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Abstract

In many applications of federated learning (FL), clients desire models that are1

personalized using their local data, yet are also robust in the sense that they retain2

general global knowledge. However, the presence of data heterogeneity across3

clients induces a fundamental trade-off between personalization (i.e., adaptation to4

a local distribution) and robustness (i.e., not forgetting previously learned general5

knowledge). It is critical to understand how to navigate this personalization vs6

robustness trade-off when designing federated systems, which are increasingly7

moving towards a paradigm of fine-tuning large foundation models. Due to limited8

computational and communication capabilities in most federated settings, this9

foundation model fine-tuning must be done using parameter-efficient fine-tuning10

(PEFT) approaches. While some recent work has studied federated approaches11

to PEFT, the personalization vs robustness trade-off of federated PEFT has been12

largely unexplored. In this work, we take a step towards bridging this gap by13

benchmarking fundamental FL algorithms – FedAvg and FedSGD plus personal-14

ization (via client local fine-tuning) – applied to one of the most ubiquitous PEFT15

approaches to large language models (LLMs) – prompt tuning – in a multitude of16

hyperparameter settings under varying levels of data heterogeneity. Our results17

show that federated-trained prompts can be surprisingly robust when using a small18

learning rate with many local epochs for personalization, especially when using19

an adaptive optimizer as the client optimizer during federated training. We also20

demonstrate that simple approaches such as adding regularization and interpolating21

two prompts are effective in improving the personalization vs robustness trade-off22

in computation-limited settings with few local updates allowed for personalization.23

1 Introduction24

Federated learning (FL) is a framework that enables distributed clients to collaboratively train25

machine learning models in a privacy-preserving manner [43, 25, 33, 65]. Unlike traditional server-26

side distributed training, in FL, each client (e.g., a mobile device)’s local data may follow a distinct27

distribution. This data heterogeneity motivates the development of personalized FL: the goal is to28

learn client-specific models that work well for each client’s own data. Among all the personalized29

FL approaches [e.g., 52, 57, 64, 6], one of the simplest methods is fine-tuning a global model on30

each client’s local data to produce a personalized model [66, 24]. Despite its simplicity, fine-tuning a31

FedAvg (Federated Averaging [45, 43])-trained global model has connections to meta learning [24, 5]32

and representation learning [12], and has been shown to work well over on-device data [58, 48].33

Most of the existing FL personalization benchmarks (e.g., [64, 6, 41]) focus on training small-34

sized models (e.g., in the order of 10M parameters) from scratch. In this paper, we con-35

sider prompt tuning a pre-trained large language model (LLM) (specifically, an 8B parame-36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



ter version of the PaLM model [10]) in the federated setting. As shown in Figure 1, similar37

to the setup considered in [70], during FedAvg training, the PaLM-8B model is kept frozen,38
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Figure 1: In each training round, only
the soft prompts are updated and com-
municated between server and clients.

and only the soft prompt part is tuned and communicated39

between the server and clients; and during the personaliza-40

tion phase, each client will fine-tune the soft prompt locally41

to create a personalized soft prompt. Prompt tuning [31] is42

one of the standard parameter-efficient fine-tuning (PEFT)43

algorithms [14, 36] proposed for LLMs. Considering the44

potential communication and memory limitations in the45

FL settings, PEFT is more suitable than full-model fine-46

tuning; besides, PEFT is shown to be capable of matching47

full-model fine-tuning in many scenarios [31, 21]. To48

create a federated dataset, similar to [67], we partition a49

large-scale instruction tuning dataset based on the task50

types. We create datasets with three different heterogene-51

ity levels (see Figure 2 for an overview of our setup).52

Our contributions are summarized below:53

• We run comprehensive experiments to study the trade-off between personalization (adaptation to54

the clients’ local distributions) and robustness (not forgetting the previously learned knowledge55

obtained during the FL training) over different FL training algorithms (variants of FedAvg and56

FedSGD) and different data heterogeneity levels (high/medium/low). To our knowledge, we are57

the first to study this trade-off in the setting of FL personalization and LLM prompt tuning.58

• We observe that for federated prompt tuning, it is important to use adaptive optimizer (e.g.,59

Adam [27]) as the client optimizer1 in FedAvg (even though the server optimizer already uses60

adaptive optimizer). This is unlike previous proposed adaptive FedAvg algorithm [45] (which uses61

adaptive optimizer at the server, and vanilla SGD at the clients). Our hypothesis is that the loss62

surface is very flat due to the large scale of the learned soft prompt, so using adaptive optimizer at63

the clients are crucial in making enough progress during training (see Section 4 Observation 3a).64

• We observe that during the personalization stage (i.e., during the local prompt fine-tuning stage),65

smaller learning rate achieves better personalization vs robustness trade-off, but it has to run many66

steps to reach the best personalization performance. We also find that simple methods such as67

adding regularization and/or model averaging are effective to achieve the best of both worlds:68

better personalization vs robustness trade-off in fewer local tuning steps (see Figure 5).69

2 Related Works70

Federated PEFT of pre-trained LLMs. A number of works have begun to explore PEFT in the71

federated settings. Some have studied federated prompt tuning on vision tasks, without evaluating72

personalization [69, 8, 18]. Other works have benchmarked federated PEFT on language tasks, but73

again did not consider personalization [67, 71, 4, 3]. To our knowledge, all studies of federated74

PEFT that consider personalization focus on the vision modality [17, 32, 38, 50, 70]. Outside of75

