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Abstract

Decentralized learning is appealing as it enables
the scalable usage of large amounts of distributed
data and resources without resorting to any
central entity, while promoting privacy since
every user minimizes the direct exposure of their
data. Yet, without additional precautions, curious
users can still leverage models obtained from
their peers to violate privacy. In this paper, we
propose DECOR, a variant of decentralized SGD
with differential privacy (DP) guarantees. In
DECOR, users securely exchange randomness
seeds in one communication round to generate
pairwise-canceling correlated Gaussian noises,
which are injected to protect local models at
every communication round. We theoretically
and empirically show that, for arbitrary connected
graphs, DECOR matches the central DP optimal
privacy-utility trade-off. We do so under SecLDP,
our new relaxation of local DP, which protects
all user communications against an external
eavesdropper and curious users, assuming that
every pair of connected users shares a secret, i.e.,
an information hidden to all others. The main the-
oretical challenge is to control the accumulation
of non-canceling correlated noise due to network
sparsity. We also propose a companion SecLDP
privacy accountant for public use.

1. Introduction
In numerous machine learning scenarios, the training dataset
is dispersed among diverse sources, including individual
users or distinct organizations responsible for generating
each data segment. The nature of such data often involves
privacy concerns, especially in applications like health-
care (Sheller et al., 2020), which can divulge sensitive
information about an individual’s health. Privacy issues
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make it either impractical or undesirable to transfer the data
beyond their original sources, promoting the emergence
of federated and decentralized learning (McMahan et al.,
2017; Lian et al., 2017), where the training occurs directly
on the data-holding entities. Decentralized learning addi-
tionally removes the assumption of a central server, with
only the model updates being transmitted directly between
users. A classical decentralized learning algorithm is decen-
tralized stochastic gradient descent (D-SGD) (Koloskova
et al., 2020), where users alternate between performing local
gradient updates and averaging local models via gossiping.

When dealing with privacy-sensitive data, it is crucial not
only to confine the sensitive information locally with de-
centralization, but also to ensure that the algorithm avoids
leaking any sensitive information through its communicated
updates or the final model. These can be observed by an
external eavesdropper or even an honest-but-curious user,
who follows the algorithm but may attempt to violate the
privacy of other users. The notion of differential privacy
(DP) (Dwork et al., 2014) serves as a widely accepted theo-
retical framework for measuring formal privacy guarantees.
This notion has been extensively studied in centralized set-
tings (Bassily et al., 2014; Abadi et al., 2016), i.e., assuming
a trusted data curator or server. Yet, much less attention has
been given to adapting DP to decentralized learning.

Several threat models have been considered in decentralized
learning, the strongest corresponding to the classical notion
of local differential privacy (LDP) (Kasiviswanathan et al.,
2011). Under LDP, users do not trust any other entity and
obfuscate all their communications independently. In con-
trast, central differential privacy (CDP) only protects the
final model, exactly as if the learning was conducted on a
single machine. Importantly, there is a significant gap in
performance between LDP and CDP algorithms. In a sys-
tem of n users, the optimal privacy-utility trade-off under
LDP can be n times worse than CDP (Duchi et al., 2018).
Indeed, the CDP baseline is the variant of D-SGD adding
noise to protect the average of user models only, which is
much less noise than that needed under LDP, to protect ev-
ery local model before averaging. Some prior works aimed
at reconciling this performance gap by investigating other
relaxations of LDP. For example, in federated learning with
an untrusted server, the shuffle model (Cheu et al., 2019) and
distributed DP (Kairouz et al., 2021a) restrict the view of the
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server using cryptographic primitives and match the CDP
optimal privacy-utility trade-off. However, these approaches
are server-based and thus cannot be used in decentralized
learning. Network DP (Cyffers & Bellet, 2022) considers
honest-but-curious users whose view is restricted to their
neighboring communications. As we discuss in Section 1.1,
the privacy-utility trade-offs under Network DP match CDP
only for well-connected graphs (Cyffers et al., 2022).

Contributions. We propose DECOR, a new algorithm for
decentralized learning with differential privacy. DECOR is a
variant of D-SGD, which additionally injects two types of
privacy noise to protect local models: (i) uncorrelated Gaus-
sian noise to protect the local model after gossip averaging,
and (ii) correlated Gaussian noise, as a sum of pairwise
cancelling noise terms for each neighbor, to protect local
models before gossip averaging. In the presence of a server,
after one round of DECOR, averaging all local models would
cancel out the correlated Gaussian noise terms, and leave
the uncorrelated Gaussian noise protecting the average of
models, as was previously studied by Sabater et al. (2022)
(see Section 1.1). However, on a sparse graph, the correlated
noise terms do not all cancel out in DECOR. To obtain our
main result, we control the accumulation of correlated noise
across iterations in our convergence analysis, and show that
its effect vanishes across iterations of DECOR.

We consider an external eavesdropper and honest-but-
curious non-colluding users and show that DECOR matches
the optimal CDP privacy-utility trade-off under our new
relaxation of LDP we call secret-based local differential
privacy (SecLDP). Our relaxation protects against an ex-
ternal eavesdropper and curious users who can observe all
communications, assuming that every pair of connected
users shares a secret, i.e., an information a priori hidden to
all others, similar to secure aggregation (Bonawitz et al.,
2017). For example, we consider the secrets to be shared
randomness seeds exchangeable in one round of encrypted
communications. Following the choice of the set of secrets,
our relaxation can capture several threat models, e.g., in-
cluding collusion of several users; or recovering LDP when
no communications are secret.

We also demonstrate the empirical superiority of DECOR
over the LDP baseline on simulated and real-world data
and multiple network topologies, and provide a practical
SecLDP privacy accountant for DECOR.1

1.1. Related Work

Most works on DP optimization have focused on the cen-
tralized setting (Chaudhuri et al., 2011; Bassily et al., 2014;
Abadi et al., 2016), where a trusted curator collects user

1Our code is available at
https://github.com/elfirdoussilab1/DECOR.

data. Also, several recent works tackle privacy in federated
learning, where an honest-but-curious server coordinates
the users. These works either use cryptographic primitives
to only reveal the sum of updates (Jayaraman et al., 2018;
Kairouz et al., 2021a; Agarwal et al., 2021) or to anonymize
user identities through shuffling (Erlingsson et al., 2019;
Cheu et al., 2019). Although these techniques provably
achieve the centralized optimal privacy-utility trade-off, they
are incompatible with fully decentralized settings, where
only peer-to-peer communications are allowed, or induce
large computational and communication costs.

Private decentralized learning. In decentralized settings,
several distributed optimization algorithms (Bellet et al.,
2018; Cheng et al., 2019; Huang et al., 2019; Li & Chi,
2023) have been adapted, by adding noise to gradient up-
dates, to ensure LDP. However, these approaches yield a
poor privacy-utility trade-off, which is a fundamental draw-
back of LDP (Duchi et al., 2013). Cyffers & Bellet (2022)
consider a weaker privacy model than LDP where the threat
comes from curious users solely, who can observe infor-
mation exchanged with their communication graph neigh-
bors only. Under this weaker privacy threat, it is possible
to match the centralized privacy-utility trade-off for well-
connected graphs only (Cyffers et al., 2022). In general,
SecLDP and Network DP are orthogonal, since the latter
restricts the view of users to local communications only,
while the former hides part of the global communications—
secrets—to an adversary observing all other communica-
tions. Yet, when considering honest-but-curious users, Se-
cLDP is arguably stronger than Network DP as users in
SecLDP have a larger view, i.e., all communications besides
secrets outside their neighborhood. Also, the privacy-utility
trade-off achieved under SecLDP is matches CDP for arbi-
trary connected topologies, unlike Network DP.

Correlated noise. Our correlated noise technique has been
studied in various forms within secure multi-party compu-
tation, where the goal is to privately compute a function
without a trusted central entity. A first form, called secret
sharing (Shamir, 1979), consists in adding uniformly ran-
dom noise terms which cancel out only if enough users
collude. The same idea has also been analyzed for decen-
tralized averaging (Li et al., 2019). However, these works
guarantee the perfect security of the inputs, not the privacy
of the average. Indeed, a curious adversary observing the
average can infer the presence of an input or reconstruct
it (Melis et al., 2019). In this direction, Imtiaz et al. (2019)
proposed adding correlated Gaussian noise to the inputs,
along with a smaller uncorrelated Gaussian noise to protect
the average only. The correlated Gaussian noise is gener-
ated by having users sample Gaussian noise locally, and
using secure aggregation (Bonawitz et al., 2017) to get the
average of the noise terms, which is subtracted by users.
Thus, averaging privatized inputs cancels out correlated
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noises and only leaves the smaller uncorrelated noise to
protect the average. However, the algorithm requires a cen-
tral entity for secure aggregation, which is not possible in
decentralized learning and can be costly in communication.
Sabater et al. (2022) further adapted the correlated Gaus-
sian noise technique to decentralized settings, without using
secure aggregation, by having connected users exchange
pairwise cancelling Gaussian noise. However, their work
only studies decentralized averaging, and does not cover the
more challenging decentralized learning scenario, where the
non-cancelled correlated noise accumulates across training
iterations. Finally, we remark that correlated noise has also
been studied in centralized settings with a different meaning,
e.g., correlation is across iterations (Kairouz et al., 2021b),
which is orthogonal to our work where noise is correlated
across the users, but is uncorrelated across the iterations.

2. Problem Statement
We consider a set of users [n] := {1, . . . , n} who want to
collaboratively solve a common machine learning task in
a decentralized fashion. Each user i ∈ [n] holds a local
dataset Di containing m ∈ N elements {ξ1i , . . . , ξmi } from
data space X .2 The goal is to minimize the following global
loss function:

min
x∈Rd

L(x) := 1

n

n∑
i=1

Li(x), (1)

where the local loss functions Li : Rd → R, i ∈ [n], are
distributed among n users and are given in empirical form:

Li(x) :=
1

|Di|
∑
ξ∈Di

ℓ(x, ξ), ∀x ∈ Rd, (2)

where ℓ(x, ξ) ∈ R is the loss of parameter x on sample ξ.
We study the fully decentralized setting where users are the
nodes of an undirected communication graph G = ([n], E).
Two nodes i, j ∈ [n] can communicate directly if they are
neighbors in G, i.e., {i, j} ∈ E .

Secret-based local DP. We aim to protect the privacy
of user data against an adversary who can eavesdrop on
all communications, while every pair of connected users
{i, j} ∈ E shares a sequence of secrets Sij , which repre-
sent observations of random variables commonly known to
the nodes sharing the secrets only. In practice, these are
locally generated via shared randomness seeds exchanged
after one round of encrypted communications (Bonawitz
et al., 2017), and conceptually one can consider the se-
crets to be the shared randomness seeds only. We denote
by Sall := {Sij : {i, j} ∈ E} the set of all secrets. While
local DP (LDP) (Kasiviswanathan et al., 2011) protects

2All datasets have the same size for simplicity; our theory can
be directly extended to cover local datasets with different sizes.

the privacy of all communications without assuming the
existence of secrets, at the price of a poor privacy-utility
trade-off (Duchi et al., 2013), we propose to relax LDP into
secret-based local differential privacy (SecLDP) as defined
below.

