1τ (where we recall that τ =
mins∈[r∗]

(
σ2
s − σ2

s+1

)
is the eigengap of XX⊤), then we have

⟨∇Fs(U),U −XsR⟩ ≥ 0.1τdist2(U ,Xs).

Proof : Assume WLOG that R = I , then U⊤Xs is positive semi-definite. Let H = U −Xs, then

∇Fs(U) = (UU⊤ −XX⊤)U

=
[
(H +Xs)(H +Xs)

⊤ −XX⊤] (H +Xs),

34



Under review as a conference paper at ICLR 2023

so that

⟨∇Fs(U),U −Xs⟩
=
〈[
(H +Xs)(H +Xs)

⊤ −XX⊤] (H +Xs),H
〉

= tr
(
H⊤ [(H +Xs)(H +Xs)

⊤ −XX⊤]H +H⊤ (HH⊤ +HX⊤
s +XsH

⊤)Xs

)
≥ − tr

(
H⊤Xs,⊥X

⊤
s,⊥H

)
− 3∥X∥∥H∥3F + tr

(
H⊤HX⊤

s Xs

)
(43a)

≥
(
σ2
s − σ2

s+1

)
∥H∥2F − 3∥X∥∥H∥3F ≥ 0.1τ∥H∥2F (43b)

where in (43a) we use tr
(
(H⊤Xs)

2
)
≥ 0 (since H⊤Xs is symmetric as noticed in the beginning

of the proof), and (43b) is because of

tr
(
H⊤HX⊤

s Xs

)
= tr

(
H⊤HWXs

Σ2
Xs

W⊤
Xs

)
= tr

(
W⊤

Xs
H⊤HWXs

Σ2
Xs

)
≥ σ2

s tr
(
W⊤

Xs
H⊤HWXs

)
= σ2

s∥H∥2F
and

tr
(
H⊤Xs,⊥X

⊤
s,⊥H

)
= tr

(
H⊤VXs,⊥Σs,⊥V

⊤
Xs,⊥H

)
≤ ∥Σs,⊥∥ ·

∥∥H⊤VXs,⊥
∥∥2
F
≤ σ2

s+1∥H∥2F .

□

Corollary E.1 Under the conditions of Lemma E.4, we have ∥∇Fs(U)∥F ≥ 0.1τdist(U ,Xs).

The following lemma shows that the rank-s global minima of matrix sensing must lie in an O(δ)-
neighbourhood of the minima of Fs.

Lemma E.5 Suppose that Assumption 3.1 holds. Let U∗
s be a global minimizer of fs, then we have

dist(U∗
s ,Xs) ≤ 40δκ∥X∥F .

where we recall that κ = τ−1∥X∥ is the condition number of XX⊤.

Proof : Define
S =

{
U ∈ Rd×s : dist(U ,Xs) ≤ 0.1κ−1∥X∥

}
.

First we can show that U∗
s ∈ S. The main idea is to apply Lemma A.5. Indeed, it’s easy to see that

lim
∥U∥F→+∞

Fs(U) = +∞.

Let U ∈ ∂S i.e. dist2(U ,Xs) = 0.1∥X∥−1τ . Assume WLOG that dist(U ,Xs) = ∥U −Xs∥F ,
then by Lemma E.4 we have

Fs(U)− Fs(Xs) =

∫ 1

0

t ⟨∇Fs(tU + (1− t)Xs),U −Xs⟩dt

≥
∫ 1

0

0.1τt2 ∥U −Xs∥2F dt

≥ 10−3∥X∥−2τ3.

Recall that all the stationary points of Fs are characterized in Lemma E.1, so that for all U /∈ S with
∇Fs(U) = 0, we have

Fs(U)− F ∗
s ≥ 0.5

(
σ4
s − σ4

s+1

)
≥ 0.5τ2.

