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Abstract

Recent advances in deep learning have en-
abled the creation of expressive and control-
lable speech synthesis models. However, the
creation of such models requires the collection
and annotation of large amounts of data, which
limits their applicability to low-resource lan-
guages. In this paper, we propose an automatic
annotation pipeline to bypass the tedious pro-
cess of annotating parameters such as prosody
or emotion in a text-to-speech dataset. Our
system rebalances the distribution of speech
features in the dataset and then uses a large
language model with Gemma 2 to predict rel-
evant annotations in the form of textual de-
scriptions, with zero minutes of expert anno-
tation. As most of the features extracted are
language agnostic, we obtain a generic annota-
tion procedure that we evaluate by finetuning
a controllable text-to-speech model on a low-
resource language, Wolof. The results show
that our model acquires a greater ability to con-
trol prosody, with a gain in pitch correlation of
+0.09 and a speaker similarity of 0.54. The cho-
sen architecture also performed well on Wolof,
with a perceptual quality of 3.34 and a word
error rate of 0.45.

1 Introduction

Text-to-speech (TTS) represents one of the most
significant advances in human-computer interac-
tion, enabling diverse applications in human com-
munication (Adler et al., 2006), from accessibility
tools for visually impaired individuals to virtual
assistants and audiobook production.

Recently, with the increasing industrial demand,
TTS technologies have evolved beyond the abil-
ity to synthesize human-like speech to enable con-
trollable speech generation. This includes fine-
grained control over various attributes of synthe-
sized speech such as emotion, prosody, timbre, and
duration (Xie et al., 2024). These controllable sys-
tems typically employ hierarchical architectures

that separate linguistic content from prosodic fea-
tures, allowing independent manipulation of pitch,
rhythm, and emotional tone while maintaining lin-
guistic integrity (Lee et al., 2023).

Controllable TTS for low-resource languages
represents a significant frontier in speech synthe-
sis, offering communities the ability to customize
speaking styles despite limited training data. Re-
cent advances like Byambadorj et al. (2021) lever-
age cross-lingual knowledge transfer, where expres-
sive representations from high-resource languages
can be adapted to low-resource contexts with min-
imal target language samples. Other approaches
use data augmentation based on voice conversion
or synthetic data generation to increase the quality
of the system in the target language (Huybrechts
et al., 2021). Despite notable advances, the qual-
ity of these systems remains well below that of
resource-intensive languages due to the lack of
quality data. In addition, the control of many char-
acteristics, such as prosody, remains imperfect due
to the specific speech characteristics of each under-
represented language.

One of these low-resource languages is Wolof,
an African language belonging to the Niger-Congo
language family . It is spoken primarly in Senegal
and the Gambia, by approximately 80/100 of the
inhabitants of these two countries (Omar, 1987).
According to Rialland and Robert, the intonational
system of Wolof has several interesting typologi-
cal features, including the absence of any intona-
tional marking of focus. Since Wolof doesn’t use
intonation to mark focus, the TTS system would
need to integrate closely with morphosyntactic in-
formation, making it particularly challenging in a
low-resource setting.

This perfectly highlights an example of a situa-
tion where relevant annotations are needed to adapt
to the characteristics of a low-resource language.

"https://www.mustgo.com/worldlanguages/wolof/
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In this study, we propose an innovative annota-
tion strategy to accurately annotate speech data
while adapting to the specificities of the Wolof lan-
guage. Then, we use the resulting dataset to train
and evaluate a controllable TTS model in Wolof.
Our test benchmark provides a reference against
which many other Wolof text-to-speech models can
be evaluated using objective metrics.

2 Related Work

2.1 Controllable TTS

Controllable text-to-speech (TTS) systems require
large-scale datasets that exhibit extensive diversity
and include fine-grained annotations. Different
types of annotation have been used to create these
datasets, including annotations based on detailed
textual descriptions of speech attributes (Guo et al.,
2023; Jin et al., 2024; Ji et al., 2024a). Description-
based datasets enable models to interpret nuanced,
free-form textual prompts and generate speech that
aligns with complex, context-dependent specifica-
tions (Xie et al., 2024). This is why we chose a
description-based dataset to train our controllable
TTS model.