Definition 1 (SecLDP). Let ε ≥ 0, δ ∈ [0, 1]. Consider
a randomized decentralized algorithm A : Xm×n → Y ,
which outputs the transcript of all communications. Algo-
rithm A satisfies (ε, δ,S)-SecLDP if it satisfies (ε, δ)-DP
given that the set of secrets S is unknown to the adversary.
That is, for every adjacent datasets D,D′ ∈ Xm×n,

P [A(D) | S is hidden] ≤ eε · P [A(D′) | S is hidden] + δ,

where the event “S is hidden” conditions on the non-secret
observations Sall \S . We say that A satisfies (ε, δ)-SecLDP
if it satisfies (ε, δ,S)-SecLDP and S is clear from the con-
text.

Our privacy definition can encode several levels of knowl-
edge of the adversary, and the corresponding threat models,
through the choice of the secrets S. Essentially, the larger
the set of secrets, the weaker is the adversary. To see this,
we denote by Si := {Sjk : {j, k} ∈ E and j, k ̸= i} the set
of secrets hidden from user i ∈ [n], and by SI := ∩i∈ISi

the set of secrets hidden from the group of users I ⊆ [n], so
that SI ⊆ Si ⊆ Sall for every i ∈ I ⊆ [n]. We consider the
following adversaries in increasing strength:

I. External eavesdropper: the only adversary is not a user
and ignores all the secrets Sall, but can eavesdrop on all
communications between users. This threat is covered
by (ε, δ,Sall)-SecLDP.

II. Honest-but-curious users without collusion: every user
faithfully follows the protocol, but may try to infer
private information from other users by eavesdropping
on all communications, while knowing the secrets it
shares with other users only. This threat is covered by
having (ε, δ,Si)-SecLDP for every i ∈ [n].

III. Honest-but-curious users with partial collusion: every
group of users of size q < n may collude by disclosing
the secrets they have access to. This threat is covered,
at collusion level q, by having (ε, δ,SI)-SecLDP for
every I ⊆ [n], |I| = q.

IV. Full collusion: all users may collude against any other
user in the system, as if the adversary can observe all
communications and no secrets are hidden from them.
This threat is covered by (ε, δ,∅)-SecLDP, which cor-
responds to LDP.

The adversaries above are in increasing strength in the sense
that defending against adversary II consequently defends
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against adversary I, and the same logic holds for the other ad-
versaries. In this work, we consider the secrets to be shared
randomness seeds, which allow every pair of users to keep
the same observation of a random variable and generate
correlated noise. In practice, such secrets, i.e., randomness
seeds, can be shared securely and efficiently, as is common
in secure aggregation for federated learning (Bonawitz et al.,
2017; Kairouz et al., 2021a). Moreover, for ease of exposi-
tion, we focus on the adversaries of type I and II above and
defer the extension of our results to types III and IV to the
appendix.

Comparison with other relaxations. Recall from Section 1
that a common relaxation of LDP is central differential pri-
vacy (CDP), where the adversary can only access the final
training model. In fact, CDP is recovered from SecLDP by
considering the larger set of secrets consisting of all user
communications. From a privacy point of view, CDP is
equivalent to DP in the trusted curator model—the privacy
model in the centralized setting—and thus allows achieving
the best privacy-utility trade-off. In contrast, the best achiev-
able mean squared error under LDP is n times worse than
under CDP (Duchi et al., 2018; Allouah et al., 2023), for
strongly convex optimization problems. Indeed, the CDP
baseline is D-SGD with additional Gaussian noise magni-
tude Θ( 1

nε2 ), while the LDP baseline D-SGD with Gaussian
noise magnitude Θ( 1

ε2 ). We refer to these approaches as the
CDP and LDP baselines, respectively.

However, CDP does not protect against honest-but-curious
users, who can be expected in real-world scenarios. This
limitation motivated Network DP (Cyffers & Bellet, 2022),
which guarantees the privacy of all communications against
honest-but-curious users whose view is restricted to commu-
nications with their neighbors, with privacy-utility trade-offs
sometimes matching those of CDP (Cyffers et al., 2022). In
general, SecLDP and Network DP are orthogonal, since the
latter restricts the communications known to users, while
the former restricts part of these communications—secrets—
to an adversary observing all other communications. In the
case of the aforementioned adversary II, SecLDP is arguably
stronger than Network DP because honest-but-curious users
in SecLDP have a larger view, i.e., all communications be-
sides secrets outside their neighborhood.

3. DECOR: Decentralized SGD with
Correlated Noise

We now present our algorithm DECOR, summarized in Algo-
rithm 1. Overall, DECOR is a variant of D-SGD injecting the
privacy noise each local model. This privacy noise consists
of two parts: (i) correlated noise to protect the local com-
munications before gossip averaging, and (ii) uncorrelated
noise to protect the gossip average.

Algorithm 1 DECOR: DECENTRALIZED SGD WITH COR-
RELATED NOISE

Input: for each user i ∈ [n] initialize x
(0)
i ∈ Rd, stepsizes

{ηt}T−1
t=0 , number of iterations T , clipping threshold C,

noise parameters σcor and σcdp.
1: for t in 0 . . . T − 1, i in 1 . . . n, in parallel do
2: Sample ξ

(t)
i , compute g

(t)
i :=

Clip(∇ℓ(x
(t)
i ;C), ξ

(t)
i ), where Clip(g;C) :=

min
{
1, C

∥g∥

}
· g

3: Sample for all j ∈ Ni, v
(t)
ij = −v

(t)
ji ∼

N (0, σ2
corId), and v

(t)
i ∼ N (0, σ2

cdpId)

4: g̃
(t)
i := g

(t)
i +

∑
j∈Ni

v
(t)
ij + v

(t)
i ▷ privacy noise

5: x
(t+ 1

2 )
i = x

(t)
i − ηtg̃

(t)
i ▷ stochastic gradient updates

6: x
(t+1)
i :=

∑n
j=1 Wijx

(t+ 1
2 )

j ▷ gossip averaging
7: end for

DECOR is an iterative decentralized algorithm proceeding
in T iterations, whereby at each iteration t ∈ [T ], each user
i ∈ {1, . . . , n} first computes and clips a stochastic gradient
at the current local model x(t)

i (line 2 of Algorithm 1):

g
(t)
i := Clip(∇ℓ(x

(t)
i , ξ

(t)
i );C),

where ξ
(t)
i is a data point sampled at random from user i’s

dataset Di, and clipping with threshold C corresponds to
Clip(g;C) := min

{
1, C

∥g∥

}
· g for any vector g ∈ Rd.

The clipping operation ensures that the sensitivity of the
gradient, to a change in data, is bounded as required by DP.
Then, on line 4 of Algorithm 1, each user obfuscates the
clipped gradient by adding privacy noise:

g̃
(t)
i := g

(t)
i +

∑
j∈Ni

v
(t)
ij + v

(t)
i , (3)

where is v
(t)
i ∼ N (0, σ2

cdpId) is independent Gaussian
noise, Ni is the set of neighbors of i on graph G, and
{v(t)

ij }j∈Ni
are pairwise-cancelling correlated Gaussian

noise terms; they satisfy v
(t)
ij = −v

(t)
ji ∼ N (0, σ2

corId).
Then, on line 5, each user makes a local update with the
obfuscated stochastic gradient to obtain:

x
(t+ 1

2 )
i = x

(t)
i − ηtg̃

(t)
i ,

where ηt is the iteration’s learning rate. Finally, on line 6,
each user broadcasts the obtained local model to its neigh-
bors on graph G, and updates its local model by performing
a weighted average of the neighbors’ local models:

x
(t+1)
i :=

n∑
j=1

Wijx
(t+ 1

2 )
j , (4)

4



The Privacy Power of Correlated Noise in Decentralized Learning

where the weights are zero for non-neighboring users and
form the mixing matrix W = [Wij ]i,j∈[n] ∈ Rn×n, which
is symmetric and doubly stochastic (see Definition 2 below).
The motivation for injecting correlated noise in (3) is that the
gossip averaging in (4) will cancel out part or all correlated
noise terms. For example, if G is the fully connected graph
and W = 1

n11
⊤ is the matrix of ones times 1

n , then (3)
cancels out all correlated noise terms. Still, the uncorrelated
noise term v̄

(t)
i remains to protect the privacy of the gossip-

averaged local model x(t+1)
i .

4. Privacy Analysis
In this section, we formalize the privacy guarantees of
DECOR and introduce its privacy accountant.

First, we recall the notion of algebraic connectivity a(G).
Formally, algebraic connectivity a(G) is equal to the second-
smallest eigenvalue of the Laplacian matrix of the graph. In-
tuitively, it quantifies how well a graph is connected (Fiedler,
1973). For example, denoting by n the number of vertices,
the algebraic connectivity of the fully-connected graph is
equal to n; for the star graph, it is equal to 1; and for the ring
graph it is equal to 2(1− cos 2π

n ) = Θ( 1
n2 ) (see (De Abreu,

2007) for a survey).

In this section, it is more convenient to work with Se-
cRDP, the stronger variant of SecLDP based on Rényi DP
(RDP) (Mironov, 2017). We defer its formal definition to
the appendix, and simply note that SecRDP implies SecLDP
in the same way that RDP implies DP (Mironov, 2017).

For brevity, in Theorem 1 we state the privacy guarantees
of a single step of DECOR against adversaries I and II (de-
fined in Section 2). We defer the extension of the privacy
guarantees for adversaries III and IV to the appendix.

Theorem 1. Let α > 1. Each iteration of DECOR (Algo-
rithm 1) satisfies (α, αε)-SecRDP (Definition 4) against

• an external eavesdropper with

ε ≤ 2C2

(
1

nσ2
cdp

+
1− 1

n

σ2
cdp + a(G)σ2

cor

)
,

• honest-but-curious non-colluding users with

ε ≤ 2C2

(
1

(n− 1)σ2
cdp

+
1− 1

n−1

σ2
cdp + a1(G)σ2

cor

)
,

where a1(G) is the minimum algebraic connectivity across
subgraphs obtained by deleting a single vertex from G.
Moreover, ε can be computed numerically with Algorithm 2.

The result of Theorem 1 implies that in order to obtain
SecRDP and thus SecLDP, i.e., in order to bound ε, it is

Algorithm 2 SINGLE-STEP SECRDP ACCOUNTANT

Input: clipping threshold C, noise variances σcdp, σcor.
1: if external eavesdropper then
2: Get Laplacian matrix L of the full graph G
3: Compute Σ =

(
σ2
cdpIn + σ2

corL
)−1

4: return 2C2 maxi∈[n] Σii

5: end if
6: if honest-but-curious non-colluding users then
7: for i in 1 . . . n do
8: Get Laplacian matrix L of the subgraph of G ob-

tained by deleting vertex i

9: Compute Σ =
(
σ2
cdpIn−1 + σ2

corL
)−1

10: εi = 2C2 maxj∈[n−1] Σjj

11: end for
12: return maxi∈[n] εi
13: end if

sufficient for the noise magnitudes to scale as σ2
cdp = Ω( 1n ),

and σ2
cor = Ω( 1

a(G) ) or σ2
cor = Ω( 1

a1(G) ) depending on the
adversary strength. Also, as we shall see in the next section,
σ2
cdp drives the dominant convergence terms, so its depen-

dence on n is crucial, while that of σ2
cor only influences

higher-order convergence terms. If G is disconnected, then
its algebraic connectivity is zero (De Abreu, 2007), and one
should set σ2

cdp = Θ(1) and σcor = 0 in DECOR, which
corresponds to the LDP baseline.

