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Abstract001

Recent advances in deep learning have en-002
abled the creation of expressive and control-003
lable speech synthesis models. However, the004
creation of such models requires the collection005
and annotation of large amounts of data, which006
limits their applicability to low-resource lan-007
guages. In this paper, we propose an automatic008
annotation pipeline to bypass the tedious pro-009
cess of annotating parameters such as prosody010
or emotion in a text-to-speech dataset. Our011
system rebalances the distribution of speech012
features in the dataset and then uses a large013
language model with Gemma 2 to predict rel-014
evant annotations in the form of textual de-015
scriptions, with zero minutes of expert anno-016
tation. As most of the features extracted are017
language agnostic, we obtain a generic annota-018
tion procedure that we evaluate by finetuning019
a controllable text-to-speech model on a low-020
resource language, Wolof. The results show021
that our model acquires a greater ability to con-022
trol prosody, with a gain in pitch correlation of023
+0.09 and a speaker similarity of 0.54. The cho-024
sen architecture also performed well on Wolof,025
with a perceptual quality of 3.34 and a word026
error rate of 0.45.027

1 Introduction028

Text-to-speech (TTS) represents one of the most029

significant advances in human-computer interac-030

tion, enabling diverse applications in human com-031

munication (Adler et al., 2006), from accessibility032

tools for visually impaired individuals to virtual033

assistants and audiobook production.034

Recently, with the increasing industrial demand,035

TTS technologies have evolved beyond the abil-036

ity to synthesize human-like speech to enable con-037

trollable speech generation. This includes fine-038

grained control over various attributes of synthe-039

sized speech such as emotion, prosody, timbre, and040

duration (Xie et al., 2024). These controllable sys-041

tems typically employ hierarchical architectures042

that separate linguistic content from prosodic fea- 043

tures, allowing independent manipulation of pitch, 044

rhythm, and emotional tone while maintaining lin- 045

guistic integrity (Lee et al., 2023). 046

Controllable TTS for low-resource languages 047

represents a significant frontier in speech synthe- 048

sis, offering communities the ability to customize 049

speaking styles despite limited training data. Re- 050

cent advances like Byambadorj et al. (2021) lever- 051

age cross-lingual knowledge transfer, where expres- 052

sive representations from high-resource languages 053

can be adapted to low-resource contexts with min- 054

imal target language samples. Other approaches 055

use data augmentation based on voice conversion 056

or synthetic data generation to increase the quality 057

of the system in the target language (Huybrechts 058

et al., 2021). Despite notable advances, the qual- 059

ity of these systems remains well below that of 060

resource-intensive languages due to the lack of 061

quality data. In addition, the control of many char- 062

acteristics, such as prosody, remains imperfect due 063

to the specific speech characteristics of each under- 064

represented language. 065

One of these low-resource languages is Wolof, 066

an African language belonging to the Niger-Congo 067

language family 1. It is spoken primarly in Senegal 068

and the Gambia, by approximately 80/100 of the 069

inhabitants of these two countries (Omar, 1987). 070

According to Rialland and Robert, the intonational 071

system of Wolof has several interesting typologi- 072

cal features, including the absence of any intona- 073

tional marking of focus. Since Wolof doesn’t use 074

intonation to mark focus, the TTS system would 075

need to integrate closely with morphosyntactic in- 076

formation, making it particularly challenging in a 077

low-resource setting. 078

This perfectly highlights an example of a situa- 079

tion where relevant annotations are needed to adapt 080

to the characteristics of a low-resource language. 081

1https://www.mustgo.com/worldlanguages/wolof/
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In this study, we propose an innovative annota-082