Datasets based on textual descriptions allow
precise control, but they are rare and costly to
construct. In addition, limited diversity of styles
or prosodic variations in datasets can restrict the
model’s ability to generalize across unseen at-
tributes. Although there are some large-scale
datasets, such as LibriTTS (Zen et al., 2019) and
TextrolSpeech (Ji et al., 2024a), their diversity is
still not enough for fully controllable TTS. One
approach is to augment the datasets following cer-
tain attributes, while other studies attempt to auto-
matically annotate the features present in speech
samples (Lyth and King, 2024). In this study, we
combine the two solutions to adapt a traditional
text-to-speech dataset to the needs of a controllable
model.

In terms of the models used, many recent mod-
els have relied on textual descriptions to control
speech generation. Most of them use architectures
based on large language models (LLMs) to support
text descriptions in the form of prompts (Lyth and
King, 2024; Ji et al., 2024b). However, determin-
ing the appropriate level of granularity for control
and devising methods to achieve precise control at
a specific granularity or to enable multiscale and
fine-grained control remains a significant challenge.
Here we analyse the results obtained with an LLM-

based TTS model on a low-resource language, as
well as future research directions.

2.2 Low-Resource TTS

A lot of research is being carried out into the
application of text-to-speech to low-resource lan-
guages. Traditional techniques include self-
supervised learning (Chung et al., 2019), cross-
lingual transfer (Tu et al., 2019; Xu et al., 2020),
and back-transformation (Tjandra et al., 2017; Ren
et al., 2019). Recent models combine the power of
codec models with multilingual capabilities (Zhang
et al., 2023; Zhou et al., 2024). These models en-
code text from multiple languages into a shared
latent representation space, enabling cross-lingual
transfer learning and unified processing.

Despite these advances, African languages re-
main particularly marginalised. However, there
have been some studies on the creation of datasets
and text-to-speech models for African languages
(Meyer et al., 2022; Ogayo et al., 2022). With re-
gard to the control of certain parameters such as
African accents, Ogun et al. have explored such
multi-accent models, but in English. As for Wolof,
which is the subject of this study, some text-to-
speech systems exist in the form of proofs of con-
cept (Gauthier et al., 2024), alongside more recent
open source initiatives 2. Our system uses the latest
architectures based on LLMs on a Wolof dataset
annotated with various speech attributes.

3 Methodology

3.1 Data Preprocessing

The dataset used in this work is a text-to-speech
(TTS) dataset that contains recordings from two
native Wolof actors, a male and female voice >.
The audio samples were cut with an average dura-
tion of 3.78 seconds. A large number of operations
were carried out to process this dataset. A compar-
ison of the details of the dataset before and after
preprocessing can be found in table 1. First of
all, corrupted files were detected and deleted. The
transcriptions were then cleaned up by removing
foreign language characters, unpronounced emojis
and special characters, while the numbers were con-
verted to letters to match the reading in the audios.
All these transformations to the text are designed

Zhttps://huggingface.co/galsenai/
xTTS-v2-wolof
Shttps://zenodo.org/records/4498861
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Dataset | Number of samples | Speakers | Duration | Mean Duration | PESQ | SI-SDR
Original 40042 2 42h 3.78s 241 13.62
Processed 39555 2 41h 30min 3.78s 3.52 22.84

Table 1: Comparison of the details of the dataset before and after preprocessing.

to ensure better text-audio alignment for a more
robust text-to-speech model (He et al., 2019).

In addition, further operations have been carried
out on the audio samples. Most of the audio was
noisy or poor quality, so we used an enhancer # to
improve the quality. Table 1 shows two relevant
metrics for assessing the quality of enhancement.
These are the perceptual audio quality (PESQ)
(Recommendation, 2001) and the scale-invariant
signal-to-distortion ratio (SI-SDR) (Le Roux et al.,
2019), which measures the rate of sound distortion
relative to the useful signal. Significant gains are
observed compared with the original data.

