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ABSTRACT

We uncover the hidden lattice geometry of large language models (LLMs): a
symbolic backbone that grounds conceptual hierarchies and logical operations in
embedding space. Our framework unifies the Linear Representation Hypothesis
with Formal Concept Analysis (FCA), showing that linear attribute directions with
separating thresholds induce a concept lattice via half-space intersections. This
geometry enables symbolic reasoning through geometric meet (intersection) and
join (union) operations, and admits a canonical form when attribute directions are
linearly independent. Experiments on WordNet sub-hierarchies provide empirical
evidence that LLM embeddings encode concept lattices and their logical struc-
ture, revealing a principled bridge between continuous geometry and symbolic
abstraction.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Grattafiori et al., 2024; Mesnard et al., 2024)
are surprisingly effective in capturing conceptual knowledge (Petroni et al., 2019; Wu et al., 2023;
Lin & Ng, 2022; Xiong & Staab, 2025) and performing logical reasoning, capabilities traditionally
associated with symbolic AI. Yet, it remains fundamentally unclear how exactly such conceptual
knowledge, including concepts, hierarchies, and their logical semantics, is encoded within the
continuous geometry of LLM representation spaces. Unlocking this hidden geometry is crucial not
only for interpreting how LLMS representing symbolic knowledge, but also for reliably controlling
and steering their inference behavior (Han et al., 2024), a fundamental step for advancing AI safety.

To understand concept representations in LLMs, a promising direction is the Linear Representation
Hypothesis (Mikolov et al., 2013b; Park et al., 2025; 2024a; Gurnee & Tegmark, 2024), which
posits that semantic features and concepts are encoded as linear directions or subspaces in a model’s
embedding space. This idea, rooted in early work on word embeddings (Pennington et al., 2014a),
has since been extended to modern LLMs, where such directions can be interpreted as embedding
difference, logistic probing, or steering vectors in different contexts (Gurnee & Tegmark, 2024; Nanda
et al., 2023; Zhao et al., 2025). Park et al. (Park et al., 2024a) unifies these them through causal
inner product that respects the semantic structure of concepts in the sense that causally separable
concepts are represented by orthogonal vectors. However, these works mainly focus on exploring the
existence of the linearity of (binary) concepts, but offer limited insights for interpreting compositional
or set-theoretic semantics such as concept inclusion, concept intersection, and union, which lies at
the heart of symbolic abstraction.

Recently, Park et al. (Park et al., 2025) extended the Linear Representation Hypothesis to formalize
categorical concepts as geometric regions like polytopes in the representation space, and show
that semantic hierarchy corresponds to orthogonality. However, they model concepts purely in
terms of their extensions, that is, as sets of tokens or objects that fall under the category, such as
Y (animal) = {predator,bird,dog, . . .}. While this extensional view is useful for evaluating
membership, it overlooks their intensional nature, i.e., the attributes and relations that ground
categories in logic and philosophy, making it difficult to interprete how concepts are related to each
others through set-theoretic semantics like concept subsumption, intersection, or union.

We draw inspiration from Formal Concept Analysis (FCA) (Ganter et al., 2005), a principled and
philosophy-inspired framework that defines concepts through both their instances and their attributes.
In FCA, each concept is represented as a pair: an extent (the set of objects) and an intent (the set of
shared attributes). For example, the concept bird may be defined by attributes such as can fly, has
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Figure 1: An illustration of how linear representation of LLMs induces conceptual structures.
(a) An example of concept hierarchy in human view; (b) Extensional view of the linear geometry
inducing concept hierarchy, where hierarchy is captured by vector orthogonality; (c) The proposed
intensional view of the linear geometry inducing concept hierarchy, where hierarchy is captured by
region entailment and compositional semantics is captured by region intersection.

feathers, and lays eggs, while eagle (a bird of prey) refines this category by denoting a subset of
birds with additional features such as can hunt. As Figure 1 shows, unlike extensional view defining
concepts as instances, such dual intent-extent view defines concepts as convex regions bounded by
their attributes defining them. For example, the concept bird may be defined by attributes like can fly,
has feathers, and lays eggs, while eagle (a bird of prey) refines this category by denoting a subset of
birds with additional features such as can hunt. This dual formulation naturally induces a concept
lattice, because every pair of concepts can be ordered by inclusion of their extents (or, dually, their
intents), and any two concepts have a well-defined intersection (their common subconcept) and union
(their common superconcept), corresponding to the meet and join operations of the lattice.

In this work, we unify two perspectives on concept representation: the Linear Representation Hy-
pothesis, which views semantics as directions in embedding geometry, and Formal Concept Analysis,
which formalizes concepts through the incidence relation between objects and attributes. Our key
insight is that these views coincide, revealing a hidden lattice geometry in LLMs: attribute
directions correspond to FCA intents, object embeddings to extents, and symbolic abstractions
such as subsumption, intersection, and union emerge naturally from the induced closure structure.
Building on this connection, we formalize a half-space model of concepts and a projection-based
notion of concept inclusion that together recover a lattice geometry from LLM representations. Our
contributions are threefold: (i) a theoretical framework linking Linear Representation Hypothesis
to FCA via half-space intersections, (ii) a soft inclusion measure and concept algebra (meet/join)
defined directly on embeddings, and (iii) empirical evidence on WordNet sub-hierarchies showing
that LLM embeddings encode concept lattices, enabling coherent generalization (join) and refinement
(meet). These results demonstrate that LLMs implicitly organize conceptual knowledge into a lattice
geometry, providing a symbolic backbone for interpretability and controllability.

