
Under review as submission to TMLR

Debiasing Machine Learning Models by Using Weakly Su-
pervised Learning

Anonymous authors
Paper under double-blind review

Abstract

We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the
output of the algorithm and the sensitive variable are continuous. Most of prior work deals
with discrete sensitive variables, meaning that the biases are measured for subgroups of
persons defined by a label, leaving out important algorithmic bias cases, where the sensitive
variable is continuous. Typical examples are unfair decisions made with respect to the
age or the financial status. In our work, we then propose a bias mitigation strategy for
continuous sensitive variables, based on the notion of endogeneity which comes from the
field of econometrics. In addition to solve this new problem, our bias mitigation strategy
is a weakly supervised learning method which requires that a small portion of the data can
be measured in a fair manner. It is model agnostic, in the sense that it does not make
any hypothesis on the prediction model. It also makes use of a reasonably large amount of
input observations and their corresponding predictions. Only a small fraction of the true
output predictions should be known. This therefore limits the need for expert interventions.
Results obtained on synthetic data show the effectiveness of our approach for examples as
close as possible to real-life applications in econometrics.

1 Introduction

Machine Learning (ML) provides a way to learn accurate statistical models able to learn tasks, such as clas-
sification, regression, forecasting, recommendation etc., from data. Despite the flexibility of ML models and
their high accuracy, such algorithms also present some drawbacks. One of the mostly discussed subject over
the past few years is how ML models can produce biased social decisions, i.e. outcomes that systematically
favors some groups to the detriment of others (rich and poor people, for example), based on some variables
referred to as sensitive attributes, which should not play any role in the decision. Such biases lead to ethical
concerns, which have turned to be legal concerns for critical applications due to the new regulations on
the use of Artificial Intelligence. A typical example is the A.I. act1, which will expose to severe sanctions
the companies selling unreasonably biased AI systems in the European-Union, if these systems are used
to high-risk applications. Initiated in Dwork et al. (2012), we then refer for instance to Oneto & Chiappa
(2020), Barocas et al. (2023; 2017), Besse et al. (2022), Bird et al. (2020), Mehrabi et al. (2021) or Del Barrio
et al. (2020) and references therein for important strategies dedicated to mitigate algorithmic biases. If an
A.I. system turns out to be biased, such strategies are indeed of primary importance to make the systems
compliant with the regulations. Let us develop the presentation of these strategies. When a notion of bias in
the algorithm has been defined and chosen, there are a variety of techniques to mitigate model bias, which
can be split into three main categories Mehrabi et al. (2021):

1. Pre-processing techniques: since the data can be biased, for historical reasons, misrepresentation, or
more intricate patterns, the use of such data can render the model unfair. Therefore, treating the
data before it feeds the model is a possible strategy to mitigate the bias in the decisions Kamiran &
Calders (2012); Feldman et al. (2015a); Calmon et al. (2017); Samadi et al. (2018); Gordaliza et al.
(2019).

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (accessed on 24 July 2023)

1

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206


Under review as submission to TMLR

2. In-processing techniques: to reduce the biased decisions, these techniques aim at changing the
model training procedure, by adapting the objective function, by adding constraints, or by doing
both Calders & Verwer (2010); Kamishima et al. (2012); Zafar et al. (2017); Risser et al. (2022b).

3. Post-processing techniques: when one has a black-box model that cannot be changed, the only way
to possibly reduce the bias is by using post-processing techniques. In this case, the outputs produced
by the model are processed once again, to be less biased Kamiran et al. (2010); Hardt et al. (2016);
Woodworth et al. (2017).

In the vast majority of the cases, the problem of Fair Machine Learning deals with classification tasks, with
discrete sensitive attributes (such as gender, or race). In this scenario, the model’s outputs take values on
a discrete set (representing the possible outcomes) and the same occurs for the sensitive attribute (S = 0
representing the protected group, S = 1 representing the privileged one). The usual measures of bias
introduced in this setting consist in evaluating the proportion of individuals belonging to each sub-group
(S = 0 or S = 1) assigned to each class. In this framework we can use measures such as Disparate Impact
Feldman et al. (2015b) — which compares the proportion of individuals who receive a positive outcome in
the privileged and to the ones assigned to the same outcome but belonging to the unprivileged group —
Equalized Odds Hardt et al. (2016) — which compares the true positive and false positive rates between the
two groups —, Equal Opportunity Hardt et al. (2016) — a measure that aims at matching the true positive
rates for different values of the protected attribute — or Treatment Equality Berk et al. (2021) — which
measures the difference between the ratio of false negatives to false positives between both groups.

However, in forecasting applications, where the objective is to produce a score that suitably summarizes
the input data, the model’s output referred to as Y (x) no longer takes values on a discrete set but in a
continuous interval. Hence, Y (x) ∈ [a, b], where x represents all attributes (sensitive and non-sensitive ones).
This renders the evaluation of the model’s fair behavior more difficult, since it is hard to ensure that the
values of Y (x) are the same for x belonging to different sub-groups. In this scenario, measures like Fairness
through Awareness Dwork et al. (2012) and Counterfactual Fairness Kusner et al. (2017) are interesting
options, since their strategy to mitigate bias does not rely on some discretization of the attributes, but
instead they are able to deal with continuous-valued sensitive attributes. Note also that Oneto et al. (2020)
can also handle the case of continuous sensitive variables by using a discretization strategy.

The problem becomes even more challenging when we model the sensitive attributes no longer as a discrete
variables but as continuous ones. This is a suitable choice to model sources of bias encoded in characteristics
as age, financial status or ethnic proportions. In such a case, the aforementioned measures of fairness
cannot be applied, since it is not possible to separate the population into sub-groups and assess the model’s
performance on each of them.

In such a setting, i.e., forecasting with continuous-valued sensitive attributes, the situation can be modeled as
a regression problem where there is correlation between the independent variables and the error, establishing
a dependency between them, a phenomenon known as endogeneity. For further discussions and analysis
about this phenomenon in econometrics, we refer to Nakamura & Nakamura (1998) or Florens (2003).

The objective of this work is to mitigate bias of forecasting models, when dealing with continuous-valued
sensitive attributes and continuous-valued predictions. Here we focus on the case where we need to mitigate
the bias of an already operating model, that should be treated as a black box. Since we can neither change
the model’s input nor its training procedure, we propose here a post-processing treatment.

Because it is not possible to separate the population in sub-groups, in order to evaluate if the model is biased
or not, we need an external source of knowledge to evaluate whether the produced outcomes are fair or not
(i.e., to assess if the model is systematically treating differently some groups of the population). In this work,
we encode this external knowledge by two means. First, we assume that a group of specialists (composed of
economists, sociologists, lawyers, and others) provides us with the probability distribution of scores that a
fair model should follow. Second, we also have access to an oracle/specialist that given a particular person
returns the fair score for such an individual, but we can use such a specialist only for a few individuals. By
using such an approach, we cope with the problem of bias mitigation in two steps: first, we need to know the
unbiased scores; second, we need to properly distribute those scores among the individuals of the population.

2



Under review as submission to TMLR

The same ideas are developed in bias mitigation for rankings of recommender systems Wang et al. (2023).
In this case, as pointed out also in Kletti et al. (2022), there exists a prior of what should be a fair ranking.
Enhancing fairness is thus achieved by comparison between this ideal fair scores and the observations.

To better contextualize the applicability of our framework, let us consider the problem of risk assignment
made by assurance companies. Note that this application may have a strong impact on individuals’ lives
and will therefore be likely to be ranked as High risk by the A.I. act, so they will be regulated by the articles
9.7, 10.2, 10.3 and 71.3 of this act. In the risk assignment case, we know the distribution of the risk scores
for a particular city, and we know that it is biased. This could be the case for a smaller city, for which we
observe more frequently than for big cities the occurrence of high values of risk scores. With our framework,
we compare the distribution of the risk scores of this small city with its “ideal version”, i.e., we compare
such a distribution with the one that should have been observed if the living place was not, or if it was
fairly, taken into account. Besides the comparison with the “ideal version” of the population, we also use
information obtained from specialists to know the fair risk scores for some individuals. This procedure is
equivalent to a polling, where a group of interviewers (recruited by the assurance company or for a group
of auditors) collects the relevant information (such as profession, age, driving history, among others) about
a little fraction of the population (since it is an expensive and time-consuming procedure), and then assigns
to them the fair risk scores.