3.2 Annotation System

The aim of our annotation system represented at
figure 1 is to automatically generate detailed textual
descriptions that match the speaking style of each
audio sample. These descriptions are then added
to the text-audio pairs to form a controllable text-
to-speech dataset. To generate the descriptions, we
rely on Data-Speech (Lacombe et al., 2024), an
automatic annotation method inspired by the work
of Lyth and King. The system calculates a set of
metrics from an audio sample, such as speaking
rate, pitch, signal-to-noise ratio (SNR) and speech
clarity (C50). These metrics are then used by a
large language model to predict the following five
attributes:

* Speaker: the speaker’s identifier, which can
be his or her name or gender;

* Pace: the speech rate, which can be slow,
moderate speed, fast, slow pace or fast pace;

 Tone: the expressiveness of the speaker which
can be monotone or expressive and animated;

* Noise: the level of unwanted sound which
can be clear, noisy, good recording or poor
recording;

* Reverberation: the level of persistence of
a sound due to echo which can be close-

4https://github.com/resemble—ai/
resemble-enhance

sounding, distant-sounding, roomy sounding,
moderate reverberation or confined.

The language model used in our case to make these
predictions is Gemma 2 (Team et al., 2024). It
predicts a natural language text description includ-
ing each of these five attributes to accurately to
describe the style of the audio sample.

Most of the metrics used to determine these at-
tributes are language-independent, so we can use
them directly on our data. However, the speak-
ing rate is calculated according to the number of
phonemes per second of audio, which makes it a
language-dependent metric. Our contribution was
therefore to adapt Data-Speech to Wolof for this
metric, by creating a grapheme-to-phoneme model.
Our phonetic transcription model is a multilingual
version of ByT5 (Xue et al., 2022) which we fine-
tuned on phonetic data in Wolof. The output of the
model is remarkably accurate, which we discuss in
the section on experiments.

One of the constraints with controllable speech
synthesis is that there needs to be diversity of
prosodic features in the dataset. To measure the
diversity of these characteristics, we use a given
metric for each characteristic. For pitch, we cal-
culate the standard deviation of the pitch countour
for each sample; for speaking rate, the speed in
phonemes per second; and for noise and reverbera-
tion, the signal-to-noise ratio (SNR). An analysis
of the distribution of these three metrics on a sam-
ple of 1,000 examples from the dataset shows that
they are not balanced in relation to expressivity,
speaking rate and noise level, as shown in the first
part of figure 2 in the case of the speaking rate.

To rebalance these metrics in the dataset and thus
have the diversity needed to learn how to control
these parameters, we use signal processing tech-
niques such as time stretching for speaking rate and
pitch shifting for pitch. In the case of noise and
reverberation, we do not modify the distribution to
avoid negatively impacting data quality. Even in
the case of pitch and speaking rate, manipulating
their values can be tricky because of the risk of
adding distortion to the audios produced. So to
ensure that we get a quality rendering, we perform
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Figure 1: Schema of the annotation system.
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Figure 2: Comparison of the distribution of the speaking rate in the original and augmented dataset.

these operations using CLPCNet (Morrison et al.,
2021), which applies machine learning techniques
to signal processing to edit the speech parameters
of audio samples not seen during its training. The
results obtained, which can be seen in the second
part of figure 2, show that we managed to signifi-
cantly rebalance the pitch and speaking rate values
across our dataset.

In short, we propose a methodology for anno-
tating text-to-speech datasets in three stages: pre-
pare the data appropriately, using an enhancement
model if necessary, analyse the distribution of key
speech metrics and rebalance their values across
the data, and finally generate text descriptions that
match those metrics using a large language model.
Such a system can produce controllable synthetic
datasets without expert annotation, and can be ap-
plied to a wide range of languages, as most of the
metrics extracted are language agnostic.

3.3 TTS Model

Among the models based on large language models
(LLMs), we have chosen Parler-TTS, which is a
lightweight speech synthesis model that can gen-
erate high-quality natural speech in the style of a
given speaker (gender, pitch, speaking style, etc.).
It is a reproduction of the work carried by Lyth
and King. This choice is justified by the model’s
ability to handle textual descriptions to control au-
dio output, as well as its architecture that uses a
latent representation allowing high audio fidelity.
Its multilingual version we use is pre-trained on a
cleaned CML-TTS dataset (Oliveira et al., 2023),
which supports eight European languages.