Finally, we compare our privacy analysis of a single step of
DECOR with its counterpart in the work of Sabater et al.
(2022). Their Theorem 1 states a DP guarantee, while
DECOR guarantees RDP, which is stronger (Mironov, 2017).
Moreover, our result applies generically to arbitrary graph
topologies, while theirs necessitates a graph-dependent anal-
ysis to derive the theoretical values of σcdp and σcor. For
worst-case connected graphs, such as the ring graph, their
analysis has a tighter dependence in terms of σcor after con-
verting from RDP to DP, although the latter only marginally
influences the privacy-utility trade-off.

Privacy accountant. The theoretical privacy bound from
Theorem 1 may be too loose for practical use. Thus, we
devise a privacy accounting method, described in Algo-
rithm 2, which allows computing tight privacy bounds for a
single step of DECOR. The accounting procedure is simple,
and mainly involves computing the inverse of a “modified”
graph Laplacian matrix, which can be conducted efficiently
for large sparse graphs (Vishnoi, 2012). It is straightfor-
ward to account the privacy for the full DECOR procedure
using the composition and DP conversion properties of
RDP (Mironov, 2017) in addition to Algorithm 2.
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5. Utility Analysis
In this section, we present our theoretical convergence and
privacy-utility trade-off results. We first state our optimiza-
tion assumptions below.

5.1. Assumptions

For all our theoretical results, we assume that the local loss
functions are smooth.

Assumption 1 (L-smoothness). Each function Li is differ-
entiable and there exists a constant L ≥ 0 such that for
each x,y ∈ Rd, i ∈ [n]:

∥∇Li(y)−∇Li(x)∥2 ≤ L ∥x− y∥2 . (5)

Additionally, some of our results require the Polyak-
Łojasiewicz (PL) inequality (Karimi et al., 2016). This
condition does not require convexity, and is implied by
strong convexity for example.

Assumption 2 (µ-PL). Function L satisfies the µ-Polyak-
Łojasiewicz (PL) inequality. That is, for all x ∈ Rd:

2µ(L(x)− L⋆) ≤ ∥∇L(x)∥22 , (6)

where L⋆ := infx∈Rd L(x) denotes the infimum of L.

We now formulate our conditions on the stochastic gradient
noise and local loss functions heterogeneity.

Assumption 3 (Bounded noise and heterogeneity). We as-
sume that there exist P , ζ⋆ such that for all x ∈ Rd,

1
n

∑n
i=1 ∥∇Li(x)∥22 ≤ ζ2⋆ + P ∥∇L(x)∥22 , (7)

Also, we assume that there exist M , σ⋆ such that for all
x1, . . .xn ∈ Rd,

Ψ(x1, . . . ,xn) ≤ σ2
⋆ +

M
n

∑n
i=1 ∥∇L(xi)∥22 , (8)

where we introduced Ψ(x1, . . . ,xn) :=
1
n

∑n
i=1 Eξi ∥∇ℓ(xi, ξi)−∇Li(xi)∥ 2

2.

Our noise assumption recovers the uniformly bounded noise
assumption when M = 0 and n = 1, which is common for
the non-convex analysis of SGD (Bottou et al., 2018). Our
gradient heterogeneity assumption is one of the weakest in
the literature (Karimireddy et al., 2020). For the smooth
convex (or PL) case, these assumptions hold with ζ2⋆ and σ2

⋆

being the gradient heterogeneity and noise, respectively, at
the minimum only (Vaswani et al., 2019).

We additionally assume that gradients are bounded. This is
a common assumption in private optimization to ignore the
effect of clipping (Agarwal et al., 2018; Noble et al., 2022;
Allouah et al., 2023), which is not the focus of our work.

Assumption 4 (Bounded Gradients). We assume that there
exists C ≥ 0 such that for each i ∈ [n],x ∈ Rd, ξ ∈ Di,

∥∇ℓ(x, ξ)∥ ≤ C. (9)

As is typical in decentralized optimization algorithms, we
make use of a mixing matrix W, as defined below.

Definition 2 (Mixing matrix). A matrix W ∈ [0, 1]n×n is a
mixing matrix if it is symmetric and stochastic (W1 = 1).

Finally, we assume that the mixing matrix W brings any set
of vectors closer to their average with factor at least 1− p.

Assumption 5 (Consensus rate). We assume that there exists
p ∈ (0, 1] such that for every matrix X ∈ Rd×n,∥∥XW − X̄

∥∥2
F
≤ (1− p)

∥∥X− X̄
∥∥2
F
, (10)

where we define the average X̄ := X11⊤

n .

This assumption holds with 1− p being the second-largest
eigenvalue value of WW⊤ (Boyd et al., 2006), e.g., p = 1
for the complete graph, p = Θ( 1

n2 ) for the ring graph.

5.2. Convergence Analysis

We now present the convergence rate of DECOR, showing
how the two the privacy noises affect its convergence speed.
First, we introduce the following quantity

HG(W) :=

∑n
i,k=1 ∥Wi −Wk∥2 1k∈Ni

2
∑n

i,k=1 1k∈Ni

, (11)

where Wi denotes the i-th column of W and “k ∈ Ni”
denotes {i, k} ∈ E . This quantity naturally appears when
analyzing the correlated noise reduction after one gossiping
step. It measures the heterogeneity of mixing weights W
across connected users of the graph G. The smaller HG(W),
the closer are mixing weights, and the less correlated noise
remains after one gossiping step, e.g., HG(W) = 0 for
the complete graph with uniform mixing weights W =
11⊤

n . More generally, for any graph G with minimal degree
kmin ≥ 1, we can show that HG(W) decreases with the
minimal degree as HG(W) ≤ 2

kmin
, when using uniform

mixing weights, i.e., if Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n], where
deg(i) = |Ni| is the degree of user i in the graph.

We now state our convergence result in Theorem 2 below.

Theorem 2. Let Assumptions 1, 3, 4, 5 hold. Con-
sider Algorithm 1. Denote x̄(t) = 1

n

∑n
i=1 x

(t)
i , L0 :=

L(x̄(0)) − L⋆, Ξ0 := 1
n

∑n
i=1 ∥x

(0)
i − x̄(0)∥22, and c :=

max {4
√

3(1− p)(3P + pM), µ
L , 2p,

4pM
n }. For T ≥ 1:

6
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1. If L is µ-PL (Assumption 2) and ηt =
16

µ(t+c
L
µp )

, then

EL(x̄(T ))− L⋆ ≲
L(σ2

⋆ + dσ2
cdp)

µ2nT
+

c2L2L0

µ2p2T 2

+
cL3Ξ0

µ2p2T 2
+

L2 log T

µ3pT 2

(
(1− p)(

ζ2⋆
p

+ σ2
⋆)

+
HG(W) |E| dσ2

cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

2. If ηt = min { p
2cL , 2

√
L0n

LT (σ2
⋆+dσ2

cdp)
} , then

1

T

T−1∑
t=0

E ∥∇L(x̄(t))∥22 ≲

√
LL0(σ2

⋆ + dσ2
cdp)

nT
+

cLL0

pT

+
L2Ξ0

pT
+

LL0n

pT (σ2
⋆ + dσ2

cdp)

(
(1− p)(

ζ2⋆
p

+ σ2
⋆)

+
HG(W) |E| dσ2

cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

In the above, ≲ denotes inequality up to absolute constants.

In Theorem 2, the leading (slowest) terms of the conver-
gence rates are in O( 1

T ) and O( 1√
T
) in the PL and non-

convex cases, respectively. Thus, our analysis recovers the
optimal asymptotic convergences rates in stochastic opti-
mization (Agarwal et al., 2009; Arjevani et al., 2023). More-
over, it features a linear speedup in the number of users n,
like vanilla decentralized SGD (Koloskova et al., 2020).

The main difference with decentralized SGD is in the non-
dominant terms due to the injected correlated noise. In the
PL case for example, the term that depends on the correlated
noise scales as

Õ
(
HG(W) |E| dσ2

cor

nT 2

)
, (12)

by ignoring privacy-independent constants and logarithmic
terms. The above term quantifies a slowdown effect of
correlated noise. Interestingly, it is non-dominant in T , and
proportional to HG(W). For example, this term is zero for
the complete graph with W = 11⊤

n , because HG(W) = 0
in this case, which is expected as all correlated noise terms
should be cancelled after one gossiping step.

5.3. Privacy-utility Trade-off

We now combine our privacy and convergence analyses to
quantify the privacy-utility trade-off of DECOR. We recall
that a graph is 2-connected if it remains connected after
removing any vertex. We present the privacy-utility trade-
off of DECOR in Corollary 3 below by focusing on the
PL case. We defer the non-convex result to the appendix
because lower bounds are unknown in this case.

Corollary 3. Let Assumptions 1-5 hold. Let ε > 0, δ ∈
(0, 1) be such that ε ≤ log (1/δ). Algorithm 1 satisfies
(ε, δ)-SecLDP (Definition 1) with expected error

O
(
C2d log (1/δ)

n2ε2

)
,

against the following adversaries:

• an external eavesdropper: if G is connected, σ2
cdp =

32C2T log (1/δ)
nε2 and σ2

cor =
32C2T log (1/δ)

a(G)ε2 ,

• honest-but-curious non-colluding users: if G is 2-
connected, σ2

cdp = 32C2T log (1/δ)
(n−1)ε2 and σ2

cor =
32C2T log (1/δ)

a1(G)ε2 , where a1(G) is the minimum algebraic
connectivity across subgraphs obtained by deleting a
single vertex from G.

In the above, O omits absolute constants, vanishing terms in
T , and privacy-independent multiplicative constants L, µ.

Tightness. The lower bound on the privacy-utility trade-off
under user-level CDP is Ω

(
d

n2ε2

)
(Bassily et al., 2014).3 Un-

der LDP, the lower bound on the privacy-utility trade-off is
Ω
(

d
nε2

)
(Duchi et al., 2018). Therefore, following the result

of Corollary 3, DECOR matches the optimal CDP privacy-
utility trade-off, under SecLDP against both an external
eavesdropper and non-colluding curious users. We recall
that this improves by factor n over the trade-off achieved
by LDP algorithms (Bellet et al., 2018; Cheng et al., 2019;
Huang et al., 2019; Li & Chi, 2023). Besides, for compari-
son, Cyffers et al. (2022) derive a privacy-utility trade-off
in O

(
kmax√
pn2ε2

)
, where kmax is the maximum degree of the

graph, for a relaxation of Network DP (Cyffers & Bellet,
2022). Their trade-off matches CDP for well-connected
graphs such as expanders (Ying et al., 2021), but degrades
with poorer connectivity, e.g., O

(
1

nε2

)
for the ring graph. In

contrast, our trade-off matches CDP for arbitrary connected
graphs, albeit the privacy definitions are orthogonal in gen-
eral, as we discuss in Section 2. We also extend Corollary 3
to colluding curious users (adversary III in Section 2) in
the appendix and match the optimal privacy-utility trade-off
when there is a constant fraction of colluding users. Natu-
rally, if the group of colluding users is too large, the threat
model of SecLDP approaches that of LDP, and thus cannot
match the privacy-utility trade-off of CDP in such cases.

