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ABSTRACT

Continual Category Discovery (CCD) aims to leverage models trained on known
categories to automatically discover novel category concepts from continuously
arriving streams of unlabeled data, while retaining the ability to recognize pre-
viously known classes. Despite recent progress, existing methods often assume
that data across all stages are drawn from a single, stationary distribution—a
condition rarely satisfied in open-world scenarios. In this paper, we challenge
this stationary-distribution assumption by introducing the Open-World Continual
Category Discovery (OW-CCD) setting. We address this challenge with PRISM
(Progressive Robust dIscovery under StreaMing data), an adaptive continual dis-
covery framework consisting of three key components. First, inspired by spectral
properties, we develop a high-frequency-driven category separation technique that
exploits high-frequency components—preserving more global information—to
distinguish known from unknown categories. Second, for known categories, we
design a sparse assignment matching strategy, which performs proximal sparse
sample-to-label matching to assign reliable cluster labels to known-class sam-
ples. Finally, to better recognize novel categories, we propose an invariant knowl-
edge transfer module that enforces domain-invariant category relation consistency,
thereby facilitating robust knowledge transfer from known to unknown classes un-
der domain shifts. Extensive experiments on the SSB-C and DomainNet bench-
marks demonstrate that our method significantly outperforms state-of-the-art CCD
approaches, highlighting its effectiveness and superiority.

1 INTRODUCTION

Visual concepts in the real world are open-ended and continually evolving, far exceeding any prede-
fined category set. Although deep learning has achieved remarkable progress in visual recognition,
most advances rely on closed-world assumptions—models are trained on fixed label spaces and
therefore struggle when encountering previously unseen categories. Humans, by contrast, naturally
generalize from prior knowledge to organize and recognize new concepts. This discrepancy has led

to growing interest in category discovery (Vaze et al} [2022} [Han et al} 2021} [Wen et al.} [2023).

Early studies formulated this task as Novel Class Discovery (NCD) [2021), where all
unlabeled samples belong to novel categories. To better reflect realistic conditions, Generalized
Category Discovery (GCD) (Vaze et al] 2022} [Wen et al] [2023)) extended this setting by allowing
unlabeled data to contain a mixture of known and unknown classes, requiring models to both identify
known classes and cluster new ones. However, both NCD and GCD are built upon static datasets and
assume simultaneous access to labeled and unlabeled data. These assumptions diverge from real-
world conditions, where data typically arrive as continuously evolving, unlabelled streams. As a
result, NCD and GCD overlook the dynamic nature of open environments and fall short of modeling
realistic data-stream scenarios.

To close this gap, the community has recently moved toward Continual Category Discovery
(CCD) (Park et al 2024} [Cendra et al| 2024), which integrates continual learning with category
discovery. CCD aims to progressively identify emerging categories while preventing catastrophic
forgetting of previous knowledge. Despite this progress, existing CCD settings commonly assume
that data at each stage comes from a single, fixed domain—an assumption rarely met in open envi-
ronments. In practical scenarios, samples may originate from diverse sources or shift across domains
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while new categories appear. For example, an online platform may continuously receive animal im-
ages from different cameras or users; as the domain (e.g., lighting, style, device) changes, rare
species can emerge concurrently with existing categories.

Motivated by these limitations, we propose a more realistic setting called Open-World Continual
Category Discovery (OW-CCD). In OW-CCD, models must automatically discover known and
unknown categories from unlabeled streams without assuming domain consistency. This introduces
several challenges. First, it is difficult to preserve recognition ability for known categories under
distribution shifts, as existing CCD methods are not designed to handle domain variations. Second,
the model must continually discover emerging categories in dynamic, non-stationary streams. Tra-
ditional domain adaptation techniques are unsuitable, as they often assume overlapping label spaces;
naive alignment may even cause negative transfer and suppress novel-category discovery. Moreover,
most adaptation methods focus on aligning known classes, offering little guidance for discovering
nents tend to capture domain-invariant global se-

unseen ones.
\{;/\
mantics (e.g., structures), whereas low-frequency

components encode domain-dependent details (e.g., (a) Image (b) Low-frequency
style). Leveraging this insight, we develop a high-
frequency-driven category separation module to dis-
tinguish known from unknown samples under do-
main shift. To ensure reliable recognition of known
categories, we further propose a sparse assignment
matching module based on proximal optimal trans-
port, producing stable and sparse pseudo-labels. Fi-
nally, following the core principle of category dis-
covery—transferring knowledge from known to un- S
known classes through semantic relations—we in- Figure 1: (a—q) Visualization of low-
troduce an invariant knowledge transfer (IKT) mod- frequency and high-frequency components
ule. Instead of relying on domain-specific cues that O_f the images. (d) Vlsuahzatlon.of the c}en-
may distort associations, IKT represents the rela- Sity scores S(z), where the density distribu-
tions between known and unknown classes as rank- tion exhibits a clear bimodal pattern corre-
ing permutations. These permutations are converted ~Sponding to known and unknown samples.
into ranking probability distributions and enforced

to remain consistent across domains. This rank-based formulation ensures that semantically closer
classes contribute stronger knowledge transfer; for instance, in CUB, closely related bird species
such as Indigo Bunting and Lazuli Bunting share meaningful high-level semantics despite subtle
visual differences. Maintaining these relationships across domains enables stable transfer and facil-
itates robust discovery of novel categories.

To address these challenges, we introduce PRISM
(Progressive Robust dIscovery under StreaMing
data), a new adaptive divide-and-conquer frame-
work for OW-CCD. Our design is inspired by spec-
tral analysis (Fig. [[fa—c)): high-frequency compo-
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(c) High-frequency (d) Density scores

In summary, our contributions are as follows: (1) we introduce the Open-World Continual Category
Discovery (OW-CCD) setting and present PRISM, an adaptive divide-and-conquer framework; (2)
we propose a high-frequency-driven category separation strategy to distinguish known and unknown
samples under domain shifts; (3) we design a sparse assignment matching module based on proxi-
mal optimal transport for reliable pseudo-labeling of known categories; (4) we develop an invariant
knowledge transfer module that preserves semantic relations between known and unknown cate-
gories across domains for stable discovery; and (5) through extensive evaluation on the SSB-C and
DomainNet benchmarks, we demonstrate that PRISM achieves strong effectiveness and robustness,
consistently outperforming state-of-the-art CCD approaches.

2 RELATED WORK

Category Discovery Category discovery aims to leverage knowledge from labeled classes to iden-
tify novel concepts in unlabeled data. Novel Class Discovery (NCD) was introduced to address sce-
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Figure 2: The overall framework of our proposed method.

narios where all unlabeled samples belong to unseen categories. Early methods adopted two-stage
pipelines, such as AutoNovel (Han et al., 2021)), which transfers knowledge through self-supervised
learning with ranking statistics. In contrast, unified end-to-end approaches (Fini et al.|[202 1)) directly
integrate representation learning and clustering into a single stage. Later extensions address sample
imbalance by designing self-cooperation mechanisms that leverage both known and novel represen-
tations for mutual learning (Wang et al., 2024c), or enhance class-level knowledge transfer through
symmetric relationship modeling and pairwise consistency constraints (Zhou & Chen| |2025). Gen-
eralized Category Discovery (GCD) relaxes this setting by mixing known and unknown categories.
Early frameworks combined supervised and unsupervised contrastive learning with clustering (Vaze
et al., 2022), while SimGCD (Wen et al., [2023)) introduced a parametric classifier for efficiency.
More recent work explores hierarchical modeling (Liu et al.| 2025b), prototype-based learning (Ma
et al., [2025)), and reciprocal learning with distribution regularization (Liu et al., 2025a). Beyond
these directions, some studies investigate domain-level extensions, addressing category discovery
under domain shifts (Wang et al.| 2024a; Rongali et al., |2024). Continuous Category Discovery
(CCD) further considers streaming settings. Methods such as grow and merge (Zhang et al., [2022)),
energy-guided discovery (Park et al.| 2024), Gaussian mixture prompting (Cendra et al., [2024), and
Bayesian inference (Dai & Chauhanl |2025) have been proposed to tackle class discovery in stream-
ing data, though they often operate under the simplifying assumption of single-domain streams.

Domain Adaptation Domain adaptation tackles distribution gaps between labeled source and tar-
get domains. Unsupervised domain adaptation (UDA) leverages labeled source and unlabeled target
data, typically by learning domain-invariant representations. Discrepancy-based methods minimize
moment mismatches (Sun & Saenko, 2016} [Long et al., 2015} Tzeng et al [2014), while adversar-
ial approaches employ domain discriminators (Saito et al., |2018a; [Sankaranarayanan et al. [2018).
Transformer-based backbones (Dosovitskiy et al., 2020) have also been explored with attention-
driven alignment (Sun et al.| 2022; Xu et al) 2021). Source-Free Domain Adaptation (SFDA)
removes source data access. Representative works include prototype transfer (Chidlovskii et al.,
2016)), iterative pseudo-labeling (Liang et al., 2019), SHOT (Krause et al., 2010;|Shi & Sha, |2012),
and neighborhood regularization (Yang et al., [2021). Beyond this, Open-Set Domain Adaptation
(OSDA) addresses unknown target categories. Strategies include confidence thresholding (Saito
et al., [2018b), progressive separation (Liu et al., |2019), and causal adjustment (L1 et al., 2023b).
While OSDA extends domain adaptation to more realistic scenarios, most existing methods remain
centered on classifying known categories and pay limited attention to systematically exploring the
unknown label space.
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3 METHODOLOGY

3.1 PROBLEM STATEMENT

Open-World Continual Category Discovery (OW-CCD) involves one base learning session followed
by T online continual discovery sessions. In the base session, we are provided with a labeled dataset

Dl = {(;, yi)}fgl consisting of N' labeled samples drawn from a known category space C'. In

each subsequent online discovery session, an unlabeled data stream D} = {xz}f\él is introduced in-
crementally. This stream not only contains samples from the previously seen known categories, but
also includes samples from novel categories C;* in session ¢t. Moreover, these samples may originate
from domains that differ from the domain distributions observed in the base session, thus introduc-
ing additional domain shift. The goal of OW-CCD is to enable the model to robustly discover novel
concepts from the dynamic unlabeled data stream in an online manner, while simultaneously main-
taining recognition capability for known categories and alleviating the impact of distribution shifts
as much as possible.

Fig. [2illustrates the overall framework of our proposed PRISM method. In the base session, we first
pre-train a model & = {f, g} on the labeled dataset using cross-entropy loss, where f(-) denotes
the feature extractor and g(-) is the classifier head. This provides discriminative representations as
a foundation for subsequent discovery. In the online discovery stage, we then introduce three key
innovations. First, the High-Frequency-Driven Category Separation (HCS) is employed to automat-
ically separate known and unknown categories by exploiting high-frequency information in images.
Second, the Sparse Assignment Matching (SAM) module assigns reliable cluster labels to samples
from known categories. Finally, the Invariant Knowledge Transfer (IKT) module captures robust
category associations across different domains, thereby enabling stable and effective novel category
discovery.

3.2 HIGH-FREQUENCY-DRIVEN CATEGORY SEPARATION (HCS)

Since direct distribution alignment may lead to negative transfer, we adopt a divide-and-conquer
strategy. Below, we first describe how to extract the high- and low-frequency components of images,
and then employ the HCS module for category separation. Given an input image z; € R7XWxC,
where H, W, and C' denote the height, width, and number of channels, respectively, we first trans-
form it into the frequency domain using the Discrete Fourier Transform (DFT):

H-1W-1 7j27r(ﬂ+w)
F(xi)(u,v,¢) = Z Z zi(h,w,c)e zw) (1
h=0 w=0
where j2 = —1, u and v denote the spatial frequency coordinates, and c indexes the RGB channels.