On the other hand, we know from Lemma E.3 that

Fs(U
∗
s )− F ∗

s ≤ 5δr∥X∥4 < 0.5τ2, (44)

so Lemma A.5 implies that U∗
s ∈ S.
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Inside S, we can apply the local PL property that we previously derived. Indeed, note that

∥∇Fs(U
∗
s )∥F =

∥∥∥(XX⊤ −U∗
s (U∗

s )
⊤
)
U∗

s

∥∥∥
F

=
∥∥∥(A∗A− I)

(
XX⊤ −U∗

s (U∗
s )

⊤
)
U∗

s

∥∥∥
F

≤ δ
∥∥∥XX⊤ −U∗

s (U∗
s )

⊤
∥∥∥
F
∥U∗

s ∥

≤ 4δ∥X∥ ·
∥∥XX⊤∥∥

F
.

Hence we have that
dist(U ,Xs) ≤ 40δτ−1∥X∥2∥X∥F = 40δκ∥X∥F .

□

Corollary E.2 Suppose that Assumption 3.1 holds, then we have σmin

(
(U∗

s )
⊤
U∗

s

)
≥ σ2

s −
80δκ∥X∥∥X∥F .

Proof : We assume WLOG that ∥U∗
s −Xs∥F = dist(U∗

s ,Xs) i.e. R = I in Definition 5.1. By
Lemma E.5, we have that∥∥∥(U∗

s )
⊤
U∗

s −X⊤
s Xs

∥∥∥ ≤
∥∥∥(U∗

s )
⊤
U∗

s −X⊤
s Xs

∥∥∥
≤ max {∥U∗

s ∥ , ∥Xs∥} · ∥U∗
s −Xs∥

≤ 80δκ∥X∥∥X∥F .
□

Lemma E.6 Suppose that Assumption 3.1 holds. Given U ∈ Rd×s, let U∗
s ∈ Rd×s be a minimizer

of fs, and U∗
sR be the rank-s minimizer which is closest to U (R ∈ Rs×s is orthogonal). When

∥U −U∗
sR∥ ≤ 10−2κ−1∥X∥, we have

⟨∇fs(U),U −U∗
sR⟩ ≥ 0.1τdist(U ,U∗

s )
2.

Proof : We assume WLOG that R = I , then U⊤U∗
s is positive semi-definite. Let H = U −U∗

s ,
then
∇fs(U) = (A∗A) (UU⊤ −XX⊤)U

= (A∗A)
[
(H +U∗

s )(H +U∗
s )

⊤ −XX⊤] (H +U∗
s )

=
[
(A∗A)

(
HH⊤ +U∗

sH
⊤ +H (U∗

s )
⊤
)]

(H +U∗
s )−A∗A

(
XX⊤ −U∗

s (U∗
s )

⊤
)
H

where we use the first-order optimality condition

A∗A
(
XX⊤ −U∗

s (U∗
s )

⊤
)
U∗

s = 0.

Since ∥U∗
s ∥ ≤ 2∥X∥ by Lemma E.5, we may thus deduce that∥∥∥∇fs(U)−

[(
HH⊤ +U∗

sH
⊤ +H (U∗

s )
⊤
)
(H +U∗

s )−
(
XX⊤ −U∗

s (U∗
s )

⊤
)
H
]∥∥∥

F

≤
∥∥∥(A∗A− I)

(
HH⊤ +U∗

sH
⊤ +H (U∗

s )
⊤
)
(H +U∗

s )
∥∥∥
F
+
∥∥∥(A∗A− I)

(
XX⊤ −U∗

s (U∗
s )

⊤
)
H
∥∥∥

≤ 50δ∥X∥2∥H∥F
Hence

⟨∇fs(U),U −U∗
s ⟩

≥
〈(

HH⊤ +U∗
sH

⊤ +H (U∗
s )

⊤
)
(H +U∗

s )−
(
XX⊤ −U∗

s (U∗
s )

⊤
)
H,H

〉
− 50δ∥X∥2∥H∥2F

≥ tr

(
H(H +U∗

s )
⊤(H +U∗

s )H
⊤ +H⊤U∗

sH
⊤H +

(
(U∗

s )
⊤
H
)2

−H⊤
(
XX⊤ −U∗

s (U∗
s )

⊤
)
H
)
− 50δ∥X∥2∥H∥2F

≥
[
σmin

(
(U∗

s )
⊤
U∗

s

)
−
∥∥∥XX⊤ −U∗

s (U∗
s )