2 PRELIMINARIES

2.1 LINEAR REPRESENTATION HYPOTHESIS IN LLMS

We consider the autoregressive family of LLMs that predict the next tokens given its context.

Definition 1 (Large Language Model). An LLM defines a probability distribution over the next token
y given a context x via the softmax function Pr(y | x) ∝ exp

(
λ(x)⊤γ(y)

)
, where λ : X → Λ ≃ Rd

maps the input context x to a context embedding vector λ(x), and γ : V → Γ ≃ Rd maps each
vocabulary token y to its unembedding vector γ(y).

This definition involves a context embedding space Λ and a token unembedding space Γ, which
together define the geometry of the softmax distribution. These two spaces can be unified via the
causal inner product (Park et al., 2024a). Specifically, there exists an invertible matrix A ∈ Rd×d

and a constant vector γ̄0 ∈ Rd such that defining g(y) := A (γ(y)− γ̄0) and ℓ(x) := A−⊤λ(x),
reparameterizes token and context embeddings into a shared semantic space, where their interaction
is captured by the Euclidean inner product ℓ(x)⊤g(y). This transformation preserves the model’s
output distribution, as the softmax Pr(y | x) remains invariant under any choice of A and γ̄0.
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In this unified space, Linear Representation Hypothesis states that certain semantic attributes corre-
spond to specific directions. There is an explicit definition for binary attributes.
Definition 2 (Linear representation of a binary attribute/concept (Park et al., 2024a)). A vector
ℓ̄m ∈ Rd is said to linearly represent a binary attribute m ∈ {0, 1} if, for all context embeddings
ℓ ∈ Rd, all scalars α > 0, and all attributes z ̸= m that are causally separable from m, the following
conditions hold:

• Attribute activation: Pr(m = 1 | ℓ+ αℓ̄m) > Pr(m = 1 | ℓ);

• Causal selectivity: Pr(z | ℓ+ αℓ̄m) = Pr(z | ℓ).

In other words, moving in the direction ℓ̄m increases the likelihood of the attribute m without affecting
any causally unrelated attributes. The direction merely encodes the semantic direction of the attribute,
not its strength, as any positive scalar multiple αℓ̄m has the same qualitative effect.

2.2 FORMAL CONCEPT ANALYSIS (FCA)

FCA (Ganter et al., 2003) is a mathematical framework for modeling concepts as structured relation-
ships between objects and their attributes. Unlike extensional views that define concepts simply as
sets of objects (as in (Cowsik et al., 2024)), FCA treats a concept as an intensional abstraction: a set
of objects characterized by a common set of attributes. This duality between objects and attributes
allows FCA to capture both the semantic content of a concept and its compositional structure. FCA
begins with a binary relation between objects and attributes, formalized as a formal context:
Definition 3 (Formal context). A formal context is a triple (G,M, I), where G is a finite set of
objects, M is a finite set of attributes, and I ⊆ G ×M is a binary relation (called the incidence
relation) such that (g,m) ∈ I indicates that object g ∈ G possesses attribute m ∈ M .

From this, FCA defines concepts as maximal sets of objects and attributes that are mutually consistent:
Definition 4 (Formal concept). Given a formal context (G,M, I), define the Galois connections as
A′ := {m ∈ M | ∀g ∈ A, (g,m) ∈ I}, B′ := {g ∈ G | ∀m ∈ B, (g,m) ∈ I}. The pair (A,B) is
a formal concept if and only if A′ = B and B′ = A, where A is called the extent and B the intent.

The set of formal concepts is partially ordered by inclusion of extents (i.e., A1 ⊆ A2) or equivalently
by reverse inclusion of intents (i.e., B2 ⊆ B1).
Definition 5 (Concept lattice). Let (A1, B1) and (A2, B2) be formal concepts. Then (A1, B1) ≤C

(A2, B2) if and only if A1 ⊆ A2 (equivalently, B2 ⊆ B1), where ≤C denotes the partial order
relationship. Under the partial order ≤C , the set of all formal concepts forms a complete lattice:
every subset concepts have a greatest lower bound (meet) and a least upper bound (join).

3 THE LATTICE GEOMETRY IN LLMS

We now establish a connection between the Linear Representation Hypothesis and Formal Concept
Analysis (FCA), showing that the linear geometry of LLM embeddings gives rise to a concept
lattice. The key idea is that each binary attribute can be modeled as a direction in the unified space,
with membership approximated by a thresholded inner product. This naturally induces a binary
object–attribute relation, from which a formal context and concept lattice can be constructed. We
refer to this construction as the lattice geometry of LLMs. Fig. 2 illustrates such correspondence.