Layout of the Paper

The paper is organized as follows: in Section 2, we model the problem of mitigating bias in a black box
model, formalizing the idea of endogeneity and how it is usually treated in economics. In Section 3 we
present our methodology to automatically mitigate the bias, inspired by recent results in Inverse Problems;
we also present a theoretical analysis of our approach, assessing its performance. In Section 4 we evaluate
our approach by means of numerical simulations, considering 1- and 2-dimensional signals, representing the
cases where we have a single sensitive attribute or two of them, respectively. Finally, in Section 5 we present
the conclusions of this work and perspectives for future ones.

2 Theoretical Background

As presented in Section 1, ML models can produce decisions that may convey biased information, learned
from many different sources of bias encountered at the different stages of the data processing. Our focus here
is to mitigate the bias of an algorithm (i.e. the automated systematically discriminatory treatment among
population subgroups) by post-processing its outputs. To better understand it, let us consider an ML model,
which acts a black box model where an observation x is transformed into a continuous value x 7→ Y (x).

Such a model, that will perform a forecasting task Bishop & Nasrabadi (2006), takes a set of characteristics
(such as financial status, gender, age, education level, country, etc.), represented by x ∈ RP and performs a
statistical treatment on such data. Since here we are treating the mitigation of bias of supervised ML models,
we do not know, explicitly, how the ML model assigned the observed scores. In fact, we only know that
it consists in an automated procedure, based on a flexible enough parameterized model, whose parameters
were optimized in order to satisfy a specific criterion, typically using supervised learning Goodfellow et al.
(2016). After such a procedure, the model outputs a score Y (x) ∈ R, summarizing the collected information
in a suitable way to take a decision, for credit assignment or selection of students to universities, for example.

Since the model was trained automatically, usually in a very high dimensional space, it could have learned, in
an unwanted way, how to satisfy the training criterion by favouring a group of individuals to the detriment
of another. We refer for instance to Bell & Sagun (2023) or Risser et al. (2022a) for the description of
such an optimization drawback. When it happens, the characteristic that drives an unwanted change of
behaviour and is at the origin of the algorithmic bias, is called the sensitive attribute. Removing this effect
and thus mitigating the corresponding bias has become a legal constraint when the sensitive variable is a
prohibited variable. Many sensitive variables are discrete variables such as gender, religious orientation or
race, but continuous-valued sensitive variable may also be taken into account such as age, recidivism score in
predictive police, rate of inhabitants with some particular ethnic origin or rate of unemployment of a some
districts that serve as proxy for social or ethnic origin for instance.

3



Under review as submission to TMLR

Because here we deal with the problem of an already operating model, we can neither change its input, x,
by transforming it in a suitable manner in order to reduce the impact of the sensitive attributes, nor change
the way the model was trained, by changing the training criterion, by adding constraints or by doing both.
In this scenario, we must treat the model as a black box and only treat its biased output, Y (x).

Here we model the biased output as the sum of two terms

Y (x) = φ∗(x) + U.

Note that we can interpret this model as follows. The term φ∗(x) represents the output of the algorithm
that should have been obtained by the model, if it was not biased at all, and U is a type of measurement
noise, that may affect differently the different groups of the population, i.e., it reflects a dependence with
respect to the input attributes,

E[U |x] ̸= 0,

which implies that U = U(x), leading to biased models

Y (x)︸ ︷︷ ︸
Observed Biased Score

= φ∗(x)︸ ︷︷ ︸
Unbiased Score

+ U(x).︸ ︷︷ ︸
Bias Term

(1)

Since the property E[U |X] = 0 is not verified, φ∗(x) is not the conditional expectation of Y given x. For
example, the noise U may depend on some characteristic of the individual which is unobservable for the
statistician, but known from assignment priors of the treatment. The choice of the levels x than depends on
this characteristic, and then process a dependence between U and x. Note that in this work, the model (1),
we tackle consider the case of continuous-valued sensitive attributes, which are particularly useful to model
financial status, age or ethnic proportions Mary et al. (2019). Bias with respect to continuous sensitive
attribute has received scarce attention in the fairness literature where bias is often conveyed by a discrete
variable that splits the population into subsamples. Also, neither φ∗(x) nor U(x) are directly observed. The
goal, therefore, is to reduce as much as possible the effect of U(x) on Y (x), which models that bias, and by
doing so, to estimate φ∗(x) .

Since U(x) is a measurement noise, but correlated with x, we model it as

U(x) ∼ N(µ(x), σ(x)) (2)

such that the bias term follows a Gaussian distribution, whose mean µ(x) and variance σ(x) encode its
dependence on x.
Solving the estimation problem directly from the observations Y (xi), i = 1, . . . , n leads to a solution which
is not the unbiased response φ∗ due to the dependency structure between the noise and the characteristics
of the individuals. In this case removing the bias is equivalent to the estimation of the regression removing
the endogeneity. Estimation with endogeneity has been tackled in the econometric literature but also in the
biomedical statistics literature, where this phenomenon is known as estimation with confounding variable. In
this case, the function φ∗(·) is not well-defined and more assumptions are needed to remove the endogenous
component. A solution to this problem is commonly obtained by assuming the existence of another source
of variability. This is the so-called Instrumental Variables (IV)’s Florens (2003), W = (W1, W2, · · · , Wk),
which need to satisfy two hypotheses described for instance in Carrasco et al. (2014)

1. an independence condition with the noise: E[U |W] = 0;

2. a sufficiency relation with the assigned treatment

E[φ∗(x)|W] =
a.s.

0 ⇒ φ∗(x) =
a.s.

0

The first condition implies a linear equation characterizing φ∗:

4



Under review as submission to TMLR

E[Y |W] = E[φ∗(x)|W];

and the second condition implies the uniqueness of the solution of this equation.

Actually, we can write the model as

E[Y (x) − φ∗(x)|W1, W2, · · · , Wk] = 0. (3)

Defining the operator T (·) = E[·|W1, W2, · · · , Wk], and the function r(w)) = E[Y (x)|W = w], the following
equation holds

T (φ∗) = r (4)

Equation (4) models the case where we observe r and we want to estimate φ∗, which is not observed directly
but through an image by an operator T . This setting is commonly referred to as an Inverse Problem, see for
instance in Engl et al. (1996). There are many ways to solve Inverse Problems in the context of econometrics,
as in Carrasco et al. (2007), Loubes & Ludena (2008); Loubes & Marteau (2012), but here we are inspired
by recent techniques in this field, and we will learn how to automatically remove the endogeneity effect. The
endogeneity can be seen as a bias on the observed information, Y (x), and thus we can promote unbiasedness
with this framework. Note that fairness for IV regression has been presented in Centorrino et al. (2022).

Yet in many cases, the required additional information provided by the observation of such instrumental
variables is not available. To deal with such cases, the new literature on statistical learning in Inverse
Problems, such as Arridge et al. (2019) for instance, provides interesting directions to solve inverse problem
and thus post-process bias in supervised Machine Learning. When dealing with Inverse Problems in the
usual setting of Machine Learning, it is common to have access to a training set {φ∗(xi), Y (x)i}T

i=1, i.e.,
a set that associates the samples of the estimated signal to the samples of the reference one, considering
a total of T available points. Then deep neural networks are used to invert the observations and estimate
an invert operator directly from the data. Such new methods are often referred to as unrolling the inverse
problem, see for instance in Monga et al. (2021) and references therein. Yet in our framework, having access
to the true unbiased function φ∗ is an unrealistic setting. Rather, we will use a paradigm of learning called
Weakly supervised learning Zhou (2018). In this case, we do not have access to {φ∗(xi), Y (xi)}T

i=1 for all
T available samples, but only for a small fraction of them, namely {φ∗(xi), Y (xi)}, for xi ∈ XL, where XL

represents the smaller set of labeled data. Let denote by XU the observations which are unlabeled, hence we
have

{1, . . . , T} = XL ∪ XU .