Although the trade-off achieved by DECOR is tight asymp-
totically in the number of iterations T , we recall that the
convergence speed suffers from a slowdown due to corre-
lated noise following our discussion of the term (12) of

3We refer to the strongly convex lower bound of Bassily et al.
(2014), which also applies to the (larger) PL class of functions.
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Theorem 2. Moreover, our analysis shows a tight trade-
off by making stronger assumptions on the connectivity
of the graph for stronger adversaries. That is, for non-
colluding curious users, Corollary 3 assumes the graph to
be 2-connected, i.e., it remains connected after removing
any vertex, while it only assumes the graph to be connected
for the external eavesdropper. We believe this condition to
be necessary: in the worst-case where a curious user i is the
unique neighbor of another user j, then i can substract the
correlated noise injected by user j, and leave the latter with
the uncorrelated noise only, which is insufficient to protect
its local model.

6. Empirical Evaluation
In this section, we empirically show that DECOR achieves a
privacy-utility trade-off matching the CDP baseline, and sur-
passing the LDP baseline. Recall that LDP is the strongest
threat model in decentralized learning, while CDP is the
weakest, and thus they represent lower and upper bounds
in terms of performance. We compare these algorithms on
three strongly convex and non-convex tasks with synthetic
and real-world datasets, across various user-level privacy
budgets and network topologies. For simplicity, we focus
on adversary I of SecLDP, i.e., an external eavesdropper
observing all user communications. We provide a summary
of our empirical evaluations in Figure 1.

Setup. We consider n = 16 users on three usual network
topologies in increasing connectivity: ring, grid (2d torus),
and fully-connected. We use the Metropolis-Hastings (Boyd
et al., 2006) mixing matrix, i.e., Wij =

1j∈Ni

deg(i)+1 ,∀i, j ∈
[n], where deg(i) = |Ni| is the degree of user i in the graph.
We tune all hyperparameters for each algorithm individually,
and run each experiment with four seeds for reproducibility.
We account for the privacy budget using our SecLDP privacy
accountant (Algorithm 2). We defer the full experimental
setup to the appendix. 4

6.1. Strongly Convex Tasks

We study two strongly convex tasks: least-squares regres-
sion on synthetic data and regularized logistic regression
on the a9a LIBSVM dataset (Chang & Lin, 2011). Both of
these tasks are covered by our theory in the PL case.

Least-squares regression. In this task, the empirical loss
function is given for every i ∈ [n] as follows:

Li(x) =
1

2
∥Aix− bi∥22, ∀x ∈ Rd,

where A2
i := i2

n Id and bi ∼ N (0, 1
i2 Id). As shown in

Figure 1a, DECOR achieves an order of magnitude lower

4Our code is available at
https://github.com/elfirdoussilab1/DECOR.

training loss than LDP across all privacy levels and topolo-
gies. Moreover, the performance of DECOR is comparable
to that of CDP, especially towards the low privacy regime.

Logistic regression. In this task, the loss function at data
point (a, b) ∈ Rd × {0, 1} is given as:

ℓ(x, (a, b)) = log(1 + b exp(−x⊤a)) + λ∥x∥22,∀x ∈ Rd.

In Figure 1b, similar to the previous task, DECOR closely
matches the performance of CDP across all considered
topologies and privacy budgets, while being an order of
magnitude better than LDP.

6.2. Non-convex Task

We consider the MNIST (LeCun & Cortes, 2010) task with
a one-hidden-layer neural network. Since this task is more
challenging for the LDP baseline, we consider example-
level DP, i.e., privacy is ensured when changing any single
data point, to which our theoretical results can be extended
straightforwardly using privacy amplification by subsam-
pling (Wang et al., 2019).

In Figure 1c, we once again observe that DECOR matches
CDP, and surpasses LDP, on all considered topologies and
privacy budgets. Indeed, the gap of CDP with LDP is al-
most 10 accuracy points for the lowest privacy budget, as
suggested by the theory, while the gap between DECOR on
the ring topology and the CDP baseline, or DECOR on the
grid topology, is less than 1 accuracy point.

7. Conclusion
Decentralized learning is a promising paradigm for scalable
data usage without compromising privacy. However, the risk
of privacy breaches by curious users remains. Our solution
DECOR addresses this challenge by securely exchanging
randomness seeds and injecting pairwise correlated Gaus-
sian noises to protect local models. Our theoretical and
empirical results show that DECOR matches the optimal
centralized privacy-utility trade-offs, while ensuring differ-
ential privacy within the strong threat model of SecLDP,
our new relaxation of LDP. Our proposed SecLDP offers
protection against external eavesdroppers and curious users,
assuming shared secrets among connected pairs. We pro-
pose a privacy accountant with our algorithm in order to
foster reproducibility and encourage further research and
deployment of private decentralized learning algorithms.
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Figure 1. Privacy-utility trade-offs for DECOR and the CDP and LDP baselines on least-squares regression, logistic regression, and neural
network training under (ε, 10−5)-SecLDP against an external eavesdropper observing all communications. DECOR closely matches the
performance of CDP, and considerably surpasses LDP, across all considered tasks, privacy budgets, and topologies.
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APPENDIX
The appendix is organized as follows. The proofs and extensions of our privacy analysis, including Theorem 1, are in
Appendix A. The proofs and extensions of our convergence analysis, including Theorem 2, are in Appendix B. The proofs
and extensions of our privacy-utility trade-off, including Corollary 3, are in Appendix C. Our detailed experimental setup is
in Appendix D.

A. Privacy Analysis
In this section, we prove our main privacy result stated in Theorem 1 and extend it to the general privacy adversaries
discussed in Section 2. We first recall some useful facts around Rényi divergences and linear algebra.
Definition 3 (α-Rényi divergence). Let α > 0, α ̸= 1. The α-Rényi divergence between two probability distributions P and
Q is defined as

Dα(P ∥ Q) :=
1

α− 1
logEX∼Q

(
P (X)

Q(X)

)α

.

Lemma 4 ((Gil et al., 2013)). Let α > 0, α ̸= 1, µ1, µ2 ∈ Rn, and Σ ∈ Rn×n. Assume that Σ is positive definite. The
α-Rényi divergence between the multivariate Gaussian distributions N (µ1,Σ) and N (µ2,Σ) is

Dα(N (µ1,Σ) ∥ N (µ2,Σ)) =
α

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2).

We recall the folklore result below, which is a consequence of the Courant-Fischer min-max theorem (De Abreu, 2007).
Lemma 5. Let M ∈ Rn×n be a real symmetric matrix and un ∈ Rn be an eigenvector associated to the largest eigenvalue
of M. The second-largest eigenvalue of M is

λn−1(M) = sup
u̸=0

⟨u,un⟩=0

u⊤Mu

∥u∥22
.

We now define secret-based local Rényi differential privacy (SecRDP), a strong variant of SecLDP based on Rényi DP.
Definition 4 (SecRDP). Let ε ≥ 0, δ ∈ [0, 1], α > 1. Consider a randomized decentralized algorithm A : Xm×n → Y ,
which outputs the transcript of all communications. Algorithm A is said to satisfy (α, ε,S)-SecRDP if A satisfies (α, ε)-RDP
given that S is unknown to the adversary. That is, for every adjacent datasets D,D′ ∈ Xm×n, we have

Dα(A(D) | S is hidden ∥ A(D′) | S is hidden) ≤ ε,

where the left-hand side is the Rényi divergence (Definition 4) between the probability distributions of A(D) and A(D′),
conditional on the secrets S being hidden from the adversary. We simply say that A satisfies (α, ε)-SecRDP if it satisfies
(α, ε,S)-SecRDP for a certain S.

Both SecLDP and SecRDP preserve the properties of DP and RDP, respectively, since these relaxations only condition the
probability space of the considered distributions.

Proof of Theorem 1. For convenience, we restate Theorem 1 below, whose proof is a special case of the extended privacy
result given next.
Theorem 1. Let α > 1. Each iteration of DECOR (Algorithm 1) satisfies (α, αε)-SecRDP (Definition 4) against

• an external eavesdropper with

ε ≤ 2C2

(
1

nσ2
cdp

+
1− 1

n

σ2
cdp + a(G)σ2

cor

)
,

• honest-but-curious non-colluding users with

ε ≤ 2C2

(
1

(n− 1)σ2
cdp

+
1− 1

n−1

σ2
cdp + a1(G)σ2

cor

)
,

12
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Algorithm 3 GENERAL SECRDP ACCOUNTANT FOR DECOR

Input: clipping threshold C, noise variances σcdp, σcor, collusion level q.
1: for I ⊆ [n], |I| = q do
2: Get Laplacian matrix L of the subgraph of G after deleting vertices I
3: Compute Σ =

(
σ2
cdpIn−q + σ2

corL
)−1

4: εI = 2C2 maxi∈[n−q] Σii

5: end for
6: return maxI⊆[n],|I|=q εI

where a1(G) is the minimum algebraic connectivity across subgraphs obtained by deleting a single vertex from G. Moreover,
ε can be computed numerically with Algorithm 2.

Proof. The result is a special case of Theorem 6, by taking q = 0 for the external eavesdropper and q = 1 for the
honest-but-curious non-colluding users.

Extended privacy analysis. We now state and prove a general privacy analysis of DECOR to all considered adversaries
in Section 2, which includes collusion. We additionally provide a SecRDP accountant in Algorithm 3, which generalizes
Algorithm 2 to the aforementioned adversaries.

Theorem 6. Let α > 1 and q < n. Each iteration of Algorithm 1 satisfies (α, αε)-SecRDP (Definition 4) against
honest-but-curious users colluding at level q with

ε ≤ 2C2

(
1

(n− q)σ2
cdp

+
1− 1

n−q

σ2
cdp + aq(G)σ2

cor

)
, (13)

where aq(G) is the minimum algebraic connectivity across subgraphs obtained by deleting q vertices from G. Moreover, ε
can be computed numerically using Algorithm 3.

Proof. Let α > 1, q > 1, and I ⊆ [n] be an arbitrary group of |I| = q users. Recall that we denote by SI :=
{sjk : {j, k} ∈ E , j, k /∈ I} the set of secrets hidden from all users in I . We will prove that Algorithm 1 satisfies (α, ε,SI)-
SecRDP, which protects against honest-but-curious users colluding at level q, as discussed in Section 2. For ease of
exposition, we consider the one-dimensional case d = 1. Extending the proof to the general case is straightforward.

Formally, at each iteration of Algorithm 1, users possess private inputs (gradients) in the form of vector x ∈ [−C,C]n,
given that gradients are clipped at threshold C. Each user i ∈ [n] shares the following privatized quantity:

x̃i := xi +
∑
j∈Ni

vij + v̄i, (14)

where vij = −vji ∼ N (0, σ2
cor) for all j ∈ Ni, and v̄i ∼ N (0, σ2

cdp). Note that each neighborhood Ni does not include i.

Denote by H := [n] \ I the set of the |H| = n− q honest (non-colluding) users. Our goal is to show that the mechanism
producing X̃H :=

[
x̃i

]
i∈H satisfies SecRDP when a single entry of X :=

[
xi

]
i∈H is arbitrarily changed; i.e., one user’s

input differs. To do so, we first rewrite (14) to discard the noise terms known to the colluding curious users who can simply
substract them to get for every i ∈ H:

x̃i = xi +
∑

j∈Ni∩H
vij + v̄i, (15)

Denote by GH := (H, EH) the subgraph of G restricted to honest users. We now rewrite the above in matrix form as:

X̃H = XH +KNE + N̄, (16)

13
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where K ∈ R(n−q)×|EH| is the oriented incidence matrix of the graph GH and NEH = [vij ]1≤i<j≤n−q ∈ R|EH| is the
vector of pairwise noises. Now, consider two input vectors XA,XB ∈ [−C,C]n−q which differ maximally in an arbitrary
coordinate i ∈ [n− q] without loss of generality:

XA −XB = 2Cei ∈ Rn−q, (17)

where ei is the vector of Rn−q where the only nonzero element is 1 in the i-th coordinate.