3.1 FROM LINEAR TO LATTICE GEOMETRY

Geometric interpretation of attribute membership. Under the Linear Representation Hypothesis,
semantic attributes are encoded as directions while objects (tokens or contexts) are encoded as vectors.
Let ℓ̄m ∈ Rd denote the direction for attribute m, and vg ∈ Rd the embedding of object g. The
extent to which g possesses m can be estimated by the projection vg · ℓ̄m. In the idealized case, there
exists a threshold τm such that m(g) = 1 ⇐⇒ vg · ℓ̄m ≥ τm. However, perfect separation rarely
holds in practice, so we define a soft incidence relation:

Pα(m(g) = 1) := σ
(
α · (vg · ℓ̄m − τm)

)
, (1)
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Figure 2: An illustration of how LLMs encode concept lattice. (a) Discrete concept lattice from the
object-attribute incidence; (b) The lattice geometry induced from the linear attribute representations.

where α > 0 controls sharpness. As α → ∞, this recovers the hard-thresholded case. This assigns
each object–attribute pair a fuzzy degree of membership, enabling smoother definitions of concepts.

Theorem 1 (Existence of Lattice Geometry). Let G be a finite set of objects and M a finite set of
attributes. Let V = {vg ∈ Rd | g ∈ G} be object embeddings and D = {ℓ̄m ∈ Rd | m ∈ M}
attribute directions. Suppose for each m ∈ M there exists a threshold τm ∈ R such that membership
is modeled by the soft incidence function above. For any confidence level δ ∈ (0, 1), define the binary
incidence relation

Iδ := {(vg, ℓ̄m) | Pα(m(g) = 1) ≥ δ}.
Then the induced concept set

Fδ =
{
(X,Y )

∣∣∣X = {v ∈ V | ∀ℓ̄ ∈ Y, (v, ℓ̄) ∈ Iδ}, Y = {ℓ̄ ∈ D | ∀v ∈ X, (v, ℓ̄) ∈ Iδ}
}

satisfies: (i) closure under the Galois connection, and (ii) forms a complete lattice under extent
inclusion (equivalently, reverse intent inclusion). Proof is detailed in Appendix B.

Thus, when attributes are encoded as thresholded linear projections, a symbolic concept lattice can be
recovered from embedding geometry, capturing semantic abstraction through graded boundaries.

Canonical representation under soft incidence. Theorem 1 allows arbitrary thresholds. We now
show that under mild conditions, these thresholds can be absorbed into a global shift of embeddings,
yielding a canonical origin-passing form:

Proposition 1 (Canonical representation). Let each attribute mi ∈ M be defined by direction di

and threshold τi. Let D ∈ Rk×d be the matrix with rows d⊤
i , and τ = (τ1, . . . , τk). If there exists

c ∈ Rd such that Dc = τ , then

σ(α(vg · di − τi)) = σ(α((vg − c) · di)) ∀g, i. (2)

That is, the probabilities remain invariant under the transformation vg 7→ vg − c, reducing the model
to a canonical half-space form while preserving the induced lattice. Proof is detailed in Appendix C.

3.2 HALF-SPACE MODEL AND CONCEPT ALGEBRA

Under the canonical representation, where all attribute thresholds have been absorbed via a global
shift, each attribute defines an origin-passing half-space in the embedding space. A concept composed
of multiple attributes can be interpreted geometrically as the intersection of those half-spaces, i.e.,
the region where all attribute constraints are simultaneously satisfied.

Definition 6 (Concept as half-space). Let M be a set of attributes, each represented by a direction
dm ∈ Rd. A concept defined by a subset Y ⊆ M corresponds to the set of object embeddings that
satisfy all associated directional constraints:

R(Y ) :=
{
v ∈ Rd

∣∣ v · dm ≥ 0 for all m ∈ Y
}
. (3)
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Geometrically, R(Y ) is a convex polyhedral cone defined by intersecting origin-passing half-spaces.
However, this definition assumes perfect attribute separation, which may not hold in practice due
to noise, uncertainty, and overlapping concept boundaries in LLM representations. To address this,
we move from a hard region view to a soft formulation, where membership is modeled as graded
alignment rather than binary inclusion.

Concept representation via normalized projection profiles. Given a concept C (e.g., a lexical
term) and its associated context embeddings {v1, . . . ,vn} ⊂ Rd, we define its semantic representa-
tion using the average projection profile over the attribute directions {dm}m∈M . For each attribute
m ∈ M , the projection value is

πC(m) :=
1

n

n∑
i=1

vi · dm. (4)

The resulting projection vector πC ∈ R|M | encodes a soft attribute profile of C, reflecting how
strongly the concept aligns with each attribute. This can be seen as a continuous analogue of an FCA
intent. To ensure comparability across concepts, all projection vectors are ℓ2-normalized.