Following common practice, the low-frequency components are shifted to the center of the spectrum
for convenience. To separate low- and high-frequency information, we construct a binary mask
M e R™":

)

, i
My, = 1, if max(ju — 2|, jo — W) <. 2ROV
’ 0, otherwise,

where r controls the relative size of the mask. The low- and high-pass frequency components are
then obtained as:

Fla) =M o Fz;), Flz)=U—M)o F(z), 3)

where © denotes element-wise multiplication, and F' and F” are the masked low- and high-
frequency spectra obtained from the DFT F(x;). Finally, inverse DFT is applied to recover spatial
representations of low- and high-frequency images: ! = F~1(F!(z;)), 2t = F~H(F"(z;)).

We focus on the high-frequency component x” of the unlabeled data, as high-frequency cues often
contain discriminative structural information that helps distinguish known from unknown categories
(see Fig.[I[a-c)). These components are fed into the pre-trained feature extractor f from the pre-
vious stage to obtain high-frequency representations. Based on these representations, we define a

density scoring function: S(z) = v| max, m> , where e, denotes the prototype of the
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known class ¢ from the previous stage, and v(-) is a min—max normalization mapping scores to
[0,1]. Intuitively, S(x) measures the maximum similarity between the high-frequency representa-
tion of an unlabeled sample and known category prototypes: larger values indicate that the sample
is closer to known classes, while smaller values imply it may belong to an unknown class. As
shown in Fig. d), we empirically observe that the distribution of S(z) often exhibits a bimodal
shape, corresponding to known and unknown samples, respectively. To automatically separate
them, we model the distribution of S(x) using a two-component Gaussian Mixture Model (GMM):
P(z) = m(x) N(2|ftknos 0y0) + (1 — 7(x)) N (2| ptunk, 02, ), Where () is the posterior probability
of being assigned to the known component, estimated using the EM algorithm. A/(z | u, 02) denotes
a Gaussian distribution with mean 1 and variance o2, and (tkno, 02, ) and (funk, 02 ) correspond to
the parameters of the known and unknown components, respectively. Finally, at each online session
t, we split the incoming data stream D}* into known and unknown subsets:

Di'xno = {z |z €Dy AN w(z) > 05}, Dy ok = {z |z €D} N 7w(x)<0.5} )
This separation provides a reliable mechanism for dynamically identifying known-like and
unknown-like samples, which lays the foundation for subsequent discriminative learning and novel
category discovery.

3.3 SPARSE ASSIGNMENT MATCHING (SAM)

Since we have already obtained the known-category
samples via the proposed HCS module, we next
explore the possible labels for these known sam-
ples xx,o € Dt o- AS Tino shares the same
semantic space with the known prototypes from
the previous stage, domain adaptation techniques
can be employed to uncover the latent alignment.
In this process, Optimal Transport (OT) provides
a powerful tool to automatically discover proper
sample—prototype correspondences across domains,
thereby alleviating domain discrepancies (Courty
et al.,|2014; |Flamary et al.,2016)). However, directly
solving the OT problem with linear programming in-
curs a prohibitive computational cost (Xu & Dan)
2025)); even though the entropy regularization can
improve efficiency, it usually yields overly dense transport plans, leading to inaccurate assignments
as illustrated in Fig.[3(a). To overcome this limitation, we propose a Sparse Assignment Matching
(SAM) scheme by incorporating an ¢5-norm proximal term. The optimization objective is formu-
lated as:
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Figure 3: Toy illustration of our pro-
posed SAM method. Conventional Sinkhorn
and ¢»-regularized solvers tend to produce
smooth yet dense couplings, whereas the
proposed SAM yields a sparser transport
plan with better performance.

Nt knnC
3{1:_12 0y Z Z [’YU Cij + ('Yu 'Vz(gl)) }’ ®)
=1 j=1

where Ny ko denotes the number of samples in Dy’ .. C =1 denotes the number of known classes

from the previous stage. The cost matrix is defined as C;; = —log ( g (f (%ikno)); ) - A smaller value

of Cj; indicates that sample x; kno has a higher probability of belonging to the j-th class, while a

larger cost suggests a less plausible assignment. The second term § j (vij — ’yl(])) acts as an -

based proximal regularizer, which suppresses oscillations across iterations and enforces sparse and
t—1 t,kno ~

stable solutions. Meanwhile, A = {25:1 vig = ai =1, iy = by = Jgf SR Ay > O} is

the feasible set. We initialize 'y(JO ) = Ctl,l for the following iterations. To avoid directly handling the

constrained problem, we first obtain the Fenchel-Legendre dual formulation of the original problem:

Nt,kno ct—1 Nt kno 1~

LD RS o>

=1 j=1

1/)1 + Sﬁj zy (6)

+

where ¢ and 1 denote the Lagrange multipliers, and [2]2 = (max{0, z})? denotes the truncated
quadratic operator ensuring non-negativity. Cij = Cj — sfyi(j). Note that the original con-
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strained OT problem in Eq. is transformed into an unconstrained optimization over (v, ),

which is computationally more efficient. The detailed optimization procedure for solving ¢ and
¢ is provided in the Appendix. Then the transport plan v can be updated in closed form as:
I+1 1

rY’L(j+ ) = = max {07 (% + ©j =+ E%(J) 1])/8} .

With the optimal transport plan +* obtained from sparse sample-prototype alignment, we assign

reliable pseudo labels to the known samples zxno € Dy'y,,- Moreover, compared with the standard

{o-regularized OT, the proposed SAM produces significantly sparser and clearer assignment pat-

terns, as depicted in Fig. [3{b)—(c), which contributes to more trustworthy pseudo-label generation.

3.4 INVARIANT KNOWLEDGE TRANSFER (IKT)

For unknown category discovery, we build on the core idea of category discovery—transferring cat-
egory knowledge from known to unknown classes by exploiting their semantic associations. Under
domain shift, however, such associations may be distorted by domain-specific style factors, lead-
ing the model to capture spurious rather than genuine relations. We argue that effective discovery
should instead depend on domain-invariant category associations that reflect stable semantic struc-
tures. To this end, we propose an Invariant Knowledge Transfer module, which explicitly models the
relationships between unknown samples and known prototypes across domains and enforces their
invariance, thereby facilitating the transfer of authentic semantic knowledge. Specifically, in each
previous stage we pre-compute the frequency-domain statistics of the known domain. For this pur-
pose, we apply the discrete Fourier transform as in Eq. (T) and decompose each spectrum into low-
and high-frequency components {F', 7"} according to Eq. (3). Inspired by recent works (Li et al.,
2022; [Wang et al., 2022)) that employ spatial feature statlstlcs to characterize style, we characterize
the low-frequency spectrum by the channel-wise mean and standard deviation:

W(F) —szfluvc) (]:ZI—HWZJTIUUC) ZE M

‘We assume that the distribution of these statistics follows a Gaussian distribution, and estimate their
variances across the data from the previous stage:

Nt71 Ntfl
SHF) = 5 X D B, 22 = 5 Y (R - Bl
i=1 i=1

®)
where N;_; denotes the number of samples from the previous stage. We then sample perturbed
low-frequency statistics from these Gaussian distributions:

F) = w(F) + en Zu(F), e~ N(0,1), 6(F) =0(F)) + e 2o (F), € ~N(0,1).
)
For an unknown sample z , in the current data stream, we extract its low-/high-frequency com-

ponents (]-"Z wnko f{funk) via Eq. and reconstruct the low-frequency spectrum with the sampled
statistics:
1
(‘Fz unk)

(‘le unk)

. with the original high-frequency part F7

7,unl

. F
Fl OA_ (f-l) 7, unk

zun

+ A(FD. (10)

Finally, we combine F!

i « to form an augmented spec-

trum F (z x; ¢ k) and apply inverse DFT to obtain the augmented sample f{unk. Then, for each

unknown-category sample x} ,, and its style-transferred counterpart T} k> We extract their feature

representations: z; uy = f(2f ), 2 unk = f (2] ue)- Let {0 ", denote the set of known class
prototypes from the previous stage. For each unknown sample, we convert its cosine similarities
to these prototypes under both the original and %tyle transferred views into the strength paiameterv
of the Plackett-Luce (PL) model: x; . = exp(cos(z! ., ei™)), Ric = exp(cos(Z! . el™)). As
the number of known classes grows, enumerating or even implicitly handling all C*~!! permutations
becomes infeasible. Therefore, following standard practice in listwise ranking (e.g., ListMLE (Xiaj
et al.| [2008])), we adopt the factorized PL likelihood, whose sequential decomposition provides an
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analytically exact and computationally tractable form of the model. Given x; = {r; 1,..., K ct-1},
the likelihood of a permutation € is:
C(,— 1
Ri ¢k
P | ki) = [] —gmrt®—, (1)

k=1 2uk/=k i, E(K')
where £(k) denotes the prototype placed at position k. For illustration, when C!=! = 3 and
£=(a,0,c), P(§| ki) = i m i ie woo- This example reflects the inherent sequential
normalization of the PL model and does not require constructing or summing over all permutations.
To ensure that these associations remain consistent across domains, we enforce view-invariant rank-
ing by aligning the PL likelihoods from the original and style-transferred views through divergence
minimization:

Nt unk

1

ank = ——— lxi(P(- | ki), P(:
;Crdnk Ntﬁunk ; KL( ( ‘ L), (
where Ny ynx denotes the number of unknown-category samples, and (i, is the Kullback—Leibler
divergence. Crucially, the KL divergence between two PL distributions also decomposes into a sum
over the corresponding local log-probability terms, meaning that our implementation optimizes the
exact computable KL induced by the factorized PL model rather than an approximation over the full
permutation space. By enforcing agreement between the two factorized PL likelihoods, the model
preserves the global relative ranking between unknown samples and known prototypes, providing a

strong structure-aware regularization signal for category discovery under domain shift.

Ri)), (12)

3.5 ONLINE ADAPTATION

Following the setup of [2024), we assign labels to known and novel samples with dif-
ferent strategies. For data from known categories, we employ the SAM module to generate reliable
pseudo-labels. For previously unseen categories, i.e., samples not belonging to any known class,
we adopt Affinity Propagation (Frey & Dueck} [2007) to automatically infer cluster memberships.
As a non-parametric clustering algorithm, Affinity Propagation iteratively exchanges messages be-
tween samples based on pairwise similarities, thereby estimating the optimal number of clusters
without requiring it as a prior, which is particularly suitable for open-world scenarios where the
number of novel classes is unknown. The inferred clusters are then used to dynamically expand
the online classifier, enabling the integration of emerging categories. During online learning, we
combine pseudo-labeled known samples with clustered novel samples and incrementally update the
model using a standard cross-entropy loss, allowing the system to acquire new semantic knowledge
without revisiting past data. The overall optimization objective of our method can be formulated as:
Liotal = Lce + A1 Lrank, Where L. denotes the cross-entropy loss computed on pseudo-labeled data
and )\, is a balancing hyperparameter.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our method on two representative benchmarks: the Corrupted Semantic Shift
Benchmark (SSB-C) (Wang et al [2024a) and DomainNet (Peng et al} 2019). SSB-C extends
the Semantic Shift Benchmark (SSB) with nine corruption types at five severity levels, covering
three fine-grained datasets. This benchmark provides a challenging platform to assess robustness
under both semantic and visual perturbations. DomainNet is a large-scale dataset with six diverse
domains, featuring hundreds of categories and substantial domain gaps. Following
[2024a)), we use the original datasets in SSB-C as known domains and their corrupted versions as
unknown domains. For DomainNet, the Real domain serves as the known domain, while each of the
remaining domains is treated as an unknown domain in turn; we also evaluate a mixed setting where
all non-Real domains are merged into one unknown domain (details in the Appendix). The category
split follows (Cendra et al [2024): a subset of labeled known classes from the known domain is
used in the base session, and subsequent sessions sequentially introduce new streams containing
both known and novel categories. Importantly, each session includes samples from both known and
unknown domains, simulating realistic scenarios with simultaneous category expansion and domain
shift.
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Implementation details We adopt ViT-B/16 (Dosovitskiy et al.,|[2020) as the backbone, pretrained
with DINO (Caron et al., 2021} |(Oquab et al., 2023). Following prior work (Wen et al., 2023} Park
et al., 2024)), only the final transformer block is fine-tuned at each stage using SGD for 30 epochs
with a batch size of 128. The initial learning rate is 0.1 and decayed to 1 x 10~* via cosine annealing,
and weight decay is fixed at 5 x 10~°. We set the trade-off parameter \; = 1, the number of stages
T = 3, and the binary mask ratio 7 = 0.3. The proximal strength parameter ¢ in the SAM module
is fixed to 0.5. All experiments are repeated with three random seeds, and averaged results are
reported. Models are implemented in PyTorch and trained on eight NVIDIA RTX 4090 GPUs.