We will then show that the α-Rényi divergence between X̃A and X̃B , which are respectively produced by input vectors
XA and XB , is bounded. To do so, by looking at Equation (16), we can see that X̃A, X̃B follow a multivariate Gaussian
distribution of means XA,XB respectively and of variance

Σ := E(X̃A −XA)(X̃A −XA)
⊤ = E(X̃B −XB)(X̃B −XB)

⊤ = σ2
corL+ σ2

cdpIn−q ∈ R(n−q)×(n−q), (18)

where L = KK⊤ ∈ R(n−q)×(n−q) is the Laplacian matrix of the graph GH (De Abreu, 2007). Note that Σ is positive
definite when σ2

cdp > 0 because L is positive semi-definite.

Therefore, following Lemma 4, the α-Rényi divergence between the distributions of X̃A and X̃B is

Dα(X̃A ∥ X̃B) =
α

2
(XA −XB)

⊤Σ−1(XA −XB). (19)

Now, recall that the spectrum of L is 0 = λ1(L) ≤ . . . ≤ λn−q(L) because it is the Laplacian matrix of the graph GH.
Moreover, the eigenvector corresponding to the zero eigenvalue is 1 ∈ Rn−q the vector of ones. Thus, since Σ is a real
symmetric (positive definite) matrix, the spectrum of Σ−1 in ascending order is

(
1

σ2
cdp+σ2

corλn−q−i+1(L)

)
i∈[n−q]

, and 1 the

vector of ones is associated to its largest eigenvalue:

Σ−11 =
1

σ2
cdp

1. (20)

Define xi := ei− 1
n−q1 and observe that ⟨xi,1⟩ = 0. Therefore, we can decompose the vector XA−XB from Equation (17)

as a sum of orthogonal vectors as follows:

XA −XB = 2Cei = 2C

(
1

n− q
1+ xi

)
.

Going back to (19), we can write

Dα(X̃A ∥ X̃B) =
α

2
(XA −XB)

⊤Σ−1(XA −XB) =
4C2α

2
(

1

n− q
1+ xi)

⊤Σ−1(
1

n− q
1+ xi)

= 2αC2

(
1

(n− q)2
1⊤Σ−11+ x⊤

i Σ
−1xi

)
= 2αC2

(
1

(n− q)σ2
cdp

+ x⊤
i Σ

−1xi

)
, (21)

where we have used that ⟨xi,1⟩ = 0, Equation (20) and ⟨1,1⟩ = n − q successively in the last two steps. Now, using
Lemma 5 and the facts that ⟨xi,1⟩ = 0 and ∥xi∥22 = 1− 1

n−q , we have that

x⊤
i Σ

−1xi ≤ sup
u̸=0

⟨u,1⟩=0

u⊤Σ−1u

∥u∥22
· ∥xi∥22 ≤ λn−q−1(Σ

−1) ∥xi∥22 = (1− 1

n− q
)λn−q−1(Σ

−1) =
1− 1

n−q

σ2
cdp + λ2(L)σ2

cor

.

Plugging the bound above back in (21), we obtain

Dα(X̃A ∥ X̃B) ≤ 2αC2

(
1

(n− q)σ2
cdp

+
1− 1

n−q

σ2
cdp + λ2(L)σ2

cor

)
.

Recall that λ2(L) is the algebraic connectivity of the graph GH, by definition. Moreover, since I and thus H are taken
arbitrarily, in the worst case λ2(L) is aq(G) the minimum algebraic connectivity across subgraphs obtained by deleting q
vertices from G. This concludes the proof of (13) the main result.
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Finally, it is easy to see from Equation (19) that the exact privacy bound ε can be computed numerically using Algorithm 2.
Indeed, the maximal difference in inputs is XA −XB = 2Cei for some i ∈ [n − q] as in (17), so the maximal privacy
bound, given that I is the set of colluding users, is

εI = max
i∈[n−q]

1

2
(2Cei)

⊤Σ−1(2Cei) = 2C2 max
i∈[n−q]

e⊤i Σ
−1ei = 2C2 max

i∈[n−q]
Σ−1

ii ,

where Σ−1
ii is the i-th entry in the diagonal of the inverse of Σ = σ2

corL+ σ2
cdpIn−q . Thus, to get the maximal privacy loss

across all possible colluding user groups of size q, we take ε = maxI⊆[n],|I|=q εI . Observing that the latter is exactly the
output of Algorithm 3 concludes the proof.

B. Convergence Analysis
In this section, we prove our convergence analysis stated in Theorem 2 and extend it to the general privacy adversaries
discussed in Section 2. We introduce some useful notation in Section B.1, overview the main elements of the proof in
Section B.2, prove the main theorem in Section B.3, and finally prove the intermediate lemmas in Section B.4.

B.1. Notation

We can rewrite the procedure of DECOR (Algorithm 1) using the following matrix notation, extending the definition used in
Section 3:

X(t) :=
[
x
(t)
1 , . . . ,x(t)

n

]
∈ Rd×n, X̄(t) :=

[
x̄(t), . . . , x̄(t)

]
∈ Rd×n,

∂ℓ(X(t), ξ(t)) :=
[
∇ℓ(x

(t)
1 , ξ

(t)
1 ), . . . ,∇ℓ(x(t)

n , ξ(t)n )
]
∈ Rd×n,

N(t) :=

∑
j∈N1

v
(t)
1j , . . . ,

∑
j∈Nn

v
(t)
nj

 ∈ Rd×n, N̄(t) :=
[
v̄
(t)
1 , . . . , v̄(t)

n

]
∈ Rd×n.

(22)

We recall that under the bounded gradient assumption (Assumption 4), clipping leaves gradients unaffected, and thus we
discard the clipping operator in this section.

Algorithm 4 DECOR IN MATRIX NOTATION

Input: for each user i ∈ [n] initialize x
(0)
i ∈ Rd, stepsizes {ηt}T−1

t=0 , number of iterations T , mixing matrix W, noise
parameters σcor and σcdp.

1: for t in 0 . . . T − 1 do
2: X(t+ 1

2 ) = X(t) − ηt

(
∂ℓ(X(t), ξ

(t)
i ) +N(t) + N̄(t)

)
▷ stochastic gradient updates

3: X(t+1) = X(t+ 1
2 ) ·W ▷ gossip averaging

4: end for

B.2. Proof Overview

Our convergence analysis relies upon three elements: descent bound, pairwise noise reduction, and consensus distance
recursion. We first state the corresponding lemmas, and defer their proofs to Section B.4.

The first proof element is the descent bound of Lemma 7. It quantifies the progress made after each DECOR step. In
particular, compared to the error due to stochastic gradient variance σ2

⋆ as in vanilla SGD (Bottou et al., 2018), there are two
additional quantities involved: and (uncorrelated) privacy noise variance σ2

cdp, and the consensus distance Ξt defined for
every t ≥ 1 as

Ξt :=
1

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2 =

1

n

∥∥∥X(t) − X̄(t)
∥∥∥2
F
. (23)
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Lemma 7 (Descent bound). Under Assumptions 1, 3 and 5, the averages x̄(t) := 1
n

∑n
i=1 x

(t)
i of the iterates of Algorithm 1

with ηt ≤ 1
2L min {1, n

2M } satisfy

E
[
L(x̄(t+1))− L(x̄(t))

]
≤ −ηt

4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4
Ξt +

Lη2t
2

σ2
⋆ + dσ2

cdp

n
. (24)

Interestingly, the descent bound does not involve the correlated noise variance σ2
cor. This is thanks to the correlated noise

terms cancelling out pairwise, so that the correlated noise disappears when analyzing the average model x(t).

Next, in order to bound the consensus distance Ξt, we first quantify in Lemma 8 the effect of correlated noise in a single
step of DECOR on the consensus distance Ξt.
Lemma 8 (Correlated noise reduction). Consider Algorithm 1. For any undirected graph G = ({1, . . . , n}, E) and any
matrix W ∈ Rn×n and at every iteration t, we have

E
∥∥∥N(t)W

∥∥∥2
F

= HG(W) · E
∥∥∥N(t)

∥∥∥2
F

= 2HG(W) |E| dσ2
cor, (25)

where we define HG(W) :=
∑n

i,k=1∥Wi−Wk∥21k∈Ni

2
∑n

i,k=1 1k∈Ni
, and 1k∈Ni denotes {i, k} ∈ E , and |E| = 1

2

∑n
i,k=1 1k∈Ni is the

number of edges on the graph G. Moreover, if Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n], where deg(i) = |Ni| is the degree of user i in
the graph, we have HG(W) ≤ 2

kmin
, where kmin ≥ 1 is the minimal degree of graph G.

The analysis of the error due to correlated noise in Lemma 8 is exact, in the sense that it is an equality. Recall that HG(W)
is graph- and mixing matrix-dependent. Broadly speaking, the average expected error per edge (due to correlated noise) is
dσ2

cor (the variance of one correlated noise term), reduced by factor HG(W), which decreases with the connectivity with the
graph. Using this lemma, we can now prove a powerful recursion on the consensus distance in Lemma 9 below.
Lemma 9 (Consensus distance recursion). Under Assumptions 1, 3, and 5, if in addition stepsizes satisfy ηt ≤

p

L
√

6(1−p)(3+pM)
, then

Ξt+1 ≤ (1− p

2
)Ξt + 2η2t (1− p)(

3P

p
+M)E

∥∥∥∇L(x̄(t))
∥∥∥2
2

+ η2t

[
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]
,

where Ξt :=
1
n

∑n
i=1 E

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is the consensus distance.

The effects of the privacy noises are apparent in the lemma above, and correspond mainly to the quantity analyzed in
Lemma 8, in addition to the effects of stochastic variance and heterogeneity, which are similar to vanilla D-SGD (Koloskova
et al., 2020). It is indeed intuitive that the non-cancelled correlated noise should pull the local models away, and this worsens
for poorly-connected graphs.

B.3. Main Proof

We now restate and prove Theorem 2 below, using the intermediate lemmas from the previous section.

Theorem 2. Let Assumptions 1, 3, 4, 5 hold. Consider Algorithm 1. Denote x̄(t) = 1
n

∑n
i=1 x

(t)
i , L0 := L(x̄(0)) − L⋆,

Ξ0 := 1
n

∑n
i=1 ∥x

(0)
i − x̄(0)∥22, and c := max {4

√
3(1− p)(3P + pM), µ

L , 2p,
4pM
n }. For T ≥ 1:

1. If L is µ-PL (Assumption 2) and ηt =
16

µ(t+c
L
µp )

, then

EL(x̄(T ))− L⋆ ≲
L(σ2

⋆ + dσ2
cdp)

µ2nT
+

c2L2L0

µ2p2T 2

+
cL3Ξ0

µ2p2T 2
+

L2 log T

µ3pT 2

(
(1− p)(

ζ2⋆
p

+ σ2
⋆)

+
HG(W) |E| dσ2

cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.
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2. If ηt = min { p
2cL , 2

√
L0n

LT (σ2
⋆+dσ2

cdp)
} , then

1

T

T−1∑
t=0

E ∥∇L(x̄(t))∥22 ≲

√
LL0(σ2

⋆ + dσ2
cdp)

nT
+

cLL0

pT

+
L2Ξ0

pT
+

LL0n

pT (σ2
⋆ + dσ2

cdp)

(
(1− p)(

ζ2⋆
p

+ σ2
⋆)

+
HG(W) |E| dσ2

cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

In the above, ≲ denotes inequality up to absolute constants.