PEFT, [20, 53, 61] studied federated full-model fine-tuning of BERT models, which are at least76

an order of magnitude smaller than modern LLMs. Multiple works have noticed that initializing77

full-model federated training from a pre-trained model can mitigate the effects of data heterogeneity78

[44, 61, 7]. Like our work, [44] also noticed the importance of using adaptive optimizers when79

running federated fine-tuning, but they only considered full-model fine-tuning starting from small80

models. Other works have analyzed the effect of differential privacy on federated training of language81

models via initialization with [35] or by distillation from a pre-trained LLM [55] .82

Personalization in FL. A long line of work within federated learning has developed techniques for83

personalizing models to each client [13, 19, 51, 15, 34, 39, 49, 11, 47, 40]. We defer readers to84

the recent FL personalization benchmarks [64, 6, 41] and the references therein for a more detailed85

discussion of the related work. In this paper, we focus on one of the simplest personalization86

1Note that the resulting algorithm is still a stateless algorithm. A stateless algorithm means that the client
does not maintain states locally and reuse them in the next participating round [25, 57, 64]. In our setting,
it means that clients do not store Adam optimizer state (estimates of moments). Stateful algorithms (e.g.,
SCAFFOLD [26]) can perform poorly with low clients participating rate (see Section 5.1 of [45]).

2



Raw SNI data

Federated 
Train

Federated 
Validation

Federated 
Test

Pre-trained 
PaLM-8B

Global 
prompt

Personalized 
prompts 

partition and split

hyperparameter 
tuning

prompt tuning 
(algos: FedAvg, 

FedSGD, …)

initialize evaluate and 
report metrics

3 partitions 
(high/medium/low-
heterogeneity) for 
Federated Train

each client 
fine-tunes the 
prompt locally

global eval metric 
(out-of-distribution robustness) 

each client in 
Federated Test 
has 3 datasets

local train

local eval

global eval 
(shared across all clients)

local eval metric 
(in-distribution personalization) 

Figure 2: Overview of our experimental setup. We partition and split the raw SNI dataset into
three federated datasets: train (used for training a global prompt), validation (used for hyperparameter
tuning), and test (used for learning and evaluating the personalized prompts). We experiment with
three versions (high/medium/low heterogeneity) of training data. In the test data, each client has
three local datasets: a local train set (used for locally fine-tuning the global prompt to produce the
personalized prompt) and local and global eval sets (used for evaluating the personalized prompt over
the local and global distributions, respectively). The global eval set is shared across all clients, and is
formed by sampling from all test clients’ local eval sets. See Section 3 for more details.

approaches: each client fine-tunes a model locally to get the personalized model [66, 24, 12, 9, 5].87

In particular, we are interested in studying the personalization and robustness trade-off. To our88

knowledge, we are the first to study this trade-off in the setting of federated prompt tuning for LLMs.89

Robustness to catastrophic forgetting during fine-tuning. Robustness can have different defini-90

tions, e.g., robustness to attacks [34, 59] and outliers [30]. In this paper, we focus on a special type,91

that is, robustness to forgetting about the global knowledge learned by FedAvg when each client92

fine-tunes the global prompt locally to get a personalized prompt. This is connected to the robustness93

to distribution shift or out-of-distribution data in the literature, see, e.g., [1, 62, 63, 22, 54, 29, 23],94

where the main difference is that in our experiments, the in-distribution and out-of-distribution95

have a special connection unique to the FL setting: a client’s local distribution vs all clients’ joint96

distribution. Catastrophic forgetting [42] has been studied for decades. Many proposed methods97

(e.g., [46, 28]) may not directly fit the FL setting due to privacy or computation constraint. [48]98

considers a production FL scenario, and proposes to let each client to decide whether to accept the99

personalized model based on validation data metric. This is orthogonal to the robust fine-tuning100

methods we experiment with in Figure 5, where we tried two simple robust fine-tuning methods101

(regularization and model averaging [62, 63, 22]) that do not modify model architecture. We leave102

the investigation of more complicated robust fine-tuning methods (e.g., [54, 23]) to future work.103

3 Experimental Setup104

In this section we detail the framework we use to empirically evaluate federated-trained prompts.105

Datasets. We construct three federated datasets from Super-NaturalInstructions (SNI) [60]. SNI is a106

collection of 1761 diverse NLP tasks belonging to one of 76 task types. Task types include both text107

classification and generation types, with Translation, Question Answering, and Question Generation108

being the most popular. Tasks have on average ∼3000 (query, target) pairs, called instances.109

We partition the instances into clients by first splitting them into training, validation, and test sets110

according to task type. We randomly select 7 task types each for testing and validation2. Then,111

we partition the test and validation data into clients by ordering the instances in each task type by112

task, then breaking these lists into evenly-sized chunks of adjacent instances and designating each113

chunk to a client. As a result, each client’s instances belong to a single task type, and typically a114

single task. Next, we construct three distinct partitions of the training data. First, we construct a high115

heterogeneity partition in exactly the same manner as we partition the validation and test data. We do116

the same for a medium heterogeneity partition, except that we shuffle the instances within each task117

type before dividing them into client chunks, so that each client may have instances from many tasks118

2The test task types are Irony Detection, Text Completion, Explanation, Overlap Extraction, Question
Generation, Dialogue Act Recognition, and Gender Classification.
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of the same type. Lastly, we construct a low heterogeneity partition by shuffling the entire dataset119

before dividing it into client chunks, thus each client has instances from many tasks of many types.120

All of each training clients’ instances are used in federated training, and the same validation and test121

sets are used for all three partitions. We call these three partitions High Heterogeneity Federated SNI122

(HHF-SNI), Medium HF-SNI (MHF-SNI), and Low HF-SNI (LHF-SNI), respectively, and provide123

dataset statistics that verify heterogeneity levels in Table 1 and Figure 6 in Appendix C.124

Table 1: Dataset statistics. Entries show the mean total in-
stances and unique tasks and task types found in each client’s
dataset (rounded to the nearest integer) ± standard deviation
across training clients. All partitions have 3520 training clients
and all federated experiments sample 32 training clients/round.
There are 326 test and validation clients each, and each has ap-
proximately 1200 instances.