Usually, the amount of labeled data in this paradigm of learning is very small, |XL| ≪ T , which poses a
challenge to the estimation of φ∗(x). To circumvent this lack of information, we observe a set of samples
of φ∗(x), but without establishing the correspondence between these samples and those of the estimated
signal. From such a dataset, we will first estimate the probability distribution P(φ∗). The estimation of
the distribution of a fair score is thus used as a unbiasedness constraint to to better estimate the true fair
function φ∗. Notice that here we replace usual constraint of fairness such as disparate impact, correlation
or dependency measures from information theory (described for instance in Oneto & Chiappa (2020) or
Chouldechova & Roth (2020), Bird et al. (2020), Del Barrio et al. (2020)) by a distributional constraint.
Usually when the sensitive variable is discrete, distributional fairness constraints are built by considering that
a fair model should behave in the same way for all subgroups. This is modeled by measuring the distance
between the conditional distributions of the model for all subgroups and imposing that all conditional
distributions are close to a central distribution. This is the main topic of Jiang et al. (2020), Del Barrio
et al. (2019), Risser et al. (2022b) or Gordaliza et al. (2019). Here, the novelty lies also in the fact that we
do not specify in advance what does it mean to be fair but rather we learn this fairness constraint from the
unbiased sample and reconstruct a fair solution directly under this constraint.

5



Under review as submission to TMLR

By estimating P(φ∗) and by observing a few training pairs, {φ∗(xi), Y (xi)}, we propose a procedure able to
mitigate the bias of a supervised ML model, inspired by the recent work of Mukherjee et al. (2021), which
will be detailed next.

3 Methodology

In this section, we first detail our approach based on Inverse Problems to mitigate bias and then, we present
a theoretical guarantee that assess its performance.

3.1 Bias mitigation in supervised Machine Learning Models

Recall the observation model (1)

Y (x) = φ∗(x) + U(x).

The input characteristics are a continuous variable x that follows a distribution, x ∼ P(x). We have modeled
x as a continuous variable to represent attributes such as age, financial status or ethnic proportions, which
are known to be potential sources of bias, as in Mary et al. (2019).

In terms of probability distribution, the observed score Y (x) has a probability distribution given by

P(Y ) = P(φ∗) ∗ P(U)

where the operator ∗ denotes the convolution operation.

The problem investigated here is the one where a model takes samples of the attributes encoded by x, and
generates the scores Y (x). The produced score will, then, be used to select candidates to universities or to
job positions, for example.

However, the distribution of such scores may be biased, favoring some individuals to the detriment of others,
e.g., younger to the detriment of older people or richer to the detriment of poorer ones. In order to have
an unbiased model, or at least one whose bias was mitigated, it is necessary to perform some a posteriori
treatment over the probability of such scores.

In a weakly supervised learning framework, we assume that we can assign unbiased or fair scores, denoted
by φ∗(x), to a few individuals of the population. This assignment could be done, for example, by some
surveys or external analysis, which would give us the true ability, i.e., an unbiased/fair score, to a well-
chosen set of candidates. This additional information, yet limited to a little number of observations, will be
key to mitigate the bias for all individuals.

To better understand our approach to mitigate bias, let us consider the data processing pipeline depicted in
Figure 1.

Y (x) Local
Estimation T

φ̃(x) Gθ(·) φ̂(x)

Figure 1: Data processing pipeline: we first perform an initial and simple estimation on Y (x), generating
the initial estimate φ̃(x); then, we use a neural network to refine it, producing the final estimate φ̂(x).

Our treatment consists of two steps: 1) we observe Y (x) and perform a local estimation T (·) on it, producing
φ̃(x); 2) we take φ̃(x) and further refine it, by using a neural network Gθ(·), that will produce φ̂(x). The
role of the first step is to perform an initial estimation, to render the subsequent treatment more robust and
stable Genzel et al. (2022). Such a treatment is a naive one, and the initial estimate, φ̃(x) = T (Y )(x), may
not verify the desired properties. Therefore, we will proceed with step 2, increasing the the performance
of the bias mitigation by training a Deep Neural Network (DNN), Gθ(·), parameterized by θ and whose

6



Under review as submission to TMLR

architecture will be described later. The output of such a neural network, φ̂(x), is the final estimate, and is
desired to be as close as possible to φ∗(x).

In an end-to-end point of view, we are performing the following compound operation

φ̂(x) = (Gθ̂ ◦ T )(Y (x)),

such that, ideally, we would have a final estimated score φ̂(x)

• as close as possible to φ∗(x) for the few individuals in the population for whom we know the fair
scores,

(Gθ ◦ T )(Y (x)) = φ∗(x),
for x ∈ XL, a set that will properly defined next;

• whose probability distribution P(φ̂) is close to the distribution of the unbiased score P(φ∗). Note
that we use the following notation T♯P denoting the push forward operation (see Villani et al. (2009)
for instance) which is defined as the image of the measure by the map T as T♯P = P ◦ T −1.

To accomplish such a task, we will choose a quadratic norm to assess the correspondence between φ̂(x) and
φ∗(x) for x ∈ XL, and a well chosen distance to measure the match between P(φ∗) and P(φ̂), to be specified
later.

Hence, we propose to train a neural network by choosing the set of parameters that minimizes a cost function
composed of two terms, each one minimized over two sets of the data, either the reduced supervised set XL

or the whole observations {1, . . . , T}. The terms can be written as follows:

1. LXL

(
φ∗(x), Gθ(φ̃(x))

)
, called data-fidelity term, which corresponds to the match of the neural net-

work’s output to the unbiased scores. This loss requires the knowledge of the fair scores φ∗, which
are unknown in general, but available at well-chosen points. Hence, we only learn this part on a
limited number of observations, belonging to the set XL. Algebraically we have

LXL
(θ) =

∑
xi∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2

2. R
(
Gθ(φ̃(x))

)
, called regularization term, which enforces the distribution of the output to be close to

the unbiased distribution. The distance chosen to measure the difference between the distributions
will be the 1-Wasserstein distance, defined as follows. For two distributions µ and ν and for Γ(µ, ν)
the set of joint distributions with marginals µ and ν, let 1-Wasserstein distance between µ and ν be
defined as

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
∥x − y∥dγ(x, y).

Note that the distribution of φ∗ can be computed without knowing which score is biased and which
is unbiased, but only considering the data as a whole.
To do so, we numerically estimate the probability distribution P(φ∗) from the data points φ∗(xi),
i = 1, · · · , T , as follows

P(φ∗) = 1
T

T∑
i=1

δφ∗(xi)

where δ(x) = 1 if x = 0 and δ(x) = 0 otherwise.
It is important to note that we do not have access to the training pairs {φ∗(xi), Y (x)i} for
i = 1, . . . , T , as is done in Supervised Learning. Even though we have chosen such an approach

7



Under review as submission to TMLR

to estimate the reference distribution, any other one could have been used, provided we have access
to a suitable estimate of P(φ∗).
We proceed in the same manner to estimate P(Gθ(φ̃)),

P(Gθ(φ̃)) = 1
T

T∑
i=1

δφ̂(xi)

where φ̂(xi) = Gθ(φ̃(xi))). After estimating the probability distributions, we calculate the regular-
ization term for all xi i = 1, . . . , T ,

R
(
Gθ(φ̃(x))

)
= W1

(
P(φ∗),P(Gθ(φ̃))

)
.

The term W1 denotes the 1-Wasserstein distance between the empirical distributions of the T samples
and by using the Sinkhorn algorithm, with ϵ = 1.10−4 Cuturi (2013).

Finally, we consider the regularized loss Lλ(θ), which can be written as the sum between the two previous
terms

Lλ : θ −→ LXL
(θ) + λR

(
Gθ(φ̃(x))

)
. (5)

The hyperparameter λ controls the trade-off between these two terms, where larger λ enforces fairness of
the solution by getting its distribution as close as possible, in the sense of the 1-Wasserstein distance, to
the so-called fair distribution. In all of our simulations, the minimization of the cost function is carried out
by algorithms based on the gradient of both terms, and such gradients are automatically calculated using
PyTorch Paszke et al. (2017) and GeomLoss Feydy et al. (2019) frameworks.

The regularization term is given by the Wasserstein Distance, which has been used in many works of super-
vised Machine Learning Frogner et al. (2015); Arjovsky et al. (2017); Mukherjee et al. (2021); Heaton et al.
(2022). This term is the responsible for performing the match between the probability distribution of φ∗

and the one of Gθ(φ̃).

However, only minimizing W1
(
P(φ∗),P(Gθ(φ̃))

)
, is not enough to ensure that φ̂(x) is close enough to φ∗(x).

Actually, we could obtain two estimates, φ̂1(x) and φ̂2(x), with their probability distributions as close as
possible to the one of φ∗(x), but these two estimates may correspond to each other up up to a permutation
in their samples. This situation is illustrated in Figure 2.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

φ̂
(x

)

φ̂1(x)
φ̂2(x)

Figure 2: Illustration of the permutation problem that arises from the minimization of the Wasserstein
Distance. In both cases, we have the same score values for the red and the blue lines, but they are not
properly sorted.