B.3.1. PL CASE

Proof. Let assumptions 1-5 hold. Consider Algorithm 1 with the stepsize sequence defined for every t ≥ 0 as:

ηt :=
16

µ(t+ c L
µp )

, (26)

where c := max {4
√
3(1− p)(3P + pM), µ

L , 2p,
4pM
n }. Clearly, this sequence is decreasing and we have for every t ≥ 0:

ηt ≤ η0 = min { p

4L
√
3(1− p)(3P + pM)

,
p

µ
,
1

2L
min {1, n

2M
}}.

This ensures that the conditions of lemmas 7 and 9 are verified.

Consider the sequence defined for every t ≥ 0 as:

Vt := E
[
L(x̄(t))− L⋆

]
+

3L2ηt
p

Ξt, (27)

where L⋆ := infx∈Rd L(x) denotes the infimum of L. Clearly, since Ξt is also non-negative as a sum of squared distances,
we have Vt ≥ 0 for every t ≥ 0. We also define the following auxiliary sequence for every t ≥ 0:

Wt :=
1

η2t
Vt. (28)

Fix t ≥ 0. First, to analyze Wt, we write

Wt+1 −Wt =
1

η2t+1

Vt+1 −
1

η2t
Vt =

1

η2t+1

(Vt+1 −
η2t+1

η2t
Vt).

Moreover, denoting t̂ := t+ τ , we have η2
t+1

η2
t

= t̂2

(t̂+1)2
= 1− 1+2t̂

(t̂+1)2
. Thus, we have

Wt+1 −Wt =
1

η2t+1

(Vt+1 − (1− 1 + 2t̂

(t̂+ 1)2
)Vt). (29)

On the other hand, to analyze Vt, we use the fact that stepsizes are non-increasing and satisfy the conditions of lemmas 7
and 9:

Vt+1 − Vt = E
[
L(x̄(t+1))− L(x̄(t))

]
+

3L2

p
(ηt+1Ξt+1 − ηtΞt)

≤ E
[
L(x̄(t+1))− L(x̄(t))

]
+

3L2ηt
p

(Ξt+1 − Ξt)

≤
(
−ηt

4
+

6L2η3t
p

(1− p)(
3P

p
+M)

)
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+ (

3ηtL
2

4
− 3L2ηt

2
)Ξt + η2tA+ η3tB,
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where we introduced A := L
2

σ2
⋆+dσ2

cdp

n and B := 3L2

p [6(1− p)
ζ2
⋆

p + (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n +
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp]

for simplicity. Recall that we have ηt ≤ η0 ≤ p

4L
√

3(1−p)(3P+pM)
, so that 6L2

p η2t (1− p)( 3Pp +M) ≤ 1
8 . Consequently, we

have

Vt+1 − Vt ≤ −ηt
8
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
− 3L2ηt

4
Ξt + η2tA+ η3tB. (30)

Now, recall that
∥∥∇L(x̄(t))

∥∥2
2
≥ 2µ(L(x̄(t))− L⋆) following Assumption 2, so that the bound above becomes

Vt+1 − Vt ≤ −µηt
4

(EL(x̄(t))− L⋆)−
3L2ηt
4

Ξt + η2tA+ η3tB

= −µηt
4

(
EL(x̄(t))− L⋆ +

3L2

µ
Ξt

)
+ η2tA+ η3tB.

Recall also that ηt ≤ η0 ≤ p
µ . Therefore, we have

Vt+1 − Vt ≤ −µηt
4

(
EL(x̄(t))− L⋆ +

3L2ηt
p

Ξt

)
+ η2tA+ η3tB = −µηt

4
Vt + η2tA+ η3tB.

Plugging the above bound back in (29) and then substituting ηt =
16
µt̂

, we get

Wt+1 −Wt =
1

η2t+1

(Vt+1 − (1− 1 + 2t̂

t̂2
)Vt) ≤

1

η2t+1

(
−µηt

4
Vt + η2tA+ η3tB +

1 + 2t̂

t̂2
Vt

)
= −µ2(t̂+ 1)2

(
4

t̂
− 1 + 2t̂

t̂2

)
Vt +

(t̂+ 1)2

t̂2
A+

16(t̂+ 1)2

µt̂3
B.

Observe that t̂ = t+ c L
µp ≥ c L

µp , so that 4
t̂
− 1+2t̂

t̂2
= 2

t̂
− 1

t̂2
≤ 1

t̂
and (t̂+1)2

t̂2
= 1+ 1+2t̂

t̂2
≤ 4. Therefore, the bound above

becomes

Wt+1 −Wt ≤ −µ2 (t̂+ 1)2

t̂
Vt + 4A+

64

µt̂
B ≤ 4A+

64

µt̂
B.

By summing over t ∈ {0, . . . , T − 1} and substituting A and B, we get

WT −W0 ≤ 2LT
σ2
⋆ + dσ2

cdp

n

+

(
T−1∑
t=0

t̂

)
192L2

µp

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)
.

We now substitute WT and W0 to obtain WT − W0 = 1
η2
T
VT − 1

η2
0
V0 = µ2

256 ((T + c L
µp )

2VT −
(

cL
µp

)2
V0). Also, as

c L
µp ≥ 2L

µ ≥ 2, we have
∑T−1

t=0
1
t̂
=
∑T−1

t=0
1

t+c
L
µp

≤ ln(T + 1). Thus, after rearranging terms, the inequality above

becomes

(T + c L
µp )

2VT −
(

cL
µp

)2
V0 ≤ 512LT

µ2

σ2
⋆ + dσ2

cdp

n

+ ln(T + 1)
49152L2

µ3p

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)
.
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Upon dividing both sides by (T + c L
µp )

2, rearranging terms and recalling that c L
µp ≥ 1, we obtain

VT ≤

(
cL
µp

)2
(T + c L

µp )
2
V0 +

512LT

(T + c L
µp )

2µ2

σ2
⋆ + dσ2

cdp

n

+
ln(T + 1)

(T + c L
µp )

2

49152L2

µ3p

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)

≤ c2L2

µ2p2T 2
V0 +

512L

µ2T

σ2
⋆ + dσ2

cdp

n

+
ln(T + 1)

T 2

49152L2

µ3p

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)
.

Finally, we obtain the final result by substituting VT , V0 and ηT , η0 and rearranging terms:

EL(x̄(T ))− L⋆ +
48L2

µp(T + c L
µp )

ΞT ≤ 512L

µ2T

σ2
⋆ + dσ2

cdp

n

+
ln(T + 1)

T 2

49152L2

µ3p

(
(1− p)(6

ζ2⋆
p

+ σ2
⋆) +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)

+
c2L2(L(x̄(0))− L⋆)

µ2p2T 2
+

48cL3

µ2p2T 2
Ξ0.

B.3.2. NON-CONVEX CASE

Proof. Let assumptions 1, 3, 4, and 5 hold. Consider Algorithm 1 with the constant stepsize sequence defined for every
t ≥ 0 as:

ηt = η := min { p

2cL
, 2

√
(L(x̄(0))− L⋆)n

LT (σ2
⋆ + dσ2

cdp)
}, (31)

where c := max {4
√
3(1− p)(3P + pM), µ

L , 2p,
4pM
n }. This ensures that the conditions of lemmas 7 and 9 are verified.

Consider the sequence defined for every t ≥ 0 as:

Vt := E
[
L(x̄(t))− L⋆

]
+

3L2η

p
Ξt, (32)

where L⋆ := infx∈Rd L(x) denotes the infimum of L. Clearly, since Ξt is also non-negative as a sum of squared distances,
we have Vt ≥ 0 for every t ≥ 0.

Denote A := L
2

σ2
⋆+dσ2

cdp

n and B := 3L2

p

(
6(1− p)

ζ2
⋆

p + (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n +
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
. Following

the same steps of the PL case until (30), we have

Vt+1 − Vt ≤ −η

8
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
− 3L2η

4
Ξt + η2A+ η3B ≤ −η

8
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+ η2A+ η3B.

By averaging over t ∈ {0, . . . , T − 1}, multiplying by 8
η and rearranging terms we obtain

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤ 8(V0 − VT )

ηT
+ 8ηA+ 8η2B.
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By recalling that VT ≥ 0 and substituting the values of V0 and A, we get

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤

8(L(x̄(0))− L⋆ +
3L2η
p Ξ0)

ηT
+ 4ηL

σ2
⋆ + dσ2

cdp

n
+ 8η2B

=
8(L(x̄(0))− L⋆)

ηT
+ 4ηL

σ2
⋆ + dσ2

cdp

n
+ 8η2B +

24L2

pT
Ξ0.

Now, recalling the value of η, and that 1
η = max { 2cL

p , 1
2

√
TL(σ2

⋆+dσ2
cdp)

(L(x̄(0))−L⋆)n
} ≤ 2cL

p + 1
2

√
TL(σ2

⋆+dσ2
cdp)

(L(x̄(0))−L⋆)n
. Therefore, the

bound above becomes

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤ 16cL(L(x̄(0))− L⋆)

pT
+ 4

√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
cdp)

nT

+ 8

√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
cdp)

nT
+

32(L(x̄(0))− L⋆)n

LT (σ2
⋆ + dσ2

cdp)
B +

24L2

pT
Ξ0.

By rearranging terms and substituting B, we obtain

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤ 12

√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
cdp)

nT
+

16cL(L(x̄(0))− L⋆)

pT
+

24L2

pT
Ξ0

+
96L(L(x̄(0))− L⋆)n

pT (σ2
⋆ + dσ2

cdp)

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

The above concludes the proof.

B.4. Proof of Lemmas

We now restate and prove the intermediate lemmas from the previous sections.

Lemma 7 (Descent bound). Under Assumptions 1, 3 and 5, the averages x̄(t) := 1
n

∑n
i=1 x

(t)
i of the iterates of Algorithm 1

with ηt ≤ 1
2L min {1, n

2M } satisfy

E
[
L(x̄(t+1))− L(x̄(t))

]
≤ −ηt

4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4
Ξt +

Lη2t
2

σ2
⋆ + dσ2

cdp

n
. (24)

Proof. Let assumptions 1, 3, and 5 hold. Because mixing matrices preserve the average, as a direct consequence of
Definition 2, we have

x̄(t+1) = x̄(t) − ηt
n

n∑
i=1

g̃
(t)
i = x̄(t) − ηt

n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i ) +

∑
j∈Ni

v
(t)
i,j + v

(t)
i


= x̄(t) − ηt

n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i )− ηt

n

n∑
i=1

∑
j∈Ni

v
(t)
i,j −

ηt
n

n∑
i=1

v
(t)
i .