Concept inclusion as region containment. With projection profiles in place, we can now define a
graded notion of subsumption between two concepts. Intuitively, a concept A is included in another
concept B if the attributes emphasized by B are also strongly expressed in A. We capture this by a
soft inclusion score that evaluates how well A’s profile satisfies the attribute activations of B:

Inclusion(A ⊑ B) =

∑
m∈M ϕ(πB(m)) · σ(πA(m))∑

m∈M ϕ(πB(m))
, where ϕ(x) = log(1 + ex). (5)

Here, the sigmoid σ(·) maps A’s projection value to a soft likelihood of satisfying attribute m, while
the softplus ϕ(·) weights attributes according to their salience in B. This formulation smoothly
downweights weakly expressed or inactive attributes in B, while strongly positive ones dominate the
inclusion score. Thus, concept inclusion is modeled not as a strict set-theoretic containment but as a
continuous, geometry-driven compatibility measure between attribute profiles.

Concept Meet and Join. We operationalize concept algebra in the half-space model by defining
meet and join directly on concept regions R(Y ). Meet is the intersection of regions, while join is the
least region subsuming both concepts, approximated by the conic hull of their defining directions.
Definition 7 (Concept algebra: meet and join). Let R(Y ) denote the region associated with a concept
defined by attribute set Y ⊆ M (Definition 6).

• Meet (intersection). For two concepts A = R(YA) and B = R(YB), their meet is the
region satisfying all attributes from both sets A ∧B := R(YA ∪ YB). Geometrically, this
corresponds to intersecting the half-spaces that define A and B.

• Join (union or generalization). Their join is the least upper bound in the lattice, i.e., the
most specific concept region that subsumes both A and B. In the half-space model, this
corresponds to the minimal region that covers R(YA) and R(YB): A ∨ B := R(YA) ∪
R(YB), which can be approximated by the conic hull spanned by the attribute directions of
A and B.

Soft measure of meet/join. While Definition 7 specifies meet and join geometrically, we also
require a graded way to evaluate how well a concept C corresponds to these symbolic operations.

Soft meet/join profiles. Given two concepts A,B with projection profiles πA, πB , we define the
projection profile of their meet and join using fuzzy t-norm/co-norm combinations:

πA∧B(m) = min{πA(m), πB(m)}, πA∨B(m) = max{πA(m), πB(m)}. (6)

Degrees of inclusion. The degree to which C is subsumed by the meet or join is

deg(C ⊑ A∧B) = Inclusion(C ⊑ A∧B), deg(C ⊑ A∨B) = Inclusion(C ⊑ A∨B), (7)

where the inclusion function is as defined in Eq. (2).
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Degrees of equality. Soft equality is defined by symmetrizing inclusion with the harmonic mean:

deg(C = A ∧B) =
2 Incl(C⊑A ∧B) · Incl(A ∧B⊑C)

Incl(C⊑A ∧B) + Incl(A ∧B⊑C)
, (8)

deg(C = A ∨B) =
2 Incl(C⊑A ∨B) · Incl(A ∨B⊑C)

Incl(C⊑A ∨B) + Incl(A ∨B⊑C)
. (9)

4 EVALUATION

In this section, we empirically evaluate the extent to which the linear structure of LLM embeddings
induces a lattice geometry over concepts. We focus on testing the two core assumptions underlying
our framework: 1) Existence of half-space model: How well do the linear representations of binary
attributes recover the ground-truth formal context? 2) Existence of lattice geometry in LLMs: Does
the approximated formal context recover a valid partial order set or concept lattice?

4.1 DATASET AND EXPERIMENT SETUP

Dataset construction. We construct three object–attribute datasets derived from the WordNet
hierarchy: WordNet-Animal, WordNet-Plant, and WordNet-Food with each one corresponding
to a distinct semantic domain. For each domain, we extract all concept terms that fall under the
corresponding hierarchy using the WordNet is_a (hypernym) relation. We expand each concept by
retrieving its synonyms and hyponyms to ensure lexical coverage and semantic granularity. Since
WordNet does not provide explicit attribute annotations, we use a large language model (GPT-4o) to
generate the attribute schema and populate the object–attribute matrix. Specifically, for each category,
we first prompt the model to produce a concise set of salient binary attributes relevant to classification
within the category (e.g., can fly, has fur, lays eggs for animals). We then use few-shot
prompting to annotate each object with a binary attribute vector. This produces a complete binary
incidence matrix, which we treat as the ground-truth formal context for evaluation. We use the
WordNet is_a relation to define a symbolic subsumption hierarchy, and treat it as the target concept
lattice structure. Using the annotated formal context and corresponding LLM embeddings for objects
and attributes, we evaluate whether the geometry of the embedding space can reconstruct the symbolic
structure implied by the context.

Object embedding. We represent each object g by averaging the embeddings of its synonymous
lexical variants. Specifically, given a set of object names and their corresponding synonym sets,
we compute the embedding for each synonym and define the object embedding as the mean over
these representations vg := 1

|Syn(g)|
∑

s∈Syn(g) Emb(s), where Syn(g) denotes the set of synonyms
for object g, and Emb(s) ∈ Rd is the vector embedding of synonym s. This procedure ensures more
robust and semantically smoothed object representations by aggregating across synonymous variants.