Evaluation protocol. We adopt continual clustering accuracy (cACC) (Cendra et al.,[2024) as our
primary evaluation metric. cACC measures the average clustering performance over all sessions up
to stage ¢, defined as: cACC; = % Z}i:l ACCy. Here, ACCy, denotes the clustering accuracy on
the test dataset of session k. Following (Wang et al. [2024al; |Vaze et al., 2022)), clustering accuracy
(ACC) is defined by comparing the ground-truth labels y; with the predicted cluster assignments g;:

ACC = \Dlg\ ZLZ‘I‘ {y; = g*(9:)}, where g* denotes the optimal permutation mapping predicted
clusters to their ground-truth counterparts. We report cACC results on both known and unknown
domains, and further break them down into All, Old, and New categories for a comprehensive eval-

uation.

Table 1: Clustering performance on DomainNet benchmark. We use Real as the known domain
and each of the remaining domains as the unknown domain. We report the average All / Old / New
accuracy across all stages for both domains.

— Real — Painting Real — Sketch Real — Quickdraw Real — Clipart Real — Infograph
Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph

Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New
GCD 513 672 454 | 274 267 281 | 523 657 417 | 92 145 101 | 387 562 296 | 50 47 58 | 467 657 401 | 145 212 101 | 398 553 324 | 81 98 64
SimGCD 484 639 413 226 224 235|485 602 365 | 72 113 92 | 324 503 235 |42 40 51 [402 588 335|103 188 82 [ 336 492 278 | 67 78 52
SPTNet 498 645 425 | 241 235 243 | 499 623 378 | 7.9 117 96 | 348 526 248 |49 46 55 |431 603 359 | 116 193 89 | 359 514 298| 72 80 59
RLCD 508 662 440 | 255 246 258 | 512 648 400 | 84 121 100 | 361 540 257 (48 47 53 | 452 621 369 | 135 209 98 | 371 532 325| 84 89 68
G&M 471 623 412|263 255 262 | 509 634 423 | 109 151 105 | 341 502 273 |43 41 52 [ 403 6L1 342 | 114 192 88 [ 324 500 276 | 75 92 55
Happy 506 665 447 | 280 27.1 289 | 520 650 412 | 112 156 107 356 514 289 |46 45 52 |456 624 370|120 196 90 | 342 505 280 | 79 94 56
PA-CGCD | 554 703 481|301 308 302 | 551 707 466 | 123 161 112|436 604 342 |51 50 60 | 522 703 446 [ 178 245 123 [ 452 613 381 [ 90 118 71
DEAN 560 717 479 | 328 344 315|567 715 476 | 129 168 112 | 440 610 351 (53 51 62 | S50 727 475 | 203 267 150 [ 467 623 408 | 95 125 79
PromptCCD | 565 712 503 | 315 321 312 | 574 736 486 | 134 177 121|452 623 367 |58 51 65 | 541 712 467 | 198 261 144 [ 470 631 402 | 92 122 78
VB-CGCD | 573 710 524 | 324 336 325|569 731 488 | 139 181 129 | 471 621 381 |60 49 68 | 554 720 475 | 196 258 142 | 483 639 419 | 94 124 80
PRISM 609 741 551|392 390 382 | 601 734 510 | 169 20.1 159 [ 540 740 492 |71 65 74 | 580 723 512|240 304 191 | 60.1 738 531|109 141 98

Table 2: Clustering performance on SSB-C benchmarks. Each dataset contains both Original and
Corrupted settings, and we report the average All / Old / New accuracy across all stages for both
domains.

Methods - CUB-C __ Stanford Cars-C ~ FGVC-Aircraft-C
Original Corrupted Original Corrupted Original Corrupted

All. Old New | Al._ Old New | Al. Old New | Al Old New | Al Old New | All Old New
GCD 294 477 2341268 459 201|264 56.1 21.5]223 431 112|277 336 249|288 414 288
SimGCD 266 445 210|234 424 177 (231 525 189 | 193 397 98 | 254 30.1 221 252 381 258
SPTNet 278 452 220 | 251 442 18.1 | 249 550 203 |21.1 41.6 99 |261 312 233|269 395 267
RLCD 29.1 46.8 238 | 262 453 194 | 268 569 221|229 432 9.7 |27.8 323 242|273 40.7 281
G&M 164 341 105 | 137 321 7.7 [ 157 438 123 | 114 305 6.7 |205 248 179 |21.6 327 223
Happy 220 394 169 | 198 384 142 (219 487 189 | 181 370 132|243 279 213|248 356 257
PA-CGCD 283 465 227 | 254 447 184 252 551 209 | 212 415 102 | 264 314 237|278 40.1 272
DEAN 289 47.1 230 | 263 462 182 | 26.1 581 194|221 412 129|281 328 289 |29.1 40.1 303
PromptCCD || 30.1 48.1 245 | 274 46.1 203 274 574 221 |231 444 114|299 345 264 |303 429 299
VB-CGCD 342 51.8 263 | 31.7 492 234 (31.6 599 261 |263 479 151|332 373 29.7 | 323 445 31.6
PRISM 493 649 442 | 440 609 37.0 | 369 60.0 29.1 | 33.3 56.5 23.5 | 40.1 489 40.1 | 364 461 34.1

4.2 MAIN RESULTS

We compare our method with representative continual discovery baselines, including Grow & Merge
(G&M) (Zhang et al., 2022), Happy (Ma et al., 2024), PA-CGCD (Kim et al., |2023), DEAN (Park
et al.| [2024), PromptCCD (Cendra et al.l [2024), and VB-CGCD (Dai & Chauhan| 2025), as well
as re-implemented GCD methods (GCD (Vaze et al., 2022), SimGCD (Wen et al., 2023), SPT-
Net (Wang et all 2024b) and RLCD (Liu et al., 2025a)). We also note that some recent works,
such as HiLo (Wang et al, 2024a) and CDAD-Net (Rongali et al.| [2024), have explored handling
distribution shifts in GCD. However, since these methods require access to the entire dataset rather
than session-based streams, they cannot be directly applied to CCD, and are therefore not included
in our comparison. Table [T] and Table [2] present the results on the SSB-C and DomainNet bench-
marks, respectively. It can be observed that in the challenging OW-CCD setting, existing GCD and
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Table 3: Component-wise ablation on Real — Table 4: Comparison of separation strategies on

Painting. Real — Painting.

Components Real Painting Methods Real Painting
HCS SAM IKT | Al Old New | All Old New All Old New | All Old New
X X X 546 687 465 | 287 281 279 origin image 55.0 687 472 | 296 289 283
4 v X | 581 729 499|350 359 325 entropy-based || 544 69.0 46.7 | 299 29.1 286
4 X v || 569 702 5271332 318 352 energy-based || 55.8 69.9 48.1 | 30.6 295 299
v v 7 609 741 551|392 390 382 PRISM 609 741 551 | 392 39.0 382

CCD approaches struggle to cope with domain shifts, leading to unreliable recognition of known
classes and poor discovery of new ones. In contrast, our approach consistently achieves more robust
clustering performance, outperforming both prior CCD and GCD methods by a clear margin. For
instance, on CUB-C, our method surpasses the strongest CCD competitor, VB-CGCD, by 15.1%
in the clean domain and 12.3% in the corrupted domain, highlighting its robustness against both
semantic and visual perturbations. On the more demanding DomainNet benchmark, similar gains
are observed. For instance, in the Real—Painting task, PRISM outperforms VB-CGCD by 3.6%
on the source domain (Real) and 6.8% on the target domain (Painting). These results highlight that
our approach generalizes effectively to new domains while reliably discovering novel categories in
continuous streams.

4.3 ANALYSIS

Effectiveness of different components. We conduct a comprehensive ablation study to examine
the contribution of each component in our framework. As shown in Table 3| the baseline performs
poorly, highlighting the severe impact of domain shifts on both known and novel category recog-
nition. Incorporating the HCS module to separate known from unknown samples, followed by the
SAM module, substantially improves clustering accuracy on known categories, confirming the effec-
tiveness of sparse assignment matching. Introducing the IKT module further enhances the discovery
of novel categories, underscoring the importance of preserving robust category associations under
distribution shifts. When all components are integrated, the model achieves the best overall per-
formance, demonstrating the benefit of combining these modules for reliable open-world continual
category discovery.

Comparison with alternative separation modules. To further validate the contribution of the
HCS module, we carried out a focused ablation study. We compared with three baselines: (1) an
entropy-driven separation scheme (Safaei et al.| [2024)), (2) an energy-based approach (Park et al.,
2024), and (3) a simplified variant of HCS that relies on raw image features without applying fre-
quency decomposition. As reported in Table[d] the proposed module consistently outperforms these
alternatives. Its strength lies in exploiting high-frequency information, which preserves more de-
tailed structural and semantic patterns, allowing the model to more effectively separate unlabeled
data. This leads to a more reliable basis for recognizing both previously seen and emerging cate-
gories in continual discovery. In addition, Figure [5]in Appendix provides a qualitative illustration
of this effect. The HCS module provides a clearer separation between known and unknown groups,
demonstrating its ability to filter out style-related noise while retaining meaningful semantic rela-
tions. These observations collectively indicate that HCS is not only beneficial for sample separation
but also crucial for enhancing overall performance in open-world category discovery under distribu-
tion shifts.

5 CONCLUSION

In this work, we take the first step toward tackling the challenging problem of open-world continual
category discovery and introduce three key innovations to address it. First, a high-frequency-driven
category separation module leverages spectral details to reliably distinguish between known and
novel categories. Second, a sparse assignment matching module employs proximal optimal trans-
port to assign trustworthy clustering labels to known classes. Third, an invariant knowledge trans-
fer module enforces semantic association consistency across domains, enabling robust knowledge
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transfer under distributional shifts. Extensive experiments on multiple benchmarks validate the ef-
fectiveness of our framework, demonstrating its ability to consistently recognize known categories
and uncover new ones in dynamic, non-stationary data streams.
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A APPENDIX

A.1 MORE RELATED WORK

A.1.1 CATEGORY DISCOVERY

Category discovery aims to transfer knowledge from known classes to identify novel concepts,
where unlabeled data may contain unseen categories. Novel Class Discovery (NCD) was first in-
troduced to explore how knowledge from labeled classes can be leveraged to discover entirely new
ones. Early solutions followed a two-stage strategy. For example, AutoNovel (Han et al., [2021])
employs self-supervised learning with ranking statistics to transfer knowledge for clustering. Sub-
sequently, (Fini et al.| |2021) proposed a unified end-to-end framework optimizing multiple objec-
tives simultaneously. IIC (L1 et al.l |2023a) further model inter-class separability and intra-class
consistency to improve robustness. OpenMix (Zhong et al., 2021) dynamically mixes labeled and
unlabeled data to refine pseudo-labels and exploit finer relations among novel classes. While NCD
assumes that all unlabeled data belong to novel categories, this assumption limits its practicality.
To address more realistic scenarios, Generalized Category Discovery (GCD) was introduced, where
the unlabeled pool contains both previously seen and unseen categories. Early GCD methods com-
bined supervised contrastive objectives with self-supervised representation learning followed by
semi-supervised clustering (Vaze et al.,[2022). Later, SimGCD (Wen et al.,|2023)) introduced a para-
metric classifier to improve efficiency and inference speed, establishing a strong baseline. Building
on these foundations, researchers have proposed a series of more advanced approaches to tackle dif-
ferent challenges in Generalized Category Discovery. For instance, (Cao et al.l [2024) introduced a
memory-preserving mechanism to alleviate catastrophic forgetting and maintain knowledge of seen
classes during novel category adaptation. (Liu et al., 2025b)) explored hierarchical space modeling,
arguing that Euclidean or spherical spaces are suboptimal for encoding data with hierarchical struc-
tures, and instead proposed a hyperbolic embedding space to better capture both seen and unseen
categories. To unify the treatment of old and new classes, (Ma et al., 2025) developed ProtoGCD,
which leverages joint prototypes and dual-level pseudo-labeling to balance the recognition of known
and novel categories while also estimating the number of unseen classes. Beyond the single-domain
setting, (Wang et al.,|2024a) and (Rongali et al., 2024) extended GCD into cross-domain scenarios,
addressing domain shift by aligning representations across source and target domains with special-
ized augmentation and adversarial strategies. However, their approaches remain limited to static
GCD datasets, whereas our work focuses on tackling domain shift under continuous streaming data,
a setting that more faithfully reflects real-world dynamics. In parallel, multimodal extensions have
also been explored: (Zheng et al., 2024) proposed TextGCD, a two-phase framework that generates
descriptive texts via retrieval and employs cross-modality co-teaching, while (Wang et al., [2025))

13
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introduced TES, which synthesizes pseudo text embeddings from CLIP to bridge visual and tex-
tual modalities. Together, these works significantly improve the balance between known and novel
classes, and continually push the performance boundaries of GCD across both generic and fine-
grained datasets.