Here we test the ability to transfer European
languages to an African language by finetuning the
multilingual version of Parler-TTS on our Wolof
dataset. As the audio descriptions are in English,
this makes it all the easier for the model to represent
them semantically, for controlled generation based
on those descriptions.



4 [Experiments

4.1 Experimental Settings

To demonstrate the efficacy of the proposed
methodology, we conducted experiments to build
two different models: a grapheme-to-phoneme
model and a controllable TTS using text descrip-
tions. Both models are trained on Wolof data that
we have cleaned up and improved. We describe the
experimental conditions for each model below.

The grapheme-to-phoneme model is trained
on a corpus of 1000 lines that we have collected
and processed. The phonetic data is written in the
International Phonetic Alphabet (IPA) (Ladefoged,
1990), which ensures uniformity with other lan-
guages. The dataset is then divided into training,
validation and test sets in an 80/10/10 ratio. We
then finetuned a model based on ByT5 (Xue et al.,
2022) on this data with a learning rate of 3e-4 and
a batch size of 16 for 30 epochs on a T4 GPU. The
model is then evaluated on the test set with a batch
size of 32.

The controllable TTS model is a multilingual
version of Parler-TTS (Lyth and King, 2024) with
880M parameters that we finetuned into a multi-
speaker dataset that we processed and improved.
Details of the processing on the data can be found
in section 3.1. The model is trained on four V100
GPUs over 100 epochs. The learning rate is set to
le-4 while the duration of audio samples is limited
to between 1 and 20 seconds during training.

4.2 Evaluation Benchmark

In order to evaluate our text-to-speech model, and
provide a basis for comparison with all existing
text-to-speech models in Wolof, we have set up an
evaluation benchmark. It consists of a test dataset
of 100 audios collected in such a way as to have a
diversity of speakers (male and female), prosody
and noise level. We then implemented a set of
scripts to calculate objective metrics suitable for
evaluating controllable text-to-speech models in
Wolof.

PESQ: This is an estimate of the perceptual qual-
ity of audio, which we use here to get an idea of the
naturalness of the audio produced. As there is no
model for estimating perceptual quality in Wolof,
we used this method inspired by telecommunica-
tions (Recommendation, 2001).

WER: This is a metric that compares the error
rate between a reference text and a transcribed text.
We use it here to evaluate the intelligibility of our

model, which improves as the WER increases. To
adapt this metric to Wolof, we use a speech recog-
nition model trained on Wolof 3 to transcribe the
audio samples generated by our model.

Speaker Similarity: It measures how closely
a synthesized voice matches the characteristics of
a target speaker. To do so, we compare acoustic
features using audio embeddings. To calculate the
embeddings of the audios, we used the speaker en-
coder of a version of XTTS v2 (Casanova et al.,
2024) finetuned to Wolof. This allows us to bet-
ter separate the linguistic characteristics specific to
Wolof from the vocal characteristics of the speak-
ers.

Pitch Correlation: It quantifies how well funda-
mental frequency patterns align between a synthe-
sized speech sample and reference speech. Strong
correlation suggests the synthesized speech pre-
serves natural intonation patterns, which is crucial
for expressiveness. In our case, we use the proba-
bilistic YIN algorithm (pYIN) (Mauch and Dixon,
2014), which is an improved version of the YIN
algorithm for pitch detection that reduces octave
errors and handles noisy conditions better.

SNR: This is a measure of the level of de-
sired speech signal compared to background noise.
In speech synthesis, higher SNR values indicate
cleaner audio with fewer artifacts. In the control-
lable generation, it also measures the model’s abil-
ity to control the isolation and clarity of the gen-
erated signal. The model we use here to separate
audio from noise and calculate the SNR is Sep-
former (Subakan et al., 2021), a Transformer-based
neural network for speech separation.