8



Under review as submission to TMLR

In Figure 2, we illustrate two squared functions (only for simplicity), composed of the same samples (and,
therefore, they have the same probability distributions), up to a permutation. Such a permutation may pose
a major problem in social applications, since it changes the scores assigned to each individual, and, as a
consequence, the decisions taken based on such scores. For example, the maximum score was assigned to the
individuals represented by x = 0 and x = 2 by φ̂2(x), and to the individual represented by x = 1 by φ̂1(x),
which, in turn, will change who is selected for a job position, for example.

This permutation problem highlights two interesting facts: first, by minimizing the Wasserstein distance, we
have found the correct values for φ∗(x), but we need to properly sort them; second, such sorting step cannot
be accomplished by a procedure based on unsupervised learning, since we need to know which individual
should receive a particular score. To solve both of these problems, we employed the so called Weakly
Supervised Learning Zhou (2018), illustrated in Figure 3, to complete the training of the neural network. In
such approach, from all the available data, we have only a small fraction that was labeled, represented by
the set XL (blue square), and, hence, can be used in a supervised manner. The other part of the data XU ,
represented by the gray area in Figure 3, was not labeled and should be used in an unsupervised manner,
which we have done with the Wasserstein distance. In the simulations, we will vary this proportion of known
data.

Available Data

XL

Labeled Data

Unlabeled Data
XU

Figure 3: Weakly supervised learning: from all of the available data, only a small fraction has been labeled,
as represented by the blue area. The remaining data — gray area — must be used in an unsupervised
manner.

Hence, our approach here is to use a small fraction of labeled data to complete the estimation process.
This is the role of the term Llabeled

(
φ∗(x), Gθ(φ̃(x))

)
in equation (5): we can link samples from Y (x) to

the samples of φ∗(x), by using a few training pairs in XL (typically |XL| ≪ T ), to avoid the permutation
issue. In the context of our work, where we observe scores obtained by individuals through a possibly biased
treatment, this is equivalent to performing a polling on some individuals of the population, analysing their
characteristics, and, then, attributing to them the scores that they would deserve, which is assimilated to the
unbiased scores. This framework is similar to the ideas developed in Friedler et al. (2021) and correspond
to values in a construct space where unbiased versions are available, opposed to the observations or the
decisions which reflect the biases of our world or the biases of the algorithmic decisions. Having access to
the fair scores requires an analysis that, for societal applications, cannot be done for all individuals but is
limited to a few cases.

In simple words, the approach that we use here to mitigate bias consists of two steps: first, we need to
know the correct values that φ̂(x) should have for all the individuals (which we achieve in an unsupervised
manner, by minimizing the Wasserstein distance); second, we need to properly sort these values (which we
achieve by obtaining the correspondence between φ̂(x) and φ∗(x) for the few known training pairs).

Now that we have described our bias mitigation approach, we will present the theoretical analysis that
provides some bounds of its performance.

9



Under review as submission to TMLR

3.2 Theoretical Guarantees

The following theorem states that a minimizer of (5) has its performance bounded by the performance of “spe-
cialists”, i.e. models that were trained only to minimize either Llabeled

(
φ∗(x), Gθ(φ̃(x))

)
or R

(
Gθ(φ̃(x))

)
,

separately.
Theorem 1. Let us consider the following cost function to be minimized

J(Gθ|λ) =
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 + λW1
(
P(φ∗),P(Gθ(φ̃))

)
,

and the sets

ΘL =
{

θ :
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 = 0
}

,

ΘW =
{

θ : (Gθ)♯P(φ̃) = P(φ∗)
}

.

Let Gθ∗ be a minimizer of J(·|λ). Then it holds that for all θ ∈ ΘL,

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤ λW1
(
P(φ∗),P(Gθ(φ̃))

)
,

and for all θ ∈ ΘW ,

W1
(
P(φ∗),P(Gθ∗(φ̃))

)
≤ 1

λ

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2
.

Hence, the theorem states that we can establish bounds for a minimizer of J2 by using the performance
of "specialists", i.e., models that were trained to only minimize one of the terms of J2. A minimizer Gθ∗

will have a better performance in terms of data fidelity than a data-fidelity specialist used to minimize the
Wasserstein distance; in a dual manner, a minimizer Gθ∗ will have its regularization perform upper-bounded
by the performance of a regularization-specialist applied to the data-quality term.

This result is inspired by the work of Mukherjee et al. (2021) where the authors propose an adversarial
approach to solve Inverse Problems, in the context of image analysis for a model

yδ = A(x) + ϵ (6)

where A(·) is the forward operator, yδ are the noisy measurements and ϵ, ||ϵ||2 ≤ δ, is the noise. Hence,
mutatis mutandis the analysis made in Mukherjee et al. (2021) in Proposition 1, we obtain the proof of
the previous theorem.

Proof. If Gθ∗ is a minimizer of J(·|λ), then for every θ ∈ ΘL

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 + λW1
(
P(φ∗),P(Gθ∗(φ̃))

)
≤

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2+

+ λW1
(
P(φ∗),P(Gθ(φ̃))

)
.

Naturally, we have

10



Under review as submission to TMLR

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2+

+ λW1
(
P(φ∗),P(Gθ(φ̃))

)
− λW1

(
P(φ∗),P(Gθ∗(φ̃))

)
.

Since θ ∈ ΘL,
∑

i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 = 0, leading to

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤ λW1
(
P(φ∗),P(Gθ(φ̃))

)
− λW1

(
P(φ∗),P(Gθ∗(φ̃))

)
.

By using the fact that W1(·, ·) ≥ 0, we finally have

∑
i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2 ≤ λW1
(
P(φ∗),P(Gθ(φ̃))

)
, ∀θ ∈ ΘL.

Analogously, for every θ ∈ ΘW , we have

λW1
(
P(φ∗),P(Gθ∗(φ̃))

)
≤

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2 −
∑

i∈XL

(
φ∗(xi) − Gθ∗(φ̃(xi))

)2+

+ λW1
(
P(φ∗),P(Gθ(φ̃))

)
Using the fact that θ ∈ ΘW and W1

(
P(φ∗),P(Gθ(φ̃))

)
= 0, and the non-negativity of the other terms, we

have

λW1
(
P(φ∗),P(Gθ∗(φ̃))

)
≤

∑
i∈XL

(
φ∗(xi) − Gθ(φ̃(xi))

)2
, ∀θ ∈ ΘW .

Having described our approach and theoretically analyzed it, in the next section we will evaluate it by means
of numerical simulations.

4 Numerical Simulations

To evaluate our approach, we will consider in the following numerical simulations 1- and 2-dimensional
signals. Revisiting the example presented in the introduction, about risk assignment made by assurance
companies, in the first case we observe the risk score Y (x), produced by only taking into account a single
variable x (that could represent financial status, for example), and we know that it is biased, i.e., for specific
values of x, we would observe more frequently the occurrence of high risk scores. In this case, the bias term
U(x) is modeled as noise whose mean is proportional to x, representing a scenario of a more controlled bias.
For the 2-dimensional case, we observe the risk score Y (x1, x2) that now depends on two attributes (financial
status and age, for example) and is also biased. For the 2-D case, we propose a more challenging bias term,
allowing the noise to depend on x1, x2 and also on the product x1x2. The functions we used to model the
unbiased score term, φ∗(x) in the 1-dimensional case and φ∗(x1, x2) in the 2-dimensional case, are inspired
by real use cases in econometrics. For each simulation set, we provide and discuss the architecture of the
neural network and the choice for hyperparameters.

We also perform some numerical simulations to assess the relation between the model’s performance (mea-
sured by the Mean Squared Error between the estimated unbiased score and the true one) and the number
of training data points labeled. Finally, since the concept of fairness is a very complex one, and what is
considered to be fair today may not be considered to be fair in the future, we also performed some numerical
simulations to evaluate capacity of the proposed method to track the unbiased function over time.

11



Under review as submission to TMLR

4.1 1-Dimensional Signals

For the 1-dimensional case, we generated T = 1000 uniformly spaced samples for x in the interval [-3, 3],
and φ(x) = x2 Mas-Colell et al. (1995). To generate the bias term in equation (2), we generate a noise with
mean

µ(x) = αx,

with α = 2, and variance σ(x) = 1. Since the noise is correlated with x, it would affect systematically
differently the various subgroups of the population (i.e., the different partitions that one may have on x),
leading to a biased score.