⊤
∥∥∥− 50δ∥X∥2 − 3∥U∗

s ∥∥H∥ − ∥H∥2
]
∥H∥2F .
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By Corollary E.2 we have σmin

(
(U∗

s )
⊤
U∗

s

)
≥ σ2

s − 80δκ∥X∥∥X∥F and∥∥∥XX⊤ −U∗
s (U∗

s )
⊤
∥∥∥ ≤ σ2

s+1 + 80δκ∥X∥2F , so that

⟨∇fs(U),U −U∗
s ⟩ ≥

(
σ2
s − σ2

s+1 − 160δκ∥X∥∥X∥F − 50δ∥X∥2 − 3∥U∗
s ∥∥H∥ − ∥H∥2

)
∥H∥2F .

When δ ≤ 10−3r
− 1

2
∗ κ−2 and ∥H∥ ≤ 10−2τ∥X∥−1, the above implies that ⟨∇fs(U),U −U∗

s ⟩ ≥
0.5τ∥H∥2F , as desired. □

F PROOF OF THEOREM 4.1

With the landscape results in hand, we are now ready to characterize the saddle-to-saddle dynam-
ics of GD. We first note the following proposition, with is straightforward from Lemma C.9 and
Theorem C.1. In the following we use Uα,t to denote the t-th iteration of GD when initialized at
U0 = αU .

Proposition F.1 There exists matrices Ūα,t, −T̂ s
α ≤ t ≤ 0 with rank ≤ s such that

max
T̂ s
α≤t≤0

∥∥∥Ūt,α −Uα,T̂ s
α+t

∥∥∥
F
= O

(
α

1
2κ

)
(α → 0)

where T̂ s
α is defined in Theorem C.1 (we omit the dependence on α there) and moreover∥∥Ū0Ū

⊤
0 −Zs

∥∥ ≤ 100κ2∥X∥2r∗δ.

where Zs = U∗
s (U∗

s )
⊤ is the rank-s minimizer of the matrix sensing loss i.e.

Zs = argmin

{
1

2

∥∥A(Z −XX⊤)
∥∥2
2
: Z ∈ Rd×d is positive semi-definite and rank (Z) ≤ s

}
.

(45)

Remark F.1 We omit the dependence on α for simplicity of notations, when it is clear from context.

Proof : It follows from Lemma C.9 that max1≤t≤T̂ s
α
∥UtWt,⊥∥ = O

(
α

1
4κ

)
. We choose

Ūt = UT̂ s
α+tWT̂ s

α+tW
⊤
T̂ s
α+t

, then rank
(
Ūt

)
≤ s and moreover by Theorem C.1 we have∥∥XsX

⊤
s − Ū0Ū

⊤
0

∥∥
F

≤ 2κ2∥X∥2√r∗δ. On the other hand, similar to Corollary E.2 we have
that

∥∥Zs −XsX
⊤
s

∥∥
F
≤ 80δκ∥X∥2F . Thus

∥∥Ū0Ū
⊤
0 −Zs

∥∥ ≤ 100κ2∥X∥2r∗δ as desired. □

Let Ûα,t = Uα,tWα,t ∈ Rd×s, then it satisfies Û0Û
⊤
0 = Ū0Ū

⊤
0 . The following corollary shows

that Ûα,0 is close to U∗
s in terms of the procrutes distance.

Corollary F.1 We have dist(Û0,U
∗
s ) ≤ 80κ3r

1
2
∗ ∥X∥δ.

Proof : We know from Lemma E.5 that dist(U∗
s ,Xs) ≤ 40δκ∥X∥F , so it remains to bound

dist(Û0,Xs).

The proof idea is the same as that of Lemma E.5, so we only provide a proof sketch here. It has been
shown in the proof of Proposition F.1 that

Fs(Û0) :=
1

2

∥∥∥XsX
⊤
s − Û0Û

⊤
0

∥∥∥2
F
≤ r∗

∥∥∥XsX
⊤
s − Û0Û

⊤
0

∥∥∥2 ≤ 4κ4r∗∥X∥4δ2 ≤ 0.5τ2.