Dataset Instances Tasks Task types

HHF-SNI 1201 ± 17.6 1 ± 0.8 1 ± 0
MHF-SNI 1201 ± 17.6 118 ± 111.2 1 ± 0
LHF-SNI 1201 ± 0.4 640 ± 10.8 50 ± 1.8

Model and metric. We use the 8125

billion-parameter version of the126

original PaLM [10], which was127

trained on 780 billion tokens from128

sources including social media129

and Wikipedia3. Following [60],130

we use ROUGE-L [37] to mea-131

sure similarity between predicted132

and target sequences, with scores133

in [0, 1] and larger scores indicat-134

ing greater similarity.135

Experimental procedure. We136

execute a two-stage experimen-137

tal procedure. In Stage 1, we run138

federated learning on the training clients to learn global prompt parameters (see Appendix A for more139

details on prompt tuning). In Stage 2, we evaluate the quality of these global parameters by using140

them to initialize local training (personalization) on each test client. In particular, each test client141

independently trains a soft prompt on their training set starting from the federated-trained global142

prompt. As this local training progresses we record the prompt’s scores on the corresponding client’s143

test data and on a global test dataset compiled across all of the test clients’ test datasets. The local144

scores serve as the personalization metric, while the global scores serve as the robustness metric.145

We hyperparameter tune in Stage 1 by evaluating the global prompt on a global validation dataset146

collected from all the validation clients, and in Stage 2 by running personalization on the validation147

clients. Figure 2 depicts this procedure in detail.148

Baselines and hyperparameters. We study a generalized version of FedAvg proposed in [45] that149

allows for adaptive server and client optimizers1. As in [45], we find that using an adaptive server150

optimizer, in our case Adam, improves over SGD, so all our experiments use Adam on the server side.151

For the client optimizer1, we experiment with both Adam and SGD, referring to these versions of152

FedAvg as FedAvg(Adam) and FedAvg(SGD), respectively. Both algorithms make 16 local updates153

with batch size 32 on 32 sampled clients per round for 300 rounds, and the Adam optimizer is154

re-initialized from scratch at the start of each selected client’s local training round. We also consider155

FedSGD, in which 32 clients per round send the gradient of the global prompt estimated on 32156

instances directly back to the server, and the server updates the global model using Adam. We execute157

FedSGD for 4800 rounds so that FedSGD processes the same total number of instances as the FedAvg158

methods. In Appendix C, we explore a version of FedSGD that multiplies the batch size (rather than159

the number of communication rounds) by 16 in order to see the same number of instances as FedAvg,160

noting that this gave significantly worse results. We also run Centralized training with Adam and161

batch size 1024 (same effective batch size as FedSGD) for 4800 rounds.162

All algorithms optimize prompts of length 10 (tuned in {5, 10, 20}) with embedding dimension 4096.163

We tune learning rates, the Adam epsilon parameter, and the weight decay parameter during federated164

training. For personalization, we run Adam and tune its learning rate based on the number of epochs165

available. We evaluate on 32 test clients, each with training and test sets of 256 and 128 instances,166

respectively, and a global test set of 2048 instances. Additional details are provided in Appendix C.167

4 Results168

Next, we share personalization (i.e., the local score obtained by evaluating a client’s personalized169

model on this client’s local data) vs robustness (i.e., the global score obtained by evaluating the same170

personalized model over the global test set) curves during personalization. Each point in each plot171

3We choose this model to minimize data leakage, since it was released prior to the release of SNI. Nevertheless,
there could still be overlap between its training data and the sources used by SNI.
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Figure 3: (Left) Global and local scores during personalization with varying learning rates from a
prompt trained on HHF-SNI by FedAvg(Adam). All runs besides those with the largest two learning
rates are run for 100 epochs, and otherwise 20 epochs. (Center) Global and local scores during
100 epochs (high computation) of personalization starting from FedAvg(Adam) and Centralized-
pre-trained prompts and random initializations (with evaluations every 4 epochs), plus global and
local scores with no prompt and few-shot (engineered) prompts. (Right) Global prompt norm,
average gradient norm across clients, and norm of prompt change on consecutive rounds during
FedAvg(Adam) and FedAvg(SGD) training. All norms are Frobenius.

is the mean (local score, global score) across clients during a personalization epoch, averaged over172

two-end-to-end trials with distinct random seeds4. These results admit a number of observations.173

Observation 1: Choice of personalization learning rate induces computation vs robustness174

trade-off. Figure 3(Left) plots global and local scores during personaliztion with varying learning175

rates starting from a prompt pre-trained on HHF-SNI with FedAvg(Adam). These results show that176

the personalization vs robustness trade-off is heavily dependent on the personalization learning rate.177