For comparative purposes, we have employed the so-called Instrumental Variables (IVs) to debias Y (x). To
suitably generate the IVs, we used the following procedure Florens (2003):

1. For a number k of IVs, we generate the temporary variable e = (e1, · · · , ek)′, from a standard uniform
distribution;

2. For each j = 1, · · · , k, we have

ϵj =
√

k

2
ej∑k

j=1 ej

, τj = 1
j

j∑
l=1

ej

3. The instrumental variables are generated as

W ≡ w(τj) = Φ−1(
Φ(1) + τj(Φ(1) − Φ(−1))

)
σ

σ = 1.853, so that w(τj) follows a truncated normal distribution between [−σ, σ], for each j =
1, · · · , k.

In (4), the operator T is approximated by a local linear non-parametric regression, whose bandwidth is
adjusted by promoting stability of the changes in the accuracy. We did the same for the adjoint operator,
T ∗(·) = E[·|X].

Having access to suitable approximations to T and T ∗, we can now solve (4) by using the Landweber-Fridman
algorithm Centorrino & Florens (2021):

φ̂i+1 = φ̂i + cT ∗(T φ̂i − r), i = 1, · · · , N, (7)

where N is the regularization parameter (chosen by leave-one-out cross validation), which controls the number
of iteration, and c ∈ (0, 1) is a constant to avoid instability issues (we used c = 0.5).

We present the results for k = 2, 10, 25 IVs in Figures 4, 5 and 6, respectively, with the associated ℓ2 norm
of the estimation error, ||φ∗ − φ̂||2. In those figures, the left plot represents the true data, i.e., the fair score;
the plot in the middle represents the observed data, i.e., the biased score that must be correct, and in the
left plot we have a comparison of the true score (blue line) with the estimated one (orange).

12



Under review as submission to TMLR

−2 0 2
x

0

2

4

6

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−2

0

2

4

6

8

10

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

0

2

4

6

ϕ̃
(x

)

ϕ̃(x) (Estimated Data)
Error Norm = 588.14

Figure 4: Instrumental Regression and Landweber Iteration - k = 2.

−2 0 2
x

0

2

4

6

8

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−2

0

2

4

6

8

10

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

0

2

4

6

8

10

ϕ̃
(x

)

ϕ̃(x) (Estimated Data)
Error Norm = 301.214

Figure 5: Instrumental Regression and Landweber Iteration - k = 10.

13



Under review as submission to TMLR

−2 0 2
x

0

2

4

6

8

10

12

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

0

2

4

6

8

10

12

ϕ̃
(x

)

ϕ̃(x) (Estimated Data)
Error Norm = 259.485

Figure 6: Instrumental Regression and Landweber Iteration - k = 25.

From the above results, we note that k = 2 IVs led to an estimate very different from the desired signal,
indicating that this number of IVs was not enough to deal with the bias term U(x). To circumvent this issue,
we added more IVs to our model, and for k = 10 and k = 25, we have gotten more precise estimates, even
though there is still room for improvement.

Despite the fact that the estimation using k = 10 and k = 25 IVs produced interesting results, this kind of
procedure is expensive in real-world applications: besides the data already collected in x, we would have to
collect the complementary information needed by the IVs.

As an alternative to regression IV, we performed the estimation process proposed in Figure 1. To do so, we
first used a Moving Average filter, with 10 taps, for the local estimation. Since this procedure only gives an
initial estimated, φ̃(x) that is not accurate enough (as we will present in the results), we also used a neural
network to complete the estimation.

The used neural network is depicted in Figure 7. It is a fully connected neural network, whose linear layers
are composed of 1000 neurons each, and the operation ReLU,

ReLU(x) = max(0, x),

is taken element-wise. We feed φ̃(x) into the neural network, and then we apply twice the transformation
composed by a linear layer followed by a ReLU operation. Finally, we use one more time a linear layer to
obtain the final estimate, φ̂(x).

φ̃(x1)

φ̃(x2)

...

φ̃(xT )

Input

Linear ReLU Linear ReLU Linear

φ̂(x1)

φ̂(x2)

...

φ̂(xT )

Output

Figure 7: Architecture of the neural network used to treat 1-D signals. It is a fully connected neural network,
each linear layer has 1000 neurons and the operator ReLU is taken element-wise.

14



Under review as submission to TMLR

In this first experiment, we only minimized the Wasserstein distance in (5), i.e., we did not use any labeled
data, |XL| = 0. To properly solve the optimization problem at hand, we used the Adam optimizer Kingma
& Ba (2017), with learning rate µ = 1.10−5, for 300 epochs. We present the results for the training dataset
in Figure 8. As we did before, we first present the true data, then the observed one (first two plots, from left
to right); in the third plot, we present the initial estimate, i.e., the one obtained with the Moving Average
filter (orange line represents the true data and blue line represents the estimated one); finally, the fourth
plot, depicts the final estimate, the obtained at the output of the used neural network.

−2 0 2
x

0

2

4

6

8

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−5

0

5

10

15

Y
(x

)

Y (x) (Noisy Data)

−2 0 2
x

0

5

10

15

ϕ̃
(x

)

ϕ̃(x) (Initial Estimate Data)

−2 0 2
x

0

2

4

6

8

ϕ̂
(x

)

ϕ̂(x) (Final Estimate Data)
Error Norm = 0.102

Figure 8: Training dataset, 1-dimensional signals. From left to right: true data φ∗(x), observed data Y (x),
initial estimate φ̃(x) and final estimate φ̂(x).

From Figure 8, we note that the initial estimate, φ̃(x), is less affected by the noise, but it is still distant
from the desired signal. After feeding φ̃(x) into the neural network, we got the estimate presented in the
fourth figure from left to right. It is a very precise estimate, as can be verified both visually (since we cannot
observe a distinction between the orange line for the true data and the blue line for the estimated one) and
by the low value of the error norm.

Since we obtained a very good result for the training dataset, we evaluated the trained model in a test
dataset. To generate such a dataset, we once again generated T = 1000 uniformly spaced samples for
x ∈ [−3 + ϵ, 3 + ϵ], where ϵ ∼ U(−0.5, 0.5) and φ(x) = x2. By doing so, our test dataset corresponds to a
perturbed version of the training one, which is very interesting to assess the generalization of the model. We
present the obtained results in Figure 9.

−2 0 2
x

0

2

4

6

8

10

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−5

0

5

10

15

Y
(x

)

Y (x) (Noisy Data)

−2 0 2
x

0

5

10

15

ϕ̃
(x

)

ϕ̃(x) (Initial Estimate Data)

−2 0 2
x

0

2

4

6

8

10

ϕ̂
(x

)

ϕ̂(x) (Final Estimate Data)
Error Norm = 53.576

Figure 9: Test dataset, 1-dimensional signals. From left to right: true data φ∗(x), observed data Y (x),
initial estimate φ̃(x) and final estimate φ̂(x).

15



Under review as submission to TMLR

From Figure 9 we note a performance for the test set very similar to the one obtained with the training
one: our first estimate is less affected by the noise, but is still very different from the desired signal. After
using the neural network, though, we got a very precise estimate, with an error norm of 53.576 taken in 1000
samples (which gives us an Mean Square Error about 0.005).

The objective with the 1-Dimensional Signals was to evaluate how the proposed method performed when
dealing with only one continuous-valued sensitive attribute. As we can infer from the presented results, we
obtained a better performance with our approach than that obtained by using Instrumental Variables, even
when the number of such variables was considerably high (k = 25, for example). It is interesting to note that
in this first experiment, we obtained such a good performance by only minimizing the Wasserstein distance,
because the initial estimate, φ̃(x), was close enough to the true solution, being necessary only to further
regularize it. In more challenging scenarios, this could not be the case, and we would have to use a few
labeled data points, as we will illustrate in the next section with 2-dimensional signals.

4.2 2-Dimensional Signals

In this section we evaluate our approach with 2-dimensional signals, i.e., the case where x = (x1, x2). We
generated T1 = 100 uniformly spaced samples for x1 in the interval [-3, 3] and T2 = 100 uniformly spaced
samples for x2 in the interval [-3, 3] (so φ∗(x1, x2) has T = 104 samples), and considered the function
φ∗(x1, x2) = (|x1|p + |x2|p)1/p, p = 2 Mas-Colell et al. (1995). As for the bias term, we used in (2) a noise
with mean

µ(x1, x2) = α1x1 + β1x2 + γ1x1x2, α = 0.2, β = 0.2, γ = 1

and variance

σ(x1, x2) = α2|x1| + β2|x2| + γ2|x1|.|x2|, α2 = 0.5, β2 = 0.5, γ2 = 0.2.