Note that Fs is the matrix factorization loss with XsX
⊤
s as the ground-truth, so the local PL property

(cf. Lemma E.4) still holds here, and by the same reason as (44), we deduce that dist(Û0,Xs) ≤
0.1∥X∥−1τ i.e. Û0 is in the local PL region around Xs. Finally, it follows from the PL property
that

dist(Û0,Xs) ≤ 10τ−1
∥∥∥∇Fs(Û0)

∥∥∥
F
≤ 10τ−1∥Û0∥

∥∥∥XsX
⊤
s − Û0Û

⊤
0

∥∥∥
F
≤ 40κ3r

1
2
∗ ∥X∥δ.

The conclusion follows. □

Recall that matrix sensing loss satisfies a local PL property (cf. Lemma E.6). As a result, when δ is
small, we can show that GD initialized at Û0 converges linearly to the ground-truth.
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Lemma F.1 Let Ût be the t-th iteration of GD initialized at Û0. Suppose that δ ≤ 10−2r
− 1

2
∗ κ−3

and µ ≤ 10−3∥X∥−2, then we have that

dist2(Ût,U
∗
s ) ≤ (1− 0.05τµ)

t
dist2(Û0,U

∗
s ).

Proof : We know from Corollary F.1 that∥∥∥Û0

∥∥∥
F
≤ ∥X∥F + 40κ3r

1
2
∗ ∥X∥δ.

We will prove the following result, which immediately implies Lemma F.1: suppose that
dist(Ût,U

∗
s ) ≤ dist(Û0,U

∗
s ), then

dist2(Ût+1,U
∗
s ) ≤ (1− 0.05τµ)dist2(Ût,U

∗
s ). (46)

Let R be the orthogonal matrix satisfying ∥Ut −U∗
sR∥F = dist(Ut,U

∗
s ). Assume WLOG that

R = I . We first bound the gradient ∇f(Ût) as follows:∥∥∥∇f(Ût)
∥∥∥
F
=
∥∥∥A∗A

(
XX⊤ − ÛtÛ

⊤
t

)
Ût

∥∥∥
F

≤
∥∥∥A∗A

(
XX⊤ − ÛtÛ

⊤
t

)∥∥∥∥∥∥Ût −U∗
s

∥∥∥
F
+
∥∥∥(ÛtÛ

⊤
t −U∗

s (U∗
s )

⊤
)
U∗

s

∥∥∥
F

≤ 20∥X∥2
∥∥∥Ût −U∗

s

∥∥∥
F

(47)
where we use

∥∥∥Ût

∥∥∥ ≤ ∥X∥+ 40κ3r
1
2
∗ ∥X∥δ ≤ 2∥X∥ and the RIP property. It follows that

dist2(Ût+1,U
∗
s ) ≤

∥∥∥Ût+1 −U∗
sR
∥∥∥2
F

(48a)

=
∥∥∥Ût − µ∇f(Ût)−U∗

sR
∥∥∥2
F

=
∥∥∥Ût −U∗

sR
∥∥∥2
F
− µ

〈
∇f(Ût), Ût −U∗

sR
〉
+ µ2

∥∥∥∇f(Ût)
∥∥∥2
F

≤
(
1− 0.1τµ+ 400∥X∥4µ2

) ∥∥∥Ût −U∗
sR
∥∥∥2
F

(48b)

where (48a) follows from the definition of dist, and (48b) is due to Lemma E.6 and (47). Finally,
(46) follows from the condition µ ≤ 10−3κ−2. □

We are now ready to complete the proof of Theorem 4.1.

Theorem F.1 (Restatement of Theorem 4.1) Under Assumptions 3.1 and 3.2, consider GD (3)
with learning rate µ ≤ 1

103∥Z∗∥ and initialization Uα,0 = αŪ for solving the matrix sensing
problem (1). There exists a universal constant c > 0, a constant C (depending on r̂ and κ) and a
sequence of time points T 1

α < T 2
α < · · · < T r̂∧r∗

α such that for all 1 ≤ s ≤ r̂ ∧ r∗, the following

holds when α = O
(
(ρr∗)

−cκ
)

:∥∥∥Uα,T s
α
U⊤

α,T s
α
−Z∗

s

∥∥∥
F
≤ Cα

1
10κ . (49)

where we recall that Z∗
s is the best rank-s solution defined in Definition 1.1. Moreover,

GD follows an incremental learning procedure: for all 1 ≤ s ≤ r̂ ∧ r∗, we have
limα→0 max1≤t≤T s

α
σs+1(Uα,t) = 0, where σi(A) denotes the (s + 1)-th largest singular value

of a matrix A.