In particular, higher global scores can be maintained by personalizing with smaller learning rates, but178

at the cost of requiring more epochs to reach the maximal local scores. Specifically, with learning179

rate 10−0.5, the average local score reaches 0.32 within 10 epochs and the average global score drops180

to 0.15, and with learning rate 10−2, 64 epochs are required to reach average local score 0.32, but181

the average global score does not drop below 0.19. In effect, this induces a computation vs robustness182

trade-off: more robustness necessitates more computation.183

This motivates us to consider two distinct regimes for personalization: (1) High Computation, in184

which each client executes 100 epochs of personalization, and (2) Low Computation, in which each185

client executes 10 epochs of personalization, with learning rates tuned to achieve the best local score186

(0.32) with minimal drop in global score for each regime. We use regime (1) to compare different187

pre-training algorithms, as this allows the best performance for each algorithm (Observations 2 and188

3). Then, we conclude by showing the more severe forgetting in regime (2) can be mitigated by189

incorporating a number of heuristics (Observation 4).190

Observation 2: Benefit of FL pre-training. Figure 3(Center) considers the High Computation191

regime and shows global vs local score curves for prompts pre-trained with FedAvg(Adam) and192

centralized training, along with prompts initialized by sampling from a Gaussian distribution (“Ran-193

dom Gaussian”) and by sampling 10 token embeddings from the PaLM token embedding matrix194

(“Random Word”) [16]. FedAvg(Adam) yields the best personalization vs robustness trade-off, espe-195

cially compared to the random initializations. Surprisingly, FedAvg(Adam) outperforms centralized196

training, although centralized training achieves smaller training loss (see Appendix C), as expected197

due to possible objective inconsistency for FedAvg [56]. FedAvg(Adam) also outperforms both No198

Prompt and Few-shot Prompts, which are constructed using instructional examples according to the199

best procedure reported in [60]; please see Appendix C for details.200

Observation 3a: Importance of adaptive client optimizer1. Figure 4 compares prompts trained201

with FedAvg(Adam), FedAvg(SGD), and FedSGD during personalization in the High Computation202

regime. FedAvg(Adam) outperforms FedAvg(SGD) on all three training partitions, highlighting the203

benefit of using an adaptive client optimizer5. It is well-known that adaptive optimization enhances204

full-model transformer training [68], but to our knowledge this has not yet been observed for prompt205

4Our observations are consistent across random seeds; see results for individual seeds in Appendix C.
5Often, the client optimizer in FL is SGD, motivated by the added memory cost of Adam [45]. However, this

cost is linear in the number of trainable parameters, so it is small for prompt tuning.

5



0.20 0.22 0.24 0.26 0.28 0.30 0.32
Mean Local Score

0.16

0.17

0.18

0.19

0.20

0.21

M
ea

n 
Gl

ob
al

 S
co

re

High Heterogeneity (HHF-SNI)

FedAvg(Adam)
FedAvg(SGD)
FedSGD

0.20 0.22 0.24 0.26 0.28 0.30 0.32
Mean Local Score

0.16

0.17

0.18

0.19

0.20

0.21

M
ea

n 
Gl

ob
al

 S
co

re

Medium Heterogeneity (MHF-SNI)

FedAvg(Adam)
FedAvg(SGD)
FedSGD

0.20 0.22 0.24 0.26 0.28 0.30 0.32
Mean Local Score

0.16

0.17

0.18

0.19

0.20

0.21

M
ea

n 
Gl

ob
al

 S
co

re

Low Heterogeneity (LHF-SNI)

FedAvg(Adam)
FedAvg(SGD)
FedSGD

Figure 4: High Computation regime: scores evaluated every 4 epochs during 100 epochs of
personalization starting from prompts pre-trained by FedAvg(Adam), FedAvg(SGD) and FedSGD on
(Left) HHF-SNI, (Center) MHF-SNI, and (Right) LHF-SNI.
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Figure 5: Low Computation regime: scores evaluated every epoch during 10 epochs of personal-
ization with robust-l2 regularization with parameter λ, and possibly model averaging, starting from
prompts trained by FedAvg(Adam) on (Left) HHF-SNI, (Center) MHF-SNI, and (Right) LHF-SNI.

tuning. Based on Figure 3, we conjecture that Adam’s benefit stems from prompt tuning’s flat loss206

landscape relative to prompt scale. For both FedAvg(Adam) and FedAvg(SGD), gradient norms are207

three orders of magnitude smaller than prompt norms throughout training. This means that the SGD208

updates are relatively insignificant, unlike the Adam updates that have normalized gradient and a209

momentum term that scales with the prompt norm. Thus, FedAvg(SGD) has smaller prompt changes210

than FedAvg(Adam), despite having a client learning rate 100x larger (see Table 3).211

Observation 3b: Importance of multiple local updates. Figure 4 also shows that FedAvg(Adam)212

outperforms FedSGD, especially with lower training data heterogeneity. Multiple recent works have213

noticed the superiority of FedAvg-trained models as initializations for personalization compared to214

FedSGD-trained models [5, 12, 24], but these works did not consider the robustness to forgetting215

after personalization (nor prompt tuning). In contrast, here we observe that the improvement due216

to FedAvg is mostly due to higher global scores. Since we use Adam as the server optimizer for217

FedSGD, the improvement of FedAvg(Adam) cannot be due to its updates being adaptive, but must218

be due to making multiple of them between communication.219

Observation 4: Personalization-robustness trade-off can be improved by personalization220

heuristics. Figure 5 considers the Low Computation regime, in which each client only executes 10221

personalization epochs. Here, we evaluate two heuristics to improve the personalization vs robustness222

trade-off: (1) l2 regularization and (2) model averaging [62, 63, 22]. For (1), we add l2 regularization223

with parameter λ to the loss that penalizes the distance of the personalized prompt from the global224

prompt. For (2), we first run full personalization, then compute final client-specific prompts by225

interpolating the global and personalized prompts, with increasing weight on the personalized prompt226

moving from left to right in the plots. Figure 5 shows that both of these techniques, as well as their227

combination, improve the personalization-robustness trade-off for FedAvg(Adam)-trained prompts.228