In this second scenario, we have a more challenging noise, because it is now correlated with both variables
(rendering both x1 and x2 sensitive attributes), but also with their product. This dependence on the product
of sensitive variables is relevant for modeling real-life situations where the same individual may experience
biases from two different causes, such as age and financial condition.

Since we now have a 2-dimensional signal, we performed the estimation by using techniques that are common
to the image processing field. First, we used a Gaussian kernel for the local estimation, with standard
deviation equal to 5. Then, we used the neural network depicted in Figure 10.

φ̃(x1, x2)

Input

Conv. ReLU Conv. ReLU Conv. φ̂(x1, x2)

Output

Figure 10: Architecture of the neural network used to treat the 2-D signals. Each convolutional layer is a
squared kernel of dimension 100 × 100 (the same size as the input and the output) and the operator ReLU
is taken element-wise.

We present the initial estimate, φ̃(x1, x2), to the neural network, and, then, we process it by using twice
in a row a convolutional layer, made of a squared kernel of dimension 100 × 100, followed by the ReLU

16



Under review as submission to TMLR

operation, taken element-wise. To produce the final estimate, φ̂(x1, x2) we apply a final convolutional layer,
with the same dimension as before. Once again, the optimization procedure in (5) was carried out by the
Adam optimizer, with µ = 1.10−5 and 12000 epochs.

As we did in the 1-dimensional case, we first applied the local estimator, producing φ̃(x1, x2), as depicted in
Figure 11, but, once again, we need to further process it in order to get a more precise estimate.

−2 0 2
−3

−2

−1

0

1

2

3
True Data

−2 0 2
−3

−2

−1

0

1

2

3
Noisy Data

−2 0 2
−3

−2

−1

0

1

2

3
Initial Estimate

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−15

−10

−5

0

5

10

15

20

−2

0

2

4

6

8

10

12

Figure 11: Initial estimation of a 2-dimensional signal. A local estimator is not enough to properly recover
the true data.

We first continued the estimation process by considering only the Wasserstein distance, and we present the
obtained result in Figure 12.

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 13699.571

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−15

−10

−5

0

5

10

15

20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 12: 2-dimensional signals. Estimation without using the labeled data lead to a permutation problem.
From left to right: true data φ∗(x1, x2), observed data Y (x1, x2) and final estimate φ̂(x1, x2).

Here, we have founded the appropriate values for φ̂(x1, x2), but we could not suitably distribute them
(comparing the reference image with the estimated one, the upper and lower parts were permuted). To
circumvent this issue, we performed the estimation procedure once again, with the same neural network and
the same hyper-parameters, but this time we have used a few training pairs, i.i.d and uniformly selected. In
Figure 13 we present the estimated image, after using a number of training pairs that corresponds to 1.0%
of all the available data (|XL| = T/100) and λ = 1.0 in (5).

17



Under review as submission to TMLR

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 6.584

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−15

−10

−5

0

5

10

15

20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 13: Training dataset, 2-dimensional signals. Number of training pairs: |XL| = T/100. The black dots
in the first image represent the labeled data used in the experiment. From left to right: true data φ∗(x1, x2),
observed data Y (x1, x2) and final estimate φ̂(x1, x2).

By using a very small amount of labeled data, we have obtained a very precise estimate of φ∗(x1, x2), with
error norm of 6.584, and the associated Mean Squared Error (MSE), considering the 104 samples, about
6.5 × 10−4.

To better evaluate the performance of such a model, we evaluated its performance on a test dataset. As in
the 1-D case, the test set consists in a perturbed version of the training one, where we generated T1 = 100
samples of x1 taken in the interval [−3 + ϵ, 3 + ϵ], and T2 = 100 samples of x2 taken in the same interval,
with ϵ ∼ U(−0.5, 0.5). We present the obtained results in Figure 14.

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 121.593

1

2

3

4

−15

−10

−5

0

5

10

15

20

25

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 14: Test dataset, 2-dimensional signals. Number of training pairs: |XL| = T/100. The black dots in
the first image represent the labeled data used in the experiment. From left to right: true data φ∗(x1, x2),
observed data Y (x1, x2) and final estimate φ̂(x1, x2).

In the test dataset, we observe, again, a very precise estimate, with an error norm of 121.593 (and an MSE
about 0.01), which indicates that the trained model has a good capacity of generalization. It is important
to note that we have used the same amount of training pairs to get such an interesting result.

To further assess the capacity of the proposed debiasing method, we have also considered another function,
φ∗(x1, x2) = sin(x2

1)+cos(x2
2). This new function is a composition of oscillatory functions, sinus and cosines,

and monomials, represented by the squared function. Such a composition poses a more challenging scenario
than the previous one.

18



Under review as submission to TMLR

As we did in the previous case, we performed the local estimation with the same Gaussian kernel, and we
got the results presented in Figure 15. Once again, the local estimator reduced the noise effect, but was not
able to completely restore the desired signal.

−2 0 2
−3

−2

−1

0

1

2

3
True Data

−2 0 2
−3

−2

−1

0

1

2

3
Noisy Data

−2 0 2
−3

−2

−1

0

1

2

3
Initial Estimate

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−6

−4

−2

0

2

4

6

8

Figure 15: Initial estimation of the second 2-dimensional signal evaluated. Once again, the local estimator
is not enough to recover the true data.

We continued the estimation process by only minimizing the Wasserstein distance between the probability
distribution of the model’s output and the reference one. As can be seen in Figure 16, we could not properly
estimate the desired signal with such a procedure, observing, once again, the permutation on the estimated
samples.

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 6765.477

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 16: Another example of a 2-dimensional signal, estimated by only using the Wasserstein distance.
Again, we observe the permutation problem: we found the true scores values, but we could not assign them
correctly.

Hence, to properly estimate the signal, we once again used a few labeled data points, again with |XL| = T/100
and λ = 1.0. In Figure 17, we present the obtained result for the training dataset. As we can note, we got
an error norm of 60.782, which leads to an MSE about 6.1 × 10−3, indicating a very precise estimation.

19



Under review as submission to TMLR

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 60.782

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 17: Training dataset, second 2-dimensional signal with |XL| = T/100. From left to right: true data
φ∗(x1, x2), observed data Y (x1, x2) and final estimate φ̂(x1, x2).

We also evaluated this model using a test dataset, generated in the same manner as in the previous 2-D case;
we present the obtained result in Figure 18.

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)
Error Norm = 5711.917

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−10

−5

0

5

10

−2

−1

0

1

2

Figure 18: Test dataset, second 2-dimensional signal with |XL| = T/100. From left to right: true data
φ∗(x1, x2), observed data Y (x1, x2) and final estimate φ̂(x1, x2).

From the results depicted in Figure 18, we observe, once again, a very precise estimate, with error norm of
5711.917 (and an MSE about 0.52), despite the more complex nature of this second function.

Our objective with the 2-Dimensional signals was to evaluate how the proposed method would perform in a
more challenging scenario, where we have now two real-valued sensitive attributes, each one being a source of
bias, but also their combination can be a source of bias. From the obtained results, we note that only a small
amount of labeled data (here, 1.0% of all the samples), alongside a distributional constraint given by the
Wasserstein distance, was sufficient to produce very precise estimates, mitigating the bias. It is important
to note that we have randomly collected labeled samples from the all available data, indicating that most of
the work was done by the regularization term, in an unsupervised manner. Another very interesting point
is that the investigation with 2-dimensional signals highlighted the required steps to mitigate the bias in a
model: first, it is necessary to find the unbiased score values and, then, to properly distribute them.
Remark. It is important to note that an implicit prior information is encoded into the architecture of the
neural network. Here, we have used the ReLU function (Agarap (2018)) as an activation function. This
activation function assumes that the signals to be approximated are piece-wise linear, at least in a small
neighborhood, or can be well approximated by such linear signals. This fact is very interesting in the context
of using few labeled samples, since by knowing the value of the true function in a point, the neural network

20



Under review as submission to TMLR

can estimate, with a good precision, the values of the other points around. This is the reason why, since the
economics functions we consider satisfy such assumptions, only a small amount of labeled data is required
in this work to yet achieve a good approximation. For less smooth functions, for instance with several
discontinuities, it could be necessary to use an amount of data considerably higher than the amount that we
used here.