Recall that for all i ∈ [n], j ∈ Ni, we have v
(t)
i,j = −v

(t)
j,i , so that

∑n
i=1

∑
j∈Ni

v
(t)
i,j = 0. Reporting this in the equation

above yields:

x̄(t+1) = x̄(t) − ηt
n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i )− ηt

n

n∑
i=1

v
(t)
i . (33)

Also, since function L is L-smooth as the average of smooth functions (Assumption 1), by taking conditional expectation Et

on all randomness up to iteration t, we have (see (Bottou et al., 2018))

Et L(x̄(t+1)) ≤ L(x̄(t)) + Et

〈
∇L(x̄(t)), x̄(t+1) − x̄(t)

〉
︸ ︷︷ ︸

=:A

+
L

2
η2t Et

∥∥∥x̄(t+1) − x̄(t)
∥∥∥2
2︸ ︷︷ ︸

=:B

. (34)
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We start by bounding A, by using (33) and the smoothness of Li, as follows:

A = −ηt

〈
∇L(x̄(t)),E

[
1

n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i ) +

1

n

n∑
i=1

v
(t)
i

]〉
= −ηt

〈
∇L(x̄(t)),

1

n

n∑
i=1

∇Li(x
(t)
i )

〉

=
ηt
2

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )−∇L(x̄(t))

∥∥∥∥∥
2

2

−
∥∥∥∇L(x̄(t))

∥∥∥2
2
−

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2


≤ ηt

2

 1

n

n∑
i=1

∥∥∥∇Li(x
(t)
i )−∇Li(x̄

(t))
∥∥∥2
2
−
∥∥∥∇L(x̄(t))

∥∥∥2
2
−

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2


≤ −ηt

2

∥∥∥∇L(x̄(t))
∥∥∥2
2
− ηt

2

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
ηtL

2

2

1

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
.

For the last term B, using (33) and Assumption 3, we obtain

B = Et

∥∥∥∥∥ 1n
n∑

i=1

∇ℓ(x
(t)
i , ξ

(t)
i ) +

1

n

n∑
i=1

v
(t)
i

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1n
n∑

i=1

∇ℓ(x
(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥ 1n
n∑

i=1

v
(t)
i

∥∥∥∥∥
2

2

= E

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇ℓ(x

(t)
i , ξ

(t)
i )−∇Li(x

(t)
i )
)∥∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n

≤ σ2
⋆

n
+

M

n2

n∑
i=1

∥∥∥∇L(x(t)
i )
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n

≤ σ2
⋆

n
+

2M

n2

n∑
i=1

∥∥∥∇L(x(t)
i )−∇L(x̄(t))

∥∥∥2
2
+

2M

n

∥∥∥∇L(x̄(t))
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n

≤ σ2
⋆

n
+

2ML2

n2

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
+

2M

n

∥∥∥∇L(x̄(t))
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n
.

Combining the bounds on A and B in (34), we obtain

Et L(x̄(t+1)) ≤ L(x̄(t))− ηt
2

∥∥∥∇L(x̄(t))
∥∥∥2
2
− ηt

2

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
ηtL

2

2

1

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2

+
L

2
η2t

σ2
⋆

n
+

2ML2

n2

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
+

2M

n

∥∥∥∇L(x̄(t))
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n


≤ L(x̄(t))− ηt

2
(1− 2ML

n
ηt)
∥∥∥∇L(x̄(t))

∥∥∥2
2
− ηt

2
(1− Lηt)

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
ηtL

2

2
(1 +

2ML

n
ηt)

1

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
+

Lη2t
2

σ2
⋆ + dσ2

cdp

n
.

By using ηt ≤ 1
2L min {1, n

2M } and taking total expectations, we conclude:

E
[
L(x̄(t+1))− L(x̄(t))

]
≤ −ηt

4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4

1

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2
2
+

Lη2t
2

σ2
⋆ + dσ2

cdp

n

= −ηt
4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4
Ξt +

Lη2t
2

σ2
⋆ + dσ2

cdp

n
.
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Lemma 8 (Correlated noise reduction). Consider Algorithm 1. For any undirected graph G = ({1, . . . , n}, E) and any
matrix W ∈ Rn×n and at every iteration t, we have

E
∥∥∥N(t)W

∥∥∥2
F

= HG(W) · E
∥∥∥N(t)

∥∥∥2
F

= 2HG(W) |E| dσ2
cor, (25)

where we define HG(W) :=
∑n

i,k=1∥Wi−Wk∥21k∈Ni

2
∑n

i,k=1 1k∈Ni
, and 1k∈Ni

denotes {i, k} ∈ E , and |E| = 1
2

∑n
i,k=1 1k∈Ni

is the

number of edges on the graph G. Moreover, if Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n], where deg(i) = |Ni| is the degree of user i in
the graph, we have HG(W) ≤ 2

kmin
, where kmin ≥ 1 is the minimal degree of graph G.

Proof. Let G = ([n], E) be an arbitrary undirected graph, and W ∈ Rn×n be an arbitrary matrix (not necessarily a mixing
matrix nor dependent upon G). First, we prove that for every j ∈ [n], we have

N(t)Wj =
1

2

n∑
i,k=1

(Wij −Wkj)1k∈Ni
v
(t)
ik , (35)

where Wj ∈ Rn denotes the j-th column of W. Indeed, we have

N(t)Wj =
n∑

i=1

WijN
(t)
i =

n∑
i=1

∑
k∈Ni

Wijv
(t)
ik =

n∑
i,k=1

Wij1k∈Ni
v
(t)
ik (36)

=

n∑
i,k=1

Wij1i∈Nk
v
(t)
ik = −

n∑
i,k=1

Wij1i∈Nk
v
(t)
ki = −

n∑
i,k=1

Wkj1k∈Ni
v
(t)
ik , (37)

where the last three equalities were successively obtained by using the facts that G is undirected so 1i∈Nk
= 1k∈Ni

, that
v
(t)
ik = −v

(t)
ik ,∀i, k ∈ [n], and exchanging symbols i, k in the double summation. Thus, averaging equalities (36) and (37)

proves Equation (35).

Now, using Equation (35), we can write

E
∥∥∥N(t)W

∥∥∥2
F

=

n∑
j=1

E
∥∥∥N(t)Wj

∥∥∥2 =
1

4

n∑
j=1

E

∥∥∥∥∥∥
n∑

i,k=1

(Wij −Wkj)1k∈Ni
v
(t)
ik

∥∥∥∥∥∥
2

=
1

4

n∑
j=1

E

∥∥∥∥∥∥∥
n∑

i,k=1
i<k

[
(Wij −Wkj)1k∈Ni

v
(t)
ik + (Wkj −Wij)1i∈Nk

v
(t)
ki

]∥∥∥∥∥∥∥
2

=
1

4

n∑
j=1

E

∥∥∥∥∥∥∥2
n∑

i,k=1
i<k

(Wij −Wkj)1k∈Ni
v
(t)
ik

∥∥∥∥∥∥∥
2

=

n∑
j=1

n∑
i,k=1
i<k

(Wij −Wkj)
21k∈Ni

E
∥∥∥v(t)

ik

∥∥∥2

=

n∑
j=1

n∑
i,k=1
i<k

(Wij −Wkj)
21k∈Ni

dσ2
cor =

1

2

n∑
i,j,k=1

(Wij −Wkj)
21k∈Ni

dσ2
cor

=
1

2

n∑
i,k=1

∥Wi −Wk∥2 1k∈Ni
dσ2

cor,

where in the fourth equality we used that v(t)
ki = −v

(t)
ik and that 1i∈Nk

= 1k∈Ni
, on the fifth equality we used that v(t)

ik are

independent for i < k, and on the sixth equality that E
∥∥∥v(t)

il

∥∥∥2 = dσ2
cor.

Also, taking W = In in the equation above (which holds for arbitrary W), we have ∥Wi −Wk∥2 = 2 · 1k ̸=i, and thus

E
∥∥∥N(t)

∥∥∥2
F

=

n∑
i,k=1

1k∈Nidσ
2
cor = 2 |E| dσ2

cor.
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The last two equations directly lead to the main result of the lemma.

Now, denote by kmin ≥ 1 the minimal degree of G and assume that Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n], where deg(i) = |Ni| is

the degree of user i in the graph. Thus, we have ∥Wi∥2 = deg(i)
(deg(i)+1)2 . Using Jensen’s inequality, we have

n∑
i,k=1

∥Wi −Wk∥2 1k∈Ni ≤ 2

n∑
i,k=1

(
∥Wi∥+ ∥Wk∥2

)
1k∈Ni = 4

n∑
i,k=1

∥Wi∥2 1k∈Ni

= 4

n∑
i,k=1

deg(i)

(deg(i) + 1)2
1k∈Ni

= 4

n∑
i=1

deg(i)2

(deg(i) + 1)2
.

On the other hand, we have 2
∑n

i,k=1 1k∈Ni
= 2

∑n
i=1 deg(i), so that

HG(W) =

∑n
i,k=1 ∥Wi −Wk∥2 1k∈Ni

2
∑n

i,k=1 1k∈Ni

≤ 2

∑n
i=1

deg(i)2

(deg(i)+1)2∑n
i=1 deg(i)

≤ 2max
i∈[n]

deg(i)

(deg(i) + 1)2
≤ 2kmin

(kmin + 1)2
≤ 2

kmin
.

This concludes the second statement of the lemma.

Lemma 9 (Consensus distance recursion). Under Assumptions 1, 3, and 5, if in addition stepsizes satisfy ηt ≤
p

L
√

6(1−p)(3+pM)
, then

Ξt+1 ≤ (1− p

2
)Ξt + 2η2t (1− p)(

3P

p
+M)E

∥∥∥∇L(x̄(t))
∥∥∥2
2

+ η2t

[
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]
,

where Ξt :=
1
n

∑n
i=1 E

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is the consensus distance.

Proof. Let assumptions 1, 3, and 5 hold. Also, assume that stepsizes verify ηt ≤ p

96
√
6τL

for each iteration t. Denote

∂ℓ(X(t)) :=
[
∇L1(x

(t)
1 ), . . . ,∇Ln(x

(t)
n )
]
∈ Rd×n.

We first write

X(t+1) − X̄(t+1) = X(t+
1
2 )W −X(t+

1
2 )

11⊤

n
= X(t+

1
2 )(W − 11⊤

n
)

=
[
X(t) − ηt

(
∂ℓ(X(t), ξ(t)) +N(t) + N̄(t)

)]
(W − 11⊤

n
)

= X(t)(W − 11⊤

n
)− ηt

(
∂ℓ(X(t), ξ(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
)

= (X(t) − ηt∂ℓ(X
(t)))(W − 11⊤

n
)

− ηt

(
∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
).

By independence, taking squared Frobenius norms and total expectations yields

nΞt+1 = E
∥∥∥X(t+1) − X̄(t+1)
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F
= E
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n
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∥∥∥∥2
F

+ η2t E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
)

∥∥∥∥2
F

. (38)
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The first term on the RHS of (38) can be bounded, by first using Assumption 5 and then Young’s inequality, as follows:

E
∥∥∥∥(X(t) − ηt∂ℓ(X

(t)))(W − 11⊤

n
)

∥∥∥∥2
F

≤ (1− p)E
∥∥∥∥X(t) − ηt∂ℓ(X

(t))− X̄(t) + ηt∂ℓ(X
(t))

11⊤

n

∥∥∥∥2
F

= (1− p)E
∥∥∥∥X(t) − X̄(t) − ηt(∂ℓ(X

(t))− ∂ℓ(X(t))
11⊤

n
)

∥∥∥∥2
F

≤ (1− p)(1 +
p

3(1− p)
)E
∥∥∥X(t) − X̄(t)

∥∥∥2
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3(1− p)

p
)η2t E
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11⊤

n

∥∥∥∥2
F

= (1− 2p
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(1− p)(3− 2p)

p
η2t E

∥∥∥∥∂ℓ(X(t))− ∂ℓ(X(t))
11⊤

n

∥∥∥∥2
F

≤ (1− 2p

3
)nΞt +

3(1− p)

p
η2t E

∥∥∥∂ℓ(X(t))
∥∥∥2
F
,

where the last inequality is due to p ≥ 0 and also that for any A ∈ Rd×n, B ∈ Rn×n, we have ∥AB∥F ≤ ∥A∥F ∥B∥2,

along with the fact that
∥∥∥In − 11⊤

n

∥∥∥
2
= 1.