Conclusion. Our benchmarking experiments evince the effectiveness of FL for prompt pre-training.229

We also provide methods to improve the personalization vs robustness trade-off for federated-trained230

prompts. Nevertheless, we only explore simple FL algorithms, without privacy guarantees, on a231

single model (PaLM-8b); investigation of federated prompt tuning’s performance along each of these232

axes remains important future work.233
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A Formal Problem Setup436

Federated prompt tuning. We consider a federated learning scenario consisting of n clients that437

communicate with a central server. For every i ∈ [n], Client i has a dataset Di := {(xi,j , yi,j)}mi
j=1438

consisting of mi query-target pairs (xi,j , yi,j), where each query xi,j and target yi,j is a variable-439

length text sequence. All clients also have a copy of a language model with parameters θ, a tokenizer440

τ mapping text to a list of one-hot encodings of tokens, and a token embedding matrix E ∈ Re×v,441

where e is the embedding dimension and v is the vocabulary size.442

When provided an input x, the language model computes the conditional distribution of tokenized443

targets given the embedding of the tokenized input query, namely Pθ(τ(Y )|Eτ(x)), in order to444

generate text predictions. A natural idea to more accurately estimate the conditional distribution of445

τ(Y ) is to add text (a prompt) p to the input query that provides information about the relationship446

between inputs and targets for each task at hand, such as instructions or examples of gold-standard447

(x, y) pairs. In other words, the idea is that Pθ(τ(Y )|Eτ([p, x])) ≡ Pθ(τ(Y )|[Eτ(p), Eτ(x)])448

should be a more accurate estimation of the true conditional distribution of Y given x for carefully449

chosen p. This approach is known as in-context learning or prompt engineering and has led to many450

successful adaptations of LLMs [2]. However, these discrete text prompts cannot be easily optimized,451

and restricting the embedded prompt Eτ(p) to columns in E limits the information it can convey452

about the relationship between Y and X .453

Prompt tuning [31] addresses these concerns by optimizing a “soft” prompt in embedding space. For454

some number of tokens k, prompt tuning aims to learn a matrix P ∈ Re×k that conditions the model455

for more accurate predictions when prepended to the embedding of the input text tokens, i.e. the new456

model is given by Pθ(τ(Y )|[P,Eτ(x)]). In this case, the gradient of the loss of Pθ(τ(Y )|[P,Eτ(x)])457

with respect to P can be easily computed via backpropagation, and we can optimize P with standard458

gradient-based methods. This loss is the cross-entropy loss, in particular, the loss as a function of P459

for Client i in our federated setting is:460

Li(P ) := −
1

mi

mi∑
j=1

log(Pθ(τ(yi,j)|[P,Eτ(xi,j)])) (1)

During federated training, the server aims to minimize the average loss across clients, namelyL(P ) :=461
1
n

∑n
i=1 Li(P ), and towards this end can apply standard Federated Learning algorithms such as462

FedAvg and FedSGD. Importantly, only the prompt embedding matrix P must be communicated463

between server and clients, as depicted in Figure 1.464

Personalization and robustness. Due to the heterogeneity of the client datasets D1, . . . ,Dn, the465

global prompt Pglob found by running federated learning on L(P ) may not perform well on each466

client’s local data. This can be addressed by personalizing Pglob to each client. Formally, we consider467

a new set of ntest clients with datasets Dn+1, . . . ,Dn+ntest that are split into training and test sets, i.e.468

Di = Dtrain
i ∪ Dtest

i for all i = n + 1, . . . , n + ntest. During personalization, Client i updates Pglob469

using its local training dataset Dtrain
i to obtain a prompt Pi. The level of personalization achieved by470

this prompt is evaluated using Dtest
i . However, it is also of interest to know how robust Pglob is to471

personalization, as we do not want Pi to have forgotten all of the global information it acquired during472

federated training. So, Pi is also evaluated on a global test dataset compiled across all client test473

datasets Dtest
n , . . . ,Dtest

n+ntest
to obtain a robustness score. These local personalization and robustness474
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Figure 6: For each of the three training dataset partitions (HHF-SNI, MHF-SNI, LHF-SNI) and
each metadata category (Task Type, Task, Source, Domain, Reasoning, Input Language, and Output
Language), we plot the average across clients of the KL divergence between the client’s metadata
category distribution and the global metadata category distribution, in log scale.

scores are ultimately aggregated across clients and used for final evaluation of the federated algorithm475

used to obtain Pglob.476

B Additional Dataset Details477

Of the 76 total task types in SNI, we excluded the three type because they did not have a suffi-478

cient amount of data for one client (Punctuation Error Detection, Paper Review, Speaker Relation479

Classification) and one type, Mathematics, because the PaLM tokenizer cannot properly interpret480

numerical text input. The data was split into train/validation/test sets by randomly selecting 10% of481

the remaining task types each for validation and testing, and designating the rest for training. The test482

task types are [Irony Detection, Mathematics, Text Completion, Explanation, Overlap Extraction,483

Question Generation, Dialogue Act Recognition, Gender Classification] and the validation types are484

[Answer Verification, Information Extraction, Dialogue Generation, Commonsense Classification,485

