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ABSTRACT

The subset selection problem is fundamental in machine learning and other fields
of computer science. We introduce a stochastic formulation for the minimum
cost subset selection problem in a black box setting, in which only the subset
metric value is available. Subsequently, we can handle two-stage schemes, with an
outer subset-selection component and an inner subset cost evaluation component.
We propose formulating the subset selection problem in a stochastic manner by
choosing subsets at random from a distribution whose parameters are learned. Two
stochastic formulations are proposed. The first explicitly restricts the subset’s
cardinality, and the second yields the desired cardinality in expectation. The
distribution is parameterized by a decision variable, which we optimize using
Stochastic Mirror Descent. Our choice of distributions yields constructive closed-
form unbiased stochastic gradient formulas and convergence guarantees, including
a rate with favorable dependency on the problem parameters. Empirical evaluation
of selecting a subset of layers in transfer learning complements our theoretical
findings and demonstrates the potential benefits of our approach.

1 INTRODUCTION

This paper proposes a stochastic optimization approach to the Subset Selection Problem in which the
goal is to choose a subset of size k that attains the minimal loss defined by

Join (0, (P)
where C* := {C C {1,...,n}, |C| =k},C =J,_,CF, and £ : C — Ris a set loss function. We
make no assumptions regarding the loss function other than having known lower and upper bounds.
In particular, we neither assume it is defined outside of C nor require it to be differentiable, unlike
previous related research Ahmed et al. (2022); Pervez et al. (2022); Sander et al. (2023); Xie and
Ermon (2019). As a result, our formulation can accommodate loss functions that others cannot, such
as those arising in feature selection or transfer learning via fine-tuning a subset of neural layers.
However, it is important to note that while our convergence results hold for arbitrary ¢, the properties
of ¢ significantly influence both the convergence rate and the algorithm’s practical performance.

Central in many fields of science, such as machine learning and theoretical computer science, the
subset selection problem is NP-hard (see Bar-Yehuda and Even (1981)). In this paper, we propose
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two distributional-based variants for (P) — both optimize distribution parameters to minimize the
expected subset loss. The size of the subsets in the first variant is k& (surely), while in the second, it is
k in expectation. We prove that our algorithm converges to a stationary point for both formulations.
To the best of our knowledge, this is the first proof that does not require the differentiability of the
loss function £.

Both formulations are of the general form

uffele{fD (w) :=Ecnp, [€(O)]}, (1.1)
where D,, is a distribution on subsets parameterized by w, £ is a loss function associated with the
subsets, f is the expected loss, and X C R™.

The first formulation we consider limits the size of the subset to be exactly & via the distribution
Doy = 1, and is intended for cases where k = O(1). It is formulated by

Jnf {7 (w) == Eony, O]}, (Pr)
where AS == {w € A, |w; > ¢, w; >0 Vi}for0 < ¢ <1, A, is the n-dimensional unit
simplex, and 1/, is an unordered choice without replacement according to weights w. Note that this
is a distribution over subsets of size k.

Remark 1.1 (on the closeness of the feasible set of (P)). The feasible set in (P;.) is not closed — this
hindrance is addressed in the theoretical analysis of the formulation in Section 5.

The second formulation we consider allows different sizes of the selected subsets via a random
Bernoulli-based mechanism where the expected subset size is k. It is defined by

min {f(z’ (w) :=Ecmg, [K(C)}} , (Pp)

where A¢ = {w € R" [ w € [e,1 —¢]*, Y] w; = k} for0 < ¢ < (n—k)~". In this
formulation, ¢,, is the result of n heterogeneous Bernoulli trials, where the it" element is included in
the subset if the i*” trial is successful, and the individual element inclusion probabilities sum up to k.

The choice between fixed (Pj) and expected (P ) cardinality depends on whether cardinality is a strict
requirement (e.g., Subset Sum) or a guideline (e.g., feature selection). While expected cardinality can
approximate fixed cardinality by penalizing subsets of undesired sizes, this may hinder convergence
due to frequent low-quality samples.

The detailed distributions are given in Section 4, and the purpose of the approximation parameter
c will become evident in Section 5. In both formulations, (Pj) and (Pp), selecting a subset boils
down to determining a distribution parameterized by the decision variable w. To determine w, we
utilize a nonconvex Stochastic Mirror-Descent (SMD) Zhang and He (2018) based method detailed
in Algorithm 1. Accordingly, we measure the first-order optimality of a solution w using the standard
Bregman stationarity measure Zhang and He (2018); we elaborate on such preliminaries in Section 2.

Contribution. We briefly summarize the main contributions of this work:

* We propose two continuous stochastic formulations for the Subset Selection Problem with
possibly discrete loss, and prove that they can encode the optimal selection. Moreover, by
choosing appropriate distributions for these formulations, we derive constructive gradient
estimators, and the relatively weak convexity of the expected loss functions.

* We prove convergence rate via an SMD-based method, without any assumption on the
underlying loss. We are not aware of such a proof even for differentiable loss functions.

* We derive a concentration bound for the loss of the subsets sampled using our method.
* We demonstrate the efficacy of the proposed algorithm in a deep transfer learning setting.
Related Work. Recent research on stochastic subset selection emphasizes its integration into

computation graph (CG) frameworks, widely used in modern machine learning applications Sander
et al. (2023); Xie and Ermon (2019); Jang et al. (2016); Maddison et al. (2016); Ahmed et al.
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(2022); Pervez et al. (2022). These methods aim to compute gradient estimators for subset selection
parameters by encoding subsets as k-hot vectors—binary vectors with k non-zero entries representing
the chosen subsets. While CG frameworks assume the loss is differentiable almost everywhere, we
address discrete loss functions where this assumption fails, as with metrics like classification accuracy
or Spearman correlation.

Sander et al. (2023) provide theoretical guarantees for their gradient estimator, introducing a general-
ized top-k operator with a subgradient and a relaxed version with an exact gradient. Their approach,
however, does not apply to non-differentiable losses.

The Gumbel-Softmax trick, a relaxation of top-k sampling Xie and Ermon (2019), is suited for
differentiable losses. In our setting, it has two limitations: (i) defining loss for continuous relaxations
of k-hot vectors is challenging for tasks like feature selection, and (ii) the relaxation depends on a
temperature parameter t. While the relaxed distribution converges to weighted size-k subset sampling
as t — 0, the distributions differ for any fixed ¢ > 0.

Other notable approaches for stochastic subset sampling in CG settings include those by Ahmed et al.
(2022) and Pervez et al. (2022). Ahmed et al. (2022) investigate a Poisson-Binomial-like distribution
conditioned on selecting exactly k elements. They propose dynamic programming algorithms to
compute marginal selection probabilities and enable sampling, along with a theoretically intuitive
gradient estimator based on these probabilities, though it lacks rigorous proof.

Pervez et al. (2022) propose a sampling mechanism that reduces subset size variance in the Poisson-
Binomial distribution. Using Bernoulli random variables, they generate subsets near size k through
sequential trials and apply the Straight-Through gradient estimator Bengio et al. (2013), though
without guarantees on bias or variance. While their method is primarily relevant to our work from a
practical perspective, combining it with ours could yield synergistic and innovative approaches, as
discussed in Appendix F.

Outside the CG framework, the REINFORCE gradient estimator Williams (1992) does not require
differentiable losses. While provably unbiased, it has high variance, and we are unaware of theo-
retical bounds on its variance or moments, which are crucial for first-order stochastic optimization
convergence.

Our work intersects with stochastic smoothing techniques, smoothing for set-valued functions, and
variational optimization. For foundational works, see Lovasz (1983) for deterministic smoothing of
set-valued functions, Nesterov (2005) for smoothing in nonsmooth continuous functions, Duchi et al.
(2012) for stochastic smoothing, and Staines and Barber (2012) for variational optimization.

Finally, Combinatorial Multi-Armed Bandits (CMAB), in the stochastic Agarwal and Aggarwal
(2018); Rejwan and Mansour (2020) and adversarial Han et al.; Audibert et al. (2014) settings, are
somewhat related to our research. Similar to CMAB, we select a subset of size k£ and receive a
subsequent reward. However, in CMAB, it is assumed that each element has a non-constant intrinsic
score, and the total reward is a function of the selected elements, which can be linear Audibert et al.
(2014); Rejwan and Mansour (2020), monotonically increasing in the element scores Agarwal and
Aggarwal (2018), or known in advance Han et al.. The underlying assumption is that selecting
elements with better scores is preferable. In our setting, there are no intrinsic element scores, two
similar subsets can have vastly different rewards, and the reward for a given subset is constant.

2 PRELIMINARIES

Relative weak convexity Zhang and He (2018); Davis and Drusvyatskiy (2019) will be used to obtain
the Mirror Descent method’s desired guarantees.

Definition 2.1 (Relative Weak Convexity). Let f : X — R. We say that f is (p, ) relatively weakly
convex (RWCQ) if: (i) pu is differentiable and 1-strongly convex over X’; (ii) The function f + pu is
convex over X,

The following definitions are taken from (Zhang and He, 2018, Section 2.3).

Definition 2.2 (Bregman Divergence). Let 1 : X — R be differentiable and convex. Then for
x,y € X, the Bregman Divergence is defined as

B, (z,y) = p(x) —p(y) — (Vu(y),z —y).
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Definition 2.3 (Bregman Proximal Operator). Let f : X — R differentiable, and p : X — R,
differentiable and strongly convex, such that f is (p, 1) RWC. Let A < p~!. Then the Bregman
proximal operator is defined as

1
prox, ¢(z) := argmin f(w) + ~ B, (w, 2).
weX A

The Bregman Proximal Operator is well-defined and unique for every z € X.

Lemma 2.1 (Zhang and He, 2018, Lemma 2.2)). Suppose a function f is (p, 1)-RWC on X and
0 < X\ < p~L. Then for any input z € X, the function f + B, (-, z) is (A\™' — p)-strongly convex.
Moreover, the Bregman proximal operator prox, f (2) is unique.

The Bregman proximal operator is a necessary optimality condition, and is natural when discussing
Mirror Descent based algorithms. Since the Bregman proximal operator is unique, the following
notion of Bregman Stationarity Measure is well defined.

Definition 2.4 (Bregman Stationarity Measure). Let f, i, A be defined as in Definition 2.3. Then,
Ax(w) = A=2(B,,(w, proxy  (w)) + By, (pros, ;(w), w)).

When p is Lipschitz continuous, we can derive a connection between the Bregman stationarity
measure and the more traditional measure of distance between the subdifferential set and zero (see
(Zhang and He, 2018, Equation 2.12)); We provide a detailed proof for completeness.

Lemma 2.2 (optimality measure). Let W = prox, ;(w) and assume that j1 has M Lipschitz gradient.
Then, (dist (0,0 (f + 6x) (w)))> < MAy(w), where dist (w, S) = inf [lw —yl|.
S

3 ALGORITHM

To obtain the desired distribution in our two stochastic formulations (P) and (P5)" we propose a
nonconvex Stochastic Mirror Descent (SMD) -based method detailed in Algorithm 1.