tion strategy to accurately annotate speech data083

while adapting to the specificities of the Wolof lan-084

guage. Then, we use the resulting dataset to train085

and evaluate a controllable TTS model in Wolof.086

Our test benchmark provides a reference against087

which many other Wolof text-to-speech models can088

be evaluated using objective metrics.089

2 Related Work090

2.1 Controllable TTS091

Controllable text-to-speech (TTS) systems require092

large-scale datasets that exhibit extensive diversity093

and include fine-grained annotations. Different094

types of annotation have been used to create these095

datasets, including annotations based on detailed096

textual descriptions of speech attributes (Guo et al.,097

2023; Jin et al., 2024; Ji et al., 2024a). Description-098

based datasets enable models to interpret nuanced,099

free-form textual prompts and generate speech that100

aligns with complex, context-dependent specifica-101

tions (Xie et al., 2024). This is why we chose a102

description-based dataset to train our controllable103

TTS model.104

Datasets based on textual descriptions allow105

precise control, but they are rare and costly to106

construct. In addition, limited diversity of styles107

or prosodic variations in datasets can restrict the108

model’s ability to generalize across unseen at-109

tributes. Although there are some large-scale110

datasets, such as LibriTTS (Zen et al., 2019) and111

TextrolSpeech (Ji et al., 2024a), their diversity is112

still not enough for fully controllable TTS. One113

approach is to augment the datasets following cer-114

tain attributes, while other studies attempt to auto-115

matically annotate the features present in speech116

samples (Lyth and King, 2024). In this study, we117

combine the two solutions to adapt a traditional118

text-to-speech dataset to the needs of a controllable119

model.120

In terms of the models used, many recent mod-121

els have relied on textual descriptions to control122

speech generation. Most of them use architectures123

based on large language models (LLMs) to support124

text descriptions in the form of prompts (Lyth and125

King, 2024; Ji et al., 2024b). However, determin-126

ing the appropriate level of granularity for control127

and devising methods to achieve precise control at128

a specific granularity or to enable multiscale and129

fine-grained control remains a significant challenge.130

Here we analyse the results obtained with an LLM-131

based TTS model on a low-resource language, as 132

well as future research directions. 133

2.2 Low-Resource TTS 134

A lot of research is being carried out into the 135

application of text-to-speech to low-resource lan- 136

guages. Traditional techniques include self- 137

supervised learning (Chung et al., 2019), cross- 138

lingual transfer (Tu et al., 2019; Xu et al., 2020), 139

and back-transformation (Tjandra et al., 2017; Ren 140

et al., 2019). Recent models combine the power of 141

codec models with multilingual capabilities (Zhang 142

et al., 2023; Zhou et al., 2024). These models en- 143

code text from multiple languages into a shared 144

latent representation space, enabling cross-lingual 145

transfer learning and unified processing. 146

Despite these advances, African languages re- 147

main particularly marginalised. However, there 148

have been some studies on the creation of datasets 149

and text-to-speech models for African languages 150

(Meyer et al., 2022; Ogayo et al., 2022). With re- 151

gard to the control of certain parameters such as 152

African accents, Ogun et al. have explored such 153

multi-accent models, but in English. As for Wolof, 154

which is the subject of this study, some text-to- 155

speech systems exist in the form of proofs of con- 156

cept (Gauthier et al., 2024), alongside more recent 157

open source initiatives 2. Our system uses the latest 158

architectures based on LLMs on a Wolof dataset 159

annotated with various speech attributes. 160

3 Methodology 161

3.1 Data Preprocessing 162

The dataset used in this work is a text-to-speech 163

(TTS) dataset that contains recordings from two 164

native Wolof actors, a male and female voice 3. 165

The audio samples were cut with an average dura- 166

tion of 3.78 seconds. A large number of operations 167

were carried out to process this dataset. A compar- 168

ison of the details of the dataset before and after 169

preprocessing can be found in table 1. First of 170

all, corrupted files were detected and deleted. The 171

transcriptions were then cleaned up by removing 172

foreign language characters, unpronounced emojis 173

and special characters, while the numbers were con- 174

verted to letters to match the reading in the audios. 175

All these transformations to the text are designed 176

2https://huggingface.co/galsenai/
xTTS-v2-wolof

3https://zenodo.org/records/4498861
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Dataset Number of samples Speakers Duration Mean Duration PESQ SI-SDR
Original 40042 2 42h 3.78s 2.41 13.62
Processed 39555 2 41h 30min 3.78s 3.52 22.84

Table 1: Comparison of the details of the dataset before and after preprocessing.