Attribute embedding. To estimate the semantic direction associated with each attribute, we apply a
linear discriminative analysis approach using object embeddings labeled as positive or negative with
respect to that attribute. Given a set of positive and negative object embeddings for attribute m, we
first compute the class means µ+ and µ−, and the class covariance matrices Σ+ and Σ−, estimated
using Ledoit-Wolf shrinkage to improve robustness in high-dimensional settings. We then define the
attribute direction ℓ̄m as the solution to a regularized Fisher separation criterion:

ℓ̄m := (Σ+ +Σ− + λI)
−1

(µ+ − µ−), (10)

where λ > 0 is a small regularization constant to ensure numerical stability. This procedure yields
a direction vector that best separates the positive and negative object clusters in embedding space
under a linear discriminant model. The resulting vector ℓ̄m is used as the attribute direction in all
downstream projections and geometric reasoning.

Threshold estimation. Given an attribute direction ℓ̄m, we determine a threshold τm ∈ R to separate
positive and negative objects along this direction. For each object embedding vg, we compute its
projection onto the normalized direction, and then calculate the threshold as the average of the mean
projections of positive and negative object sets:

τm :=
1

2

(
Eg∈G+

[Projm(vg)] + Eg∈G− [Projm(vg)]
)
, (11)
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Figure 3: Distribution of projection lengths for positive and negative objects onto the directions of
the first eight attributes (sorted alphabetically) in the WordNet-Animal dataset.

Table 1: Evaluation of linear representations for recovering concept–attribute relations (or formal
context) across three WordNet domains. Bold values indicate the best performance across all models
for a domain, while shading denotes the best method within each model. Metrics are reported as
percentages for precision, recall, and F1 score.

Model WN-Animal WN-Plant WN-Food
Pre. Rec. F1 S Pre. Rec. F1 Pre. Rec. F1

Llama-3.1-8B
Random 49.7 49.6 45.3 501. 50.1 47.3 50.0 50.0 46.4

Mean 63.7 69.3 63.7 63.7 67.2 63.3 67.2 71.4 68.1
Linear 81.4 84.0 82.5 81.6 82.4 82.4 79.7 80.6 80.1

Gemma-7B
Random 49.8 49.7 45.3 50.1 50.1 47.3 50.1 50.1 46.3

Mean 53.5 55.2 50.1 53.5 54.4 51.3 53.7 55.1 51.2
Linear 82.0 84.8 83.2 82.3 84.3 83.2 79.2 80.9 80.0

Mistral-7B
Random 49.4 49.2 45.0 50.3 50.4 47.5 49.5 49.5 45.5

Mean 62.2 67.1 62.0 61.9 64.9 61.4 62.4 66.6 62.1
Linear 80.6 83.4 81.8 80.8 82.8 81.7 77.6 78.9 78.2

where G+ and G− denote the sets of positive and negative objects for attribute m, respectively. This
threshold minimizes symmetric classification error under the assumption of linear separability and
equal cost, and is used as the decision boundary in both hard and soft incidence models.

4.2 EXISTENCE OF HALF-SPACE MODEL

We first evaluate whether semantic attributes in LLM embedding space adhere to the half-space
model—i.e., whether a single linear direction and threshold can reliably separate objects that possess
a given attribute from those that do not. For each attribute m, we estimate a direction dm and
threshold τm using the training set (Section 4.1). Given an object embedding vg , we predict whether
the object possesses the attribute using a hard decision rule m̂(g) = I [vg · dm ≥ τm] , where I[·] is
the indicator function. We compare this prediction to the ground-truth incidence m(g) ∈ {0, 1} from
the annotated formal context. For each attribute, we compute precision, recall, and F1 score, and
report averages over all attributes within each dataset.

Results. Table 1 reports the performance of different methods for recovering the formal context
from LLM linear representations across three WordNet domains. The Linear method, which uses
LDA to estimate attribute directions, consistently achieves the best F1 scores across all models
and datasets—often exceeding 80% and peaking at 83.2% on both Animal and Plant domains for
Gemma-7B. This confirms that attribute-level linear separation aligns strongly with ground-truth
concept structure. The Mean baseline, which estimates directions by the difference between class
centroids, performs moderately well with F1 scores around 62–68%. This indicates that class-level
geometric trends are partially captured, but lack the discriminative power of supervised separation. In
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Table 2: Evaluation of partial order inference from projection-based concept representations. Bold
values indicate the best performance across all models for a domain, while shading denotes the best
method within each model. Metrics are reported as percentages for precision, recall, and F1 score.

