Divide, Optimize, Merge: Fine-Grained LLM Agent Optimization at Scale

Anonymous ACL submission

Abstract

LLM-based optimization has shown remark-
able potential in enhancing agentic systems.
However, the conventional approach of prompt-
ing LLM optimizer with the whole training tra-
jectories on training dataset in a single pass
becomes untenable as datasets grow, leading
to context window overflow and degraded pat-
tern recognition. To address these challenges,
we propose Fine-Grained Optimization (FGO),
a scalable framework that divides large opti-
mization tasks into manageable subsets, per-
forms targeted optimizations, and systemati-
cally combines optimized components through
progressive merging. Evaluation across ALF-
World, LogisticsQA, and GAIA benchmarks
demonstrate that FGO outperforms existing
approaches by 1.6-8.6% while reducing av-
erage prompt token consumption by 56.3%.
Our framework provides a practical solution
for scaling up LLM-based optimization of in-
creasingly sophisticated agent systems. Further
analysis demonstrates that FGO achieves the
most consistent performance gain in all train-
ing dataset sizes, showcasing its scalability and
efficiency.

1 Introduction

Large Language Models (LLMs) have emerged
as powerful optimizers for LLM systems, capa-
ble of analyzing execution trajectories and refining
system modules like prompts (Yang et al., 2024;
Zhou et al., 2022; Khattab et al., 2023; Opsahl-Ong
et al., 2024), tools (Qian et al., 2023; Zhang et al.,
2024c,b; Wang et al., 2024a). These agentic sys-
tems have shown promising results in enhancing
agent performance across various domains, includ-
ing reasoning (Cheng et al., 2024; Zelikman et al.,
2023), software engineering (Jimenez et al., 2023;
Pan et al., 2024), data analysis (Hu et al., 2024b;
Jing et al., 2024), computer using (Wang et al.,
2025; Xie et al., 2025; Abuelsaad et al., 2024).

Task \.___Observation / Irajectory
! N,
(b)
|
T — Context
% Overflow
Trajectory * N Optimizer ‘
Suboptimal
N Agent System

- N

(CE— L
)

==
o 5
Progressive Optimal

Trajectory * k
Merging Agent System

’

Optimizer Module 1

o~ & -5

Trajectory * k LLM
Optimizer
\, /

Module n

Figure 1: Agent optimization approaches. (a) Basic
agent execution process. (b) Traditional all-at-once
optimization faces context overflow and inferior per-
formance with large trajectory data. (c) Our method:
divide-and-conquer optimization with progressive merg-
ing enables scalable processing of large datasets.

However, due to the increasing volume of data
required for optimizing LLM agentic systems au-
tonomously, directly applying LLM-based opti-
mization approaches encounters a fundamental
scalability issue. Existing methods typically con-
catenate all execution trajectories on the training
data and perform optimization in an all-at-once
manner, feeding the entire dataset into the LLM
optimizer in a single prompt. While this approach
works for optimization tasks with small-scale data,
it becomes problematic as the data grows. For
instance, in the GAIA benchmark (Mialon et al.,
2023), agents normally rely on external tools to col-

lect real-world information and generate lengthy ex-
ecution traces for subsequent optimization, which
is filled with raw documents and complex interme-
diate reasoning steps, even challenge for human to
parse. This increasing complexity leads to two crit-
ical limitations: (1) The concatenated trajectories
exceed LLM context windows, forcing truncation
of valuable optimization signals. (2) Even when
content fits within context windows, LLMs struggle
with analyzing long-range dependencies in exten-
sivecorpus (Bai et al., 2024; Liu et al., 2024; Ni
et al., 2024; Ravaut et al., 2024), making it hard
for the LLM optimizer to capture subtle patterns
and relationships between execution traces. As a
result, such approaches can produce suboptimal
solutions, particularly in complex scenarios where
understanding the intricate relationships between
different execution trajectories is crucial for im-
proving agent performance.

To address these scalability challenges, we intro-
duce FGO, a framework that enables efficient opti-
mization of LLM-based agentic systems with large-
scale data. Specifically, FGO operates through
three components: (1) Task division that breaks
down the large training dataset into more man-
ageable subsets, (2) Fine-grained optimization en-
abling efficient processing of each subset, and (3)
Progressive module merging that adaptively com-
bines optimized modules while preserving crucial
insights from each subset. This design allows FGO
to effectively handle larger optimization tasks while
maintaining high-quality results.