For both (P;) and (P ) the algorithm we provide: (1) Maintains a parametric distribution of subsets
Dy (Dy = Yay OF Doy = hyy); (2) Samples a subset C' ~ D,,; (3) Computes a stochastic gradient
estimator V2 (C) given the subset C; and (4) Performs a SMD update using the gradient estimator.

The main challenges in implementing our SMD approach are strongly linked to the choice of the
distribution. In particular, the distribution must induce an unbiased stochastic gradient estimator with
an explicit formula that can be bounded. Moreover, the expected loss incurred by the distribution must
be Relatively Weakly Convex (cf. Section 2). As we shall demonstrate in the sequel, the distributions
we propose in Section 4 overcome these challenges.

Algorithm 1: Stochastic Subset Learner

Input: ¢ > 0, ¥ CR", wo € X, pn: X = R, {o}],
fort=1...,Tdo
sample C' ~ D,

evaluate VL (C) // Evaluate the gradient estimator
~ 1
wyq1 € argmin(Vy,, (C), w) + —B,(w,w;) // Mirror Descent step
weX Qy
end
T
sample R € {1,...,T},suchthatP (R =1i) = a;/ > oy
i=t

Return wpr

“The properties of the formulations and their approximations are discussed in Section 4 and Section 5.
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Remark 3.1 (inputs of Algorithm 1). Applied to our setting and based on the requirements of the
SMD, we assume that the inputs of Algorithm 1 obey the following: X’ is either A7 or A7 ; and 1 is
differentiable and 1-strongly convex. The step size o is discussed in Theorem 7. l and Theorem 7.2.

In Theorem 3.1, we state the convergence guarantees for Algorithm 1 informally and concisely. The
full version of this theorem is established in Section 7.

Theorem 3.1 (Algorithm 1 guarantees (informal)). Let xr be the output of Algorithm I for one of
the supported formulations, with an appropriately chosen step size. Then there exists p > 0 such that

E[A)s, (wr)] <O (Tj;) )

where the expectation is taken over the random choices of the algorithm.

We are not aware of any other convergence result in our setting. Even in a CG setting, where the loss
function is assumed to be differentiable rather than discrete, we are not aware of any convergence
results to stationary points. We note that many applications might find the best sampled subset to be
of interest, and indeed, our experiments in Section 8 use this measure.

There are several heuristics which can improve the performance of Algorithm 1. We refer the
interested reader to Appendix F.

4 PROBABILITY DISTRIBUTIONS OVER SUBSETS

In both formulations, (P;) and (Pp), selecting the best subset involves determining a distribution
using the decision variable w, which we optimize with Algorithm 1. This section presents the
proposed probability distributions for these formulations.

For (P;), we define 1),,, an unordered weighted-choice without replacement distribution, ensuring
subsets of size k. To support this, we introduce some notation.
For a subset C' € C*, let ¢, ..., 7$| denote all permutations of C. We simplify to 71, ..., 74 when

C is clear and omit indices when arbitrary. The /™ element of a permutation 7 is [l], or simply [{]
when the permutation is clear.

Let Cy,...,Cn (N = (})) be some enumeration of the subsets in C*. The distribution 1, is defined

by the probability vector p* for a weights vector w € A¥ constructed via the probability of choosing
the permutation 7 given by

Pl = P(r”

k
w o
w) =] jf“f (4.1)
J=11— E wiy
=1

The probability of choosing the subset C; is the sum of the probabilities of choosing its ordered tuples

k!
P :=P(C; | w) = ZP w) =Y p Ww)
r=1

For every choice of i, k, n, m and w, computing p;*, is possible in O (k ) operations. Given that there
are k! possible permutations, computing p¥* takes O (k - k!) = O ((k + 1)!) operations. Therefore,
computing this probability is feasible only for relatively small values of k. On the other hand, note
that the probability computations are completely independent of n.

We now move to define the distribution ¢,, for the problem (Pg). Let C4, ..., Cn be some enumer-
ation of the subsets in C. Given a weights vector w € A? | the distribution ¢,, is defined by the
probability function '

P =PCi|w)=[Jw;- [T -w,). (Dw)

jec j¢cC

For every n, k, i and weights vector w, calculating p} takes O (n) operations.
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5 RELATIONS BETWEEN THE STOCHASTIC FORMULATIONS AND THEIR
APPROXIMATIONS

This section justifies our stochastic formulations by connecting the solution sets of (P), (Py), (P), and
their approximations. These approximations provide bounds on the gradient estimator’s moments and
the Hessian eigenvalues, essential for the convergence result in Section 7, with proofs in Appendix B.

While it is tempting to use (Pj) and (P ) directly, the resulting gradients and gradient estimators can
have an arbitrarily large norm. Therefore, we tackle formulations with relaxed upper/lower -bounds
on the decision variables instead, that is, we minimize over the sets A¢ and Afl’ i for ¢ > 0. The
c-approximated problems are:

Ve = min Ecnp, [C)]. P
Vg = wrenAiICl Ece, [¢(C)]. (Pp)

n,k

Theorem 5.1 provides a bound on the effect of the constraint relaxation in () on the optimal value.

Theorem 5.1 (approximation gap in k-cardinality subsets). Denote Lyqp = max LC),L* =
cecC

min £(C), and let 0 < T < Lz — L* be some suboptimality gap.

Cceck

The minimum element weight c is defined via an auxiliary variable ¢ = c¢(n — k) and d =

ﬁ (1 -(-1 (/471 (11— 5))) Define ¢* as

(1—J—1-k!- (llﬂ (1—5)>k> (Lypaw — L) — 7/

j=1
Then for every constraint relaxation of 0 < ¢ < ¢* = é&* - (n — k)_l, it holds that Vi{ < L* 4 1.
Note that the upper bound of c depends on T.

¢* = argmin
0<é<i

Theorem 5.2 (approximation gap in k-cardinality expected value subsets). Let L.ax =

Cg{ql,?,}.(.‘,n} 0C),L* = cnélcqﬂ (C) = pérgN E;p[(Ci)], and let 0 < T < Liyyqp — L* be some

suboptimality gap. Let c and 1 — c be the lower and upper bound of the element weights, respectively.
We define c* as

¢ =(n—k™* (1 — /1 =7(Liae — L*)_1> .
Then for any constraints relaxation 0 < ¢ < c* it holds that V§ < L* + 7.

Remark 5.1. Note that in both Theorem 5.1 and Theorem 5.2, the upper bound c¢* depends on 7.
Moreover, c¢* is strictly monotonically increasing in 7 for 7 € (0, Lyqz — L*).

The elements weight bound c enables us to fine-tune the tradeoff between the suboptimality gap of
the approximate problems, and the gradient estimator norm bounds.

6 THE UNBIASED STOCHASTIC GRADIENT

‘We now turn to obtain our gradient estimator. It is derived by analytically calculating the derivative of
our proposed distributions. The constructive derivation of the gradient estimator allows us to bound
the estimator’s size and variance.

We note that the CG framework literature offers several gradient estimators, all of which assume that
the loss function is differentiable. To name a few: Sander et al. (2023) introduce an unbiased gradient
estimator, Xie and Ermon (2019) present a Gumbel Softmax gradient estimator, and examples of
heuristic gradients that are not related to the Gumbel Softmax trick can be found in Ahmed et al.
(2022); Pervez et al. (2022). None of the aforementioned gradient estimators provides any theoretical
bounds for the size or variance of the gradient estimator.

The stochastic gradient formulas for (Pj) and (Pp) are defined next, and then proved to be unbiased.
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Definition 6.1 (stochastic gradients). Define the stochastic gradient in the following manner:

If D, = 1. Then for C; ~ 1, set

[W (C-)] = LTy, vge{io....n) 6.1)
w 7 q p:” 8wq 1) ) “y )
The partial derivative is given by
k!
op* P’
L= — (6.2)
ow, ; ow,
where 7y, ..., mp are all possible permutations of C; and

ow,

B k j=1 -t
8])’5’77 . <(’I,U[m]) ! + ) Z <1 - Z w[l]> > 'p;f]n—v q S Clvq = ’H—Ci [m] = [m} (63)

0, otherwise.

If D,y = ¢. Then for C' ~ ¢y, set

1 .
- w0, jed
[VW(C)L = {3(1 _ wj)fl 2(C), otherwise. ©®

The fact that both of the gradient estimators are well-defined and unbiased is established next; it is
proved separately for each estimator in Appendix C.

Lemma 6.1 (gradient estimators properties). Suppose that D,, = ¥, or Dy, = ¢. Then the
gradient estimators (6.1) defined in Definition 6.1 and (6.4) defined in Definition 6.1 respectively are

well-defined and unbiased, that is, Ec..p [@B (C’)} = VEc.~p, [¢(C)], where D € {1y, b}

w

We conclude this section with an informal remark regarding the way in which the properties of ¢
affect the convergence rate of Algorithm 1 empirically.

Remark 6.1. Definition 6.1 suggests that the subset loss ¢(C') for any sampled subset C' € C
influences the sampling probabilities of all subsets that share elements with C' in subsequent rounds,
implicitly assuming that #(C') provides insight into the losses of subsets overlapping with C'. Experi-
mental results in Appendix G indeed indicate that when this assumption holds more strongly, the
algorithm performs better.

7 CONVERGENCE RESULTS

The SMD convergence analysis using the framework proposed in Zhang and He (2018) suggests that
the main challenges in deriving the convergence results lie in establishing the RWC of the objective
functions and in obtaining a (stochastic) bound expression for the gradient estimators in Section 6.

The following lemma provides a bound for the gradient and the gradient estimator.
Lemma 7.1 (gradient estimator bounds). Let w € AY. Then for every C € C* it holds that:

1[5, < ke e (mjmwj)_l -

2
-2
2. Omaz (V2Ecmyp, [U(O)]) < n (k* 4+ k+1) - max [¢(C;)] - (min wj> .
i J

‘We now establish bounds utilized when proving the RWC in (P5).
Lemma 7.2. Letw € A) ;. Then,

- 2 n 1 1
L Bongn, [HV?@,(C)HJ = J; (w] + 1- 'wj) Igggc((C)?
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1 1 1
l .
wow,” (L w,) (1), (1 w,)) 221

Then opmaz (V2Ec~g, [U(C)]) < pp(w).

2. Let pp(w) = (n — 1) max max{

The RWC of the objectives of the approximations is stated next; it is a corollary of the bounds proved
separately for each model in Appendix D.