Going further, Continuous Category Discovery (CCD) extends GCD to an incremental setting,
where models continually receive new streams of unlabeled data. The key challenge lies in dis-
covering new categories while retaining knowledge of past ones. Recent progress in CCD has
introduced diverse strategies to alleviate forgetting and improve discovery quality. (Zhang et al.,
2022) presented the Grow-and-Merge framework, which alternates between a growth phase for en-
riching feature diversity via self-supervised learning and a merging phase that stabilizes recognition
of previously learned classes. (Wu et al.l |2023) proposed a meta-learning optimization approach
that balances class-discriminative representations for known categories with diverse features for
novel discovery. (Park et al., |2024) designed DEAN, an online method that performs discovery
through energy-based guidance and enhances reliability using variance-driven feature augmenta-
tion. (Cendra et al.| [2024) introduced PromptCCD, where Gaussian Mixture Prompting acts as a
dynamic pool that prevents forgetting and enables adaptive estimation of category numbers. (Dai &
Chauhanl, 2025) developed VB-CGCD, which explains forgetting as covariance misalignment and
employs variational Bayesian inference with covariance-aware classification to improve robustness
under noisy pseudo-labels.

While these advances move CCD closer to practical continual learning, most methods still rely on the
simplifying assumption of a fixed domain within each stage. In reality, streaming data often involve
domain variations or shifts, making such assumptions unrealistic and motivating new frameworks
that explicitly address multi-domain continual discovery.

A.1.2 DOMAIN ADAPTATION

Domain adaptation seeks to mitigate distribution shifts between a labeled source and a target do-
main. A key setting is unsupervised domain adaptation (UDA), which leverages labeled source
data and unlabeled target data for model adaptation. UDA methods typically learn domain-invariant
representations to reduce distribution shifts. Discrepancy-based approaches minimize statistical dif-
ferences between domains via moment-matching techniques (e.g., correlation alignment (Sun &
Saenko, [2016) or Maximum Mean Discrepancy (Long et al., 2015} |Tzeng et al.l |2014)), while ad-
versarial approaches (Saito et al., 2018a;|Sankaranarayanan et al.,2018)) employ domain discrimina-
tors to encourage indistinguishable cross-domain features. Recently, Transformer-based backbones
(Dosovitskiy et al.,|2020) have been explored to enhance feature alignment through attention mech-
anisms (Sun et al., [2022; | Xu et al., 2021). However, most UDA methods assume joint access to
source and target data, which is impractical under privacy constraints. Source-Free Domain Adap-
tation (SFDA) addresses this by adapting only a source-trained model with unlabeled target data.
(Chidlovskii et al, |2016) suggested using a small set of prototypes instead of the complete source
data to facilitate adaptation, while (Liang et al.,|2019) enhanced target learning by iteratively refin-
ing pseudo-labels through self-training. SHOT (Krause et al., 2010; [Shi & Shal [2012) transfers the
source-trained encoder to the target domain by combining information maximization with clustering,
keeping the classifier unchanged. To further improve pseudo-label reliability, (Yang et al.,[2021)) in-
troduced neighborhood consistency regularization across target samples. Beyond these transductive
settings, researchers have also examined Open-Set Domain Adaptation (OSDA), where target data
may involve categories unseen in the source. OSBP (Saito et al., 2018b) introduced a thresholding
strategy to separate unknown samples from the known target subset, while STA (Liu et al., 2019)
proposed a progressive weighting scheme to gradually disentangle them. More recently, ANNA
(L1 et al., |2023b) incorporated causal front-door adjustment and decoupled alignment to mitigate
semantic bias and enable more reliable transfer under open-set conditions. Although OSDA broad-
ens the applicability of domain adaptation, it still mainly focuses on recognizing known categories,
while overlooking further exploration of the unknown category space.
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A.2 THEORETICAL PROOF
A.2.1 OPTIMIZATION OF SAM

In this section, we elaborate on the optimization procedure for solving the Sparse Assignment
Matching (SAM) objective. Let v and ¢ denote the dual variables. The SAM problem can then
be formulated as:

Nt xno ct—t Nt kno C*™ i+
max Lg= Z Yia; + ZQOJ - = Z Z . QOJ Cij , (13)
=1 j=1 +

where N; xno denotes the number of known samples, C*~! the number of known category prototypes,

éw =Cy — sfyl(]) is the transport cost, G; and 13 are the corresponding marginals. To efficiently

optimize Eq. equation[T3] we adopt the Block Coordmate Descent (BCD) strategy. The updates of
the dual variables are derived by alternatingly fixing one variable and optimizing the other.

Update of ). Taking the derivative of Lg with respect to 1; and setting it to zero yields:
thl
W)=Y {1/% - (éij - @j)L = €. (14)
j=1
Update of . Similarly, for ;, we have:

Nt,kno

o= o= (Cy—wi)], =<bs. (s)
i=1

Update of v. With the updated dual variables, the primal transport plan v can be updated. At the
l-th iteration, the optimal 7(l+1) is obtained as:

O] O] O]
() _ max(() Vi te temy _Cij> )

Y e (16)

= (141 l
Ci(jJr ) = Cij s’yz(j).
After several iterations, the optimal solutions of v and ¢ are obtained, based on which the corre-
sponding optimal transport plan -y can be subsequently derived.

Table 5: Class counts at each incremental stage for the Corrupted SSB and DomainNet benchmarks.
We present the cumulative number of categories in both Original and Corrupted settings over four
stages.

Stage CUB-C Stanford Cars-C FGVC-Aircraft-C DomainNet
Original Corrupted | Original Corrupted | Original Corrupted | Real Other Domains

0 140 N/A 130 N/A 70 N/A 225 N/A

1 160 160 152 152 80 80 265 265

2 180 180 174 174 90 90 305 305

3 200 200 196 196 100 100 345 345

A.2.2 THEORETICAL INTUITION ON DOMAIN INVARIANCE OF HIGH-FREQUENCY CUES
Given an input image (¥ € R7*W*C from domain d € {s,t}, we apply the discrete Fourier

transform (DFT) F(-) and its inverse F~(-). A binary mask M € R™*" is constructed to separate
low- and high-frequency components:

. . min(H,W)

2 - 5 - 5 < - a

M, 1, if max(|u | |v D 5 , a7
0, otherwise,
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Table 6: Overview of class partitions in the labeled dataset (D') and unlabeled streams (DY, 5,
DY), covering both the known and unknown domains.

Known Domain Unknown Domain
D Dy Dy DY | DI D}y DYy DY
y; € [1, 0.7|C]] 87%  T% 3% 3% 0% T% 3% 3%
yi € (0.7|C|, 0.8|C|] 0% 70% 20% 10% | 0% 70% 20% 10%
y; € (0.8|C|, 0.9|C|] 0% 0% 90% 10% | 0% 0% 90% 10%
y; € (0.9|C|, |C]] 0% 0% 0% 100% | 0% 0% 0%  100%

Class Range

and we define
Flz)=M o F(z), F'(z)=1-M)o F(z), (18)
where ® denotes element-wise multiplication. The corresponding spatial components are obtained
by
= F Y F(2), a"=FYF'(x)). (19)

To analyze the domain dependence of different frequency bands, we assume a simple additive de-
composition:

@ =y o@D, (20)
where u denotes the domain-shared semantic structure (edges, textures, shapes), and v(?) represents
the domain-specific style (illumination, color tone, or imaging pipeline). In the frequency domain,

this becomes
F(@' D) = Fu) + Fo'D). (21)

Step 1: High-frequency discrepancy is upper-bounded by the high-frequency tail of style. For the
high-pass band Qy, () selected by (I — M), we have

1F" (@) =F" ()l = |(IM)O(F () =F(0®))||2 < [(FEM)OF (0F) o+ (I-M)OF () 2.
(22)

Since each domain style v(%) is C"™-smooth (mm > 1) with bounded Sobolev norm Hv(d> = < B,

then the Fourier energy of its high-frequency tail decays as

/I I>p(r) | F (0 D) (w)|? dw < Cp, p(r) 2"~ B2, o
w||>p(r

which implies
[(I-M) e F D), < CL2p(r)~ DB, (24)

m

Substituting into Eq. equation 22} we obtain
IF" () = FM @)z < 2C2p(r) ="V B = e(r). (25)

As the cutoff frequency p(r) increases, £(r) — 0, which means the inter-domain difference in the
high-frequency band becomes negligible, and the high-frequency representation is effectively deter-
mined by the shared semantics w.

Step 2: Low-frequency discrepancy is dominated by style. For the low-pass band €2;(r), we have
|1F (@) =FH (@ D)o = |MO(F (u)=F (u)+F ()= F (W) la = |MO(F (o) =F(u))]|2.
(26)

Since F (v(d>) concentrates energy near the origin, the right-hand side is non-negligible across do-
mains, showing that low-frequency spectra encode style and illumination variations.

Step 3: Physical imaging models reinforce this separation. In practice, cross-domain shifts often
arise from: (i) multiplicative/additive low-frequency fields

2D (p) = a'D (p)wpnys(p) + 0D (p), 27)

where (¥ and b(?) are slowly varying and thus mainly perturb the low-frequency spectrum; and
(ii) convolution with smooth kernels k(¥), whose transfer functions K (% (w) are low-pass, further
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attenuating style at high frequency. Both mechanisms reduce the high-frequency contribution of
v(? and thus tighten the bound £(r) above.

Conclusion. Combining the above derivations and the Fourier decay property yields

| F" () = F(®)||y < e(r)—0, | F (z®) — F'(2V)||y — remains significant  (28)
Therefore, high-frequency components (I — M) ® F(x) encode domain-invariant semantic struc-
tures, while low-frequency components M © F(z) capture domain-specific styles. This theoretical
analysis explains why the high-frequency cues extracted in Eq.(3) are inherently more robust and
domain-invariant in practice.

A.3 PSEUDOCODE

The pseudocode of PRISM, outlining its main components and training flow, is provided in Algo-
rithm[1]

A.4 DATASETS

To thoroughly evaluate the proposed framework under both domain shift and semantic shift con-
ditions, we conduct experiments on two widely used benchmarks: DomainNet (Peng et al., 2019)
and SSB-C (Wang et al.|[2024a). These datasets encompass diverse visual domains and fine-grained
recognition challenges, thereby providing a rigorous test of generalization and robustness.