We evaluate FGO by optimizing two agent mod-
ules: instruction prompts and tools agent could
access. Across diverse tasks including ALF-
World (Shridhar et al., 2020), LogisticsQA, and
GAIA (Mialon et al., 2023). Agent trained with
FGO produces significant performance gains across
all datasets, ranging from 8.3% to 38.1%, outper-
forming other optimization methods by 1.6%-8.6%.
Further analysis reveals that FGO maintains supe-
rior performance across varying training dataset
sizes, highlighting its scalability and stability. No-
tably, FGO achieves these improvements while re-
ducing prompt token consumption by 56.3% and
increasing optimization efficiency by 7.6% com-
pared to conventional all-at-once optimization.

Our contributions are threefold: (1) We identify
and analyze the scalability limitations in current
LLM-based optimization approaches for agentic
systems. (2) To address the scalability limitation,
we propose FGO, a scalable optimization frame-

work that effectively handles large-scale agent op-
timization through task division and progressive
merging. (3) We demonstrate FGO’s effectiveness
across diverse tasks and provide insights into its
scalability advantages through comprehensive em-
pirical analysis.

2 Preliminary

2.1 Problem Setup

LLM Agent Optimizable Modules Agentic sys-
tems exhibit complex behavioral patterns emerg-
ing from multiple factors. A critical insight in de-
signing such systems lies in the decomposition of
the agent’s parameter space into modules that can
be independently optimized (Anthropic, 2024a).
This decomposition enables targeted optimization
of specific functional aspects while maintaining
global system coherence. Denote the parameter
space of agentic system as ©, which partitions into
trainable modules {O;}!" | governing distinct be-
havioral dimensions. Each module must satisfy two
key properties to qualify as a modular unit. First,
the trainability property requires that each mod-
ule can meaningfully influence the agent’s policy
gradients when exposed to specific queries. This
ensures the module is sufficiently responsive to
reward signals during optimization. Second, the
orthogonality property mandates that parameter
gradients across different modules exhibit minimal
directional alignment during optimization. Such
orthogonality constraint ensures modules encode
non-redundant functionalities while guaranteeing
each contributes uniquely to performance optimiza-
tion.

Agentic System Optimization An agent inter-
acts with an environment £ by generating a se-
quence of actions in response to a query. Given
parameters 6, the agent’s policy determines actions
based on the current state of interaction and obser-
vation. These actions along with the observations
form a trajectory 7 that represents the agent’s solu-
tion attempt for the given query.

ag ~ W("al;t,Ol;t; 0), Ot41 ~ 5(-\at), YVt € [T]
T = A(q; (9) = (01, at,...,or, CLT)
ey
The performance is quantified through a loss func-
tion £. Given a distribution D over query-label
pairs (g,y), we aim to find optimal agent param-
eters that minimize expected loss across the task

distribution. The optimization objective is:
0" = argmin B).p [L(Alg:0),y)] ()

This formulation of optimization via tuning mod-
ules provides a unified abstraction for analyzing
performance-critical factors in agentic system de-
sign. In practice, the modules include prompt for
task handling (Wen et al., 2024; Wu et al., 2024b),
long term memory (Zhang et al., 2024e), the avail-
able toolbox (Zhang et al., 2024c¢), the weights of
backbone LLM (Zeng et al., 2024; Ma et al., 2024).

2.2 Motivation

In LLM-as-optimizer setting, we assume the nu-
meric value of the policy gradient is not accessi-
blein Eq. 2. This constraint emerges from a prac-
tical reality in modern LLLM agent systems - the
increasing reliance on proprietary Large Language
Models like GPT-4 (OpenAl, 2023) and Claude
(Anthropic, 2024b), where internal parameters are
inaccessible.

Current approaches that leverage LLM as opti-
mizer typically follow a two-step iterative process:
first evaluating modules on training data to collect
trajectories and losses, then prompting the LLM op-
timizer with this information to generate improved
modules. While these methods have shown promis-
ing results (Yang et al., 2024; Zhang et al., 2024c;
Cheng et al., 2024), they face fundamental scalabil-
ity challenges that limit their practical applications.