Altogether, these different metrics provide an
objective and appropriate assessment of the nat-
uralness, intelligibility, clarity and controllability
of audio samples generated by a TTS in Wolof.
Thanks to the diversity of prosody and speaker pa-
rameters present in our benchmark, we provide a
reference tool for evaluating the quality, expressive-
ness and controllability of speech synthesis models
in Wolof.

4.3 Results

The grapheme-to-phoneme model was evaluated
using two metrics to assess its ability to correctly
transcribe a Wolof text into the phonetic alphabet.
These are the word error rate (WER), which calcu-
lates the error rate per word between the original

5https://huggingface.co/CAYTU/
whosper-large-v2
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Figure 3: Validation loss descent curve

phonetic transcription and that of the model de-
scribed by the formula [x], and the character error
rate (CER), which measures the error rate per char-
acter between these transcriptions described by the
formula [y].

The grapheme-to-phoneme model has a word
error rate of 0.13 and a character error rate of 0.02.
These metrics demonstrate the effectiveness of the
model in transcribing phonetics in Wolof and in
being used in systems such as our automatic an-
notator. The low character error shows that even
when the model is wrong on a word, it is generally
an error on few characters.

For our speech synthesis model, its finetuning
on the Wolof dataset shows a stable and rapid loss
descent curve, as can be seen in figure 3. The rapid
decrease in the validation loss shows that the model
learns quickly from the knowledge acquired about
the languages used during pre-training. Each differ-
ent colour in the figure represents the resumption
of training from the last checkpoint, which does not
affect the course of the training. The model was
evaluated on the proposed benchmark using the
following five metrics: perceptual quality (PESQ),
word error rate (WER), speaker similarity, pitch
correlation and signal-to-noise ratio (SNR). Each
of these metrics has been detailed in the previous
section.

All the metrics at benchmark level are perfectly
adapted to Wolof data thanks to the models we used
to calculate them. Only perceptual quality, which
is supposed to assess naturalness, is not specifically
adapted to Wolof data. We therefore reinforce this
metric with a subjective metric, the mean opinion
score (MOS), which is an average evaluation of the
quality of the audios by a group of human experts.
This is the last piece of data to be added for an
exhaustive evaluation.

In addition to our model, we evaluated Galsen
Al’s open source model based on XTTS v2

(Casanova et al., 2024) on the benchmark. This
allows us to compare our model with the existing
one and to justify the choice or not of the Parler-
TTS architecture according to its performance com-
pared with XTTS v2. We have also evaluated the
performance of the multilingual Parler-TTS model
without finetuning in order to measure the perfor-
mance gains provided by our annotated dataset.
The results of these different models according to
the different metrics are shown in table 2.

Analysis of the results of our model shows that
it produces very natural audios with satisfactory
perceptual quality, as well as good intelligibility
with a WER of 0.45, which means that more than
half of the words present in the speech are perfectly
transcribed. The errors present are due to a few
cases of mispronunciation of words, but overall the
speech remains very comprehensible for the Wolof
speaker, as demonstrated by the MOS of [-].

Comparing its performance with the multilin-
gual version of Parler-TTS (Lyth and King, 2024)
without finetuning shows a clear improvement on
all metrics. This shows the effectiveness of our
cross-lingual transfer learning approach, and just
how necessary it is to adapt existing models to
obtain satisfactory results on a low-resource lan-
guage such as Wolof. In terms of the objective
quality of the generated audio, there is a consid-
erable improvement of +0.5, while the audios are
much clearer with less noise. The increase in pitch
correlation shows that the model learned to adapt
better to the tonal variations specific to the Wolof
language. This is an important point, as it proves
that the prosodic features learned from European
languages need to be adapted to better match the
speech of an African language like Wolof.

As for the comparison with the Galsen AI XTTS
v2 open source model, it shows that our model
outperforms its counterpart on most metrics, partic-
ularly intelligibility, with a significant gap of 0.73.
Another important point to note is that our model
produces a voice more similar to the original voice,
which is very important for a controllable model
to be able to control the speaker. All this proves
the advantages of the Parler-TTS architecture over
XTTS v2 in this study, since both models were
trained on the same data. The metrics on which
the Galsen AI’s model outperforms ours are mainly
explained by the fact that our model controls the
output voice quality parameters, which it deliber-
ately lowers in certain audios where the description
requires noise to be added.