to ensure better text-audio alignment for a more177

robust text-to-speech model (He et al., 2019).178

In addition, further operations have been carried179

out on the audio samples. Most of the audio was180

noisy or poor quality, so we used an enhancer 4 to181

improve the quality. Table 1 shows two relevant182

metrics for assessing the quality of enhancement.183

These are the perceptual audio quality (PESQ)184

(Recommendation, 2001) and the scale-invariant185

signal-to-distortion ratio (SI-SDR) (Le Roux et al.,186

2019), which measures the rate of sound distortion187

relative to the useful signal. Significant gains are188

observed compared with the original data.189

3.2 Annotation System190

The aim of our annotation system represented at191

figure 1 is to automatically generate detailed textual192

descriptions that match the speaking style of each193

audio sample. These descriptions are then added194

to the text-audio pairs to form a controllable text-195

to-speech dataset. To generate the descriptions, we196

rely on Data-Speech (Lacombe et al., 2024), an197

automatic annotation method inspired by the work198

of Lyth and King. The system calculates a set of199

metrics from an audio sample, such as speaking200

rate, pitch, signal-to-noise ratio (SNR) and speech201

clarity (C50). These metrics are then used by a202

large language model to predict the following five203

attributes:204

• Speaker: the speaker’s identifier, which can205

be his or her name or gender;206

• Pace: the speech rate, which can be slow,207

moderate speed, fast, slow pace or fast pace;208

• Tone: the expressiveness of the speaker which209

can be monotone or expressive and animated;210

• Noise: the level of unwanted sound which211

can be clear, noisy, good recording or poor212

recording;213

• Reverberation: the level of persistence of214

a sound due to echo which can be close-215

4https://github.com/resemble-ai/
resemble-enhance

sounding, distant-sounding, roomy sounding, 216

moderate reverberation or confined. 217

The language model used in our case to make these 218

predictions is Gemma 2 (Team et al., 2024). It 219

predicts a natural language text description includ- 220

ing each of these five attributes to accurately to 221

describe the style of the audio sample. 222

Most of the metrics used to determine these at- 223

tributes are language-independent, so we can use 224

them directly on our data. However, the speak- 225

ing rate is calculated according to the number of 226

phonemes per second of audio, which makes it a 227

language-dependent metric. Our contribution was 228

therefore to adapt Data-Speech to Wolof for this 229

metric, by creating a grapheme-to-phoneme model. 230

Our phonetic transcription model is a multilingual 231

version of ByT5 (Xue et al., 2022) which we fine- 232

tuned on phonetic data in Wolof. The output of the 233

model is remarkably accurate, which we discuss in 234

the section on experiments. 235

One of the constraints with controllable speech 236

synthesis is that there needs to be diversity of 237

prosodic features in the dataset. To measure the 238

diversity of these characteristics, we use a given 239

metric for each characteristic. For pitch, we cal- 240

culate the standard deviation of the pitch countour 241

for each sample; for speaking rate, the speed in 242

phonemes per second; and for noise and reverbera- 243

tion, the signal-to-noise ratio (SNR). An analysis 244

of the distribution of these three metrics on a sam- 245

ple of 1,000 examples from the dataset shows that 246

they are not balanced in relation to expressivity, 247

speaking rate and noise level, as shown in the first 248

part of figure 2 in the case of the speaking rate. 249

To rebalance these metrics in the dataset and thus 250

have the diversity needed to learn how to control 251

these parameters, we use signal processing tech- 252

niques such as time stretching for speaking rate and 253

pitch shifting for pitch. In the case of noise and 254

reverberation, we do not modify the distribution to 255

avoid negatively impacting data quality. Even in 256

the case of pitch and speaking rate, manipulating 257

their values can be tricky because of the risk of 258

adding distortion to the audios produced. So to 259

ensure that we get a quality rendering, we perform 260
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Figure 1: Schema of the annotation system.

Figure 2: Comparison of the distribution of the speaking rate in the original and augmented dataset.