Context window limit. The inherent constraint
of LLM context windows is a critical bottleneck in
optimization. As training samples grow, the con-
catenated trajectories and module-loss pairs can
exceed the context capacity of even the most ca-
pable LLMs. This limitation becomes particularly
acute in complex tasks where individual trajecto-
ries contain extensive reasoning steps or multi-turn
interactions. In such scenarios, even a modest num-
ber of samples can overwhelm the context window,
severely limiting the LLM optimizer’s ability to
process comprehensive training data.

Insufficient context utilization. Even when the
content fits within context limits, LLMs can face
significant challenges in effectively processing and
discovering patterns across extensive collections
of trajectories (Ni et al., 2024). Recent bench-
marks on long-form text comprehension and sum-
marization tasks have consistently demonstrated
that LLM’s performance deteriorates significantly

with increasing text length, particularly in process-
ing complex dialogues and lengthy documents (Bai
et al., 2024; Wu et al., 2024a; Ni et al., 2024; Song
et al., 2024; Zhang et al., 2024d). In the context
of LLM based optimizers, optimization requires
grasping long-range dependencies and analyzing
fine-grained details to capture subtle patterns across
multiple lengthy samples. This inherent limitation
of LLMs can lead to suboptimal module updates
that fail to capture the full complexity of the opti-
mization problem, especially in real-world applica-
tions where performance depends on understanding
both broad patterns and fine-grained details across
diverse samples.

3 Methods

3.1 Overview

The overall pipeline of FGO is illustrated in Figure
2. The core concept behind our proposed frame-
work is to divide the large task set into smaller,
more manageable subsets and optimize them inde-
pendently. After we obtain the optimal modules
trained on each subsets, we develop an algorithm to
progressively merge them into an optimal module.

3.2 Fine-Grained LLM Agent Optimization

Basic Module Optimization We begin with de-
scribing how we perform agent optimization. The
pipeline is illustrated in Algorithm 1. In each epoch,
the agent undergoes a three-phase cycle: explo-
ration, evaluation, and optimization. During explo-
ration, the agent interacts with the given task with
the current module, generating the solution trajec-
tories. The evaluation phase introduces a post-hoc
LLM based evaluator that analyzes these trajec-
tories to determine correctness, identify failures,
patterns as well as potential areas for improvement
based on the ground truth and trajectory. The eval-
uations serve as textual gradients to guide the di-
rection for updating the instruction toward better
performance. The optimization phase then lever-
ages these insights by feeding the trajectories, tex-
tual gradients into an LLM based optimizer, which
synthesizes this information to generate an updated
module.

Divide As the number and complexity of task
set scales, the length and number of the trajecto-
ries can quickly increase, posing challenge to LLM
based optimization. To address the issue, we pro-
pose a divide-and-conquer based strategy that de-
composes the training dataset D into N disjoint

Divide Optimize Merge
A E iterations 'Q]& {] |{ ! :’ _______ } :' _____ !
1 I 1 1 1
! 4——@ 1 ! : ! ! I
1
! e = = P é@} ' b
[Moduled oo I ! Module1 ! | Module2 ™ " i
1 ptimizer : : ! I : 1 : 1 :
| Concat, h 1 ! ! Merged | ' 1
= | & i@:lwu'ew—#{:@}}:
cra— I 1 1
1 _.7 || Module?2 | ! Modules | ! P Mergedl
1 " 1
Subset1 ' Agent ésuu b : i i | Module 1
\ 1 1
B iiiacascacccncasd L ROy T
1 1 1 1
1 IRecursive ! 1 1
1 Module3 i glustering) Modulein | | Modulen |, i
1 1 B H |
) i i i i
. o I I) ! b] 1
3 H | @} ! 1 {:@:} 0! ! Final
Ll I] 1 | 1
o | Module 4 | | Module 1 e h ! Module
o E iterations %29 ! | | !] !] :
| I 1 1 1
Fl ,) ;:{@}. | —»{2@}}—»{:}
atase ! Update b] I ! 0! ! !
1 = 1 1 1
1 [Modulen LLM | |M°d:‘"°5 1 ! M°d:'|°4 | ! Merged | : Merged |
: Optimizer 1 : . : 1 H : | Module 2 : | Module 2:
1 Concat : 1 [: ! ! 1
— 1 b] [1 ! ! I
, — i . . oo
ﬂﬁ = L b ! AR b2
1 h— F 1 [1 1
: X : : Module n : : Module 3 : ! : : : Optimal Q
Subsetn ' Agent Result ;! | \ Y 1! | Agent System

Figure 2: Illustration of FGO’s optimization pipeline. The system operates in three stages: (1) Divide: the full
dataset is split into manageable subsets, (2) Optimize: parallel optimization is performed on each subset using
LLM-based optimization with multiple iterations, and (3) Merge: optimized modules are progressively combined
using recursive clustering to produce the final optimal agent system.