Proof : Recall that
∥∥∥UT̂ s

α
− Ū0

∥∥∥
F

= o(1) (α → 0) where T̂ s
α is defined in Proposition F.1; we

omit the dependence on α to simplify notations. We also note that by the update of GD, we have
ŪtŪ

⊤
t = ÛtÛ

⊤
t for all t ≥ 0.

By Lemma F.1, we have that dist2(Ût,U
∗
s ) ≤ (1− 0.05τµ)

t
dist2(Û0,U

∗
s ) and, in particular,∥∥∥Ût

∥∥∥ ≤ 2∥X∥ for all t. Thus
∥∥Ūt

∥∥ ≤ 2∥X∥ as well. Moreover, recall that ∥Ut∥ ≤ 3∥X∥ for all
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t. It’s easy to see that that the matrix sensing loss f is L-smooth in
{
U ∈ Rd×r : ∥U∥ ≤ 3∥X∥

}
for some constant L = O(∥X∥2), so it follows from Lemma A.6 that∥∥∥UT̂ s

α+t − Ūt

∥∥∥
F
≤ (1 + µL)t

∥∥∥UT̂ s
α
− Ū0

∥∥∥
F
.

On the other hand, since dist2(Ût,U
∗
s ) ≤ (1− 0.05τµ)

t
dist2(Û0,U

∗
s ), we can deduce that∥∥∥UT̂ s

α+tU
⊤
T̂ s
α+t

−Zs

∥∥∥
F
≤
∥∥∥UT̂ s

α+tU
⊤
T̂ s
α+t

− ŪtŪ
⊤
t

∥∥∥
F
+
∥∥∥ŪtŪ

⊤
t −U∗

s (U∗
s )

⊤
∥∥∥
F

=
∥∥∥UT̂ s

α+tU
⊤
T̂ s
α+t

− ŪtŪ
⊤
t

∥∥∥
F
+
∥∥∥ÛtÛ

⊤
t −U∗

s (U∗
s )

⊤
∥∥∥
F

≤ 3∥X∥
(∥∥∥UT̂ s

α+t − Ūt

∥∥∥
F
+ dist(Ût,U

∗
s )
)

≤ 3∥X∥
(
(1 + µL)t

∥∥∥UT̂ s
α
− Ū0

∥∥∥
F
+ (1− 0.05τµ)

t
2 dist2(Û0,U

∗
s )
)

Since when α → 0,
∥∥∥UT̂ s

α
− Ū0

∥∥∥
F
= O(α

1
4κ ), it’s easy to see that there exists a time t = tsα so that

we have max−T̂ s
α≤t≤tsα

∥∥∥UT̂ s
α+t − Ūt

∥∥∥
F
= O

(
α

c1
κ2

)
and

∥∥∥UT̂ s
α+tU

⊤
T̂ s
α+t

−Zs

∥∥∥
F
= O

(
α

c1
κ2

)
as

well, where c1 is a universal constant. Let T s
α = T̂ s

α + tsα, then
∥∥∥UT s

α
U⊤

T s
α
−Zs

∥∥∥
F

= o(1) holds.

Recall that rank (Ut) ≤ s, so that max0≤t≤T s
α
σs+1 (Ut) = o(1). Finally, for all 0 ≤ s < r̂ ∧ r∗,

we need to show that T s
α < T s+1

α . Indeed, by Corollary E.2 and the Assumption 3.1 we have
σ2
s+1

(
UT s

α

)
≥ σs+1 (Zs+1)− o(1) ≥ 0.5σ2

s+1, so that T s+1
α > T s

α, as desired. □

G THE LANDSCAPE OF MATRIX SENSING WITH RANK-1 PARAMETERIZATION

In this section, we establish a local strong-convexity result Lemma G.2 for rank-1 parameterized
matrix sensing. This result is stronger than the PL-condition we established for general ranks, though
the latter is sufficient for our analysis.