Word Relation Classification, Answerability Classification, Sentence Ordering]. There are 326 total486

test clients and 326 total validation clients, although we only use 32 test clients, sampled uniformly487

from the full set of 326 test clients, in our results.488

In Figure 6 we plot average Kullback-Leibler (KL) divergences between each client’s meta-data489

distribution and the global meta-data distribution for each of our three federated partitions of SNI.490

The figure demonstrates that among a variety of meta-data categories, clients on average distributions491

of this meta-data category that differ from the global distribution to an extent that we would expect492

from high, medium and low-heterogeneity partitions (the larger the heterogeneity, the greater the493

difference between client and global distributions).494

C Further Experiments and Details495

Hyperparameters. In all training runs, we initialized the prompts by sampling each element i.i.d.496

fromN (0, 0.25), noting that results from [31] showed that prompt initialization does not significantly497

affect performance at the model scale we consider (∼ 1010 parameters). We tried prompt lengths of498

5, 10, and 20, and saw that length 10 generally outperformed length 5, but there was no improvement499

going from length 10 to length 20, (see Figure 10) so we used length 10 for all other runs. We tuned500

client and server learning rates in {10−2, 10−1, 100, 101} using the global validation set separately for501

each algorithm and each of the three training partitions, plus centralized. The resulting learning rates502

are found in Table 3. We tuned weight decay parameter in {0, 10−2}, and Adam epsilon parameter503

in {10−8, 10−6, 10−4} on HHF-SNI and the centralized dataset, and observed that no weight decay504

and Adam ε = 10−8 worked best in all cases. We used β1 = 0.99 and β2 = 0.999 for Adam. In505

each trial, we used the prompt that achieved the highest global validation score during training for506
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Table 2: Training learning rates. All learning rates were tuned in {0.01, 0.1, 1, 10} and chosen
based on the global validation score they led to during training. The resulting values are shown
here, as (server learning rate, client learning rate) if applicable. Centralized training used Adam with
learning rate 1, tuned in the same set.

Algorithm HHF-SNI MHF-SNI LHF-SNI

FedAvg(Adam) - prompt length 10 (1, 0.1) (0.1, 1) (0.1, 1)
FedAvg(SGD) - prompt length 10 (1, 10) (0.1, 10) (1, 10)
FedSGD - prompt length 10 1 1 1
FedSGD-LB - prompt length 10 0.01 0.1 0.1

Table 3: Adam personalization learning rates. Personalization learning rates were tuned in
{10−3, 10−2, 10−1.5, 10−1}.

Algorithm HHF-SNI MHF-SNI LHF-SNI

FedAvg(Adam) - High Computation 10−2 10−2 10−2

FedAvg(Adam) - Low Computation 10−1 10−1 10−1

FedAvg(SGD) - High Computation 10−2 10−3 10−2

FedAvg(SGD) - Low Computation 10−1 10−2 10−1

FedSGD - High Computation 10−1.5 10−2 10−2

FedSGD - Low Computation 10−1 10−1 10−1

FedSGD-LB - High Computation 10−3 10−3 10−3

Centralized - High Computation 10−2 10−2 10−2

Random-Gaussian - High Computation 10−2 10−2 10−2

Random-Word - High Computation 10−2 10−2 10−2

personalization. Regarding model and evaluation parameters, we set the maximum input query length507

to 1024 tokens and output length to 128 tokens for training and 10 tokens for evaluation, and the508

decoding temperature to 0, following [60]. For examples with multiple targets, we take the max score509

over targets, again following [60].510

C.1 Additional results511

In this section we provide additional empirical results. Unless otherwise noted, all experiments run512

personalization with Adam on a dataset of size 256.513

Role of personalization learning rate with FedSGD-trained prompts. In Figure 7 we verify that514

using a smaller personalization learning rate improves the personalization-robustness trade-off for515

FedSGD-trained prompts, just like we observed for FedAvg(Adam)-trained prompts in Figure 3(Left).516

Again, increased robustness (higher global scores) comes at the cost of additional personalization517

epochs required to reach high local scores.518

Variation across training runs. In Figures 8 and 9 we plot versions of Figure 4 with different random519

seeds for training. In each case the takeaway is the same as Observations 3a,b: FedAvg(Adam)520

outperforms FedAvg(SGD), and FedAvg(Adam) generally outperforms FedSGD, especially when521

trained on low-heterogeneity data and especially in terms of global scores. The one case in which522

FedSGD yields a better personalization-robustness tradeoff is on HHF-SNI (high heterogeneity) with523

seed 0 (Figure 8) due to higher local scores for FedSGD.524

SGD as personalization optimizer. One may suspect that the improvement of FedAvg(Adam) over525