Algorithm 1 Module Optimization

Algorithm 2 Progressive Module Merging

Input: Task set D, number of epochs E
Output: Optimized module ¢

0+ ¢ > Start from scratch
fore < 1to ' do
H <+ {} > Empty trajectory history
for (¢,y) € Ddo
T+ A(g;0) > Eq. 1

r < Evaluate(, y)
H.append((7,7))
end for
6 < LLMptim(H, 0)
end for
return 6

> Update module

subsets {D;}¥,, and perform optimization on the
subsets independently. By operating on smaller,
focused subsets, the intuition is to capture subtle
patterns and requirements that might be overlooked
in global optimization. The process yields N dis-
tinct module-loss pairs, each specialized for its
respective subset’s characteristics.

Progressive Merging While decomposition ad-
dresses the immediate scalability constraints, it
introduces the challenge of integrating N inde-
pendently optimized modules while preserving

Input: List M = {(6;, 7;, p;) } containing mod-
ules, their tasks, and performances
Output: Optimized module 6*
function PROGRESSIVEMERGE(M, t)
if M| < ¢ then
0, p < Merge(M) > Base: Direct Merge
return 6
end if
C < KMeans(S,,/|M|) > Adaptive cluster
for each cluster ¢; € C do
0;, p; < ProgressiveMerge(c;, t)
end for
return Merge({6;, p; })
end function
return ProgressiveMerge(M, t)

their specialized insights. The straightforward ap-
proach would be to directly prompt an LLM with
all module-performance pairs and generate an up-
dated module. However, such all-at-once merging
struggles to effectively process and synthesize pat-
terns across many modules simultaneously, poten-
tially losing the specialized optimizations gained
through divided optimization. We propose progres-
sive merging, implemented as a recursive algorithm
that controls merging granularity through a cluster

size threshold. Algorithm 2 shows the process of
progressive merging. For a given list of module-
performance pairs, we first check if the list size
exceeds the threshold. For larger lists, we partition
it into k = [y/n] clusters based on similarities,
where n is the number of modules. Each resulting
cluster then undergoes recursive merging. When a
cluster’s size falls below the threshold, we merge
its modules by prompting an LL.M with the mod-
ule contents and their corresponding performance
statistics. After each merge operation, we evaluate
the merged module’s performance through validat-
ing on the combined task set from all constituent
modules. The recursive process naturally builds a
bottom-up merging tree, where each internal node
represents a validated merge of its children’s mod-
ules. This controlled, progressive approach ensures
that each merge operation stays within LLLM con-
text limits while capturing intricate relationships
between similar modules, ultimately enabling effi-
cient optimization of large-scale agentic systems.

4 Evaluations

4.1 Experiment Setup

We evaluate FGO by optimizing two different mod-
ules of the agentic system: instructions and tools.
With proper instructions on the guidelines for the
tasks, the agent can comprehend the scenario and
solve it with ease (Fu et al., 2024; Chen et al.,
2024; Wu et al., 2024b; Zhao et al., 2024). The
tools expand the action space available to the agent,
functioning as specialized modules that enable spe-
cific capabilities. Optimizing the tool configuration
directly impacts the agent’s ability to execute com-
plex tasks efficiently and accurately.

Datasets We conduct experiments on three differ-

ent benchmarks to study the performance of FGO.

¢ ALFWorld (Shridhar et al., 2020) is a text-based
benchmark in which the agent is tasked with per-
forming household tasks. Given a high-level ob-
jective, the agent needs to interact with the virtual
environment and perform actions through natural
language to finish the task. We randomly select
60 tasks from the training datasets (10 for each
task type), and use the unseen set containing 134
tasks as test set. The benchmark contains 6 types
of tasks, we set the number of agent optimiz-
ers to 6, with each agent optimizer optimizing
each type of task. We report the success rate on
different types of tasks and the overall success
rate.