% p(w) =

1
Corollary 7.1 RWC). For W € {A] ,, AL} define jp: W — R to be pu(w) = 3 [lw

— > In(w;), or p(w) = 3 w; In(w;). Then Ec.p,, [¢(C)] is (p%G, p)-RWC where
i=1 i=

i=1

1
1. D = ¢w, W= A5, ., ¢ > 0defined in Theorem 5.2, pf := (n — 1) — max [4(C)
: c? ce

2. D =1y, W = AS, ¢ > 0defined in Theorem 5.1, pf, == ¢~ ?n (k? + k — 1) -max; [((C;)|.

Finally, by utilizing the the gradient estimator’s bounds derived above and the RWC property in the
problems, we can conclude with the rate guarantees for () and (P;). While the rate depends on
both n and k, the dependency is disjoint, as opposed to the (Z) In particular, for small values of k,

the rate is of order O (n“’/ﬁ), as opposed to O (nk)

Theorem 7.1 ((P) rate result). Let wg be the output of Algorithm 1 for (Pf) with o, = (n?°V/T)~1

andletp=mn-c=2 (k* +k—1) - ax |€(C)|, where c is defined as in (Pf). Let G := max (C) —
€ €

min £(C) and M := max |{(C)|. Then,
Ceck Ceck

E [A1)2,(wR)] < (n2'5G—|— K3 (kj2 +k—1)-M* . n7 1. 074) JVT.

¢ . and c* in Theorem 5.1. It holds that

In particular, for ¢ =

E[Ay2,(wr)] <O ((G + K EM?) n“/ﬁ) 7
where ¢ does not depend on n.

The rate result for () is independent of k, is is therefore suitable for large values of k.

Theorem 7.2 ((P§,) rate result). Let wg be the output of Algorithm 1 for (Pg) with ay = (n*°v/T) ™1
Suppose that p := n - c > max {|¢(C)| : C € C} where c is defined in Theorem 5.2. Let G :=
max {(C) — min¢(C) and M := max [¢{(C)|. Then,
cec cec CeC
2n2°G N 20M3
NNV

¢ A where c* is defined in Theorem 5.2. It holds that

E [Ay)2,(wR)] <

In particular, setting ¢ =

E [Ayop(wr)] < 2 (G + MP&3) n257-05,
where ¢ does not depend on n or k.

We conclude this section with a high probability bound for the value of the sampled subset.
Theorem 7.3. Let wg be the distribution parameter returned from Algorithm 1 applied to either (Pf)
or (Pg), and let Dy, = Yapy, 0F Doyyy = Gwp, accordingly. Let C1, . .., Cyy, ~ Dy, be independent
samples. Denote u = max LC)andl = Icr}il(r:lf(C). Then for every § > 0,

€ €

IP’( min  ((C;) —E [£(C)] > 5) cexplo—m
iefl,om} [ CNDwR = = P 9 (u — l)2 .
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Figure 1: Layer Subset Selection for Transfer Learning Diagram.

8 EXPERIMENTS

We conducted experiments in two setups: (i) Transfer Learning (TL) to showcase a practical applica-
tion, and (ii) Synthetic experiments for direct evaluation on subset selection tasks. TL experiments
are discussed below, with synthetic experiment details in Appendix G.

Experimental Setup. A natural application of our model is Transfer Learning (TL), where knowledge
from one task improves performance on a related task Tan et al. (2018); Zhuang et al. (2020). In
our setup, the subset selection algorithm selects layers from a frozen pre-trained neural network. At
each iteration, a subset of k layers is sampled, connected to a trainable fully connected layer, and the
resulting model is trained and evaluated on a held-out dataset. The algorithm computes a loss based
on this performance to update selection probabilities. After a preset number of iterations, the process
outputs the best subset observed, as shown in Figure 1.

Concretely, we experiment on TL in vision classification tasks based on two models, VisionTrans-
former (ViT) Dosovitskiy et al. (2020) and ResNet18 He et al. (2016), and two datasets, CIFAR10
Krizhevsky (2009) and SVHN Netzer et al. (2011). The model weights are pre-trained on Ima-
geNet1K Deng et al. (2009). The experiments are restricted to a setting in which the target dataset is
small so using a frozen model is preferable to partial or full fine-tunning (see Plested and Gedeon
(2022)). Three layer-choosing methods act as benchmarks, in the first two we use hyperparameter
tuning (HPO) on the validation set to tune the learning rate and batch size, and in the third we use
HPO from the second method. The methods are:

Last]l Using the last layer with learning rate in [0.001, 0.1] and batch size in {32, 64, 128}.
Last4 Using the last four layers with the same learning rate and batch size ranges.

URand4 Sampling four layers uniformly at random for 50 iterations, training the resulting model on
the training set, evaluating on the calibration set, and then selecting the one with the highest
accuracy on the calibration set.

We propose the following layer selection methods based on Algorithm 1: For any set of Algorithm 1
hyperparameters (7 and «, where oy = « for any t), we sample layers according to D,,. For each
layer-sample, we construct a model, and train it on the training set with the learning rate and batch
size selected by HPO for Last4. The model is then evaluated on the calibration set, and we set the loss
in Algorithm 1 to 1 — calibration accuracy. We update the layer weights and repeat for 7" iterations
according to Algorithm 1 (7" = 50). Upon termination of Algorithm 1, the best layers-subset is
evaluated on the validation set to update the HPO process for Algorithm 1. Once HPO is finished, we
repeat Algorithm 1 for the chosen values of 7, o, and evaluate the best in terms of calibration accuracy

on the test set. We set yu(w) = ||w||* and use the following to sample layers at each iteration:

CWR4 Sampling four layers with weighted Choice Without Replacement (¢, ).

HIB4 Sampling layers with Heterogeneous Independent Bernoulli experiments (¢,,). Due to
memory considerations, samples with more than five layers are assigned accuracy zero.

The performance of each experiment is evaluated for the best set of hyperparameters. Additionally, the
three sampling experiments are evaluated on calibration accuracy. For the best set of hyperparameters
according to the evaluation accuracy, we show the best observed calibration accuracy per iteration.

The experiments are carried out on AWS Sagemaker, with the instance types “ml.g4dn.16xlarge”,
with 64 vCPU, 1 Nvidia t4 tensor core GPU, and an Intel Xeon Family physical processor.
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ViT-CIFAR10 ViT-SVHN ResNet18-CIFAR10 ResNet18-SVHN
Mean Acc % Acc Std Mean Acc % Acc Std Mean Acc % Acc Std Mean Acc % Acc Std
Lastl 91.654 0.365 50.0369 0.971 66.698 1.134 34.700 1.345
Last4 86.414 0.551 72.523 2.316 70.794 0.836 49.975 0.689
URand4 89.362 1.085 75.053 2.553 74.052 1.797 53.317 12.577
CWR4 90.692 0.559 75.827 3.611 71.554 2.296 60.867 4.962
HIB4 90.724 1.045 77.781 2.036 71.336 4.102 60.478 60.478

Table 1: Accuracy (Acc) averaged over the 5 subsamples on the original test set. Bold indicates the
best.
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Figure 2: Calibration accuracy per iteration for representative subsamples.

Experimental Results. The results in terms of test accuracy are displayed in Table 1. In all cases,
selecting the last four layers deterministically (Last4) is inferior to the layer-selection algorithms
URand4, CWR4, and HIB4. Among these algorithms, both our methods outperform the random
greedy method URand4 in three out of four cases.

The comparison to Lastl is of interest only in the context of TL, as this is the simplest way to
use a frozen pre-trained model. In this context, Lastl is the superior method in a single case (ViT
with CIFAR10) and inferior to all other methods in all other cases. In the general context of subset
selection, the Last] experiment holds little relevance — our experiments aim to compare methods of
selecting subsets of size 4, either deterministically or in expectation.

In a broader sense, our results support the superiority of layer selection algorithms over a deterministic
selection in TL on frozen models. This conclusion is compounded by the use of learning rate and
batch size selected for Last4, instead of optimizing them directly. We speculate that these results can
be extended to more general settings, where the choice of layers can take a different meaning. One
example is using a decaying learning rate between layers, as suggested in Plested and Gedeon (2022).

We found that in the calibration accuracy comparisons, one of our methods outperforms the random
greedy approach in 14 out of 20 experiments (2 models x 2 datasets x 5 subsamples). Actual
numbers are omitted as they provide no further insights. The effect of layer selection algorithms
is much more pronounced in ResNet18 than in ViT — a representative example for each model is
provided in Figure 2. Our experiments also show that CWR4 tends to reach its plateau performance
more quickly. We believe this is because its search space is smaller than that of HIB4, and unlike
URand4, the initial iterations of CWR4 actively encourage exploration.

9 CONCLUSIONS

We introduced a stochastic approach to a non-continuous subset selection formulation facilitating
novel theoretical guarantees. Our results motivate both future theoretical and experimental investi-
gations. In particular, further theoretical study of the stochastic model approach, formulation, and
possible distributions, as well as other optimization frameworks. Numerical experimentation on TL
and other subset selection applications such as Vertex Cover or Independent Set, especially those
with challenging non-differentiable metrics, also provide intriguing research prospects.

10
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A PROOFS OF SECTION 2

Proof. By the optimality conditions of

prox, () = argmin (=) + 1 By (=, w) = argmin f(2) + 1 (u(2) — p(w) — (Vp(a), 2~ w))
z€X zEX

we have
0 € VF(ab) + 9o (ab) +  (Vu(ed) — Viu(aw)) = 5 (Vyu(w) — Via(ab)) € 9 (f + ) (1)
Hence,

(dist (0,0 (f + 8x) (@)))* < % IVa(ab) = Viu(w)|.

By (Beck, 2017, Theorem 5.8, part 4), since y is assumed to have M Lipschitz gradient over X,

2 V) — V() > < S (V) — V), w0 — ).
Since
Ay = 15 {Vilw) — Va(),w - ),
this concludes the proof. O

12
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B PROOFS OF SECTION 5

The following Lemma formally establishes that the minimum of (P) is equal to the infimum of (P},),
and is lower bounded by the minimum of (Pg).

Lemma B.1 (basic relations between formulations). Denote L* := 1nf Ewp Z Pi -

pEA

0(C; ) and let Ly be the optimal value of (Pp) and Lj, be the optimal value of (Py). Suppose that

Cy,.

,C is some enumeration of C*. Then:

* = i N < ¥
. L _ mlnNﬁ(Cz) < Lj.

i=1,...,

2. There exists a convergent sequence {w;}7°, of feasible solutions to (Py) such that

Proof.

Ecy., [((C)] 2 L7,
Ly < Li

1. Consider the optimization problem

péIgN Einpl€( ZP i U(C).
Set
. [1, ifi=i
pi = 0, otherwise’
where

i* € argmin £(C;).
i=1,..,N

We note that

N N
Zpi' Z ~Am1n (C;) = min_ £(C;),
i=1 i=1

i=1,....,N

where the second equality follows from p € A . Additionally, for p*,

Z i = pi - 4(C-) = min_{(C;).

i=1,..,N

The relation L* < Lj follows immediately from the fact that for every w € A, N R4,
p¥ € Ay, and that the target functions are identical for fixed distributions.