Model WN-Animal WN-Plant WN-Food
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

LLaMA-3.1-8B
Random 52.3 43.2 47.3 51.1 49.5 47.6 25.0 50.0 33.3
Mean 68.4 65.0 66.7 64.2 63.3 63.8 61.5 58.5 55.7
Linear 75.9 78.3 77.1 71.2 70.0 70.4 78.1 75.9 75.4

Gemma-7B
Random 54.0 51.2 50.6 52.7 50.3 49.5 53.4 50.8 39.1
Mean 66.2 61.0 63.4 62.4 59.8 60.9 50.7 50.7 50.6
Linear 74.4 76.0 75.1 72.9 70.1 71.4 76.3 75.8 75.6

Mistral-7B
Random 53.3 45.9 49.3 50.0 51.1 48.2 25.0 50.0 33.3
Mean 66.8 63.4 64.9 61.2 60.0 60.5 56.0 55.6 54.8
Linear 71.7 72.6 72.1 65.7 60.6 57.1 68.8 64.3 62.0

Table 3: Top-10 terms related to the join and meet of selected WordNet concept pairs.
A B A ∨ B A ∧ B

dog wolf predator, animal, canine, meat-eater,
hunter, wild, mammal, quadruped, pet

dog, hound, puppy, terrier, mutt,
beagle, retriever, spaniel, shepherd, pooch

cat lion predator, feline, animal, meat-eater, beast,
carnivore, hunter, whiskers, mammal, wild

cat, kitten, tiger, panther, leopard,
tomcat, feline, cheetah, tabby, lynx

sparrow robin avian, songbird, fowl, feathered, finch,
beak, chirp, nest, perching, small

sparrow, robin, songbird, warbler, finch,
canary, thrush, chickadee, pipit, titmouse

horse zebra equid, hoofed, animal, ungulate, mammal,
quadruped, stallion, beast, herbivore

horse, pony, stallion, mare, foal,
filly, mustang, gelding, thoroughbred, colt

carrot parsnip root, edible, produce, food, green,
vegetable, crunchy, fresh, garden, plant

carrot, parsnip, radish, beet, turnip,
tuber, rootcrop, veg, sprout, crop

eagle falcon animal, raptor, bird, predator, creature,
wingspan, talon, flyer, sky, sharp-eyed

eagle, falcon, hawk, osprey, kestrel,
buzzard, kite, harrier, condor, bird of prey

contrast, the Random baseline produces F1 scores near 45–47%, validating that attribute detection is
not a trivial task and requires principled geometric alignment. Among models, Gemma-7B achieves
the highest F1 on two of three domains, suggesting particularly strong encoding of symbolic concept
structure. LLaMA-3.1-8B and Mistral-7B also show consistent performance, with LDA-based linear
projections reliably reconstructing the formal context. Overall, the results provide strong empirical
evidence that the linear structure of LLM embeddings supports the half-space model of concepts
introduced in Section 3.2. We visualize the projection length distributions of positive and negative
object embeddings for the first 8 attributes (sorted alphabetically) from WordNet-Animal. These
density plots in Figure 3 show that a clear margin emerges around the estimated threshold, reinforcing
the claim that LLM representations admit a thresholding scheme over directional projections.

4.3 EXISTENCE OF LATTICE GEOMETRY

To test the existence of lattice geometry, we use the concept inclusion score defined in Section 3.2,
where projection profiles over attribute directions are compared via the soft inclusion formula. This
allows us to infer subsumptions directly from embedding geometry without access to ground-truth
hierarchies. As Table 2 shows, the LINEAR method consistently outperforms centroid-based (MEAN)
and random baselines across all domains, achieving F1 scores up to 77.1 (LLaMA, WN-Animal)
and 75.6 (Gemma, WN-Food). These gains demonstrate that discriminatively estimated attribute
directions capture intensional information sufficient to recover hierarchical relations: concepts
with stronger projection activation on the attributes of another concept are reliably inferred as
subconcepts. The empirical alignment between projection-based subsumption and WordNet ground-
truth provides strong evidence that LLM embeddings indeed admit a partial order structure, supporting
our hypothesis that lattice geometry is embedded within their representation space.
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Qualitative Evaluation of Concept Algebra To qualitatively evaluate the concept algebra intro-
duced in Section 3.2, we apply the soft measure of meet and join defined above to pairs of concepts
and inspect the top-ranked terms associated with the resulting profiles.

Table 4.3 illustrates how these operations in embedding space yield semantically meaningful general-
izations and refinements. The join operation (A ∨B) consistently surfaces higher-level abstractions
that subsume both input concepts, e.g., predator for dog and wolf, or avian for sparrow and robin.
These outputs align with WordNet hypernyms, confirming that the lattice geometry induces natural
generalization. Conversely, the meet operation (A ∧B) sharpens category boundaries by retrieving
specific shared instantiations, such as pony, stallion, and foal for horse and zebra, or hawk and osprey
for eagle and falcon. These intersective refinements capture fine-grained commonality, reflecting
how logical conjunction is realized geometrically as half-space intersection. Together, these results
provide qualitative evidence that concept joins and meets in LLM embeddings not only operate
coherently but also mirror symbolic set-theoretic semantics. This supports our hypothesis that LLMs
embed a latent lattice structure that can be harnessed for compositional reasoning.