A.4.1 DOMAINNET

DomainNet (Peng et al.,|2019) is among the largest benchmarks in domain adaptation and general-
ization, containing approximately 600,000 images across 345 categories. The dataset spans six het-
erogeneous domains with distinct visual styles: Real (photographic images), Clipart (cartoon-style
drawings), Sketch (hand-drawn sketches), Painting (artistic renderings such as oil and watercolor),
Infograph (symbolic infographic-like images), and Quickdraw (doodle-style drawings from Google
QuickDraw). The large scale and stylistic diversity introduce strong domain discrepancies, making
DomainNet a challenging testbed for algorithms aiming to learn domain-invariant yet discriminative
representations.

A.4.2 SSB-C

The SSB-C benchmark (Wang et al., 2024a) extends the Semantic Shift Benchmark (SSB) to explic-
itly measure robustness under semantic and distributional perturbations. The original SSB is built
from three fine-grained datasets: CUB-200-2011 (200 bird species with subtle inter-class variations),
Stanford Cars (196 categories covering a wide range of brands and models), and FGVC-Aircraft
(100 aircraft categories defined by structural differences). SSB-C introduces nine corruption types
(e.g., Gaussian noise, frost blur, impulse noise) applied at five severity levels, following the com-
mon corruption protocol. This produces a dataset that is nearly 45 larger than the original SSB,
offering a comprehensive benchmark for evaluating robustness in fine-grained recognition.

A.4.3 EVALUATION PROTOCOL

For each benchmark, a subset of categories is initially designated as labeled known classes to build
the first training session. In subsequent sessions, new categories are gradually introduced, simulat-
ing the progressive emergence of novel classes. Detailed statistics of category splits are presented in
Table[5] while the proportion of known and unknown samples across unseen domains is summarized
in Table[6] These staged splits emulate real-world deployment scenarios in which both novel cate-
gories and domain shifts arise over time. Methods are evaluated by their ability to simultaneously
recognize known classes and discover unknown ones, with particular emphasis on generalization
and semantic separability.

A.5 COMPREHENSIVE CLUSTERING EVALUATION

To assess both robustness and effectiveness, we perform extensive multi-stage clustering studies
on the SSB-C and DomainNet benchmarks. The summarized outcomes in Tables [7] and [§] report
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Algorithm 1: PRISM

Input : labeled base set D'; streaming unlabeled sets {D;*}/_,; model § = {f, g}; mask ratio r; SAM

proximal strength ; rank loss weight A1
Output: updated model 6 = {f, g}

/+ ——— High-Frequency-Driven Category Separation

Function HCS_Split (D}, f, {el™'},r):
for x € Di do
Compute Fourier spectrum F () with mask M
Extract high-frequency part 2";
S(z) + v(max, mzh)ie::f)
ILf @) llllec™ I
end for
Fit 2-comp GMM on {S(z)} and get 7(x);
Di'ino < {z|m(x) > 0.5}, DY oy < {z|7(z) < 0.5}
return Dy'y,.,, Dy’ i
/* ——— Sparse Assignment Matching (SAM) -—-
Function SAM Assign (D4, f, g, {ef '} e):
Build cost Cij = — log(g(f(mi,kno))j);

s oti e A (0).
Initialize ;;";
Solve dual (v, ) and update - until convergence;
5 — arg max; v

return {7;""}, 7"

Function IKT RankLoss (D, f,{e: '} :
Estimate low-frequency stats from prev. stage;
for x € D, do
Generate style-perturbed view T;
z = f(x), z = f(2);
Compute PL dists P(P|x), P(P|R);
Accumulate £,
end for
Lank < mean divergence
return L,qx

Function AP_Cluster (Dy u, f):
Run Affinity Propagation on { f(z)};
return novel clusters {J"*}, Kuu
Function Online_Update (0, Sk, Snovy Lrank, A1)
L. + cross-entropy on pseudo + novel clusters;
Etolal = Ece + A1 Emnk;
Update model § = {f, g};
return 0 = {f, g}, updated prototypes {el}
/* ——— Main Procedure —-—-—
Initialize & = {f, g} and get known-class prototypes {e2} on D'
fort =1to T do
Dg,knm ,D}&L,unk — HCS,Split(Dg, f7 {6271}7 T)
{7}, 7" saM-Assign(Diim, f 9, {ee '}, €)
Lrank < IKT_RankLoss (D, f> {et™'})
{g}“"k}, Kunk <= AP _Cluster(Dy yn, f)
Build pseudo-labeled sets Skno, Sunk;
0,{el} + online_Update(f, Sio, Sunk, Lrank, A1)
end for
return updated model 6 = {f, g}

/* ——— Invariant Knowledge Transfer (IKT) --

/+* ——— Affinity Propagation + Online Update —--—-

*/

*/

*/

*/

*/
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Table 7: Clustering results (mean + std) on the DomainNet benchmark. The Real domain is treated
as the known domain, while each of the other domains serves in turn as the unknown domain. We
present the averaged accuracies on All / Old / New classes across all stages for both domains.
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Table 8: Clustering results (mean =+ std) on the SSB-C benchmarks. For each dataset, we evaluate
on both Original and Corrupted domains, reporting average accuracies over All, Old, and New
categories across different stages.

P TUB-C Stanford Cars-C FGVC-Ajreraft-C
Original Cormupted Original Corrupted Original Cormupted

All old New All old New All oid New All old New All old New All old New
GCD 294+14 477+15 234+£15([268£13 459+15 201+£22[264£10 56118 21517 [223+£17 43110 112+£16 [277+10 336+12 249+21|288+22 414+14 288%18
SimGCD 266+ 1.5 445420 21.0£21 |234£20 424+£19 177412231416 525414 1894+ 11| 193408 397£22 98415 | 254421 301£1.6 2214£23 (252420 381410 258+ 14
SPTNet 278423 452415 220+18 (251412 442412 18108 (249417 550+£21 203+13 [ 211411 416320 99+10 [ 26117 312423 233+12 [269£17 395+£16 267=17
RLCD 20013 468+ 11 23816 [262+14 45313 194=10|268+19 569+16 221+18 (229414 43211 97+17 [278+15 323410 242+19 [273=14 407£19 281=14
G&M 164415 341413 105+09 | 137221 3201+13 77415 | 157220 438+19 123412 | 114417 305+15 67421 [205+21 248408 179+ 11 |216=21 327420 22313
PA-CGCD [ 283417 465+16 22718 [254=12 447+19 184%16 25219 550122 209410212+ 11 415£23 102412 | 264+13 314+17 237416 27822 400423 27212
DEAN 289+12 4701421 230£1.1 |263+15 462+23 182414261 +£17 581+£19 194409 |221+£16 412+12 129420 [ 281+13 328419 289+17|291+£23 40.14+22 303+£1.1
PromptCCD || 3014 11 481413 245512 (274516 461414 203415274417 574420 220411 | 231416 444519 114413299418 345412 264423 [ 30317 429420 20013
VB-CGCD [ 342414 SI8+13 26316 [317=11 492413 234214 | 316+15 59918 261412263415 479+16 I51+£10 (332416 373412 297411 32319 445420 31618
PRISM 493412 649413 442413 |40+12 609415 37.0+10 | 369415 60010 201+14 | 333414 56510 235409 [ 401+ 1.1 489+ 1.1 40.1+14 36413 461+14 34112

the overall performance with corresponding standard deviations (mean + std), showing that our
approach consistently outperforms prior baselines in terms of accuracy and stability.

In addition, a fine-grained analysis of stage-by-stage performance is provided in Tables [9] and
These results include clustering accuracy (%) on All, Old, and New categories across incremental
stages, as well as the overall averages. Table[9|focuses on the DomainNet benchmark under different
domain shift scenarios, whereas Table@presents evaluations on FGVC-Aircraft-C, Stanford Cars-
C, and CUB-C. Such detailed investigations further highlight the strength of our method in reliably
identifying novel categories under both distributional changes and sequential learning settings.

Known domain Unknown domain
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Figure 4: Attention heatmaps from the final ViT layer on the CUB-C benchmark. Red indicates the
top 10% patches with the highest attention weights across multiple heads. Compared to background
patterns, our model maintains a stronger focus on semantic object areas in both known and unknown
domains, highlighting resilience to appearance variations.

A.6  ATTENTION MAP VISUALIZATION
To further probe how our model performs spatial reasoning, we inspect the attention distributions

of the last transformer block, focusing on the relationship between the [CLS] token and the indi-
vidual patch tokens across different heads. For each sample, we calculate the attention weights and
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Table 9: Stage-wise clustering performance (%) of different methods on the DomainNet benchmark.
Results are reported for all categories (All), previously known categories (Old), and newly discov-
ered categories (New) at each incremental stage, along with the overall average.

Methods Stage 1 Stage 2 ‘ Stage 3 ‘ Average ‘ Stage 1 ‘ Stage 2 ‘ Stage 3 ‘ Average

All. Old New | Al Old New | Al Old New | Al Old New | Al Old New | All Old New | Al Old New | Al Old New

Real — Painting
Real Painting

GCD 544 706 477 | 478 639 43.1 | 517 67.1 454|513 672 454 (286 280 293 |26.1 254 268 | 275 267 283|274 267 28.1
SimGCD 51.7 663 44.1 | 456 615 384 | 480 639 414|484 639 413|238 236 247|214 213 223|226 223 235|226 224 235
SPTNet 529 671 453|464 617 400 | 500 647 421 | 498 645 425|253 247 258|229 222 229 | 240 236 243|241 235 243
RLCD 533 694 466 | 485 632 414 | 507 66.0 443|508 66.2 44.1 267 258 270 242 233 246|256 247 258|255 246 258
G&M 50.0 66.1 450 | 445 586 374|469 622 412 471 623 41.2 (277 266 273|249 244 251|264 255 262|263 255 262
PA-CGCD 58.1 736 508 | 528 673 452|553 700 483|554 703 481 313 320 315|288 295 29.0 | 302 310 301|301 308 302
DEAN 58.6 75.1 510|529 683 453|565 71.7 474|560 71.7 479 |339 358 326|317 33.0 304|328 344 315|328 344 315

PromptCCD || 59.1 746 538 | 539 679 47.1 | 565 71.1 500|565 712 503|327 334 325|302 308 299|316 321 312|315 321 312
VB-CGCD 60.3 731 549 | 544 688 495|572 7.1 528|573 710 524 (336 349 338|312 324 312|324 335 326|324 336 325

PRISM 633 76.6 589 | 586 71.7 514 | 608 740 550 | 609 741 551 | 406 403 39.6 | 37.8 378 369 | 392 389 381|392 390 382
Real — Sketch
Real Sketch
GCD 554 69.1 440 | 488 624 394 | 527 656 41.7 | 523 657 417|104 158 113 | 79 132 88 | 93 145 103 | 92 145 101
SimGCD 51.8 62,6 393|457 578 33.6 | 481 602 366 | 485 602 365 | 84 125 104 | 6.0 102 80 | 72 112 92 | 72 113 92
SPTNet 530 649 406|465 595 353|501 625 374 499 623 378 | 91 129 11.1 | 67 104 82 | 7.8 118 96 | 79 117 9.6
RLCD 537 68.0 426|489 61.8 374|511 646 403|512 648 401 | 96 133 112 | 7.1 108 88 | 85 122 100 | 84 121 100
G&M 51.8 672 46.1 | 463 59.7 385 | 487 633 423|489 634 423 (123 162 11.6 | 95 140 94 |11.0 151 105|109 151 105
PA-CGCD 578 740 493|525 677 437|550 704 468|551 707 466 | 135 173 125 | 11.0 148 100 | 124 163 11.1 | 123 161 112
DEAN 593 749 507 | 536 68.1 45.0 | 572 71.5 47.1 | 56.7 715 476 (140 182 123 | 11.8 154 10.1 [ 129 168 112|129 168 11.2