FedAvg(SGD) in the previous results is due to FedAvg(Adam) using the same client optimizer as526

the personalization optimizer (Adam). However, Figure 10 we show that the relative performance527

of FedAvg(Adam) and FedAvg(SGD) does not change when SGD is used as the personalization528

optimizer rather than Adam.529

Impact of fewer personalization samples. In Figure 11 we plot results from personalization with530

varying number of of examples per client, namely 64 and 256. With only 64 samples, late in training531

overfitting to the training set occurs to extent that even local scores decrease. Further, the best local532
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Figure 8: Version of Figure 4 with random seed 0. Mean global and local scores across test clients
evaluated every 4 epochs during 100 epochs of personalization (High Computation regime) starting
from prompts pre-trained by FedAvg(Adam), FedAvg(SGD) and FedSGD with random seed 0 on
(Left) HHF-SNI, (Center) MHF-SNI, and (Right) LHF-SNI.
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Figure 9: Version of Figure 4 with random seed 1. Mean global and local scores across test clients
evaluated every 4 epochs during 100 epochs of personalization (High Computation regime) starting
from prompts pre-trained by FedAvg(Adam), FedAvg(SGD) and FedSGD with random seed 1 on
(Left) HHF-SNI, (Center) MHF-SNI, and (Right) LHF-SNI.
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Figure 10: Personalization with SGD. Mean global and local scores across test clients evaluated
every epoch during 10 epochs of personalization with SGD, starting from prompts pre-trained by
FedAvg(Adam) and FedAvg(SGD) on HHF-SNI.
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Figure 11: Impact of fewer personalization instances. Global and local scores during personaliza-
tion on either 256 or 64 instances (examples) starting from prompts pre-trained on (left) HHF-SNI,
(center) MHF-SNI, and (right) LHF-SNI. For 256 instances, 100 epochs are executed, and for 64
instances, 224 epochs are executed (High Computation regime).
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Figure 12: Low computation, 64 instances. Mean global and local scores across test clients
evaluated every 3 epochs during personalization with 30 total epochs of 64 instances (samples) per
epoch, from prompts pre-trained on (left) HHF-SNI, (center) MHF-SNI, and (right) LHF-SNI.
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Figure 13: FedSGD with many rounds vs large batch size. Mean global and local scores across
test clients during personalization starting from prompts pre-trained by FedSGD with many rounds
(FedSGD-MR, referred to as FedSGD in all other experiments) and FedSGD with large batch size
(FedSGD-LB) on (left) HHF-SNI, (center) MHF-SNI, and (right) LHF-SNI.
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Figure 14: Role of prompt length – FedAvg(Adam). Mean global and local scores evalutated every
4 epochs during 100 epochs of personalization on 256 instances starting from prompts of varying
lengths pre-trained by FedAvg(Adam) on (left) HHF-SNI, (center) MHF-SNI, and (right) LHF-SNI.

score for 64 examples is smaller than the best local score for 256 examples by about 0.01-0.02 for533

each heterogeneity level. However, fewer local samples reduces local scores more so than global534

scores, and early in training the personalization-robustness trade-off is roughly equivalent to that with535

256 examples.536

In Figure 12, we compare the personalization vs robustness trade-off for FedAvg(Adam), Fe-537

dAvg(SGD), and FedSGD-trained prompts with few instances (64) in the Low Computation rage538

(30 epochs). Note that this is more updates than the previously studied Low Computation cases,539

which ran for 10 epochs, but the total amount of computation is actually less because we are here540

running epochs of 64 instances rather than 256 instances in the previous case. The relative ordering of541

performance among the three FL algorithms stays the same, with the exception of FedSGD arguably542

slightly outperforming FedAVg(Adam) in the heterogeneity case.543

Variants of FedSGD. In all previous experiments we have used the version of FedSGD that has544

the same client batch size (32) and number of active clients per round (32) as the FedAvg variants545

we experiment with, but executes 16x more communication rounds than the FedAvg variants (4800546

rounds vs 1600 rounds) so that it sees the same total number of instances (since the FedAvg variants547

make 16 local updates per client per round, whereas FedSGD makes effectively only 1). Now, we548

experiment with a different version of FedSGD that multiplies the client batch size by 16 rather than549

the number of communication rounds. In particular, this version, which we call FedSGD-LargeBatch,550

uses a client batch size of 512, and samples 32 clients per round for 300 rounds. Like the other FL551

algorithms, it uses Adam as its server optimizer. Figure 13 shows that the original version of FedSGD552

with many rounds (referred to here as FedSGD-MR) far outperforms FedSGD-LB, implying that it is553

advantageous to do more updates with noisier gradients.rather thank fewer updates with less noisy554

gradients.555
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Figure 15: Role of prompt length – FedSGD. Mean global and local scores evalutated every 4
epochs during 100 epochs of personalization on 256 instances starting from prompts of varying
lengths pre-trained by FedSGD on (left) HHF-SNI, (center) MHF-SNI, and (right) LHF-SNI.
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Figure 16: Role of prompt length – FedSGD-LB. Mean global and local scores evalutated every
4 epochs during 100 epochs of personalization on 256 instances starting from prompts of varying
lengths pre-trained by FedSGD-LB on (left) HHF-SNI, (center) MHF-SNI, and (right) LHF-SNI.

Role of prompt length. In Figures 14, 15 and 16 we explore the effect of changing the prompt length556

for FedAvg(Adam), FedSGD and FedSGD-LB, respectively, in the High Computation personalization557

regime with 100 epochs of 256 samples. Prompt length 10 seems to be the sweet spot, as prompt558

length 5 gives the worst personalization vs robustness trade-off in all cases besides FedSGD-LB on559

HHF-SNI, and prompt length 20 provides clear improvement over prompt length 10 only in one case560

(FedSGD-LB on LHF-SNI), and can sometimes do significantly worse (as in the FedAvg(Adam)561

cases). The takeaway is similar to that in [31]: increasing the number of tokens in soft prompts562

improves performance up to some number of tokens, but beyond this there is no benefit to further563

increasing the prompt length.564

Variation in client performance. Thus far all of our results have been mean scores across 32 test565

clients. Now, we investigate the variation in performance across clients. In Figure 17, we plot each566

of the 32 test clients’ scores pre- and post-personalization in the Low Computation regime with567