Lemma G.1 Define the full-observation loss with rank-1 parameterization

g1(u) =
1

4

∥∥uuT −XXT
∥∥2
F
.

Then the global minima of g1 are u∗ = σ1v1 and −u∗. Moreover, suppose that g(u) − g(u∗) ≤
0.5τ1 where τ1 = σ2

1 − σ2
2 is the eigengap, then we must have

∥u− u∗∥2 ≤ 20τ−1
1 (g1(u)− g1(u

∗)) .

Proof : We can assume WLOG that XXT = diag
(
σ2
1 , · · · , σ2

r∗ , 0, · · · , 0
)
. Then

g1(u) =
1

4

(
∥u∥42 − 2

s∑
i=1

σ2
iu

2
i + ∥XTX∥2F

)
(50a)

≥ 1

4

(
∥u∥42 − 2σ2

1∥u∥22 + ∥XTX∥2F
)

(50b)

≥ 1

4

(
∥XTX∥2F − σ4

1

)
(50c)

where equality holds if and only if u2 = · · · = ud = 0 and ∥u∥2 = σ2
1 i.e. u = ±σ1e1.

Moreover, suppose that g1(u)−g1(u
∗) ≤ 0.5τ1, it follows from (50b) that τ1

∑d
i=2 u

2
i ≤ 2(g1(u)−

g1(u
∗)) which implies that

∑d
i=2 u

2
i ≤ 2τ−1

1 (g1(u)− g1(u
∗)). Also (50c) yields

∣∣∥u∥2 − σ2
1

∣∣ ≤
4
√

g1(u)− g1(u∗). Assume WLOG that u1 > 0, then we have

∥u− σ1e1∥2 ≤ σ−2
1

(
u2
1 − σ2

1

)2
+

d∑
i=2

u2
i

≤ 20τ−1
1 (g1(u)− g1(u

∗)) .

□
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Lemma G.2 Let
f1(u) =

1

4

∥∥A (uuT −XXT
)∥∥2

2
, u ∈ Rd.

Suppose that δ ≤ 10−3∥X∥−2τ1, then there exists constants a1 and ι, such that f1 is locally ι-
strongly convex in B1 = B(σ1v1, a1) ⊂ Rd. Furthermore, there is a unique global minima of f1
inside B1.

Proof : Recall that we defined the full observation loss g1(u) = 1
4

∥∥uuT −XXT
∥∥2
F

. Let h1 =
f1 − g1, then ∥∥∇2h1(u)

∥∥ =
1

2

∥∥(A∗A− I) (uuT −XXT ) + 2 (A∗A− I)uuT
∥∥

≤ δ
(
2∥u∥2 + ∥X∥2

)
.

When ∥u− σ1v1∥2 ≤ 0.1min
{
σ2
1 , τ1

}
(recall τ1 = σ2

1 − σ2
2),

σmin

(
∇2g1(u)

)
=

1

2
σmin

(
∥u∥2I + 2uuT −XXT

)
≥ 0.4τ1.

Hence we have

σmin

(
∇2f1(u)

)
≥
(
∇2g1(u)

)
− ∥∇2h1(u)∥ ≥ 0.4τ1 − 4∥X∥2δ ≥ 0.2τ1,

i.e. strong-convexity holds for a21 = 0.1min
{
σ2
1 , τ1

}
and ι = 0.2τ1.

Let u∗ be a global minima of f1, then we must have ∥u∗∥ ≤ 2∥X∥ (otherwise f1(u) > f1(0)). We
can thus deduce that

g1(u
∗) ≤ f1(u

∗) +
1

4

∣∣〈uuT −XXT , (A∗A− I)(uuT −XXT )
〉∣∣

≤ f1(u) + 10δ∥X∥2 ≤ g1(u) + 20δ∥X∥2.

It follows from Lemma G.1 and our assumption on δ that min
{
∥u∗ − σ1v1∥2 , ∥u∗ + σ1v1∥2

}
≤

1
2a

2
1. Moreover, by strong convexity, there exists only one global minima in B1, which concludes

the proof. □
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