these operations using CLPCNet (Morrison et al.,261

2021), which applies machine learning techniques262

to signal processing to edit the speech parameters263

of audio samples not seen during its training. The264

results obtained, which can be seen in the second265

part of figure 2, show that we managed to signifi-266

cantly rebalance the pitch and speaking rate values267

across our dataset.268

In short, we propose a methodology for anno-269

tating text-to-speech datasets in three stages: pre-270

pare the data appropriately, using an enhancement271

model if necessary, analyse the distribution of key272

speech metrics and rebalance their values across273

the data, and finally generate text descriptions that274

match those metrics using a large language model.275

Such a system can produce controllable synthetic276

datasets without expert annotation, and can be ap-277

plied to a wide range of languages, as most of the278

metrics extracted are language agnostic.279

3.3 TTS Model 280

Among the models based on large language models 281

(LLMs), we have chosen Parler-TTS, which is a 282

lightweight speech synthesis model that can gen- 283

erate high-quality natural speech in the style of a 284

given speaker (gender, pitch, speaking style, etc.). 285

It is a reproduction of the work carried by Lyth 286

and King. This choice is justified by the model’s 287

ability to handle textual descriptions to control au- 288

dio output, as well as its architecture that uses a 289

latent representation allowing high audio fidelity. 290

Its multilingual version we use is pre-trained on a 291

cleaned CML-TTS dataset (Oliveira et al., 2023), 292

which supports eight European languages. 293

Here we test the ability to transfer European 294

languages to an African language by finetuning the 295

multilingual version of Parler-TTS on our Wolof 296

dataset. As the audio descriptions are in English, 297

this makes it all the easier for the model to represent 298

them semantically, for controlled generation based 299

on those descriptions. 300

4



4 Experiments301

4.1 Experimental Settings302

To demonstrate the efficacy of the proposed303

methodology, we conducted experiments to build304

two different models: a grapheme-to-phoneme305

model and a controllable TTS using text descrip-306

tions. Both models are trained on Wolof data that307

we have cleaned up and improved. We describe the308

experimental conditions for each model below.309

The grapheme-to-phoneme model is trained310

on a corpus of 1000 lines that we have collected311

and processed. The phonetic data is written in the312

International Phonetic Alphabet (IPA) (Ladefoged,313

1990), which ensures uniformity with other lan-314

guages. The dataset is then divided into training,315

validation and test sets in an 80/10/10 ratio. We316

then finetuned a model based on ByT5 (Xue et al.,317

2022) on this data with a learning rate of 3e-4 and318

a batch size of 16 for 30 epochs on a T4 GPU. The319

model is then evaluated on the test set with a batch320

size of 32.321

The controllable TTS model is a multilingual322

version of Parler-TTS (Lyth and King, 2024) with323

880M parameters that we finetuned into a multi-324

speaker dataset that we processed and improved.325

Details of the processing on the data can be found326

in section 3.1. The model is trained on four V100327

GPUs over 100 epochs. The learning rate is set to328

1e-4 while the duration of audio samples is limited329

to between 1 and 20 seconds during training.330

4.2 Evaluation Benchmark331

In order to evaluate our text-to-speech model, and332

provide a basis for comparison with all existing333

text-to-speech models in Wolof, we have set up an334

evaluation benchmark. It consists of a test dataset335

of 100 audios collected in such a way as to have a336

diversity of speakers (male and female), prosody337

and noise level. We then implemented a set of338

scripts to calculate objective metrics suitable for339

evaluating controllable text-to-speech models in340

Wolof.341

PESQ: This is an estimate of the perceptual qual-342

ity of audio, which we use here to get an idea of the343

naturalness of the audio produced. As there is no344

model for estimating perceptual quality in Wolof,345

we used this method inspired by telecommunica-346

tions (Recommendation, 2001).347

WER: This is a metric that compares the error348

rate between a reference text and a transcribed text.349

We use it here to evaluate the intelligibility of our350

model, which improves as the WER increases. To 351

adapt this metric to Wolof, we use a speech recog- 352

nition model trained on Wolof 5 to transcribe the 353

audio samples generated by our model. 354

Speaker Similarity: It measures how closely 355

a synthesized voice matches the characteristics of 356

a target speaker. To do so, we compare acoustic 357

features using audio embeddings. To calculate the 358

embeddings of the audios, we used the speaker en- 359

coder of a version of XTTS v2 (Casanova et al., 360

2024) finetuned to Wolof. This allows us to bet- 361

ter separate the linguistic characteristics specific to 362

Wolof from the vocal characteristics of the speak- 363

ers. 364

Pitch Correlation: It quantifies how well funda- 365

mental frequency patterns align between a synthe- 366

sized speech sample and reference speech. Strong 367

correlation suggests the synthesized speech pre- 368

serves natural intonation patterns, which is crucial 369

for expressiveness. In our case, we use the proba- 370

bilistic YIN algorithm (pYIN) (Mauch and Dixon, 371

2014), which is an improved version of the YIN 372

algorithm for pitch detection that reduces octave 373

errors and handles noisy conditions better. 374

SNR: This is a measure of the level of de- 375

sired speech signal compared to background noise. 376

In speech synthesis, higher SNR values indicate 377

cleaner audio with fewer artifacts. In the control- 378

lable generation, it also measures the model’s abil- 379

ity to control the isolation and clarity of the gen- 380

erated signal. The model we use here to separate 381

audio from noise and calculate the SNR is Sep- 382

former (Subakan et al., 2021), a Transformer-based 383

neural network for speech separation. 384

Altogether, these different metrics provide an 385

objective and appropriate assessment of the nat- 386

uralness, intelligibility, clarity and controllability 387

of audio samples generated by a TTS in Wolof. 388

Thanks to the diversity of prosody and speaker pa- 389

rameters present in our benchmark, we provide a 390

reference tool for evaluating the quality, expressive- 391

ness and controllability of speech synthesis models 392

in Wolof. 393

4.3 Results 394

The grapheme-to-phoneme model was evaluated 395

using two metrics to assess its ability to correctly 396

transcribe a Wolof text into the phonetic alphabet. 397

These are the word error rate (WER), which calcu- 398

lates the error rate per word between the original 399

5https://huggingface.co/CAYTU/
whosper-large-v2
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Figure 3: Validation loss descent curve