Finally, to better assess the performance of the proposed approach, we present in Figure 19 the evolution
of the Mean Squared Error (MSE) as we increase the percentage of available training pairs, from 0.0% to
1.0%. We also present in Table 1 the mean MSE and the standard deviation, both for the training and the
test phase. In all cases, we considered 10 independent realizations of the experiment.

0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
Percentage of Training Pairs

0.0

0.2

0.4

0.6

0.8

1.0

M
S

E

Mean Squared Error x Percentual of Training Pairs

Training

Test

Figure 19: MSE vs. percentage of training pairs,
with the mean values (solid lines) and standard
deviation (shadowed area) taken from 10 inde-
pendent realizations.

Perc. Train. Pairs MSE Train MSE Test
0.0% 0.710 ± 0.121 0.909 ± 0.221
0.2% 0.276 ± 0.105 0.642 ± 0.293
0.4% 0.115 ± 0.123 0.506 ± 0.245
0.6% 0.054 ± 0.069 0.338 ± 0.238
0.8% 0.013 ± 0.011 0.375 ± 0.261
1.0% 0.009 ± 0.005 0.321 ± 0.122

Table 1: Mean Squared Error vs. the percentage of
training pairs. For each line, we present the mean
value ± the standard deviation, obtained from 10 in-
dependent realizations of the experiment.

As we can note both from Figure 19 and Table 1, as we increase the number of available training pairs, the
MSE drops down, as expected, and we can note such a behavior for the training and the test phases. Another
interesting fact is that as we increase the percentage of training pairs, the variance of the results lowers,
as we can observe from the narrower shaded areas, mostly in the training phase. This result show, once
again, that a very little amount of supervised data (here, 1.0% or less) can be used to increase the model’s
performance and to stabilize it, complementing the information encoded in the distributional constraint.

4.3 Time-Variant Fairness

Since the concept of fairness is a very complex one and may change over time, its important for fairness-
enhancing model to be able to track those time changes, as is the case of our model. To evaluate such a
feature, we generated 4 signals that represent the fair score changing over time, as depicted below, with their
respective equations.

φ1(x1, x2) = 0.25 sin(x2
1) + 1.75 cos(x2

2)
φ2(x1, x2) = 0.5 sin(x2

1) + 1.5 cos(x2
2)

φ3(x1, x2) = sin(x2
1) + 1.5 cos(x2

2)
φ4(x1, x2) = sin(x2

1) + cos(x2
2)

21



Under review as submission to TMLR

−2 0 2
−3

−2

−1

0

1

2

3
ϕ1(x)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ2(x)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ3(x)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ4(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y1(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y2(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y3(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y4(x)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−20

−15

−10

−5

0

5

10

15

20

−2

−1

0

1

2

−20

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

Figure 20: Reference data and observed data. Each figure represents a possible fair score to be approximated
over time.

First, the model should produce a score function φ̂(x1, x2) as close as possible to φ1(x1, x2). As time passes,
the notion of what constitutes a fair score may change, and the model’s output must change properly,
approximating now the second fair score function, φ2(x1, x2). Such time changes may continue to appear,
and so the model should be able to track the other two fair scores, φ3(x1, x2) and φ4(x1, x2), which may
appear in the future.

We used here the same neural network used for the 2-dimensional signals, training the model for 20000
epochs, using the Adam optimizer with µ = 1.10−5. We present the losses’ evolution (Combined Loss,
Wasserstein Distance and Supervised Error) in Figure 21.

0 5000 10000 15000 20000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Combined Loss

0 5000 10000 15000 20000

0

2

4

6

8

10

12

14
Wasserstein Distance

0 5000 10000 15000 20000

0

2

4

6

8

10

12

14

Supervised Error

Figure 21: Losses’ evolution over time.

As we can observe from Figure 21, the model tracked very well the time-changing behavior of the fair score
function. We note sharp increases in the losses’ values in the exact time instants where we change the fair
score function (at 5000, 10000 and 15000 epochs), but as soon as the model adapts to changes, the losses’
values decrease fast, indicating that the model was able to learn the new notion of fairness.

22



Under review as submission to TMLR

In Figure 22, we present the fair score function, the biased score and the estimated score for each one of
the four functions considered. As can be observed, and in accordance with the losses’ evolution already
discussed, the proposed model could estimate precisely each one of the considered functions, tracking their
time-changing behavior.

23



Under review as submission to TMLR

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) φ1(x1, x2)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−20

−15

−10

−5

0

5

10

15

20

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b) φ2(x1, x2)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−2

−1

0

1

2

−20

−15

−10

−5

0

5

10

15

20

−2

−1

0

1

2

(c) φ3(x1, x2)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(d) φ4(x1, x2)

Figure 22: Reference Data, Observed Data and Estimates for each of the four cases considered.

24



Under review as submission to TMLR

For more complex signals, the model is still able to track the changes, but it may need more epochs until
the convergence to a good enough performance level. To illustrate this, let us consider a new set of four
reference signals, presented below alongside their equations.

φ1(x1, x2) = sin(x2
1) + cos(x2

2)
φ2(x1, x2) = sin(2x2

1) + cos(2x2
2)

φ3(x1, x2) = sin(3x2
1) + cos(3x2

2)
φ4(x1, x2) = sin(4x2

1) + cos(4x2
2)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ1(x)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ2(x)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ3(x)

−2 0 2
−3

−2

−1

0

1

2

3
ϕ4(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y1(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y2(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y3(x)

−2 0 2
−3

−2

−1

0

1

2

3
Y4(x)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−20

−10

0

10

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

Figure 23: Reference data and observed data for more complex signals.

We repeated the same experimental setup as before, only changing the number of epochs to 40000, a number
considerably higher than the previous case due to the more challenging behavior of the considered signals. As
we did before, we present in Figures 24 and 25 the losses’ evolution and the estimates obtained, respectively.

0 10000 20000 30000 40000

0

2

4

6

8

10

12

14

16

Combined Loss

0 10000 20000 30000 40000
0

2

4

6

8

10

Wasserstein Distance

0 10000 20000 30000 40000

0

2

4

6

8

10

12

Supervised Error

Figure 24: Losses’ evolution over time for the new set of signals.

25



Under review as submission to TMLR

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

20

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(a) φ1(x1, x2)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b) φ2(x1, x2)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−20

−10

0

10

20

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(c) φ3(x1, x2)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ
(x

)

ϕ(x) (True Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

Y
(x

)

Y (x) (Observed Data)

−2 0 2
x

−3

−2

−1

0

1

2

3

ϕ̂
(x

)

ϕ̂(x) (Final Estimate)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−15

−10

−5

0

5

10

15

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(d) φ4(x1, x2)

Figure 25: Reference Data, Observed Data and Estimates for each of the four cases considered.

26



Under review as submission to TMLR

From the previous results, we can observe once again that the proposed method was able to track the time-
changing behavior of the considered fairness notion, by only adjusting the number of epochs and without
using more training pairs (i.e., more supervised information).

5 Conclusions

In this work, we addressed the problem of debiasing supervised ML models by post-processing their outputs.
Following the most recent results in Inverse Problems, we trained a neural network to learn how to automat-
ically treat the bias. Here, we used the paradigm of weakly supervised learning, alongside a distributional
constraint, given by the Wasserstein distance.

Besides the theoretical analysis made, we also evaluated our approach by means of numerical simulations.
First, we considered 1-dimensional signals, which represents a more controlled scenario, less biased. In this
case, we mitigate the bias by only minimizing the Wasserstein distance, i.e., in an unsupervised manner.
We also studied 2-dimensional signals, a scenario where the bias term was more complex, and we had to use
a few labeled data points. We also considered a case of a time-varying notion of fairness, i.e., a case where
the unbiased score function changes over time.

Other than its technical importance to the problem, leading to very precise estimates by using a small
fraction of labeled data, the weakly supervised learning is an interesting choice for social applications of ML
models. First, it requires only a few training pairs, that could have been obtained after performing a polling
on a small fraction of the whole population. Second, by performing such a polling, we are incorporating
knowledge from specialists into the model, contributing to its accountability and explainability, both desired
characteristics for ethical algorithms.

In future works, we will investigate how the proposed approach performs on real-world data. Also we are
interested in investigating an optimal way to choose the labeled samples, a problem that has a very interesting
connection with the active learning paradigm.