. Leti* € argmin ¢(C;). In part 1 of Lemma B.1 it was shown that
i

p* € argminE;,[¢(C;)]
PEAN

where p* is given by
« _J1, ifi=ir,
pi = 0, otherwise.

We construct a convergent sequence {w; }7°,, such that

l—o0

p ——p".
Since E;.,[¢(C;)] is continuous in p and p* € argminE;.,[¢(C;)], such construction is

PEAN
sufficient for the proof.

13
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Let ) 1
I 'f ] Z*
Tt if j € C
(wr); = .
herwi
IR IA otherwise
Clearly, for every [
Do)=Y (w);+ Y (w),
j=1 JEC;x JEC*
1 1 1
= - —— —k =1
(k: 2%k z> +(n—k) <2(n—k:) l> ’

and for every [ and j
(wl)j > 0.

l .
Therefore, w; € A,, N R, ;. Furthermore, w; =, w*, where w* is given by

1 ...
w} = o 1f]€C'i*.
0, otherwise

Next, we calculate p;'

1/k —1/2kl
P ZHl—j—l ) (1/k — 1/2k1)

r= 1] 1
By Pt
71J12kl G-1@—-1)
ST
r=1j= 12 k—j+Dl+j-1
Clearly,
20 —1 I— 00 1
2k—j4+1l+j-1 k—j+1
Therefore it follows that
H 20— 1 l_mﬁ 11
_ i _ A
o1 2 JHDI+5-1 o k—g+1 R
and

20 -1 l—00
ZH —j+D)l+j- b

lel

Since p}." 122 1 and p¥t € Ay, it follows that for every i # i*

l—o0

p;t —— 0.

Hence,
w, l—oo

P
Since E;pw [((C;)] = Ecy,, [((C)] is continuous in p*, it immediately follows that
l—o00 *
EC i, U(C)] == Einp- [((Cy)] = L*.

14
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3. Let Cy, ..., Oy be some enumeration of C*, and let i* € argmin £(C;).

Define w as
@D = 1, j S Ci*
7710, otherwise

Then w € {w € R} | > w; =k} and
=1,

Therefore, w is a feasible solution to (Pz) whose value is L},. Hence,

Ly <L

Proof of Theorem 5.1. Let C1, ..., Cy be some enumeration of C*, and let i* € argmin £(C;).
i

Define

’UJj: )

1
_ %(1—0(71—1@)), j € Cix
c, otherwise

and note thatw € A, Nz > cfor0 < c¢ < (n— k)_l.

The probability of choosing the optimal subset C;- according to the distribution D,z is
1 k
E!- (k (1 —c(n—k)))

ji(rwj—n(;u—cm—w»))
o a(lese)

P = k ‘ 1 ~ .
(1-G-n(;0-9

j=1

Note that this is a strictly monotonic decreasing function in ¢ for 0 < ¢ < 1, whose value is 1 for ¢ = 0

and 0 for ¢ = 1. Therefore, 1 — p¥ is strictly monotonic increasing in é. Since 0 < 7 < Lyax — L*,
it follows that -—"— € (0, 1), and therefore there exists a single solution ¢* € [0, 1] to

k
mo(La_s
- Gﬂ Q o
1 jﬁl <1(]1) <]]{; (16))> (Lmax L) F=0.

Hence, the same ¢* minimizes

N k!.(;a—é))k 1.

AG o (o))

~x

n—=k

Di= =

Denoting ¢ = ¢ (n — k),

We conclude that for every 0 < ¢ < ¢* =

15
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i Ec~ <ﬁ*]L* 1—€’Lmam<L* :
w8 B, (O SPEL + (1= p) s S L 47

Proof of Theorem 5.2. Note that c* is the only root in [0, (n — k)~1] of

(1 —(1—e(n— k))Q) (Limaz — L*) — 7 = 0.

Let C4,...,Cy be some enumeration of subsets of C, and let ¢* € argmin ¢(C;).
i

Define w as ( )

c(n—k

—, J€C
c, otherwise

andleté =c- (n — k).

‘We can see that

m
¢ .. .
The sequence u,, = (1 — > is increasing, and therefore for every k,n suchthat 1 < k < n

m
; n—k
1-— >1—c¢
(-isw) =

c k
(1-5) 51

and at least one of the inequalities is strict.

and

Therefore, )
e >(1-8=(1-c(n—k).

Note that w € Afhk.
It follows that,

i < (1-2¢)>2L —(1-¢? .
L Eons, [(C) < (1021 +(1 (1 c))me

For0 < ¢ < c*,

wIenAH%,k Ecng, [U(C)] < L* + .

C PROOFS OF SECTION 6

The properties of the gradient estimators for our two formulations summarized in Lemma 6.1 are
proved separately in the following two lemmas.

Lemma C.1 establishes that the stochastic gradient (6.1) is well-defined and unbiased.

Lemma C.1 (gradient estimator for (P;) ). Let Cy, ..., Cx be some enumeration of C* and suppose
that D,, = 1. Then the gradient estimator (6.1) defined in Definition 6.1 is well-defined and
unbiased, that is,

Ecmspu |V (C)] = VEoms, [EC)].

16
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Proof. Let C; € C*. Consider an element index ¢ € C; and denote by 7 some permutation of the
elements of C;. Since q € C;, there exists an index m, such that ¢ = w[m| = [m].

For j <m,
8 .
) ~0.
0w I~
1-— Z wm
I=1
Forj=m
0 W) 1
owr,y, m—1 - m—1
] I—Zw[l] 1—Z'w[l]
1=1 =1
For j > m,
9 wij) _ wij)
OW(py) i1 j—1 2"
1- Z wiy (1 — Z ’wm>
=1 =1
Recall the derivative rule for product (assuming fi(w), ..., fr(w) # 0)
k k k
0 8]‘} 1
g | ILfi(w) H fi(w wy 11 fi@w)
ml \j=1 =1 Tl = =1
Combining all the above,
m—1
1—
WP _ 1 z; o
0 m - m—1 ’ m
Wim) 1— 3 wy Wim]
=1
j—1
! 1= > wy k
Wi =1 wij]
> i\t =
j=m+1 (1 _ Z w[[]) Jj=11 — ’UJ[”
I=1 I=1
Equivalently,
0P 1 - 1 S wp
ow, | w + Z = . H j=1 ’
. RTINS SR == ) wy
= I=1
Since .
w _ W]
Pix = H -
J=11— Z wyy
=1

(6.3) for g € C; follows.
On the other hand, if ¢ ¢ C;, then Ppio 1s not a function of w,, and therefore (6.3) for ¢ ¢ C; holds.

w

7
ow,

8p¢ pz Y,
Ow, Tz: ow,

The result that the partial derivative is given by
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k!
then follows immediately from the fact that p}* = > p;*,, which verifies the correctness of (6.2)

r=1
and that (6.1) is well-defined.
To prove that (6.1) is unbiased, note that the gradient at index q is given by

N o,
V (Ecny, [(C)]), = w, sz‘ UCi Z 8wq

On the other hand,
E VAL - w | z w 1 apz ap’
ot | Vi (C)L = 2]% v, (ci)]q = ;pi 55w Z awq
Hence,

Ecny, |V (O)] = V (Ecny, UO)).-

The following lemma establishes that the stochastic estimator of the gradient is unbiased for (P ).

Lemma C.2 (gradient estimator for (Pg)). Suppose that D,, = ¢,,. Then the gradient estimator
(6.4) defined in Definition 6.1 is unbiased, that is,

Ecng, [WL(C)} = VEc~o,, [€(C)].

Proof of Lemma C.2. Let C’l, e Cayn € C be an enumeration of all possible subsets of {1,...,n}.

Let i be the index of the subset C'. We reformulate V%, (C) as

1 4(C) . .
[~¢>( )} T"%p;ﬂ’ jec
ve (o) = j
J % (—m> pY¥, otherwise.
D5 1 —w;

Since

it follows that

1
8~1_u 7]5’1”"7 .7 S 07
YPi ) Wy 1
Ow; Y, otherwise.
1—’[1}]‘
Hence,
> a*w 21, > 1,
[VEcng, [¢ Z e Y. BUC)+ Y~ —BrUC)
J i=1, jec; Y i=1, j¢C; J
On the other hand,
~ d) 27% » ~ ¢ 2’7L 1 " 271 1 "
[Eono, [VEO]] =X 5 [Vae)] = X —mruCy+ Y~ BrHC).
7= T =1, jec; i=1, j¢C: J
Consequently,

Ecng., [WL(C)} = VEc~o,, [€(C)].
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D PROOFS OF SECTION 7

We start with a technical lemma to bound the component

Lemma D.1. Lerw € A, N R’_f__i_, C € C* and let 7w be some permutation on the indices of the
elements of C. Then,

1 . 1 k < k
Wi j=1 min w, min  w,
Jj=m+1 1-— Z wy qeC ge{1,...,n}
Proof. The fact that
1 1 1
< < -
W(m) Hélél w; qe{rilln ) Wy

follows trivially from the definition of the minimum.

k
Define w(C) = > wp,. Note that w(C) < 1 since w € A,,. For every permutation 7 of the

indices of the elements of C and every j < k,

1— > > i .
2w 2w Z"’m minw, > mwin | w,

Since w € A, NRY ,, we have

1 1 1
il = min w = min  w,
1-— E wy qeC 1 qe{l,...,n} 4
k 1
The sum ) ——— | hasatmost k — 1 elements. Therefore,
j=m+1 =
1-3 wyy
=1
Lo . 1 E k
o j—1 = . = . .
e > wy Prrelnt S e

LemmaD.2. Letw € {w € R" |0 < w; <1 Vj, Y w; =k}. Then,
j=1

1 1
<max [¢(C)]- max max{

H[V]ECN%, ()], w — CeC jE{l,..,n} 1w,

J

}-
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Proof. By the triangle inequality,

on on

1 1
VEcnsn O = | D0 —dtC)+ Y —7——(C)
i=1, jec; 7 i=1, j¢C; J
2m 1 2" 1
< > IBEHEC) + YD || B[ 16(Cy))
i=1, jec; | 7 i=1, j¢C; J
o 1 o 1
< — | |pW¥ — W
_Iggglf(c‘)l} Z o | P+ > -| 25
i=1, jec; ' 7 i=1, j¢C; J
. 1 . p -
Using the fact that 0 < w; < 1, we have that |—| = — and |- = . Since p}’ is
'wj ’lUj 1-— 'wj 1-— '
a probability, |p¥’| = pt. Therefore,
o . on )
(VEcwo, UO)],| < maxlec)) Y —pr+ Y B
ec ) - w; ) 1—w;
i=1, jeC; J =1, j¢C; J