phonetic transcription and that of the model de-400

scribed by the formula [x], and the character error401

rate (CER), which measures the error rate per char-402

acter between these transcriptions described by the403

formula [y].404

The grapheme-to-phoneme model has a word405

error rate of 0.13 and a character error rate of 0.02.406

These metrics demonstrate the effectiveness of the407

model in transcribing phonetics in Wolof and in408

being used in systems such as our automatic an-409

notator. The low character error shows that even410

when the model is wrong on a word, it is generally411

an error on few characters.412

For our speech synthesis model, its finetuning413

on the Wolof dataset shows a stable and rapid loss414

descent curve, as can be seen in figure 3. The rapid415

decrease in the validation loss shows that the model416

learns quickly from the knowledge acquired about417

the languages used during pre-training. Each differ-418

ent colour in the figure represents the resumption419

of training from the last checkpoint, which does not420

affect the course of the training. The model was421

evaluated on the proposed benchmark using the422

following five metrics: perceptual quality (PESQ),423

word error rate (WER), speaker similarity, pitch424

correlation and signal-to-noise ratio (SNR). Each425

of these metrics has been detailed in the previous426

section.427

All the metrics at benchmark level are perfectly428

adapted to Wolof data thanks to the models we used429

to calculate them. Only perceptual quality, which430

is supposed to assess naturalness, is not specifically431

adapted to Wolof data. We therefore reinforce this432

metric with a subjective metric, the mean opinion433

score (MOS), which is an average evaluation of the434

quality of the audios by a group of human experts.435

This is the last piece of data to be added for an436

exhaustive evaluation.437

In addition to our model, we evaluated Galsen438

AI’s open source model based on XTTS v2439

(Casanova et al., 2024) on the benchmark. This 440

allows us to compare our model with the existing 441

one and to justify the choice or not of the Parler- 442

TTS architecture according to its performance com- 443

pared with XTTS v2. We have also evaluated the 444

performance of the multilingual Parler-TTS model 445

without finetuning in order to measure the perfor- 446

mance gains provided by our annotated dataset. 447

The results of these different models according to 448

the different metrics are shown in table 2. 449

Analysis of the results of our model shows that 450

it produces very natural audios with satisfactory 451

perceptual quality, as well as good intelligibility 452

with a WER of 0.45, which means that more than 453

half of the words present in the speech are perfectly 454

transcribed. The errors present are due to a few 455

cases of mispronunciation of words, but overall the 456

speech remains very comprehensible for the Wolof 457

speaker, as demonstrated by the MOS of [-]. 458

Comparing its performance with the multilin- 459

gual version of Parler-TTS (Lyth and King, 2024) 460

without finetuning shows a clear improvement on 461

all metrics. This shows the effectiveness of our 462

cross-lingual transfer learning approach, and just 463

how necessary it is to adapt existing models to 464

obtain satisfactory results on a low-resource lan- 465

guage such as Wolof. In terms of the objective 466

quality of the generated audio, there is a consid- 467

erable improvement of +0.5, while the audios are 468

much clearer with less noise. The increase in pitch 469

correlation shows that the model learned to adapt 470

better to the tonal variations specific to the Wolof 471

language. This is an important point, as it proves 472

that the prosodic features learned from European 473

languages need to be adapted to better match the 474

speech of an African language like Wolof. 475

As for the comparison with the Galsen AI XTTS 476

v2 open source model, it shows that our model 477

outperforms its counterpart on most metrics, partic- 478

ularly intelligibility, with a significant gap of 0.73. 479

Another important point to note is that our model 480

produces a voice more similar to the original voice, 481

which is very important for a controllable model 482

to be able to control the speaker. All this proves 483

the advantages of the Parler-TTS architecture over 484

XTTS v2 in this study, since both models were 485

trained on the same data. The metrics on which 486

the Galsen AI’s model outperforms ours are mainly 487

explained by the fact that our model controls the 488

output voice quality parameters, which it deliber- 489

ately lowers in certain audios where the description 490

requires noise to be added. 491
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In short, the subjective and objective results of492