* LogisticsQA is our own curated benchmark. The
dataset consists of UBL format shipping invoice
documents from real world scenarios. The agent
is tasked to understand and extract the trans-
port reference number from the document. The
dataset contains 267 document instances. For
further details of the dataset, please refer to Ap-
pendix B. We randomly select 48 documents for
training, the remaining 219 for testing. We set the
number of agent optimizers to 8, each performs
optimization on randomly split 6 tasks. A task is
considered successful if the agent’s answer is an
exact match with the ground truth.

¢ GAIA (Mialon et al., 2023) is a benchmark de-
signed to test the capability of agents as general
assistants. It encompasses tasks from different
domains such as file browsing, web searching and
scraping, making it a perfect testbed for bench-
marking agent’s tool usage capability as well as
the quality of the toolbox. We utilize 36 tasks
from the training set and evaluate on 60 tasks.
The optimization is distributed across 4 optimiz-
ers, each handling a distinct subset of tasks.

Baselines for Comparison. We compare perfor-
mance with different agent optimization methods:
(1) All-at-once optimization represents the conven-
tional approach of performing agent optimization
on the whole training set using the algorithm illus-
trated in Section 3.2; (2) Batch-wise optimization
employs a fixed-size batching strategy, splitting
the training dataset into predetermined chunks and
performing optimization sequentially on each task
batch within an epoch; (3) Bootstrapping opti-
mization implements a stochastic approach, sam-
pling task batches from the training dataset with
replacement.

Implementation details. We optimize the in-
structions for the agent on ALFWorld and Logistic-
sQA, and optimize the tools on GAIA. For ALF-
World, we leverage gpt-4o-mini as the backbone for
the agent and evaluator, and gpt-4o for optimization
and merging. For LogisticsQA and GAIA, we use
gpt-4o in the whole process. For a fair comparison,
all methods use the same number of optimization
steps.

4.2 Main Results

Finding 1: FGO demonstrates superior opti-
mization performance across multiple domains.
We present the optimized agent’s performance on
different bencmarks in Table 1. For the majority of

ALFWorld .
Methods Pick Clean Heat Cool Look Pick Two Average LogisticQA | GAIA
Vanilla Agent | 69.4 505 652 206 315 21.6 45.5 36.3 15.0
All-at-once | 90.2 726 783 78.6 66.7 559 75.0 52.1% 21.7*
Batch-wise | 77.1 71.0 674 643 86.1 73.5 72.8 55.7 10.0
Bootstrapping | 91.7 774 739 746 87.0 41.2 75.6 62.6 20.0
FGO 90.2 838 87.0 889 86.1 62.7 83.6 64.8 23.3

Table 1: Performance of the optimized agent using different optimization methods on ALFWorld, LogisticQA and
GAIA. The best results are in bold. * denotes that we encounter context window exceeded error during optimization
and have to trim the number of trajectory reward pairs sent to the LLM optimizer.

the tasks, the agent demonstrates performance gain
in most cases after optimization. This highlights
how targeted prompt and tool refinement can sig-
nificantly enhance LLM agent capabilities. Among
the optimization methods, FGO achieves the most
performance boost in all cases, with gains rang-
ing from 8.3% to 38.1% compared to the vanilla
agents.

Finding 2: Progressive merging effectively pre-
serves task-specific patterns while achieving
global optimal. The superior performance of
FGO can be attributed to its divide-and-conquer-
based methodology. The All-at-once approach pro-
cesses the entire training dataset simultaneously,
requiring the LLM optimizer to learn from trajec-
tories across the complete dataset. This leads to
suboptimal performance due to the optimizer’s diffi-
culty in processing complex patterns in long corpus,
as evidenced by the suboptimal performance on
ALFWorld subtasks. Alternative methods like boot-
strapping optimization and batch-wise optimization
demonstrate strong performance in specific cate-
gories, but fail to maintain consistent performance
across the task spectrum. Their batch-wise op-
timization approach introduces instability in the
training process, as the LLM optimizer encounters
different data distributions in successive iterations,
potentially compromising previously learned pat-
terns. In contrast, FGO overcomes these limitations
through its systematic merging of independently
optimized instructions and tools. By first optimiz-
ing subset-specific instructions and tools and then
progressively merging them, FGO can preserve
task-specific patterns while building toward global
optimization. We further examine the implication
of merging on FGO performance in Section 4.4.