PromptCCD || 60.0 77.0 52.1 | 548 703 454 | 574 735 483|574 736 486 146 190 134 |12.1 164 108 | 135 17.7 121 | 134 17.7 12.1
VB-CGCD 599 752 513 | 540 709 459 | 568 732 492|569 73.1 488 | 151 194 142|127 169 116 | 139 180 130 | 139 181 129

PRISM 625 759 548 | 578 71.0 473 | 600 733 509 | 60.1 734 51.0 | 183 214 173 | 155 189 146 | 169 200 158 | 169 20.1 159
Real — Quickdraw
Real Quickdraw
GCD 319 | 39.1 561 29.6 | 352 529 273|387 562 296 | 62 6.0 7.0 5.1 4.7 6.0 3.7 34 45 50 47 58
SimGCD 263 | 320 503 23.6 {296 479 20.6 | 324 503 235| 54 52 6.3 4.2 39 5.1 3.0 29 39 42 40 5.1
SPTNet 276 | 350 52.8 244|314 498 223|348 526 248 | 61 58 7.0 | 48 47 55 | 37 33 41 | 49 46 55
RLCD 28.2 | 36.0 53.8 259|338 510 230|361 540 257 | 60 59 6.5 49 48 53 35 34 4.1 4.8 47 53
G&M 311 | 339 501 273 | 315 465 235|341 502 273 | 49 52 6.3 36 41 52 2.1 30 41 35 41 52
PA-CGCD 369 | 435 60.1 344|410 574 313|436 604 342 63 62 73|52 52 59 |38 37 48 | 51 50 60
DEAN 382 | 445 61.0 346|409 576 325|440 610 351 62 64 72 5.1 5.0 6.1 40 3.6 5.0 5.1 5.0 6.1
PromptCCD 402 | 452 622 364 | 426 590 335|452 623 367 | 70 64 78 59 51 6.5 4.5 38 52 58 5.1 6.5
VB-CGCD 406 | 470 622 385|442 599 352 | 471 621 381 | 68 62 74 |56 48 62 |44 37 48 | 56 49 6l
PRISM 53.0 | 539 739 49.1 | 51.7 716 455 | 540 740 492 | 85 78 8.8 7.1 6.4 73 57 53 6.1 7.1 6.5 74
Real — Clipart
Real Clipart
GCD 49.8 69.1 424|432 624 378|471 656 401|467 657 40.1 | 157 225 113|132 199 88 |146 212 103 | 145 212 101
SimGCD 435 612 363|374 564 306|398 588 336|402 588 335115 200 94 | 91 177 70 | 103 187 82 | 103 188 82
SPTNet 462 629 387 |39.7 575 334|433 605 355|431 603 359 (128 205 104 | 104 180 75 1.5 194 89 | 116 193 89
RLCD 477 653 394|429 59.1 342|451 619 371 | 452 621 369 147 221 110|122 196 86 |13.6 210 98 | 135 209 98
G&M 432 649 38.0 | 377 574 304 |40.1 610 342|403 61.1 342 (137 203 99 | 109 181 7.7 | 124 192 88 | 123 192 88
PA-CGCD 549 736 473 |49.6 673 417|521 700 448|522 703 446|190 257 136|165 232 11.1 | 179 247 122|178 245 123
DEAN 577 761 506 | 520 69.3 449 | 556 727 470 | 551 727 475|214 281 161 | 192 253 139 | 203 267 150|203 267 150

PromptCCD || 56.7 74.6 50.2 | 51.5 67.9 435|541 71.1 464 | 541 712 467 [ 21.0 274 157 | 185 248 13.1 | 199 26.1 144|198 26.1 144
VB-CGCD 584 741 500 | 525 69.8 44.6 | 553 72.1 479 | 554 720 475|208 27.1 155 | 184 246 129 | 196 257 143|196 258 142

PRISM 604 748 550|557 69.9 475|579 722 511|580 723 512|254 317 205|226 292 17.8 | 240 303 190 | 240 304 19.1
Real — Infograph
Real Infograph
GCD 429 587 347|402 552 324|363 520 301 398 553 324 | 93 111 7.6 82 98 6.6 68 85 5.1 8.1 9.8 6.4
SimGCD 369 51.6 306 | 332 492 279|308 46.8 249|336 492 278 | 79 9.0 6.4 6.7 717 52 55 6.7 4.0 6.7 78 52
SPTNet 390 540 326|361 51.6 294|325 486 273|359 514 298 84 92 74 | 71 81 59 | 60 67 45|72 80 59
RLCD 39.6 564 350|370 53.0 327|348 502 298|371 532 325)| 96 101 80 85 9.0 6.8 7.1 7.6 56 84 89 6.8
G&M 353 539 314|322 500 27.6|298 464 238|324 501 276 | 89 103 6.6 76 92 55 6.1 8.1 4.4 75 92 55
PA-CGCD 479 646 408 | 451 61.0 383|426 583 352|452 613 381|102 130 84 | 91 120 70 [ 77 105 59 | 90 118 7.1
DEAN 493 657 439|472 623 403 | 436 589 382|467 623 408 | 106 139 9.0 95 125 79 84 111 68 95 125 79

PromptCCD | 49.7 66.5 43.7 | 47.1 63.0 399 | 445 598 370 |47.1 631 402|104 135 9.1 93 122 78 | 79 109 65 | 92 122 78
VB-CGCD 513 660 444|482 64.0 423|454 617 390 | 483 639 419 (106 137 93 | 94 123 8.1 82 112 67 | 94 124 8.0
PRISM 625 763 569 | 60.0 737 53.0 | 57.8 714 494 | 60.1 738 53.1 | 123 154 112|109 140 97 | 95 129 85 | 109 141 98

highlight in red the top 10% regions receiving the strongest responses, thereby revealing the areas
the model regards as most informative. Figure []illustrates representative visualizations from both
source and target domains, including examples from seen as well as novel categories. Regardless
of the data setting, our method consistently emphasizes semantically meaningful parts of the ob-
ject, rather than being distracted by superficial appearance differences or domain-specific artifacts.
This indicates that the learned attention patterns capture object-level semantics in a stable manner.
Such consistency in attention allocation underscores the model’s ability to filter out irrelevant back-
ground details and concentrate on discriminative structures. By anchoring the focus on task-relevant
cues, the representations acquired by our framework generalize better across domains and facilitate
reliable discovery of novel categories.

A.7 INTEGRATING CONTEMPORARY DOMAIN ADAPTATION METHODS FOR OW-CCD

To further investigate whether the challenges of OW-CCD can be addressed by existing techniques,
we directly applied several contemporary domain adaptation (DA) methods, including Mixstyle (Xu
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Table 10: Stage-wise clustering accuracy (%) of all methods on FGVC-Aircraft-C, Stanford Cars-C,
and CUB-C datasets. We report the accuracy on all classes (All), known classes (Old), and novel
classes (New) at each incremental stage, as well as the average.

Methods Stage 1 ‘ Stage 2 ‘ Stage 3 ‘ Average ‘ Stage 1 ‘ Stage 2 ‘ Stage 3 ‘ Average

All. Old New | Al Old New | Al Old New | Al Old New | Al Old New | All Old New | Al Old New | Al Old New

FGVC-Aircraft-C
Original Corrupted

GCD 30.8 37.0 272|242 303 226|281 335 249|277 336 249|300 427 30.0|275 40.1 275|289 414 290 | 288 414 288
SimGCD 28.7 325 249|226 277 192|250 30.1 222|254 30.1 221 264 393 270|240 370 246|252 38.0 258|252 381 258
SPTNet 29.2 338 261|227 284 208|263 314 229|261 312 233281 407 282|257 382 253|268 396 267|269 395 267
RLCD 303 355 267 | 255 293 215|277 321 244|278 323 242|290 419 293|265 394 269|279 408 28.1 |27.8 407 28.1
G&M 234 286 217 | 179 211 141 | 203 247 179 | 205 248 179 [ 23.0 338 234|202 31.6 21.2 |217 327 223|216 327 223
PA-CGCD 29.1 347 264|238 284 208|263 311 239|264 314 237290 413 285|265 388 260|279 403 27.1 |278 401 272
DEAN 30.7 362 32.0 | 250 294 263|286 328 284|281 328 289|302 415 314|280 387 292|291 40.1 303 |29.1 401 303

PromptCCD || 32.5 37.9 299 | 273 312 232|299 344 261 (299 345 264 315 442 312 (290 416 286 | 304 429 299|303 429 299
VB-CGCD 362 394 322|303 351 268|331 374 301 |332 373 297|335 458 329|311 433 303|323 444 317|323 445 316

PRISM 425 514 439 | 378 465 364 | 40.0 488 400 | 40.1 489 40.1 | 378 474 355|350 449 328 | 364 46.0 340 | 364 46.1 34.1
Stanford Cars-C
Original Corrupted
GCD 295 595 238|268 56.0 215|229 528 192|264 56.1 215|235 444 124|224 431 114 |21.0 418 99 | 223 431 112
SimGCD 264 549 217|227 525 190|203 5001 160 | 231 525 189 205 409 11.0| 193 396 98 | 181 386 86 | 193 397 98
SPTNet 28.0 576 231|251 552 199 215 522 178 [ 249 550 203 (223 428 114 |21.0 41.7 99 | 199 403 85 |21.1 416 99
RLCD 287 60.1 246|261 567 223|239 539 194|262 569 221 241 444 109|230 433 97 |21.6 419 85 | 229 432 97
G&M 186 47.6 16.1 | 155 437 123 | 13.1 40.1 85 157 438 123|128 31.6 7.8 | 115 305 67 | 100 294 56 | 114 305 6.7
PA-CGCD 279 584 236|251 548 211|226 521 18.0 252 551 209 (224 427 115|213 417 101 | 199 402 9.0 | 212 415 102
DEAN 287 615 225|266 581 189|230 547 168 |26.1 58.1 194 232 426 14.0 | 221 412 129 | 21.0 398 11.8 | 221 412 129

PromptCCD || 30.0 60.8 25.6 | 27.4 57.3 21.8 | 248 54.1 189 | 274 574 221 (243 457 127|232 444 114 |21.8 431 101 | 23.1 444 114
VB-CGCD 346 620 286 | 315 600 265|287 577 232|316 599 261|275 492 164|263 478 152|251 467 138|263 479 151

PRISM 393 625 329|368 599 290|346 576 254|369 600 29.1 | 347 57.8 249|333 564 234|319 553 222|333 565 235
CUB-C
Original Corrupted
GCD 325 511 257 | 259 444 21.1 | 298 47.6 234|294 477 234|280 472 213|255 446 188|269 459 203|268 459 201
SimGCD 299 469 238 |23.8 421 181 | 262 445 211 | 266 445 21.0 [ 246 436 189 | 222 413 165 | 234 423 17.7 | 234 424 177
SPTNet 309 478 248 | 244 424 195|280 454 216 | 278 452 220 | 263 454 19.6 | 239 429 167 | 250 443 181 | 251 442 181
RLCD 316 50.0 263 | 268 43.8 21.1 |29.0 46.6 240 |29.1 468 238 | 284 465 20.6 |259 440 182|273 454 194 | 272 453 194
G&M 19.3 379 143 | 138 304 6.7 | 162 340 105|164 341 105 | 151 332 88 | 123 31.0 6.6 | 138 321 77 | 137 321 77
PA-CGCD 310 498 254|257 435 198|282 462 229 | 283 465 227|266 459 197|241 434 172|255 449 183 | 254 447 184
DEAN 315 505 261 | 258 437 204 | 294 47.1 225|289 471 230|274 47.6 193|252 448 17.1 | 263 462 182|263 462 182

PromptCCD || 32.7 515 28.0 | 275 448 213 |30.1 48.0 242 |30.1 481 245|286 474 216|261 448 190|275 461 203|274 461 203
VB-CGCD 372 539 288|313 49.6 234 | 341 519 267|342 518 263|329 505 247|305 480 221 |31.7 49.1 235|317 492 234
PRISM 517 674 48.0 | 470 625 405 | 492 64.8 44.1 | 493 649 442 | 454 622 384 | 426 597 357 | 440 60.8 369 | 440 609 37.0

Table 11: Clustering performance of other DA methods.