2" 2"
1 1
< max [£(C)| - max{—, | S S N

cec wj 1 —w; =1, jeC; i=1, j¢C;
on mn
Therefore, since Y., p¥+ >, p¥ =1, we conclude that
i=1, jEC; i=1, j¢C;
[VEG s, (O], | < max [4(C)] - max({, )
Crooy il = Iélg():( max 'Ll)j7 1— w; '
Finally, we conclude that
1 1
Ec~ (O], < 2(C)| - T J
[(VEcnen, (6O, < maxleO)l max wax{ - =00y

O
Next, we provide an entrywise bound for the gradient estimator.
LemmaD.3. Lerw € {w e R" |0 < w; <1 Vj, > w; =k}. Then, forevery C € C,
j=1
- 1 1
va(C)H <max [(C)]- max max{—,——}.
0o cecC je{1,...,n} (o 1-— w;j
Proof. By the triangle inequality and the fact that 0 < w; < 1, forevery j € {1,...,n},
[90(0)] | = [Leco—t0) ~ Lger——0(0) < (O) max{ ., ———)
— . — 1. maxy — .
* J JEij j¢C1_wj - & wj’l—'wj
Hence,
- 1 1
va(C)H <max [£(C)]- max max{—, }.
0o cecC je{l,...,n} w;j 1-— w;j
O

An immediate corollary follows from the relation ||a||, < v/n ||a||, for every a € R™.
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Corollary D.1. Letw € {w e R" |0 < w; <1 Vj, > w; = k}. Then, for every C € C,
j=1

~ 1 1
< .
HVH,(C’)H2 < \/ﬁrggé( [0(C)] - max max{ w, 1= wj}

JE{L,...,;n}

Proof of Lemma 7.1. Let C € C*. We now prove the two bounds.

1. In order to establish the first bound, we first show that

’ k

co T min wy
qeC

O]

Vi)

Let 017 ey
By the triangle inequality,
k!
- 1 oy 1 opy,
vd} } 57 |C LT 1(CY)] .
H q pZ;awq | P |~ | Ow, )l

C'y be some enumeration of C¥. Denote the index of C' by 4. Letq € {1, ...,

Since p}’ is the probability of a subset that was sampled, p;” > 0, and therefore —- > 0.
b;

By the first part of Definition 6.1, which was proven in Lemma C.1, and by w € A, NR? ,

. P
it follows that TT > 0. Hence,

|

Wy
11 i, | _ vk,
pY pY Owq ow,
Furthermore, if ¢ € C; then by Lemma D.1,
ap;f}ﬂ"r < k w
Ow; ~— minw; "
j
If ¢ ¢ C;, then it trivially holds that
O
0 “Wg.k o
owq minw;" 7
j
Therefore,
op, < k 10
dw, ~ minw, "7’
qeC

and consequently,

k!
1 w — w
Since Y pi¥, = pis
r=1

VA
[F800)] | < g MO,
qeC
and we can conclude that
~ k
’Vﬁ(C)‘ o0 = minw, )]
qeC a

(D.1)
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Ipw _
By the fact that % = 0 for every ¢ ¢ C, it follows that V¥, has at most k nonzero
q
elements. By (D.1), it follows that each entry if bound by — - 1€(C)|. Therefore,
min w,
_ k3 k15
Vi), = O = (O]
2 min w min w,
qeC 4 qeC
2. Ifqg¢ Ciorg ¢ Cy,
O*p¥
Ihin _y,
611)(1811}@
Otherwise, there exist indices m, o such that ¢ = 7w[m], § = 7|o].
) k 1
Denote d%7 (w) :== Y. —— |- Note that
j=m—+1
J 1 Z wm
=1
k
0 - 1
dyr = _— |- D.2
Fuy (B (@) > . ; (D2)

o Jj=1
j=max{m,o}+1 (1 _ lE w[[])
=1

If m = o, using the derivative rule for multiplication, it follows that

o () = gy (g 7 @) o)
) = + T (w) ) - p, (D.3)
QW) \ Owpy) oWy \ \ W)

0 < 1 )
(g (o i ) ) ot
(6w[m] W) ’

L opr,
+(+dz;f<w>) i

Wiy Wy

By (6.3),

1 . op¥. 1 , 2
(+dz;zf <w>) Pin _ (+dz;f <w>) P

W) Owpn)  \ Wiy

Plugging into (D.3),

d Opis
_nm D4
aw[m] (8’(1) [m] ) ( )
_ 1 ad:”;zﬂ (’LU) 1 2 1,7 3,70 2 w
B (( wh,y | oul >+ (wfm] gy e ) )) o

(D.5)

adi™ (w) 2 , , 2
= (2] 2 i ) 1 (A () )-pzfﬁ.
( W] Wiy )

. J=1
Using the definition of d;;" (w), the fact that 1 —  wp; > minw; > 0 and wy,,) >
=1 J

min w;, and (D.2), it follows that
J

Ody; (w)

@ — - -

< (k- 1) (minwg)z'

J
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-2

2 .

by — - du7 (w) <2k (m_in w]) .
Wim) J

-2
() (dir (w))2 < (kK =2k+1) <m_inwj> .
J

Combining with (D.4), we get
opY -2
J

8’lU[m] a’LU[m]

If 0 # m, the same arguments lead to

0 6]);‘;7‘. _ 0 1 1,7 w
o ( 8w[m]) - o ((w[m] i (w)) p) (D.7)

adim 1 ‘ 1 ‘

_ 0dyT (w) Yot < +dim (w)> ( +diT (w)> P
dwyg) W] wio]

Jj—1

By the definition of d7 (w), (D.2), 1 — > wp; > minw; > 0 and wy,), w >
=1 J

minw; > 0,
J

Ody; (w)

(a) Dwyy

J

1 -2
b)) — < <m_inwj> .
Wm]Wo) 7

1 1 . -
dyl (w) + ——dy™ (w) < 2k (minw; | .

Wio] Wim) J

<(k-1) (m.inwj>2.

(©)

-2
(d) dim (w) d5™ (w) < (k% — 2k + 1) (minwj) .
J

Plugging into (D.7), it follows that

o ([ op® -
— )< (P +k+1 inw; . D.8
dwp) (3w[m1) < akrl) (rna‘lnwj> Bom -
. i >pi. o
By (D.4) and (D.7), it also follows that for every ¢, G € C;, 3 8: > 0. Since if either
q0q

2w

0°n*
q ¢ C;or ¢ ¢ C; itholds that ﬁ = 0, we conclude

%ZO Vq,qG € {1,...,n}. (D.9)
Using the triangle inequality, it immediately follows that
52 B N k! 52 .
s (e O = >3 s <cl>)‘

N Kl 92

<23 g, )| 14C0)
N Kl 92

<20 G, Pin) - maxl(C)]
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-2
Let pp(w) =n (K +k+1) - (m_in wj) -max; [¢(C;)|. Since
J

) 5 (B IO 2 )= (8 k1) (v, ) o 1(C1),
and

2 —2
)~ 5 (B [UCN) 2 )= (8 k1) (v, ) o 1C1),

and in addition
max Y ][VzEchw ()]

Jj=1, j#i
it follows that for all ¢

,J

-2
<(n—-1) (k2 +k+1) (m_inwj) -max |£(Cy)],
J %

and
pr(w) = [V*Ecny, KO, > D ‘[V2E0~ww[aCUH
j=1, j#
Therefore, both pg(w)I + V?Ecy,, [((C)] and pg(w)I — Ecy, [((C)] are diagonally
dominant. Since diagonally dominant matrices are positive definite, it follows that

ok (W) + V?Ec oy, [((C)] = 0 = V*Ecwy, [((O)] = —pr(w)I,

pr(w) — V2Ec oy, [((C)] = 0 = prp(w) = V*Ecy, [((C)].
In conclusion,

(]

pr(w)I = VEcy, [U(O)] = —pr(w)].

Proof of Lemma 7.2. We prove the two parts.
1. Forevery j € {1,...,n} by the law of total expectation and the definition of V%, (C),
. 2
([fec] )
J

. 1
= P (j is chosen) - P} “Ecngn, | jis chosen [E(C)Q]
J

ECng,

. 1
+(1-P (J is chosen)) - P EC~¢w | j is not chosen [6(0)2] :
1-— 'wj)
Since
P (j is chosen) = w;
and

maX{EC’N(i)w | j is chosen [6(0)2] 7EC~¢w \jis not chosen [‘6(0)2]} S %2?6(0)27

(2] ] = (5 2 st

we can derive that

Ec~g.,

Therefore,
n

Boen |[F8O)) < X (- + T ) max0”

1—w; ) cec
Jj=1
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2. Recall that

Eceg, (O] =3 T[ wi [] 0 —w)).

i=1jeC; Ji¢C;

= [ w [T 1 —wy).

JeC; J¢C;

and that

For every 7 and every j,
PP

and hence for every j € {1,...,n}

For j #£1,if j,1 € C;,

Fpr 1,
ow;0w; ijlpi ’
Ifj S Ci,l¢ C;,
*pr 1 o
Ow;ow; w; (1— 'wl)pl '
Ifj ¢ Ci,le Ci,
rpy 1 -
dw ;0w (1-—w)w "
If 5,1 ¢ C;,
O*p 1 P
owjow;, (1—w;)(1l—w) "’
Therefore,

82
W]ECN%, [£(O)]

2 1 1 1 1 -
= ; <1j,leci Cwywr 1jeci,zecim - 1jeci,1ecim + 1510, m) p; £(Cy).
Using the facts that

L < 1 <0
— max -
mr Wy, (1 —w,) = w;(1—w)
and
1 1 1 1
0< <
< max{ wijw; (1 —w;j)(1— wl)} - %z’zﬁ(max{wmwr, (1—wy) (1 —w,) b
as well as the fact that for every ¢
0C;) < L(C
(Ci) < max[€(C)]
and that
on
2P =1
i=1
we can deduce that
! U0 < L Koy, 1))
—max ——————— - max ——Eco
myr Wy, (1 —w,) Cec ~ Ow;0w, Ot
< /
- I}E}max{wmwﬁ (1—wy,) (- v.ur)}rcrilg(}:(| )
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Consequently,
82

WECN¢w [£(C)] ‘ (D.10)

1 1
wmw,,’ (1 - wm) (1 - wr), Wm (1 — wT)}Iggg |£(C)‘ ’

< max max{
m,r

By (D.10), for every j,
82

WECN% ),

I=1,1#4] ‘

and hence V2Ec .4, [((C)] + pp(w)I is diagonally dominant. Since every diagonally
dominant matrix is positive semi-definite, it follows that

VZEcng,, [((O)] + pp(w)] = 0
and therefore
Amin (V2 Ecng,, [((C)]) = —pp(w).
For similar reasons, pp(w) — V2Ec g, [¢(C)] is also diagonally dominant, and hence
pr(w)I = V*Ecny,, [((C)] = 0,
which leads to
Amaz (V2 Ecng,, [((O)]) < pp(w).