References
Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Simon Arridge, Peter Maass, Ozan Öktem, and Carola-Bibiane Schönlieb. Solving inverse problems using
data-driven models. Acta Numerica, 28:1–174, 2019.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness in machine learning. Nips tutorial, 1:2017,
2017.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning: Limitations and
opportunities. MIT Press, 2023.

Samuel James Bell and Levent Sagun. Simplicity bias leads to amplified performance disparities. In Pro-
ceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 355–369, 2023.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal justice
risk assessments: The state of the art. Sociological Methods & Research, 50(1):3–44, 2021.

Philippe Besse, Eustasio del Barrio, Paula Gordaliza, Jean-Michel Loubes, and Laurent Risser. A survey of
bias in machine learning through the prism of statistical parity. The American Statistician, 76(2):188–198,
2022.

Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan, Mehrnoosh Sameki,
Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for assessing and improving fairness in AI. Tech-
nical report, Microsoft, May 2020. URL https://www.microsoft.com/en-us/research/publication/
fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

27

https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/


Under review as submission to TMLR

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification. Data
mining and knowledge discovery, 21(2):277–292, 2010.

Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R Varsh-
ney. Optimized pre-processing for discrimination prevention. Advances in neural information processing
systems, 30, 2017.

Marine Carrasco, Jean-Pierre Florens, and Eric Renault. Linear inverse problems in structural econometrics
estimation based on spectral decomposition and regularization. Handbook of econometrics, 6:5633–5751,
2007.

Marine Carrasco, Jean-Pierre Florens, and Eric Renault. Asymptotic normal inference in linear inverse
problems. In J. Racine, L. Su, and A. Ullah (eds.), Handbook of Non Parametric Statistics, pp. 65–96,
Oxford, 2014.

Samuele Centorrino and Jean-Pierre Florens. Nonparametric estimation of accelerated failure-time models
with unobservable confounders and random censoring. Electronic Journal of Statistics, 15(2):5333–5379,
2021.

Samuele Centorrino, Jean-Pierre Florens, and Jean-Michel Loubes. Fairness in machine learning and econo-
metrics. In Econometrics with Machine Learning, pp. 217–250. Springer, 2022.

Alexandra Chouldechova and Aaron Roth. A snapshot of the frontiers of fairness in machine learning.
Communications of the ACM, 63(5):82–89, 2020.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_
files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

Eustasio Del Barrio, Paula Gordaliza, and Jean-Michel Loubes. A central limit theorem for lp transportation
cost on the real line with application to fairness assessment in machine learning. Information and Inference:
A Journal of the IMA, 8(4):817–849, 2019.

Eustasio Del Barrio, Paula Gordaliza, and Jean-Michel Loubes. Review of mathematical frameworks for
fairness in machine learning. arXiv preprint arXiv:2005.13755, 2020.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–
226, 2012.

Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems, volume 375.
Springer Science & Business Media, 1996.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 259–268, 2015a.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international con-
ference on knowledge discovery and data mining, pp. 259–268, 2015b.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and Gabriel Peyré.
Interpolating between optimal transport and mmd using sinkhorn divergences. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 2681–2690, 2019.

28

https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf


Under review as submission to TMLR

Jean-Pierre Florens. Inverse problems and structural econometrics: The example of instrumental variables.
In M. Dewatripont, L.P. Hansen, and S. Turnosky (eds.), Advances Economics and Econometrics, Theory
and Applications, pp. 284–311, Cambridge, UK, 2003. Cambridge University Press.

Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. The (Im)possibility of fairness:
different value systems require different mechanisms for fair decision making. Communications of the
ACM, 64(4):136–143, March 2021. ISSN 0001-0782. doi: 10.1145/3433949. URL https://dl.acm.org/
doi/10.1145/3433949.

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya, and Tomaso A Poggio. Learning with a
wasserstein loss. Advances in Neural Information Processing Systems, 28, 2015.

Martin Genzel, Jan Macdonald, and Maximilian März. Solving inverse problems with deep neural networks–
robustness included? IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1):1119–1134,
2022.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge, MA, USA,
2016.

Paula Gordaliza, Eustasio Del Barrio, Gamboa Fabrice, and Jean-Michel Loubes. Obtaining fairness using
optimal transport theory. In International Conference on Machine Learning, pp. 2357–2365, 2019.

Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/
paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf.

Howard Heaton, Samy Wu Fung, Alex Tong Lin, Stanley Osher, and Wotao Yin. Wasserstein-based projec-
tions with applications to inverse problems. SIAM Journal on Mathematics of Data Science, 4(2):581–603,
2022.

Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair classifica-
tion. In Uncertainty in artificial intelligence, pp. 862–872. PMLR, 2020.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrimination.
Knowledge and information systems, 33(1):1–33, 2012.

Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree learning. In
2010 IEEE International Conference on Data Mining, pp. 869–874. IEEE, 2010.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with preju-
dice remover regularizer. In Joint European conference on machine learning and knowledge discovery in
databases, pp. 35–50. Springer, 2012.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Till Kletti, Jean-Michel Renders, and Patrick Loiseau. Introducing the expohedron for efficient pareto-
optimal fairness-utility amortizations in repeated rankings. In Proceedings of the Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining, pp. 498–507, 2022.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. Advances in Neural
Information Processing Systems, 30, 2017.

Jean-Michel Loubes and Carenne Ludena. Adaptive complexity regularization for linear inverse problems.
Electronic Journal of Statistics, 2:661–677, 2008.

Jean-Michel Loubes and Clément Marteau. Adaptive estimation for an inverse regression model with un-
known operator. Statistics & Risk Modeling, 29(3):215–242, 2012.

29

https://dl.acm.org/doi/10.1145/3433949
https://dl.acm.org/doi/10.1145/3433949
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf


Under review as submission to TMLR

Jérémie Mary, Clément Calauzenes, and Noureddine El Karoui. Fairness-aware learning for continuous
attributes and treatments. In International Conference on Machine Learning, pp. 4382–4391. PMLR,
2019.

Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic theory, volume 1. Oxford
university press New York, 1995.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on
bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep learning
for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Subhadip Mukherjee, Marcello Carioni, Ozan Öktem, and Carola-Bibiane Schönlieb. End-to-end reconstruc-
tion meets data-driven regularization for inverse problems. Advances in Neural Information Processing
Systems, 34:21413–21425, 2021.

Alice Nakamura and Masao Nakamura. Model specification and endogeneity. Journal of Econometrics, 83
(1-2):213–237, 1998.

Luca Oneto and Silvia Chiappa. Fairness in machine learning. In Recent trends in learning from data:
Tutorials from the inns big data and deep learning conference (innsbddl2019), pp. 155–196. Springer, 2020.

Luca Oneto, Michele Donini, and Massimiliano Pontil. General fair empirical risk minimization. In 2020
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Laurent Risser, Agustin Picard, Lucas Hervier, and Jean-Michel Loubes. A survey of identification and
mitigation of machine learning algorithmic biases in image analysis. arXiv preprint arXiv:2210.04491,
2022a.

Laurent Risser, Alberto Gonzalez Sanz, Quentin Vincenot, and Jean-Michel Loubes. Tackling algorithmic
bias in neural-network classifiers using wasserstein-2 regularization. Journal of Mathematical Imaging and
Vision, 64(6):672–689, 2022b.

Samira Samadi, Uthaipon Tantipongpipat, Jamie H Morgenstern, Mohit Singh, and Santosh Vempala.
The price of fair pca: One extra dimension. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
cc4af25fa9d2d5c953496579b75f6f6c-Paper.pdf.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. A survey on the fairness of recommender
systems. ACM Transactions on Information Systems, 41(3):1–43, 2023.

Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannessian, and Nathan Srebro. Learning non-
discriminatory predictors. In Conference on Learning Theory, pp. 1920–1953. PMLR, 2017.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P. Gummadi. Fairness
constraints: Mechanisms for fair classification. Proceedings of the 20th Artificial Intelligence and Statistics
(20-22 April 2017, Fort Lauderdale, FL, USA), 2017.

Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science Review, 5(1):44–53,
2018.

30

https://proceedings.neurips.cc/paper/2018/file/cc4af25fa9d2d5c953496579b75f6f6c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/cc4af25fa9d2d5c953496579b75f6f6c-Paper.pdf

	Introduction
	Theoretical Background
	Methodology
	Bias mitigation in supervised Machine Learning Models
	Theoretical Guarantees

	Numerical Simulations
	1-Dimensional Signals
	2-Dimensional Signals
	Time-Variant Fairness

	Conclusions