5 RELATED WORK AND DISCUSSION

Conceptual Knowledge in Language Models. Pretrained language models (LMs) have demonstrated
remarkable capabilities in capturing conceptual knowledge (Wu et al., 2023; Lin & Ng, 2022). A
variety of methods have been developed to probe such knowledge, most commonly binary probing
classifiers (Aspillaga et al., 2021; Michael et al., 2020) and hierarchical clustering (Sajjad et al., 2022;
Hawasly et al., 2024), with validation against human-defined ontologies such as WordNet (Miller,
1995). These approaches primarily provide empirical insights into what LMs capture, but they leave
open the question of how LMs learn such conceptual structures. Moreover, it has been argued that
LMs can develop novel concepts not strictly aligned with existing ontologies (Dalvi et al., 2022),
suggesting that ontology-based evaluations may underestimate their conceptual capacity. Xiong &
Staab (2025) first show the connection of FCA to language models by define concepts in the context
of FCA, but their study is limited to masked language models.

Linear Representation Geometry of Concepts. A line of research focuses on the geometric nature
of concept representations. Several studies suggest that concepts in LMs correspond to distinct
directions in activation space (Elhage et al., 2022a; Park et al., 2024a). This linear hypothesis builds
on earlier work in distributional semantics and embeddings (Mikolov et al., 2013a; Pennington et al.,
2014b; Arora et al., 2016), and has since been connected to multiple notions of linearity, including
embedding offsets, probing classifiers, and steering vectors (Park et al., 2024b). Empirical studies
have also shown the emergence of polytopes in toy models (Elhage et al., 2022b), pointing to a more
structured geometry beyond individual directions. Other theoretical work further explores why linear
representations arise, linking them to properties of word embedding models (Arora et al., 2016; 2018)
and the implicit bias of gradient descent in LLM training (Jiang et al., 2024).

6 CONCLUSION

We presented a new perspective on the geometry of large language models by linking the linear
representation of attributes to Formal Concept Analysis (FCA). Our main contribution is the notion
of lattice geometry, which shows that when attribute directions are treated as separating half-spaces,
the resulting object–attribute relation induces a concept lattice. This framework unifies continuous
embedding geometry with symbolic abstraction, and provides formal conditions under which logical
structure can be recovered from LLM representations. Empirically, we demonstrated on WordNet
sub-hierarchies that (i) many attributes are linearly separable, (ii) subsumption can be predicted
directly from projection profiles, and (iii) meet and join operations yield meaningful refinements
and generalizations. Together, these findings indicate that LLMs encode not only rich conceptual
knowledge but also the algebraic backbone of concept lattices. Our results suggest that symbolic
abstraction is not an incidental byproduct but a structured geometric property of LLMs. This opens
up new directions for neuro-symbolic AI: aligning geometric and symbolic reasoning, enhancing
interpretability, and enabling controllable manipulation of concepts in embedding space.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were only used as a writing assistant to polish sentences and improve
clarity of exposition. No parts of the research ideation, theoretical development, experimental design,
or analysis relied on LLMs. All technical contributions, proofs, and empirical results are the work of
the authors.

B APPENDIX: PROOF OF THEOREM 1

We restate the theorem for convenience.
Theorem 2 (Existence of Lattice Geometry). Let G be a finite set of objects and M a finite set of
attributes. Let V = {vg ∈ Rd | g ∈ G} be the set of object embeddings and D = {ℓ̄m ∈ Rd | m ∈
M} the set of attribute directions. Fix α > 0. For each m ∈ M , let τm ∈ R and define the soft
incidence probability

Pα(m(g) = 1) := σ
(
α(vg · ℓ̄m − τm)

)
.

For any confidence level δ ∈ (0, 1), define the (crisp) incidence relation

Iδ := {(g,m) ∈ G×M : Pα(m(g) = 1) ≥ δ}.

Let Fδ be the set of pairs (X,Y ) with X ⊆ G and Y ⊆ M such that

X = Y ′ := {g ∈ G : ∀m ∈ Y, (g,m) ∈ Iδ} and Y = X ′ := {m ∈ M : ∀g ∈ X, (g,m) ∈ Iδ}.

Then (i) Fδ is closed under the Galois connection, and (ii) Fδ, ordered by extent inclusion (equiva-
lently, reverse intent inclusion), forms a complete lattice.

Plan of the proof. The probabilistic scoring is only used to induce the crisp relation Iδ. Once Iδ
is fixed, the statement becomes a standard FCA result. For completeness, we give a self-contained
proof.

B.1 GALOIS CONNECTION INDUCED BY Iδ

Lemma 1 (Antitone Galois connection). Define maps (·)′ : 2G → 2M and (·)′ : 2M → 2G by

A′ := {m ∈ M : ∀g ∈ A, (g,m) ∈ Iδ}, B′ := {g ∈ G : ∀m ∈ B, (g,m) ∈ Iδ}.

Then for all A ⊆ G and B ⊆ M , we have

A ⊆ B′ ⇐⇒ B ⊆ A′.

Consequently, both primes are antitone: if A1 ⊆ A2 then A′
2 ⊆ A′

1, and if B1 ⊆ B2 then B′
2 ⊆ B′

1.