a

Proof of Theorem 7.1. The result follows immediately from (Zhang and He, 2018, Corollary
n (k2 +k—1)

3.1), with the parameters p = 5
c

- max |[£(C)| (as proven in Corollary 7.1), L =
Ceck
15

—_— 0(C roven in Lemma 7.1), T° < 0C), Thyin > min £(C).
5~ ax |£(C)| (prov ) T1/2p(wo) < max ¢(C) Inin £(C)

Using the fact that ¢ < Lk’ where ¢ is independent of n, yields that particular result. |

Proof of Theorem 7.2. The result follows immediately from (Zhang and He, 2018, Corollary 3.1),
1 2
with the parameters p = n— max |[¢(C)| (as proven in Corollary 7.1), L* = " nax £(C)? (proven
2 cec ¢ Ccec
in Lemma 7.2), T wg) < max £(C), Tyuin > min £(C). O
9Tz 0)_Cec}i( ) _Ceck‘( )

Proof of Theorem 7.3. Note that
min_£(Cy) — Eonp,, [(C)] > 64 (C) —Ecnp, [((C)] > 8 Vi.

i€{1,...m}

By Hoeffding’s inequality, for all 7,

52
P (Z(Oi) —Ec~p,, [((O)] =2 5) < exp {_Q(u—l)} :
Since C1,...,C,, arei.i.d,

p(_min 6C)~Eorp,, [1(C)] 2 5) = (HC) ~ Eeun,, ((€)] 2 )"

ie{l,...,m}
N
B Y
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E MIRROR DESCENT STEP CALCULATION ALGORITHMS

1 . . L
Let 0 < ¢ < —. We consider the mirror descent step for all the combinations of
n

L X =A ={zeclA,|c<z; Vje{l,...,n}}

2. X% =A5, ={reR"[c<z; <1-cVje{l,...,n}, > z; =k}

j=1
and p; : X; — Rfori € {1,2,3} and j € {1, 2}, where
1
Lome) = 3 ol
2. po(x) = = 3 In(;).
i=1
3. ps(z) = > z;iln(xy).
i=1
1
Lemma E.1. Let 7 : A% — R be defined as j1 (z) = 3 ||, Then,
. 1 «
argmin(g, z) + —B,,, (v, 2) = {z"},
zEAS «
where 2* is given by
algta). wr< TSy,
2= Ti—a(giT™H ), K = o gz’
c, otherwise

and 11" is the unique solution of
Z c+ Z (v; —a(p+gi) = 1.
i p>(zi—c)/a—gi i p<(zi—c)/a—gi
Furthermore, p* can be found using bisection.

Proof. We start by proving that * exists, is unique, and can be found using bisection. The function
is continuous, strictly decreasing when there exists at least one index ¢ such that u < (1 — ¢)/a — g;,

and
> c+ > (i — a(p+ gi)) === oo,
i > (@) fa—gi i p<(wi—c)/a—g;
Z c+ Z (zi —alp+g) E"=n-c—1<0.
i p>(zs—c)/a—g; i p<(z;—c)/a—g;

Therefore, p* exists, is unique, and can be found using bisection.

Since (g, )+ By, (x, z) is continuous and A¢ is compact, a minimizer exists. Since (g, z)+B,,, (z, 2)
is strongly convex, the minimizer is unique. Furthermore, due to the convexity, the KKT conditions
are sufficient.

Define the Lagrangian L : R™ x R x R,

1 n n
L(ZJ\,M):<972>+%\|Z—$||2+M D=1 +> Ale—z).
j=1 J

—

The KKT conditions are
1 1 .
1. 95+~ —Exj—l—u—)\j =O0forall j € {1,...,n}.
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2. Nj(c—z;) =0forallj € {1,...,n}.

4. z; > cforall j € {1,...,n}.

5. A>0.

We can see that z*, u*, \*, where \* is given by

il?j—C

* J— .
e 0, < 5 9gj
J «_Ti—c : ’
w— +g;, otherwise
«
is a valid solution to the KKT system. Hence, z* is the optimal solution. a

n

Lemma E.2. Let o : A% — R be defined as po(x) = — 3 In(z;). Assume that x € AS. Then,
i=1

. 1 *
argmin(g, z) + —B,,, (z, z) = {z*},
z€A, @

where z* is given by
1

e Sy oy prary

,C}

and |1* is the unique solution of

= 1
max ,cb=1
; {1/xi+a(gi+u) )

1
on i € (max ——— — g;,00). Furthermore, 1* can be found using bisection.
J X

J

Proof. We start by proving that u* exists, is unique, and can be found using bisection. The function
is continuous. Additionally,

n

1 p—00
max =n-c<l1,
i; {1/:ci +a(gi +pr)
and
n p—>(max ————g;)"
1 Iaxj
Zmax{ = 00,
1/zi + a(g + p*)

i=1
Therefore, a solution p* exists.

1 1
For 1 > max ——— — g, is strictly decreasing.
P e T T et ) ! :
1
Therefore, the solution p* is unique on (max ——— — g, 00), and can be found using bisection.

i ax;

Define the Lagrangian L : R" x R} x R,

L(z,\, p) = Z ((gl + o +pAi> Zi — aln(zi)> fqucZ)\i.
i=1

i=1 ¢

The problem is continuous and the feasible set is compact, therefore an optimal solution exists. Since
the problem is also convex, the KKT conditions are sufficient for optimality. The KKT conditions are
given by
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1 11 .
1. ngraixijuf)\jfaz—j:0fora11]€{1,...,n}.

2. Njle—zj)=0forallj € {1,...,n}.
Jj=1

4. z; > cforallj e {1,...,n}.

5. A>0.

A solution to the KKT conditions is given by (z*, A*, u*), where z* and p* were defined above and

0, zi>c¢
AL = " 1 1 .o
J gj +p* +— — —, otherwise
ar;  oc

To complete the proof, we will prove that A* > 0. If z7 > ¢, then AT > 0 trivially. If 27 = ¢, then
1

<c (E.1)
/z; + (g + p*)
Since both sides of the inequality are non-negative, it follows that
1 1 .
— < —+ygitu,
ac O[IZ?]‘
and therefore ) )
N=gi+p +———2>0.
OLCCj ac
a

Lemma E.3. Let ui3 : AS — R be defined as ja(z) = > x;In(x;). Assume that x € AS,. Then,
i=1

. 1 *
argmin(g, z) + — By, (z, z) = {z"},
z€A, @

where z* is given by
* —a(git+p*
2¥ = max{z;e” 9t ¢}

and | is the unique solution of
n
Zmax{me*a(g#“), c} =1
=1
Furthermore, p* can be found using bisection.

Proof. Note that as long as there exists an index ¢ such that
xiefa(gi‘ﬂll*) > ¢,
the function

n
Zmax{xie_a(g””), c}
j=1

is strictly decreasing in . Furthermore,

n
— . ——0Q
g max{z;e” it o} KT o)

j=1
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and

n
Z max{ze” @0itm) o} L2 e <1,
=1

Therefore, the value of 1* can be efficiently calculated using bisection.
The Lagrangian L : R" x R’} x R is given by

L(z,\,p) = (g,z}—!—é (Zz7 In(z;) — Zz, In(z;) — Z (Inz; +1) (25 — 17)) + (ZZ’“ — 1) —1-2)\1 (¢ — z;).
i=1 i=1 i=1 i=1

i=1
Rearranging,
n 1 Z 1 n
L(z,)\,p)zz aln = —E—I—gi—i—u—/\i zi—u—Z/\ic—i—const.
i=1 ¢ i=1

The problem is continuous over a compact set, and therefore, by Weierstrass’ theorem, a minimum
exists. Since the target function is convex, the KKT conditions are sufficient. The KKT conditions
are given by

1 i )
. —In <Z) Ygi+p—A=0forallie{1,...,n}.
« xZ;

2. )\j(c—zj) =0forall j € {1,...,n}.
3. >z =1
j=1

4. z; > cforallj e {1,...,n}.
5.A>0.

The KKT conditions are fulfilled by (z*, \*, 1*), where z* and p* are as defined above, and A\* is
given by

0, zi>c¢

A = ¢
J In <xie—0¢(gi+u) >

(67

, otherwise

If z]* > ¢, then )\;‘ > 0 trivially. Otherwise, by our choice of 27, it follows that

xie—a(gﬁ-u) <e,

and hence that )\j > 0. O
1
Lemma Ed4. Let piy : A], | — R be defined as i1 (x) = 3 |z|1%, and ¢ < min{0.5,1/n}. Then,
. 1 .
argmin(g, z) + — B, (z,2) = {z"},
zEAfhk «

where 2* is given by
o

z; = min{max{z; — a(g; + p*),c},1 —c}.

and | is the unique solution of

Zmin{max{xj —a(g;+p*),ch,1—c} =k

j=1

Furthermore, p* can be found using bisection.
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Proof. Note that as long as there exists an index j such that
c<zj—a(g+u)<l-—eg
the function
n
> min{max{z; —a(g; +p*),c},1 - c}
j=1

is strictly decreasing in y. Furthermore, the function is continuous, and

Zmin{max{mj —a(g;+p%),ch1—c} PR e<1<k,
j=1

and
Zmin{max{xj —a(g;+u*),ct,1—c} s n-(l—¢)>n—1>k
j=1
Therefore, a solution p* exists and can be found using bisection, proving the latter part of the lemma.

To see that the proposed z* is indeed the optimal solution, note that
1 2
By, (2, 2) = 5 llz — "
Therefore,
1 1 2
(9:2) + B (@:2) = {g,2) + 5 |z — all*

The Lagrangian L : R™ x R x R’} x R is given by

1 n n n
Lz, A\, n, p) = <973>+%HZ—$||2+Z>\¢(C—Z¢)+ZW(Zz‘—1+C)+M <Zzi_k'> :
i=1 i=1

i=1
Rearranging,

n

1 zi ~ " 1
Lzamm =S (za (== ) zi)+2 eNHD (e )tk 5 2]
=1

=1 =1

The function is continuous and the feasible set is compact, and hence, by Weierstrass’ theorem, a
minimizer exists. The feasible set and target function are convex, and therefore the KKT conditions
are sufficient for optimality.

The KKT conditions are given by

1 i i
1. EZ]' +gi_%_)\i+77i+:u:0f0rauj e{l,...,n}.
2. A\j(c—z;) =0forall j € {1,...,n}.
3 nj(zj_1+c):0fora1]j€{1,...,n}.