our evaluation show the superiority of our speech493

synthesis model over existing models and support494

the relevance of our approach. The metrics ob-495

tained show that the model does indeed manage to496

control the speaker with a high degree of similar-497

ity, to control rhythm and tone with a higher pitch498

correlation, and to control noise and reverberation499

by lowering the audio quality where necessary.500

5 Conclusion501

In this work, we have built an annotation pipeline502

that constructs controllable text-to-speech datasets503

without the need for expert annotation. We ap-504

plied it to a low-resource language dataset to cre-505

ate the first controllable text-to-speech system in506

Wolof. This is a major step forward for this under-507

represented African language, opening the door to508

numerous applications. The results obtained with509

our model show that this annotation process is a510

robust methodology that can be replicated for other511

low-resource languages. It also shows the impor-512

tance of having reliable benchmarks for evaluating513

text-to-speech models for low-resource languages.514

With more powerful models, such advances will515

enable speech technology to become more widely516

available and benefit all populations.517

6 Limitations and Future Work518

Although this is the first controllable text-to-speech519

model in Wolof, it has a number of limitations.520

The quality of the voice generated remains average,521

with a perceptual quality (PESQ) of [x], which522

needs to be improved. Similarly, the number of523

parameters controlled remains relatively modest,524

although satisfactory for a start. Parameters such as525

dialect will need to be taken into account in future526

studies, as they are of significant importance in the527

social context of African languages.528

Other limitations are inherent in the architec-529

ture of Parler-TTS itself, which we have used as a530

base model. For our model, as for other versions of531

Parler-TTS, we have noticed difficulties in correctly532

pronouncing words that are unknown or rarely en-533

countered in the training dataset. Parler-TTS also534

has difficulty handling long utterances. One solu-535

tion is to use the model in streaming mode so that536

Parler-TTS processes the text by chunk and thus537

generates coherent speech despite the length. We538

have also noticed that Parler-TTS, once finetuned,539

tends to forget the characteristics of the speakers it540

has been pre-trained on. This limits its potential ap- 541

plications in speech cloning for a very large number 542

of speakers. Improvements to the Parler-TTS archi- 543

tecture or the exploration of other architectures for 544

controllable speech synthesis are therefore avenues 545

worth exploring. 546

For the data, the main limitations are the quality 547

of the data and the lack of diversity of prosodic fea- 548

tures. Quality has been improved using an enhance- 549

ment system, while diversity has been increased 550

using signal processing techniques. However, these 551

modifications fall short of studio recording quality 552

and do not allow natural emotions and variations 553

in tone to be rendered with sufficient fidelity. Re- 554

search into the collection of high-quality, expres- 555

sive text-to-speech data would therefore be salutary 556

and complementary to work such as this. 557

7 Ethical Considerations 558

Ethical aspects are an important part of this work, 559

given the potential applications of such a system. 560

On the one hand, this text-to-speech system can 561

make a significant contribution to language preser- 562

vation and the digital inclusion of marginalised 563

communities, thereby reducing the technological 564

divide. However, this technology raises critical 565

questions about the use of such a model for the pur- 566

pose of cloning other people’s voices without their 567

consent. This may open the door to new methods 568

of voice spoofing in languages where people are 569

not used to encountering this kind of problem. It 570

is therefore important to impose strict conditions 571

of use on these models, which is what we intend to 572

do in its future deployment. 573

Furthermore, the potential mismatch between im- 574

ported technologies and local sociolinguistic norms 575

could lead to such a system being rejected or judged 576

negatively by its users. It is therefore important 577

to put the people who speak these low-resource 578

languages at the heart of voice data collection. It 579

is also important that we have the outputs of this 580

model validated by Wolof speakers, beyond the 581

simple estimation of vocal quality. Any study of 582

speech systems for low-resource languages should 583

give high priority to these considerations. This is 584

how these speech synthesis models will become 585

truly useful tools, adapted to the context in which 586

they are to be deployed. 587
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Metrics MOS PESQ WER Speaker Sim. Pitch Corr. SNR
Galsen AI XTTS v2 3.06 3.90 1.18 0.40 0.07 49.31

Parler Mini Multilingual 1.55 2.84 0.99 0.13 0.05 14.17
Ours (Finetuned Parler) 3.73 3.34 0.45 0.54 0.14 26.67

Table 2: Table of objective and subjective metrics across models.
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