Proof. (⇒) If A ⊆ B′, then for any m ∈ B and any g ∈ A we have (g,m) ∈ Iδ , hence m ∈ A′ and
thus B ⊆ A′. (⇐) If B ⊆ A′, then for any g ∈ A and m ∈ B we have (g,m) ∈ Iδ, i.e., g ∈ B′,
hence A ⊆ B′.

Lemma 2 (Closure operators). The double-prime operators ϕG(A) := A′′ on 2G and ϕM (B) := B′′

on 2M are closures: for all A ⊆ G, (i) A ⊆ A′′ (extensivity), (ii) A ⊆ B ⇒ A′′ ⊆ B′′ (monotonicity),
and (iii) (A′′)′′ = A′′ (idempotence). Analogous properties hold on 2M .

Proof. Extensivity: A ⊆ A′′ follows from Lemma 1 with B = A′: A ⊆ (A′)′ = A′′. Monotonicity:
A ⊆ B ⇒ B′ ⊆ A′ (antitone), hence A′′ = (A′)′ ⊆ (B′)′ = B′′. Idempotence: (A′′)′′ =
((A′)′)′′ = (A′)′ = A′′. The 2M case is symmetric.
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B.2 FORMAL CONCEPTS AS CLOSED PAIRS

Lemma 3 (Characterization of concepts). A pair (X,Y ) with X ⊆ G and Y ⊆ M satisfies Y = X ′

and X = Y ′ iff X and Y are closed, i.e., X = X ′′ and Y = Y ′′.

Proof. (⇒) If Y = X ′, then X = (X ′)′ = X ′′; if X = Y ′, then Y = (Y ′)′ = Y ′′. (⇐) If X = X ′′,
set Y := X ′ so X = (X ′)′ = Y ′. The converse from Y = Y ′′ is symmetric.

B.3 LATTICE STRUCTURE AND COMPLETENESS

Proposition 2 (Partial order). For formal concepts (X1, Y1) and (X2, Y2), define
(X1, Y1) ≤ (X2, Y2) :⇐⇒ X1 ⊆ X2 (equivalently Y2 ⊆ Y1).

Then ≤ is a partial order on Fδ .

Proof. Reflexivity/transitivity follow from ⊆. Antisymmetry: X1 ⊆ X2 and X2 ⊆ X1 imply
X1 = X2, hence Y1 = X ′

1 = X ′
2 = Y2.

Proposition 3 (Meets and joins). For any family {(Xi, Yi)}i∈I of formal concepts,∧
i

(Xi, Yi) =
(⋂

i

Xi,
(⋂

i

Xi

)′)
,

∨
i

(Xi, Yi) =
((⋃

i

Xi

)′′
,
⋂
i

Yi

)
,

and both pairs are formal concepts.

Proof. Meet: Let X∗ := ∩iXi. Then (X∗, X
′
∗) ≤ (Xi, Yi) for all i. If (Z,W ) ≤ (Xi, Yi) for all i,

then Z ⊆ X∗, so (Z,W ) ≤ (X∗, X
′
∗).

Join: Let X̃ := (∪iXi)
′′ (closed by Lemma 2). Then (Xi, Yi) ≤ (X̃, X̃ ′) for all i. If (Xi, Yi) ≤

(Z,W ) for all i, then ∪iXi ⊆ Z, hence X̃ ⊆ Z ′′ = Z and (X̃, X̃ ′) ≤ (Z,W ).

Corollary 1 (Completeness). (Fδ,≤) is a complete lattice: every subset has both meet and join as
above.

B.4 DISCUSSION OF THE ROLE OF α AND δ

The parameter α > 0 only rescales the logits inside σ and does not affect order-theoretic conclusions,
which depend solely on Iδ. The confidence δ ∈ (0, 1) controls the incidence monotonically: if
δ1 ≤ δ2 then Iδ2 ⊆ Iδ1 . Thus increasing δ removes incidences and yields a different (typically
coarser) concept lattice. The theorem holds for each fixed δ.

C APPENDIX: PROOF OF PROPOSITION 1

Proof of Proposition 1. Let D ∈ Rk×d have i-th row d⊤
i and suppose there exists c ∈ Rd with

Dc = τ . Then, for each attribute i ∈ {1, . . . , k},

d⊤
i c = (Dc)i = τi.

Hence, for any object embedding vg ,
(vg − c) · di = vg · di − c · di = vg · di − τi.

Applying the sigmoid with sharpness α > 0 yields
σ
(
α
(
vg · di − τi

))
= σ(α (vg − c) · di) ,

for all g and i, proving that Pα(mi(g) = 1) is invariant under the global shift vg 7→ vg−c. Therefore,
the soft-incidence model admits a canonical, origin-passing form without changing any probabilities
or the induced incidence relation for a fixed threshold on Pα.

Remarks. (i) The condition Dc = τ is equivalent to τ ∈ rowspace(D). If the rows {d⊤
i }ki=1

are linearly independent (i.e., rank(D) = k) and k ≤ d, then rowspace(D) = Rk, so a (generally
non-unique) solution c exists for any τ . (ii) When solutions exist, they are unique up to addition
of any vector in ker(D); all such choices yield the same invariance because D(c+ z) = τ for any
z ∈ ker(D).
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