4. Xn:zj =k.
j=1
5. z; >cforall j € {1,...,n}.
6. z; <1—cforallj € {1,...,n}.
7. A > 0.
8. n>0.
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The vectors (z*, \*, n*, u*) are a solution to the KKT system, where z* and p* were defined above,
A* is given by

0, zi>c
Aj=1qc—uxj . .
— +g; +u*, otherwise
o
and n* is given by
0, zi<l—-c
i=qwz;—1+c¢ :
i = —g;—p*, otherwise
e’

Aj > 0 trivially when 27 > ¢. When 27 = ¢, it implies
zj—a(gi+p') <c,
and hence

C— X;
A = L +gi+ut>0.
(07

Likewise, n;‘ > 0 trivially when zj* <1 —c. When zj =1 — ¢, itimplies

vy —a(g+u)>1—c

and hence -
* Tj — & *
BT >
n; - gi—p >
O
Lemma E.S. Let iz : A5, — R be defined as pa(v) = — ) In(z;). Assume that ¢ <

i=1
min{0.5,1/n}. Then,

. 1 *
argmin(g, 2) + — By, (2, 2) = {2},
z€AS @

where z* is given by
1

1/z; + o (gi + p*)

,ch1—c}

2! = min{max{

and p* is the unique solution of

n
1
min{max ehl—ct =k
2 minfmax{ oy =)
1 N . L
on | max ——— — g;,00 |. Furthermore, i* can be found using bisection.
J ax;

Proof. Note that as long as there exists an index 7 such that
< 1
c
1z + a(gi + p*)

<l-—eg,

the function

n
" minf{max{z; - a(g; + '), c},1 - c}
j=1

is strictly decreasing in u € (max —— —gj, oo). Furthermore, the function is continuous in

J aacj
1
(max - g;, oo), and

i oy
1 +
n ﬂ%<maxf *91’)
. " J alx;
Zmln{max{xj—a(gj—l—,u),c},l—c} n-(l—c)<n—-1>k,

j=1
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and .
Zmin{max{xj —a(gy+p*),ch,1—c} P ne<1<k.
j=1
Therefore, a solution * exists and can be found using bisection, proving the latter part of the lemma.

Note that

By, (z,2) = — Zln(zl) + Zln(xi) + Z U,

Therefore, the Lagrangian L : R" x R x R’ x R is given by

L(z,\,m,pn) ={g,2) + é (— Zln(zi) + Z %) + Z)\Ty(c —zi) + Zm(zi —14c¢)+pn (Z z; — 1> + const.
) i=1 i=1 """ i=1 i=1 i=1

Rearranging,

n

1 1
Lz, A\,m,p) = z ((gl + o A + 1+ ,u> 2z — o 1n(zi)> + const

i=1 v

The feasible set is compact and the target function is continuous, and therefore, by Weierstrass’
theorem, a minimizer exists. Since the problem is convex, the KKT conditions are suffcient for
optimality. The KKT conditions are given by

—_—

- gi +

—Xi+m+p———=0forallj € {1,...,n}

i Qazi

2. N\j(ec—z;)=0forallj € {1,...,n}.

3. nj(z; —14+c¢)=0forallje{l,...,n}

4. Xn:zj:k.
j=1
5. z; >cforall j € {1,...,n}.
6. zj <l—cforallje{1,...,n}
7. A >0.
8. n>0.

The vectors (z*, \*, n*, u*) are a solution to the KKT system, where z* and p* were defined above,
A* is given by

0, z;>c
A=
j gj + — + p* — —, otherwise’
AL ac

and n* is given by

0, zi<l-c

77; =¢_ 1 R S otherwise
a(l—rc) 9i ax; e

Note that since ¢ < 0.5, z]* = cand zj* = 1 — c are mutually exclusive, and therefore at least one of
A%, 1; is zero.

If z;“ > c, )\;f > 0 trivially. Otherwise, by the choice of z;*

1
<
Vi +ao(g +p*) ~

¢,

and therefore 1 1
N=gi+—+p ——2>0.
axj ac
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If zj < 1— ¢, then n;f > 0 trivially. Otherwise, by the choice of z;-‘,
1
>
Uz + a(gi + p*)

1—g¢

and therefore
1 1

— g — =" >0
a(l—c) 93 ax; po=

*

n; =

d

Lemma E.6. Let ji3 : Ay, — R be defined as p3(v) = Z x;In(x;). Assume that v € A; | and
¢ < min{0.5,1/n}. Then,

. 1 *
argmin(g, z) + — By, (z, 2) = {z"},
z€A, @
where 2* is given by
z¢ = min{max{z;e 9T 11— ¢}

and p* is the unique solution of
Zmln{max{x ety 1 — ¢} = E.
Furthermore, u* can be found using bisection.

Proof. Note that as long as there exists an index ¢ such that
< ze @Ot) <1 ¢
the function .
Z min{max{z;e” 9T ¢} 1— ¢}

=1
is strictly decreasing in . Furthermore,

Zmax{x emolotm) AV BT (1 —¢) >n—1,
j=1
and

Zmax{xe oot oy 222 e < 1.

Therefore, the value of 1* can be efficiently calculated using bisection.

Note that

n n

B,,(z,2) = Zzl In(z;) le In(z;) Z (In(z;) + 1) (2 — x4)
i=1 =1
n

= Z’Zl In(z;) Z (In(z;) +1) 2z + le

i=1 i=1

—Zzﬁn(zl) Zzl sz

Therefore, the Lagrangian L : R™ x R’ x R" x R is given by

L(z A\, p) = <Zzln<;> ZZZJFZ%)

i=1 v i=1

(Zz,l)JrZ)\ c— 2z +Z17, zi—1+c¢).
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Rearranging,
L(z, A )—i 4+ -—)v—lln(m)—l z»—i—lz-ln(z») + const
y AT ) = gi 2 Ui 2 o 1 7 o () (] .

- (0%
=1

The feasible set is compact and the target function is continuous, and therefore, by Weierstrass’
theorem, a minimizer exists. Since the problem is convex, the KKT conditions are suffcient for
optimality. The KKT conditions are given by

1 1
1. gi+u+ni—/\i—aln(azi)—i—aln(zi):Oforallje{l,...,n}.

2. Njle—z;)=0forallj € {1,...,n}.
3. nj(zj_1+c):0forallj€{1,...,n}.

4. izj:k.
j=1
5. zj > cforall j € {1,...,n}.
6. zj <1l—cforallje{1,...,n}
7. A>0.
8. n>0.

The vectors (z*, \*,n*, u*) are a solution to the KKT system, where z* and p* were defined above,
A* is given by

0, zj >c¢
c
A =
J In (xie_a(gi"rll*)) . ’
, otherwise
o
and n* is given by
0, z;‘ <l-c
e~ olgitu”)
n; =< In (l
1—c .
, otherwise
a

Note that since ¢ < 0.5, z]* = cand zJ* = 1 — c are mutually exclusive, and therefore at least one of
A%, 1 is zero.

If z;“ > ¢, then )\; > 0 trivially. Otherwise, by the choice of z;"

ze” i) < ¢

1 <C
U\ Ze—algitnm)
A= AT >0

J o

Hence,

If z]* < 1— ¢, then 1];-‘ > 0 trivially. Otherwise, by the choice of z;-*,

xie—a(grﬂl*) >1—c,

xiefa(gi+u’*)
e G e
: —° > 0.

n; = o

and it follows that

d

Remark E.1. If ¢ > 0.5, the feasible set Af , is always empty. If ¢ = 0.5, a feasible solution exists
if and only if n = 2, in which case the only feasible solution is z = (0.5, 0.5).
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F SCALABILITY AND PERFORMANCE CONSIDERATIONS

Regarding the practicality and relevance to large-scale applications, below we provide adaptations
which may improve the performance of Algorithm 1.

F.1 THEORY-PRESERVING ADAPTATIONS

1. Permutation sampling: Sampling a permutation instead of a subset and adapting the
gradient estimator accordingly can reduce the computational cost of gradient evaluation.
While we have not yet proven this rigorously, we believe the gradient estimator bounds
would still hold. This approach may, however, increase the gradient’s variance.

2. Caching subset evaluations: Storing values of previously evaluated subsets in a hash table
can reduce redundant calculations, especially when the algorithm is close to convergence
and repeatedly samples the same subsets.

F.2 HEURISTIC ADAPTATIONS

1. Combining sampling techniques: For large k, we can integrate our approach for sampling
subsets with expected cardinality k£ with the method in Pervez et al. (2022). This would
yield subsets of exact size k, albeit at the cost of slightly biased gradient estimators. Given
the design of the sampling process in Pervez et al. (2022), we expect the bias of the gradient
estimator to remain low.

2. Objective evaluation for hyperparameter tuning: Direct evaluation of the objective
function is computationally expensive for large-scale problems. Instead, sampling can
be used to estimate the objective efficiently. With upper and lower bounds available, the
sampling average converges at a sub-Gaussian rate.

3. Early stopping criterion: If a sufficiently good subset is encountered during sampling,
we can terminate the process early. This approach avoids unnecessary computation and
provides a practical stopping condition for the algorithm.

G SYNTHETIC EXPERIMENTS

This section presents synthetic experiments for three Subset Selection tasks: Subset Sum, Un-
structured Subset Selection, and Sparse Least Squares. The Subset Sum experiment evaluates the
performance of our algorithm on a combinatorial problem without an evident continuous analog. The
Unstructured Subset Selection experiments assess our method’s effectiveness in a setting devoid of
underlying structure. Lastly, the Sparse Least Squares experiment benchmarks our approach against
a continuous optimization algorithm suited explicitly for that problem.

G.1 SUBSET SuM

G.1.1 SETTING

The first set of synthetic experiments focuses on the Subset Sum problem. In this problem, we are
given n numbers Y = {y1,...,y, € R}, a subset size k, and a target value ¢ € R. The goal is
to determine whether there is a subset of elements k£ from Y such that the sum of the elements
equals ¢. The Subset Sum problem is well-known to be NP-Complete. In our synthetic setup, we set
n = 10, k = 4, and y; ~ Uniform[0, 10] for all 4 € {1,...,n}. The target ¢ is chosen as the sum of
a randomly selected subset of size k from Y, ensuring that a solution always exists.

We evaluate the Subset Sum problem under the two settings proposed in this paper: selecting subsets
of size k = 4 exactly (formulated by (P;)) and selecting subsets of size £k = 4 in expectation
(formulated (P3)). In both cases, for any given subset C' C Y, the loss function is defined as:

wey=11> vy -t

yeC

Clearly, C solves the Subset Sum problem if and only if ¢(C) = 0.
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In the (Pj) setting, we use Algorithm | with three Bregman divergence variants outlined in Corol-
lary 7.1. For comparison, we implement two baseline stochastic algorithms:

1. Uniform Sampling: At each iteration, a subset is chosen uniformly at random, and the
best-observed subset is returned.

2. Stochastic 1-Flip: It is based on the 1-Flip algorithm, which is discussed, for example, in
Szeider (2011). At each step, this method randomly selects two candidate elements, one not
in the subset to replace the other in the subset.

For the (P) model, we only compare with the Uniform Sampling procedure due to the lack of a
straightforward analog for the Stochastic 1-Flip algorithm in this setting.