The second term on the RHS of (38) can be bounded, using independence, as follows:

E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
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n
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=
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.

We note that since N̄(t) is a matrix of d× n i.i.d. Gaussian variables of variance σ2
cdp, we have E

∥∥∥N̄(t)(W − 11⊤

n )
∥∥∥2
F
=∥∥∥W − 11⊤

n

∥∥∥2
F
dnσ2

cdp. Moreover, using the fact that the sum of correlated noise terms is zero and then Lemma 8, we

have E
∥∥∥N(t)(W − 11⊤

n )
∥∥∥2
F
= E

∥∥N(t)W
∥∥2
F
= 2HG(W)|E|dσ2

cor. Plugging these last two results above, and then using
Assumption 5, yields:
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Reporting the previous bounds back in (38) gives

nΞt+1 ≤ (1− 2p

3
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p
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.

Rearranging and dividing by n yields
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3
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. (39)
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On the one hand, by using assumptions 1 and 3 and Jensen’s inequality, we have
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E
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On the other hand, by using assumptions 3 and 1 and Jensen’s inequality, we obtain that
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By reporting the two bounds above back into (39) and rearranging terms, and using ηt ≤ p

L
√

6(1−p)(3+pM)
we obtain
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The above concludes the proof.

C. Privacy-utility Trade-off
In this section, we prove our main privacy result stated in Corollary 3 and extend it to the general privacy adversaries
discussed in Section 2. We first recall some useful facts around Rényi differential privacy (RDP) (Mironov, 2017).
Lemma 10 (RDP Composition, (Mironov, 2017)). If a privacy mechanism M1 that takes the dataset as input is (α, ε1)-RDP,
and a privacy mechanism M2 that takes the dataset and the output of M1 as input is (α, ε2)-RDP, then their composition
M2 ◦M1 is (α, ε1 + ε2)-RDP.

Lemma 11 (RDP to DP conversion, (Mironov, 2017)). If a privacy mechanism M is (α, ε)-RDP, then M is (ε+ log (1/δ)
α−1 , δ)-

DP for all δ ∈ (0, 1).

Proof of Corollary 3. For convenience, we restate Corollary 3 below, whose proof is a special case of the extended
privacy-utility trade-off result given next.
Corollary 3. Let Assumptions 1-5 hold. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). Algorithm 1 satisfies (ε, δ)-
SecLDP (Definition 1) with expected error

O
(
C2d log (1/δ)

n2ε2

)
,

against the following adversaries:
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• an external eavesdropper: if G is connected, σ2
cdp = 32C2T log (1/δ)

nε2 and σ2
cor =

32C2T log (1/δ)
a(G)ε2 ,

• honest-but-curious non-colluding users: if G is 2-connected, σ2
cdp = 32C2T log (1/δ)

(n−1)ε2 and σ2
cor =

32C2T log (1/δ)
a1(G)ε2 , where

a1(G) is the minimum algebraic connectivity across subgraphs obtained by deleting a single vertex from G.

In the above, O omits absolute constants, vanishing terms in T , and privacy-independent multiplicative constants L, µ.

Proof. This result is a special case of Corollary 12, by taking q = 0 for the external eavesdropper and q = 1 for the
honest-but-curious non-colluding users in the PL case, and omitting vanishing terms in T .

Extended privacy-utility trade-off. We now state and prove a general privacy-utility trade-off analysis of DECOR to all
considered adversaries in Section 2, which includes collusion, as well as the non-convex case.

Corollary 12. Let the assumptions of theorems 1 and 2 hold and assume that G is (q + 1)-connected. Let ε > 0, δ ∈ (0, 1)

be such that ε ≤ log (1/δ). Consider Algorithm 1 with σ2
cdp = 32C2T log (1/δ)

(n−q)ε2 and σ2
cor = 32C2T log (1/δ)

aq(G)ε2 . Denote

L0 := L(x̄(0))− L⋆. Then, Algorithm 1 satisfies (ε, δ)-SecLDP and the following holds:

1. Assume that L is µ-PL:
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2. In the general non-convex case:

1

T

T−1∑
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E
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√
LL0σ2

⋆
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)
.

Proof. Let the assumptions of theorems 1 and 2 hold. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ) and assume
that G is (q + 1)-connected. Consider Algorithm 1 with σ2

cdp = 32C2T log (1/δ)
(n−q)ε2 and σ2

cor = 32C2T log (1/δ)
aq(G)ε2 . The latter

quantity is well-defined as G is (q + 1)-connected and thus has positive algebraic connectivity after deleting any set of q
vertices (De Abreu, 2007).

Privacy. We first show the privacy claim. Recall from Theorem 1 that each iteration of Algorithm 1 satisfies (α, αεstep)-
SecRDP against collusion at level q for every α > 1 where

εstep ≤ 2C2

(
1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

)
. (40)

Thus, following the composition property of RDP from Lemma 11, the full Algorithm 1 satisfies (α, Tαεstep)-SecRDP for
any α > 1. From Lemma 11, we deduce that Algorithm 1 satisfies (ε′(α), δ)-SecLDP for any δ ∈ (0, 1) and any α > 1,
where

ε′(α) = Tαεstep +
log(1/δ)
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+
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Optimizing the above bound over α > 1 yields the solution α⋆ = 1 +

√
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) which gives the bound
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.
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Now, recall that the choice of σ2
cdp, σ

2
cor implies that

1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

=
ε2

16C2T log (1/δ)
.

Therefore, using the assumption ε ≤ log (1/δ), Algorithm 1 satisfies (ε⋆, δ)-DP where

ε⋆ ≤ ε2

8 log (1/δ)
+

ε√
2
≤ ε.

This concludes the proof of the privacy claim.

Upper bound—PL case. Plugging the expressions of σ2
cdp and σ2

cor in the PL bound of Theorem 2 and rearranging terms
yields
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Upper bound—Non-convex case. Plugging the expressions of σ2
cdp and σ2

cor in the non-convex bound of Theorem 2 and
rearranging terms yields
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We conclude by ignoring higher-order terms in T : in 1
T 2 for the PL case and 1

T for the non-convex case.

In the PL case, observe that our privacy-utility trade-off matches CDP whenever there is at most a constant fraction of
colluding user, i.e., the level of collusion is q = O(n). In the extreme scenario where almost all users are colluding, i.e.,
n− q = O(1), then the trade-off matches LDP only, which cannot be improved in general when q = n− 1 (Duchi et al.,
2018). In the non-convex case, while it is not possible to discuss the tightness of our privacy-utility trade-off because
lower bounds on the CDP trade-off are unknown, the error O

(√
d

nε

)
matches the CDP baseline error without variance

reduction (Arora et al., 2022).
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D. Detailed Experimental Setup
In this section, we provide the full experimental setup of our empirical evaluation in Section 6.

Datasets. We conduct our evaluation on three datasets: synthetic data for least-squares regression, a9a LibSVM (Chang &
Lin, 2011) and MNIST (LeCun & Cortes, 2010), that we distribute among n = 16 users, as explained in Section 6.

Privacy parameters. We consider user-level privacy for the first two tasks, and example-level privacy for the last task. For
all our experiments, we set the privacy parameter δ to 10−5, this ensures that δ ≪ 1

nm ≤ 1
n .

D.1. Privacy Noise Parameters Search for DECOR

For a pre-specified SecLDP privacy budget ε, we would like to find a corresponding couple of privacy noises (σcdp, σcor) to
be used in DECOR. However, Algorithm 2 does the reverse process, i.e., it computes the per-step SecRDP budget, denoted
εRDP
iter here, given the privacy noise couple (σcdp, σcor). Moreover, it is straightforward to obtain the desired per-step RDP

budget εRDP
iter given the full DP budget ε using composition and conversion properties of RDP (Mironov, 2017). Hence, we

only need to search for (σcdp, σcor), given a pre-specified εRDP
iter . To do so, we fix σcdp, and we look for the other parameter

σcor, using binary search, since the function εRDP
iter (σcor) is monotonous (non-increasing), as shown in Figure 2. Specifically,

we use the following steps in our search:

1. Given the global (user-level) SecLDP privacy budget ε, we determine the per-step SecRDP privacy budget εRDP
iter using

the RDP composition and conversion properties

2. We know that the uncorrelated noise variance σcdp is bounded between the privacy noise variance used for the baseline
CDP algorithm C

√
2√

nεRDP
iter

, and the one used for the LDP baseline, that is C
√
2√

εRDP
iter

. So we start by fixing σcdp in the

interval [ C
√
2√

nεRDP
iter

, C
√
2√

εRDP
iter

]

3. For every fixed σcdp, we search for the corresponding σcor in a sufficiently large interval ([1, 103] in our experiments)
using binary search on the outputs of our SecRDP accountant (Algorithm 2).
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Figure 2. User-level SecLDP privacy budget ε, using Algorithm 2, as a function of σcor given a fixed σcdp in the center of the search
interval, a total number of iterations T = 1000 and a clipping threshold C = 1.

Example-level privacy. The procedure to get the privacy noise parameters is slightly different for example-level privacy.
Indeed, we use RDP privacy amplification by subsampling (Wang et al., 2019) after using Algorithm 2. However, the RDP
privacy amplification by subsampling does not have a closed-form expression, so we cannot directly get the desired per-step
SecRDP budget from the full DP budget ε. Therefore, we again fix σcdp in a grid, this time in [ C

1000 ,
C
20 ], and we look

for the other parameter σcor (this time in [ C
2000 ,

C
10 ]) using binary search, since the function εRDP

iter (σcor) is monotonous
(non-increasing), as shown in Figure 3.
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Figure 3. Example-level SecLDP privacy budget ε, using Algorithm 2 and RDP amplification by subsampling (Wang et al., 2019), as
function of σcor given a fixed σcdp = 5C

1000
, a total number of iterations T = 1000, clipping threshold C = 1 and batch size 64.

D.2. Hyperparameter Tuning

For all considered tasks, we tune the hyperparameters of each algorithm individually, following the same steps, to obtain:
the learning rate η, the clipping threshold C and the noise parameters σcdp and σcor. It is important to note that the couple
of privacy noise parameters (σcdp, σcor) is not unique: we can find many couples that yield the same SecRDP budget, which
is also visible in the theoretical bound from Theorem 1. However, in the CDP and LDP baselines (D-SGD with uncorrelated
privacy noise), they are determined uniquely by the RDP guarantee for the Gaussian mechanism (Mironov, 2017).

For our tuning, we choose a grid of learning rates and clipping thresholds. First, we simply evaluate the CDP and
LDP baselines with the desired topology on all the learning rate and clipping couples (η, C), and then we pick the best
hyperparameter couple at the end. For DECOR, we do the same procedure for (η, C). However, there are many possible
noise couples (σcdp, σcor) following the privacy noise search in the previous section, we choose three among them that yield
the same privacy budget: the one with the lowest σcdp (first couple found by binary search), the largest σcdp (last couple)
and the one in the middle. After evaluating these noises with every couple (η, C), we choose at the end the best quadruplet
of hyperparameters.
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