Method Real Painting
All Old New | Al Old New
UOL 55.1 69.0 45.6 | 290 293 27.6

Mixstyle | 53.2 67.1 440 | 26.0 252 25.1
cUADAL | 557 70.1 464 | 299 288 263
ANNA 548 684 48.7 | 30.7 289 2638
PRISM 60.9 74.1 551 | 39.2 39.0 382

et al.,|[2020), class-unknown adversarial adaptation (CUADAL) (Jang et al.,[2022)), unknown-oriented
learning (UOL) (Liu et al.l [2022), and the adjustment-and-alignment approach (ANNA) (L1 et al.,
2023Db). The results, summarized in Table [IT] show that these methods bring only limited improve-
ments and sometimes even lead to negative transfer, as they focus on distribution alignment but lack
the ability to robustly discover novel categories. In contrast, our proposed method consistently out-
performs these DA baselines across all benchmarks. The results underscore two key insights: (1)
addressing OW-CCD requires going beyond simple domain alignment, by explicitly modeling the
interplay between known and unknown categories under evolving distributions; and (2) the proposed
design provides a more principled solution tailored for OW-CCD. Taken together, these findings val-
idate the necessity of customizing algorithms for OW-CCD, rather than relying on direct adaptations
of existing DA methods.

A.8 EMPIRICAL STUDY WITH DINOV2 BACKBONE
To further assess the robustness and effectiveness of our proposed framework, we conduct additional

experiments using a stronger pretrained backbone, DINOv2, which has recently demonstrated su-
perior representation learning ability in various vision tasks. As shown in Table upgrading the
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Table 12: Clustering performance on SSB-C benchmarks using DINOv2 as the backbone. Each
dataset includes both Original and Corrupted settings, and we report the average All / Old / New
accuracy across all stages for both domains.

Methods - CUB-C ~ Stanford Cars-C ~ FGVC-Aircraft-C
Original Corrupted Original Corrupted Original Corrupted

All Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New
GCD 412 556 349|385 539 315|463 654 4341423 537 323|381 398 361|394 493 404
SimGCD 393 524 336|353 514 305|425 633 41.0 | 395 500 309 |36.1 374 341 | 361 442 347
SPTNet 405 524 343 | 369 515 30.6 [ 450 645 414|404 517 321|360 369 313|378 484 364
RLCD 424 543 356 | 383 534 323 (471 659 431|421 531 343|378 381 338|393 50.1 382
G&M 282 426 224|253 393 207|361 528 346|309 41.0 295|314 309 286 |31.8 403 31.7
PA-CGCD 409 538 352 |38.0 532 31.1 452 656 431|401 516 313|383 402 350|370 457 373
DEAN 417 545 355|378 53.6 296 458 674 41.7 | 417 508 357 |40.0 402 381 | 388 456 41.1
PromptCCD || 42.7 55.6 36.0 | 39.1 543 332|484 678 437 | 433 537 341|404 424 359 |40.0 483 41.0
VB-CGCD 43.1 562 381 |40.7 559 359 (505 689 457|454 56.1 353|423 43.6 378 | 418 498 425
PRISM 63.1 73.8 549 | 564 711 498 | 56.8 688 50.1 | 53.5 67.3 432 | 50.7 564 50.1 | 46.3 S51.1 44.7

Table 13: Clustering performance under the setting where multiple domains are treated as unknown.
Specifically, we construct the unknown set by combining the five domains from DomainNet except
for the Real domain, and report clustering accuracy separately for each domain.

Methods Real Painting Sketch Quickdraw Clipart Infograph

All Old New | Al Old New | Al Old New | Al Old New [ Al Old New | All Old New
GCD 509 66.7 449 | 269 263 277 | 88 140 96 |47 23 36 [122 208 97 | 76 94 60
SimGCD 48.0 635 40.8 | 221 2211 232 | 67 109 89 |37 16 27 80 183 78 | 64 74 48
SPTNet 494 64.1 421 | 237 232 240 | 76 112 92 |45 24 30 (103 189 85 | 69 75 55
RLCD 505 65.1 432|250 249 251 | 81 119 101 |43 22 29 (106 192 89 | 72 80 56
G&M 467 619 408 | 259 251 258|105 147 102 |39 18 28 (101 187 84 | 71 87 51
PA-CGCD 550 699 47.6 | 296 304 297 | 119 157 108 |48 25 37 (154 241 120 | 86 114 638
DEAN 555 712 475|323 339 311|125 164 108 |50 26 39 | 180 263 146 | 91 129 74
PromptCCD || 56.2 70.7 49.8 | 31.1 318 30.8 | 13.0 173 11.7 |53 27 42 (176 258 140 | 88 118 74
VB-CGCD 57.1 714 503 | 319 324 317|139 180 124 |57 32 51 (182 267 151 | 93 125 82
PRISM 604 730 548 | 388 396 378 | 158 195 149 |69 50 49 (219 298 193 [ 109 126 93

Table 14: Clustering results on the DomainNet benchmark with extended-stage online discovery. We
consider Real as the known domain, while each remaining domain is treated as unknown. Scores
are averaged across all stages (including the 4-stage extension) and reported in terms of All / Old /
New accuracy for each domain pair.

— Real  Painting Real  Sketch Real - Quickdraw. Real  Clipart Real — Infograph
Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph

Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New
GCD 509 668 449 | 278 272 285 528 663 422 | 87 139 97 38.1 559 292 |54 53 6.3 470 662 406 | 139 207 95 394 550 319 | 86 102 68
SIMGCD | 47.9 63.5 408 | 229 230 240 [ 490 60.5 369 | 67 109 87 321 498 232 (45 45 56 [ 406 593 341 | 97 184 78 [331 488 273 | .1 82 57
SPTNet 493 641 420 | 245 239 249 | 504 628 383 | 76 IL1 93 | 343 523 244 (53 50 60 | 434 606 362 |1L1 190 84 |354 509 293 |75 85 65
RLCD 499 648 427|250 243 251|510 633 389 | 84 119 100 [ 350 531 249 |54 51 62 439 612 367|123 192 86 357 512 299 | 78 8.9 6.7
G&M 467 620 408|267 261 267|523 638 429 | 10.5 146 102|336 498 269 |48 47 57 | 408 615 348 | 118 187 85 | 319 497 271 |79 98 59
PA-CGCD 55.1 700 477|304 313 306|557 711 471 | 117 156 108 | 430 599 337 |56 53 6.5 526 748 421 172 241 120 [ 446 610 375 | 94 123 77
DEAN 556 712 476|332 349 319 | 571 720 482|124 164 106|430 60.1 337 |56 54 66 | 557 733 480 | 199 263 147|462 620 403 | 100 145 74
PromptCCD || 56.1 70.8 499 | 319 326 317 [ 580 739 492 | 131 174 117 [447 619 363 |62 55 70 | 547 715 470|194 255 140 [ 467 626 397 | 9.7 126 82
VB-CGCD [ 570 712 503 | 321 334 324 587 743 499 | 138 180 121 [451 627 369 |69 58 73 [551 720 477 [ 199 261 146 473 632 401 [ 100 129 88
PRISM 608 739 545|401 385 395|607 733 521|163 197 153 | 533 731 484 |73 64 7.6 | 577 728 519|234 290 188|591 745 508 | 118 132 100

backbone to DINOv2 consistently boosts the performance of all compared algorithms across differ-
ent benchmarks. This confirms that stronger feature extractors can provide more transferable and
discriminative representations for the OW-CCD tasks.

More importantly, under this enhanced backbone setting, our proposed method still achieves the best
overall performance and maintains a clear margin over state-of-the-art baselines. This demonstrates
that the improvements brought by our framework are orthogonal to backbone advances, and our
method continues to deliver substantial gains even when combined with powerful feature extractors.
These results highlight the scalability and practical value of our framework when deployed with
next-generation backbones such as DINOv2.

A.9 EVALUATION UNDER MULTIPLE UNKNOWN DOMAINS

To further assess the robustness and practicality of our framework in more complex real-world sce-
narios, we conduct an additional experiment under a mixed-domain setting. On the DomainNet
benchmark, we treat the Real domain as the known domain and merge all the remaining domains
(Clipart, Painting, Sketch, and Infograph) into a single unknown domain. Compared
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Figure 5: Comparison of different separation strategies.

with single-domain shifts, this mixed-domain setting introduces much greater diversity in both visual
styles and semantic structures, making continual category discovery significantly more challenging.

As shown in Table[T3] our method consistently outperforms state-of-the-art baselines across all met-
rics. In particular, we observe notable improvements on novel category discovery, indicating that
the proposed approach remains effective even when the unlabeled data come from multiple hetero-
geneous domains. These results suggest that our framework generalizes well to realistic scenarios
where unlabeled streams are inherently multi-sourced and non-stationary.

A.10 EVALUATION UNDER MORE-STAGE SETTING

In our main evaluation, we design the online discovery task under a three-phase setting to verify the
effectiveness of the proposed framework. To further examine its robustness and scalability under
more demanding conditions, we additionally explore a four-phase scenario, where novel categories
emerge in a slower and more fragmented manner.

As shown in Table[T4] our approach consistently surpasses competitive baselines across all evalua-
tion metrics and category partitions (All, Old, New). These results highlight the framework’s ability
to cope with increasingly incremental category arrivals, confirming its adaptability to dynamic and
extended discovery processes.

A.11 PARAMETER SENSITIVITY ANALYSIS

We further investigate how our method behaves under variations of the loss balancing coefficient \;,
with results shown in Figure |§| (a)—(b) and (g)—(h). Experiments are conducted on both DomainNet
and CUB-C. For DomainNet, the Real domain is treated as the known domain and the Painting do-
main as the unknown domain. For CUB-C, we follow the same protocol by designating the Original
domain as the known domain and the Corrupted domain as the unknown domain. By adjusting
A1, we measure clustering accuracy on all, old, and novel categories within both domains. A clear
performance drop is observed when this coefficient is set to zero, highlighting the indispensability
of the IKT module. This component aligns listwise ranking distributions between unknown sam-
ples and known prototypes before and after spectral perturbation, thereby mitigating spurious style
effects and retaining transferable semantic knowledge. More importantly, across a wide range of A\;
values, the accuracy remains consistently high, indicating that our approach is largely insensitive to
this parameter and thus robust against hyperparameter tuning.

The mask ratio r regulates the binary mask M used to split an image into low- and high-frequency
parts, controlling their relative contribution. In our design, high-frequency signals guide the separa-
tion of known and novel categories, while low-frequency content is perturbed within the IKT mod-
ule to encourage transferability. As presented in Figure |§| (c)—(d) and (i)—(j), performance peaks at
r = 0.3, which we adopt as the default setting in all experiments unless stated otherwise. Increasing
r allows the model to exploit richer semantic cues from high-frequency components and enhances
robustness of the IKT module by perturbing a broader spectrum of low-frequency information. Nev-
ertheless, when r becomes excessively large, the model suffers from limited high-frequency cues for
separation and over-distortion of semantics within the IKT module, which together harm discrimi-
native ability.

We further conduct a parameter sensitivity analysis on the proximal strength coefficient € in the
SAM module. Specifically, we perform experiments on the Real — Painting domain adaptation sce-
nario, varying € within the range {0.0,0.01,0.05,0.1,0.5,1,10}. As shown in Figure@(e)—(ﬂ and
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Figure 6: Sensitivity analysis of key hyperparameters.

(k)—(1), the performance of our model remains stable under moderate changes of . However, when
€ becomes excessively large, the proximal regularization term dominates over the sparse assignment
matching, which may lead to performance degradation. Therefore, we empirically set € = 0.5 in all
experiments.