G.1.2 PARAMETER TUNING

In both settings, experiments have shown that the theoretical values of « derived in Theorem 7.1
and Theorem 7.2 yield a very slow convergence rate when the Bregman divergence base function is
po(x) = 30 @iIn(x;) or ps(z) = — Y In(z;). Consequently, we adopt larger values of o

2'5T0'5CO'5 2.5T0.5

a=n for po(x), and a=n ¢ for puz(z),

where c and T are defined as in Theorem 7.1 and Theorem 7.2. Although these step sizes are not
directly supported by our theoretical analysis, they are strongly inspired by it. The Hessians of po ()
and pg(x) are:

1 1 1 1
V2 =diag | —,...,— |, W2 —diag [ —,...,— ).
i) -t (L), - (L)

The bound on p derived in Lemma 7.1 and Lemma 7.2 is O ((minizl,_“’” a:i)_2> , relying on the

-2
V2fP(z)+ 0 ((f{lin z,> ) I>0.

If we assume the stronger result:

condition:

1 1
V2P Oo(1)diag [ —,...,— | = 0,
F2a) + O1) ding (505 ) =
then the values of p improve to O (1) for pz(x) and O(1) for p3(x). Based on the proofs of
Lemma 7.1 and Lemma 7.2, we believe that this heuristic-type assumption is reasonable. Indeed,

under this assumption, the chosen « values align with the convergence guarantees in (Zhang and He,
2018, Corollary 3.1).

G.1.3 RESULTS

The results of the Subset Sum experiments under the (Pj) setting are presented in Figure 3 and
Table 2. Figure 3 plots the function values and best-observed subsets for two representative instances,
while Table 2 summarizes the outcomes of 1000 experiments. Across all configurations, the methods
implemented using Algorithm 1 significantly outperform the Uniform Sampling baseline.

Among the three Bregman divergence-based approaches, those utilizing p;(z) = ||z||? (Buclid-
Squared) and po(z) = Y., z;Inz; (Negative Entropy) as the base functions outperform the
Stochastic 1-Flip algorithm. However, the approach based on p3(z) = — >, In(z;) (Minus Ln)
performs slightly worse than Stochastic 1-Flip.

Interestingly, the Negative Entropy method outperforms EuclidSquared in minimizing the function
value despite achieving poorer results in identifying the best observed subset. We hypothesize that this
discrepancy arises from the higher variability in function values exhibited by the Negative Entropy
approach during optimization. This increased fluctuation may lead to sampling subsets from less
favorable distributions at specific iterations compared to the EuclidSquared method under equivalent
conditions.
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Figure 3: Function values and best observed subset values per iteration — representative samples for
(Py) setting.

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std
CWR4 - EuclidSquared ~ 0.145 0.270 3.607 1.161
CWR4 - Negative Entropy 0.160 0.294 2.888 1.358
CWR - Minus Ln 0.218 0.467 4.156 2.022
Uniform Sampling 0.244 0.474 NA NA
Stochastic 1-Flip 0.208 0.313 NA NA

Table 2: Average value of best observed subset and function value for 1000 subset sum instances —
(Py) setting. Bold indicates the best in "Mean" column.

The results for the (Pg) setting are presented in Figure 4 and Table 3. Figure 4 displays two
representative problem instances, while Table 3 provides a summary of the results of 1000 experiments.
The three variants of Algorithm 1 outperform the stochastic sampling baseline, with the Minus Ln
approach achieving the most significant improvement.

In terms of function value, the Minus Ln approach achieves substantially lower values compared to
the Negative Entropy method, with both approaches significantly outperforming the EuclidSquared
method. We hypothesize that these differences are primarily attributable to variations in the step size
parameter, which may impact the optimization dynamics for each divergence function.
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Figure 4: Function Values and Best Observed Subset Values Per Iteration — Representative Samples

For (Pp) Setting.

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std
HIB4 - EuclidSquared 0.269 0.313 7.815 1.363
HIB4 - Negative Entropy 0.267 0.307 6.432 1.287
HIB4 - Minus Ln 0.239 0.265 5.760 1.895
Uniform Sampling 0.278 0.332 NA NA

Table 3: Average value of best observed subset and function value for 1000 subset sum instances —

(Pp) setting. Bold indicates the best in "Mean" column.

G.2 UNSTRUCTURED SUBSET SELECTION

G.2.1 SETTING

In the unstructured experiment, the value of each subset is assigned independently, with values
sampled uniformly at random from the range [0, 10]. To ensure that the optimal subset value is 0, we
subtract the value of the optimal subset from all subset values. The same algorithms, iteration counts,
and step sizes as described in Appendix G.1 are used in this setting.

The unstructured nature of this experiment poses a significant challenge for algorithms that rely on

structural patterns, as little to no structure is present.
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G.2.2 RESULTS

The results for the (Pj) setting are summarized in Table 4, and two representative instances are
visualized in Figure 5. The results show that the Stochastic 1-Flip algorithm, which assumes a
strong underlying structure, struggles significantly in this setting. While the variants of Algorithm 1
demonstrate better performance, only the EuclidSquared version marginally outperforms the Uniform
Sampling baseline, and even this improvement is negligible.

These findings highlight the inherent difficulty of the unstructured problem, where information about
one subset offers no predictive insight into other subsets and very little insight regarding the value of
individual elements. This lack of interdependence severely limits the ability of algorithms to exploit
any structural advantages, resulting in diminished overall performance.

Unstructured - Exactly 4

10 : —— Function Value - EuclidSquared
N Best Subset Value - EuclidSquared
H —— Function Value - Negative Entropy
8 ‘ —————— Best Subset Value - Negative Entropy
i Function Value - Minus Ln
Best Subset Value - Minus Ln
Best Subset Value - Uniform Sampling
Best Subset Value - Stochastic 1-Flip
Optimal Value

Function / Best Observed Subset Value

0 10 20 30 40
Iteration

Unstructured - Exactly 4

10 —— Function Value - EuclidSquared

—————— Best Subset Value - EuclidSquared
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Best Subset Value - Minus Ln

Best Subset Value - Uniform Sampling
Best Subset Value - Stochastic 1-Flip
Optimal Value

e S

Function / Best Observed Subset Value

0 10 20 30 40
Iteration

Figure 5: Function values and best observed subset values per iteration — representative samples for
(Py) setting.

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std
CWR4 - EuclidSquared 0.198 0.235 4.788 0.330
CWR4 - Negative Entropy 0.228 0.256 4.426 0.840
CWR - Minus Ln 0.247 0.278 4.781 0.524
Uniform Sampling 0.203 0.238 NA NA
Stochastic 1-Flip 0.380 0.405 NA NA

Table 4: Average value of best observed subset and function value for 1000 subset sum instances —
(Py) setting. Bold indicates the best in "Mean" column.

40



Published as a conference paper at ICLR 2025

In the (Pp) setting, Figure 6 and Table 5 illustrate that all variants of Algorithm 1 struggle to
significantly reduce the function value within the allotted number of iterations. The function value
remains nearly identical to that of the uniform distribution, and the average best observed subset is

similarly close to the one produced by the Uniform Sampling method.

Unstructured - Expectation 4

10
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Iteration
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Best Subset Value - Minus Ln

Best Subset Value - Uniform Sampling

Function / Best Observed Subset Value

Figure 6: Function values and best observed subset values per iteration — representative samples for

(Pp) setting.

20 30 40
Iteration

Best Observed Subset Last Iterate Function Value

Mean Std Mean Std
HIB4 - EuclidSquared 0.234 0.235 4.980 0.111
HIB4 - Negative Entropy 0.240 0.244 4.952 0.155
HIB - Minus Ln 0.239 0.249 4.901 0.336
Uniform Sampling 0.238 0.246 NA NA

Table 5: Average value of best observed subset and function value for 1000 subset sum instances —

(Pp) setting. Bold indicates the best in "Mean" column.

G.3 SPARSE LEAST SQUARES

G.3.1 SETTING

The final set of experiments is conducted in a Sparsity-Constrained Least Squares setting, defined as

min
xeR™

{HA:C —b||? subject to ||z, < k}
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where the ||-||, “norm”, which counts the number of nonzero entries, is given by

n
l12llo = Z Lz 20
i=1

In each problem instance, we sample the matrix A € R8*10 where each entry is independently
sampled from a standard normal distribution: A; ; ~ N(0, 1). The ground truth vector & is generated
by first sampling entries z; ~ N(0, 1) independently, and then setting all but 4 randomly selected
entries of Z to zero. Finally, we set b = AZ + ¢, where the noise vector € has entries sampled
independently from e; ~ N(0,0.1).

We apply all the algorithms and settings discussed in Appendix G.1. Additionally, in the (P;) setting,
we also test a projected gradient descent algorithm, with a step size of % where L is the Lipschitz

constant of g(z) = ||Az — b||*. The convergence properties of projected gradient descent in this
setting are discussed in Beck and Eldar (2013).

G.3.2 RESULTS

The results for the (P;) setting are provided in Figure 7 and Table 6. Two of the three variants of
Algorithm 1 outperform all other methods, despite the relatively structured nature of the problem,
which we believe to be advantageous for an algorithm such as Stochastic 1-Flip.
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Figure 7: Function values and best observed subset values per iteration — representative samples for

(Py) setting.
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Best Observed Subset Last Iterate Function Value

Mean Std Mean Std
CWR4 - EuclidSquared 1.056 1.380 8.208 8.986
CWR4 - Negative Entropy 1.026 1.505 7.493 11.311
CWR - Minus Ln 1.222 1.601 10.772 10.312
Uniform Sampling 1.331 1.658 NA NA
Stochastic 1-Flip 1.067 1.532 NA NA
Projected Gradient Descent 3.690 4.438 NA NA

Table 6: Average value of best observed subset and function value for 1000 subset sum instances —

(Py) setting. Bold indicates the best in "Mean" column.

In the (P ) setting, the variants of Algorithm 1 outperform the Uniform Sampling approach. Similarly
to the results for the (Pp) in Appendix G.1, we can see that the best average function value result
does not necessarily translate to the best observed subset result. As before, we speculate that this is
due to fluctuations in the function value in the Minus Ln approach which are very apparent in the

sample instances illustrated in Figure 8.
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Figure 8: Function values and best observed subset values per iteration — representative samples for

(Pp) setting.
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Best Observed Subset Last Iterate Function Value

Mean Std Mean Std
HIB4 - EuclidSquared 8.982 9.140 34.605 27.865
HIB4 - Negative Entropy 8.688 8.372 32.084 32.375
HIB4 - Minus Ln 10.483 10.748 28.663 30.810
Uniform Sampling 10.863 9.798 NA NA

Table 7: Average value of best observed subset and function value for 1000 subset sum instances —
(Pp) setting. Bold indicates the best in "Mean" column.
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