In short, the subjective and objective results of
our evaluation show the superiority of our speech
synthesis model over existing models and support
the relevance of our approach. The metrics ob-
tained show that the model does indeed manage to
control the speaker with a high degree of similar-
ity, to control rthythm and tone with a higher pitch
correlation, and to control noise and reverberation
by lowering the audio quality where necessary.

5 Conclusion

In this work, we have built an annotation pipeline
that constructs controllable text-to-speech datasets
without the need for expert annotation. We ap-
plied it to a low-resource language dataset to cre-
ate the first controllable text-to-speech system in
Wolof. This is a major step forward for this under-
represented African language, opening the door to
numerous applications. The results obtained with
our model show that this annotation process is a
robust methodology that can be replicated for other
low-resource languages. It also shows the impor-
tance of having reliable benchmarks for evaluating
text-to-speech models for low-resource languages.
With more powerful models, such advances will
enable speech technology to become more widely
available and benefit all populations.

6 Limitations and Future Work

Although this is the first controllable text-to-speech
model in Wolof, it has a number of limitations.
The quality of the voice generated remains average,
with a perceptual quality (PESQ) of [x], which
needs to be improved. Similarly, the number of
parameters controlled remains relatively modest,
although satisfactory for a start. Parameters such as
dialect will need to be taken into account in future
studies, as they are of significant importance in the
social context of African languages.

Other limitations are inherent in the architec-
ture of Parler-TTS itself, which we have used as a
base model. For our model, as for other versions of
Parler-TTS, we have noticed difficulties in correctly
pronouncing words that are unknown or rarely en-
countered in the training dataset. Parler-TTS also
has difficulty handling long utterances. One solu-
tion is to use the model in streaming mode so that
Parler-TTS processes the text by chunk and thus
generates coherent speech despite the length. We
have also noticed that Parler-TTS, once finetuned,
tends to forget the characteristics of the speakers it

has been pre-trained on. This limits its potential ap-
plications in speech cloning for a very large number
of speakers. Improvements to the Parler-TTS archi-
tecture or the exploration of other architectures for
controllable speech synthesis are therefore avenues
worth exploring.

For the data, the main limitations are the quality
of the data and the lack of diversity of prosodic fea-
tures. Quality has been improved using an enhance-
ment system, while diversity has been increased
using signal processing techniques. However, these
modifications fall short of studio recording quality
and do not allow natural emotions and variations
in tone to be rendered with sufficient fidelity. Re-
search into the collection of high-quality, expres-
sive text-to-speech data would therefore be salutary
and complementary to work such as this.

7 Ethical Considerations

Ethical aspects are an important part of this work,
given the potential applications of such a system.
On the one hand, this text-to-speech system can
make a significant contribution to language preser-
vation and the digital inclusion of marginalised
communities, thereby reducing the technological
divide. However, this technology raises critical
questions about the use of such a model for the pur-
pose of cloning other people’s voices without their
consent. This may open the door to new methods
of voice spoofing in languages where people are
not used to encountering this kind of problem. It
is therefore important to impose strict conditions
of use on these models, which is what we intend to
do in its future deployment.

Furthermore, the potential mismatch between im-
ported technologies and local sociolinguistic norms
could lead to such a system being rejected or judged
negatively by its users. It is therefore important
to put the people who speak these low-resource
languages at the heart of voice data collection. It
is also important that we have the outputs of this
model validated by Wolof speakers, beyond the
simple estimation of vocal quality. Any study of
speech systems for low-resource languages should
give high priority to these considerations. This is
how these speech synthesis models will become
truly useful tools, adapted to the context in which
they are to be deployed.



Metrics MOS | PESQ | WER | Speaker Sim. | Pitch Corr. | SNR

Galsen AI XTTS v2 3.06 3.90 1.18 0.40 0.07 49.31
Parler Mini Multilingual | 1.55 2.84 0.99 0.13 0.05 14.17
Ours (Finetuned Parler) 3.73 3.34 0.45 0.54 0.14 26.67

Table 2: Table of objective and subjective metrics across models.
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