10 epochs of personalization on 256 instances, starting from prompts trained by FedAvg(Adam)568

on HHF-SNI. With the exception of one outlying client, the width of the range of local scores is569

roughly equivalent before and after personalization, while there is a large variance in global scores570

post-personalization.571

In Figure 18, we plot 90th and 10th percentile client global and local scores during personaliza-572

tion in the High Computation regime with 100 epochs of 256 instances from prompts trained by573

FedAvg(Adam), FedAvg(SGD), and FedSGD. That is, instead of each point representing (mean local574

score, mean global score) across clients during some personalization epoch, they instead represent575

(90th percentile local score, 90th percentile global score) across clients during some personalization576

epoch (and likewise for the 10th percentile). This yields a number of takeaways: 1) The worst local577

scores are roughly the same for all algorithms and during all personalization epochs, indicating that578

there are some very hard clients; 2) for all algorithms, the worst global scores drop significantly during579
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Figure 17: Per-client global and local scores before and after personalization (p13n) consisting of 10
epochs on 256 examples from prompts pre-trained by FedAvg(Adam) on HHF-SNI.

0.1 0.2 0.3 0.4 0.5
Mean Local Score

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

M
ea

n 
Gl

ob
al

 S
co

re

HHF-SNI, 90th and 10th percentile client scores

FedAvg(Adam) - 90th%
FedAvg(Adam) - 10th%
FedAvg(SGD) - 90th%
FedAvg(SGD) - 10th%
FedSGD - 90th%
FedSGD - 10th%

0.1 0.2 0.3 0.4 0.5
Mean Local Score

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

M
ea

n 
Gl

ob
al

 S
co

re

MHF-SNI, 90th and 10th percentile client scores

FedAvg(Adam) - 90th%
FedAvg(Adam) - 10th%
FedAvg(SGD) - 90th%
FedAvg(SGD) - 10th%
FedSGD - 90th%
FedSGD - 10th%

0.1 0.2 0.3 0.4 0.5
Mean Local Score

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

M
ea

n 
Gl

ob
al

 S
co

re

LHF-SNI, 90th and 10th percentile client scores

FedAvg(Adam) - 90th%
FedAvg(Adam) - 10th%
FedAvg(SGD) - 90th%
FedAvg(SGD) - 10th%
FedSGD - 90th%
FedSGD - 10th%

Figure 18: Global and local score 90th and 10th percentiles across test clients during personalization
with 100 epochs of 256 instances from prompts pre-trained on (left) HHF-SNI, (center) MHF-SNI,
and (right) LHF-SNI. Scores are evaluated every 4 epochs.

personalization; 3) in contrast, the best global scores do not change much during personalization, and580

the best local scores increase significantly.581

C.2 Personalization heuristics582

In this Section we first describe in greater detail the heuristics evaluated in Figure 5, then explore583

additional heuristics in Figure 19.584

l2 regularization. Let Pglob be the global prompt resulting from federated training, Pi be the prompt
the Client i personalizes, and Pi,10 be the prompt resulting from 10 epochs of personalization to
Client i. The first heuristic we consider, l2 regularization, adds the regularizer

λ

2
‖Pi − Pglob‖2F

to the loss for Client i, then runs personalization as usual. This encourages Pi to stay close to Pglob585

during personalization, which should reduce forgetting.586

Model averaging. Model averaging, first runs personalization to completion, then computes interpo-
lated prompts:

Pi,10∗α = αPi,10 + (1− α)Pglob

for α ∈ {0, 0.1, 0.2, ..., 1}. Each plotted point in Figure 5 corresponds to the average local and global587

scores for Pi,10∗α across all clients i ∈ [32] for a particular value of α.588

Note that l2 regularization are orthogonal and can be combined. We do this in Figure 5 for the scores589

with label “Model Averaging, λ = 10−3”.590

Additional results. Figure 19 shows the same results as Figure 5 plus results for three additional591

personalization approaches:592
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Figure 19: Personalization heuristics – Low Computation. Mean local and global scores during
10 epochs of personalization with various heuristics starting from prompts trained by FedAvg(Adam)
on (Left) HHF-SNI, (Center) MHF-SNI, and (Right) LHF-SNI.

• Freeze First. Recall that P is a matrix of size prompt length (in tokens) by embedding593

dimension, where here the prompt length is 10. For “Freeze First”, we freeze the first 8 rows594

(tokens) and only update the last two rows of Pi (starting from Pglob) during personalization.595

• Freeze Last. Likewise, for “Freeze Last”, we only update the first two rows of Pi. Neither596

“Freeze First” nor “Freeze Last” confer any improvement to the personalization-robustness597

trade-off.598

• Local/Global Genie. These scores are the scores of a genie that knows the whether the599

personalized or global prompt will result in a prediction with larger score for a particular600

input and target, and uses the prompt with higher score for that input. It is equivalent601

to running inference twice for every input, once with the personalized prompt and once602

with the global prompt, and recording the max score among the two predictions, given603

the target. This is not a realistic personalization method because in practice the target is604

unknown. Nevertheless, we find it to be a valuable measure of the combined capabilities of605

personalized and global prompts, i.e. the combined information between the personalized606

and global prompts. The very strong performance of this genie suggests that personalization-607

robustness trade-offs can be drastically improved by appropriately selecting whther to use608

the personalized prompt or global prompt for every input query (in fact, there would no609

longer be a trade-off – both personalized and global scores would inrease). To train the610

personalized prompt, we we run vanilla personalization (i.e. λ = 0 in Figure 19).611
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