A.12 COMPUTATIONAL COMPLEXITY ANALYSIS

We profile the computational overhead of each component on an RTX4090 with batch size
128 and input resolution 224 x 224. HCS performs one forward DFT/IDFT pair per image
(via torch. fft), applies a binary frequency-plane mask, runs a cosine-similarity scan against
previous-stage prototypes, and fits a 1D GMM on scalar scores; the cost is dominated by FFTs, with
masking/cosine/GMM negligible. For the known-like subset, SAM solves a proximal OT subprob-
lem with a few lightweight dual updates over (1, ¢) and a closed-form refresh of ~; computing the
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cost matrix and sparse projection is minor compared to FFT work. For the unknown-like subset,
IKT reuses low-frequency statistics from the previous stage to sample perturbed styles, reconstructs
low-frequency spectra and fuses them with the original high-frequency part before an inverse DFT,
then compares two feature views (original vs. style-transferred) to all prototypes to build Plackett—
Luce listwise distributions and a KL divergence; the extra compute is mainly the single IFFT per
unknown sample, with ranking terms lightweight. Overall, the framework adds approximately 5.2
GFLOPs and increases per-iteration time by ~0.65 s, and thanks to GPU-accelerated FFTs, efficient
proximal OT updates, and amortized clustering, the overhead remains manageable and scales well
to large open-world streams.

Table 15: Stage-wise clustering accuracy (%) of all methods on the CUB-C dataset under the dy-
namic domain-incremental setting. At each stage, new domains are progressively introduced (Stage
1: Gaussian, Shot, Impulse Noise; Stage 2: Zoom Blur, Snow, Frost; Stage 3: Fog, Speckle, Spat-
ter). We report the accuracy on all classes (All), known classes (Old), and novel classes (New) at
each stage, as well as the average across all stages.

Methods Stage 1 Stage 2 Stage 3 Average Stage 1 Stage 2 Stage 3 Average

All Old New | Al Old New | Al Old New | AllL Old New | All. Old New | Al Old New | Al Old New | All  Old New

CUB-C
Original Corrupted

GCD 311 494 241 | 286 462 221 | 249 432 20.1 | 282 463 221 (238 430 172|266 460 200|255 445 190|253 445 187
SimGCD 282 451 223|248 43.0 200|226 409 172|252 43.0 198 (207 398 151|233 424 177|220 409 164 220 410 164
SPTNet 295 460 233|268 439 203|235 41.1 185|266 437 207 224 413 151|251 441 185|236 430 168|237 428 168
RLCD 30.0 484 246|277 452 227|258 426 199 | 278 454 224 (233 426 166 |26.1 453 193 | 250 44.1 181 | 248 440 180
G&M 178 364 128 | 149 327 92 [129 293 56 | 152 328 92 | 106 296 51 |139 318 74 |124 307 64 | 123 307 63
PA-CGCD 294 481 239|269 447 216 | 246 422 187 |27.0 450 214 (225 418 157|253 446 185|242 435 168 240 433 17.0
DEAN 299 489 245|282 457 212|248 425 194 | 276 457 217 (237 432 158 |26.1 464 181 | 248 447 168 | 249 448 169
PromptCCD || 31.1 498 264 | 287 465 228|263 435 20.1 | 287 466 23.1 (246 432 174|273 463 204|262 446 188 | 260 447 189
VB-CGCD 347 502 272|319 485 254|293 465 224 | 320 484 250 (269 454 195 |29.6 484 224 | 284 466 21.1 |283 468 210
PRISM 511 667 47.6 | 489 644 439 | 470 624 405 | 490 645 440 | 419 591 351 | 451 619 382 | 43.6 60.2 36.5 | 43.5 604 36.6

A.13 EXPERIMENTS ON DYNAMIC DOMAIN-INCREMENTAL SETTING

To further evaluate the performance of our proposed algorithm in dynamic domains, we conducted
an additional domain-incremental experiment. Specifically, we trained on the CUB-C dataset over
three stages, where new domains were progressively introduced at each stage. In Stage 1, we in-
troduced three types of perturbations: Gaussian Noise, Shot Noise, and Impulse Noise. In Stage 2,
we further incorporated Zoom Blur, Snow, and Frost. In Stage 3, additional perturbations includ-
ing Fog, Speckle, and Spatter were introduced. In this way, we simulated a realistic dynamic and
non-stationary data stream scenario, where each stage may involve domains unseen in the previous
stage. As shown in Table [T3] we observed that under this more challenging dynamic-domain set-
ting, our model still achieved significant performance improvements and substantially outperformed
other competing methods, further demonstrating the robustness and effectiveness of the proposed
approach.

A.14 VISUALIZATION OF HCS SEPARATION ACROSS FINE-GRAINED DATASETS

We further visualize the separation behavior of HCS on several fine-grained datasets, as illustrated
in Fig. Across most datasets, the separation scores of known and unknown samples show a
certain degree of discrepancy, indicating that HCS can reliably distinguish the two groups using
high-frequency information. Even on challenging fine-grained benchmarks—such as Stanford Cars-
C—where categories share strong visual resemblance, the score distributions still exhibit an approx-
imate bimodal pattern, demonstrating that meaningful separation can be achieved.

These observations highlight two important facts. First, high-frequency cues consistently provide
better separation than raw images, as the removal of low-frequency domain biases makes the remain-
ing semantic differences more distinguishable. Second, although the separability on fine-grained
datasets is naturally reduced due to subtle inter-class variations, high-frequency decomposition still
improves the separation of known and unknown samples.

Overall, the results in Fig. [7] confirm that high-frequency cues offer more reliable and robust sep-
aration than original images across diverse datasets, including challenging fine-grained scenarios.
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Figure 7: Comparison of separation performance across multiple fine-grained datasets.

A.15 BAD CASE ANALYSIS

Although the proposed HCS module provides robust separation between known and unknown sam-
ples across diverse datasets and corruption types, certain challenging scenarios may still lead to
reduced performance. A representative example arises under structural blurring—such as zoom
blur—which directly suppresses the semantic high-frequency cues that HCS relies on.

Structural blur smears object boundaries, attenuates fine textures, and destroys edge sharpness,
thereby weakening the discriminative high-frequency structures essential for our separation mecha-
nism. As illustrated in Appendix Fig.[§] the extracted high-frequency representations become less
informative in these cases, causing the separation scores of known and unknown samples to move
closer.

Nevertheless, even under such challenging corruptions, HCS consistently outperforms using raw
images. This is because the high-frequency decomposition still removes domain-specific low-
frequency biases, and the preserved semantic structures—although partially degraded—remain more
discriminative than full-spectrum representations. The resulting separation curve demonstrates that
the degradation introduced by structural blur affects both HCS and raw images, but the impact is
notably smaller for HCS.
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Figure 8: Illustration of a challenging case, where structural blurring suppresses semantic high-
frequency cues and weakens separation, yet HCS still outperforms raw-image representations.

Table 16: Clustering results of various methods on the DomainNet benchmark. Each experiment
uses Real as the source domain, with one of Painting, Sketch, Quickdraw, Clipart, or Infograph
serving as the target. Clustering accuracy is reported for both domains.

— Real + Painting Real + Sketch Real + Quickdraw. Real + Clipart ‘ Real + Infograph

Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph
Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New
CDAD-Net || 63.6 779 563 | 384 384 375 | 619 763 521|173 209 159 | 485 665 367 | 64 56 73 | 613 770 531|252 319 190 | 565 680 47.1 | 118 156 94
HiLo 644 776 515|421 429 413 | 633 779 559 | 194 224 170|586 764 525 74 69 80 | 638 77.6 566|277 346 207|642 781 570 [ 137 164 119
PRISM 687 778 633 | 472 468 458 [ 687 782 630|238 249 228 618 775 571 |90 73 94 | 672 774 620 | 304 364 276 | 691 776 612 | 167 187 143

Overall, these bad cases highlight an inherent limitation: when corruptions significantly destroy
semantic high-frequency content, the separability achievable by HCS naturally decreases. This
observation suggests a promising future direction—integrating structure-preserving or deblurring
techniques to further enhance the robustness of high-frequency-based separation under severe im-
age degradations.

A.16 COMPARISON WITH EXISTING DOMAIN-SHIFT GCD METHODS

Although prior domain-shift GCD approaches such as HiLo [Wang et al] (2024a) and CDAD-
Net [Rongali et al| (2024)) cannot be directly adapted to the same domain-shift + CCD setting con-
sidered in our work, our framework can still be applied to the standard cross-domain GCD scenario
for fair comparison. Following the experimental protocol of HiLo, we evaluate our method along-
side HiLo and CDAD-Net under the cross-domain GCD setting (note that this is not the proposed
OW-CCD scenario). As shown in the results, our approach outperforms both HiLLo and CDAD-Net
in most cases, demonstrating that the proposed method is flexible and effective even when applied
to conventional cross-domain GCD tasks.

A.17 SOCIETAL IMPACT AND FUTURE DIRECTIONS
We study Open-World Continual Category Discovery (OW-CCD), which reflects the reality of dy-

namic data streams where category distributions are non-stationary and new classes emerge over
time. This research has broad societal implications, as it equips Al systems to adaptively recog-
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Table 17: Clustering results of various methods on the SSB-C benchmark. For each dataset (CUB,
Scars, and FGVC), the clean set serves as the source domain, while its corrupted counterpart is
treated as the target domain. Clustering accuracy is reported for both domains.

CUB-C Scars-C FGVC-C
Original Corrupted Original Corrupted Original Corrupted
Al Old New | Al Old New | Al Old New | Al Old New | Al Old New | Al Old New
CDAD-Net || 404 389 393 |37.7 39.1 342|321 429 322|288 356 214|338 355 312|278 296 256
HiLo 56.8 540 60.3 | 52.0 53.6 505 (395 448 370|356 429 284 (442 506 474|312 290 334
PRISM 60.1 58.7 63.1 | 562 551 549 |44.0 474 40.6 | 40.1 435 345 | 479 551 51.8 | 357 318 39.1

Methods

nize evolving concepts in real-world scenarios such as medical diagnostics, ecological monitoring,
and social media moderation, thereby enhancing their reliability and fairness in open environments.
However, limitations remain: (1) the open world introduces vast distributional shifts and complex
dynamics, where current models still struggle to maintain stable performance; and (2) most existing
work relies on single-modality data, whereas extending to multi-modal OW-CCD is crucial to fully
exploit diverse real-world signals (e.g., combining image, text, and sensor data) for robust knowl-
edge discovery. These challenges highlight promising future directions, motivating research into
more resilient algorithms and multi-modal learning frameworks for open-world continual discovery.

A.18 ETHICS STATEMENT

This research does not involve human participants, animal subjects, or the use of sensitive personal
data, nor does it present any potentially harmful applications. All experiments are conducted on
publicly available benchmark datasets that are properly licensed for academic use. The authors are
committed to adhering to ethical research standards and to promoting fairness, transparency, and
responsible development of Al technologies.

A.19 USE OF LLMs

During the preparation of this manuscript, we made limited use of publicly available large language
models (LLMs) solely to assist with English writing. All technical content, including the formulation
of ideas, design of methodologies, implementation of experiments, and interpretation of results, was
entirely conceived and written by the authors without LLM involvement. The role of LLMs was
strictly confined to stylistic and linguistic improvements, comparable to grammar- or spell-checking
software. No novel research insights, data, or analyses were generated by LLMs, and all scientific
claims and results presented in this work remain the sole responsibility of the authors.

A.20 REPRODUCIBILITY

To ensure reproducibility, we provide a comprehensive description of the model design in Section 3
and detailed experimental settings in Section 4.1. Furthermore, we include the full pseudocode of the
proposed PRISM framework in Appendix A.3, clearly outlining its main components and training
flow. These details collectively enable faithful reimplementation and verification of our results.
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