4.3 Further Analysis

.80
S
@ 70
et
©
o
B 60
O —&— Batch-wise
8 All-at-once
3 >0 Bootstrapping
—— FGO
40
0 12 24 48 60

Training Data Size

Figure 3: Analysis of the number of training tasks. We
run optimization on varied training dataset sizes and plot
the performance. FGO achieves best performance in all
training settings, and demonstrate a steady increase as
the training taskset size increases.

Finding 3: FGO demonstrates extraordinary
scalability. We evaluated how training data vol-
ume affects optimization performance on ALF-
World. As shown in Figure 3, FGO maintains
stable performance across all dataset sizes, with
consistent improvements as training samples in-
crease. While batch-wise optimization shows
similar training accuracy in low-data settings, it
yields lower performance compared to bootstrap-
ping optimization, indicating poorer generalization.
This aligns with established machine learning prin-
ciples where bootstrapping enhances generaliza-
tion (Breiman, 1996). Additionally, All-at-once
optimization proves impractical for LogisticsQA
and GAIA due to their extensive document lengths
(>3,000 tokens) and complex solution trajectories
exceeding LLM context windows, validating the
need for our scalable approach.

Finding 4: FGO achieves an optimal balance
between token cost, efficiency and performance.
We visualize the relationship between prompt to-

-3
N
o

~

oy

o

ALFWorld

All-at-once
(8.7e+07)

+

Allatonce
(2.8e+07)

+

@
=)

7.75

~
[

Batch-wise

(1:9+07) pootstrapping 7.0

(2. ii07)

| J

Prompt Token (10"y)
S
&
3
o
Prompt Token (10"y)

\ 4 A

6.75

~
=)

Batch-wise
(9.4+06)

7.25

LogisticsQA GAIA

7.0

All-at-once

(4,8e+06)
%

FGO 6.75

(1.0e+07)

Batch-wise

+ 6.5| (2.5e+06)

Bootstrapping
(9.7e+06)

T FGO
Bootstrapping (3-1€+06)

Prompt Token (10"y)

N

6.25

~f
=)

72 74 76 78 80 82 84 48 52 56
Performance (%)

Accuracy (%)

60 64 68 10 15 20 25
Accuracy (%)

Figure 4: Comparison of prompt token efficiency across different optimization methods on ALFWorld, LogisticsQA,
and GAIA. Each panel plots the trained agent’s performance against the total prompt tokens consumed during
optimization. Circle diameters are proportional to the optimization token consumption, with crosses (+) indicating

circle centers.

ken used for optimization and the performance after
training with different optimization methods in Fig-
ure 4, and outline the time to train and performance
in Figure 5. In terms of token cost, FGO requires
larger number of prompt tokens compared to Batch-
wise optimization and Boostrapping optimization.
This is because the merging process requires eval-
uating on the combined task set from all the con-
stituent modules. This is a sacrifice in exchange
for accurately modeling the merged module’s capa-
bility in order to generate more accurate modules
in the merging process. In contrast, All-at-once
prompts the LLM optimizer with the whole list of
trajectories and losses, leading to the largest token
consumption requirements than other methods. In
terms of efficiency, FGO can perform optimization
in parallel and gather the optimized modules at
once, which is an unique advantage compared to
the sequential training methods.

4.4 Ablation Study

We investigate the following questions to under-
stand the impact of different components and hy-
perparameters in FGO:

How does progressive merging and choice of
clustering algorithm affect performance? To
analyze the impact of progressive merging and eval-
uate different clustering algorithms in the merging
process, we conduct experiments on the ALFWorld
benchmark. We first establish a baseline by remov-
ing the progressive merging entirely, and instead
prompting an LLM to generate the final module di-
rectly from the module-performance pairs obtained
from divided optimization. We then evaluate the
effect of different clustering algorithms by fixing
the independently optimized modules and chang-
ing the clustering method to Spectral clustering and
Bisect K-Means. We report the average and best of

Methods Cluster ALFWorld
Algorithm Avgof3 Bestof 3
Vanilla - 45.5 61.9
None 73.1 84.3
Spectral 81.6 89.6
FGO Bisect K-Means 80.1 91.0
K-Means 83.6 89.6

Table 2: Ablation study on the effects of clustering
algorithms used. "None" means we skip the clustering
step and directly merge the optimized modules.

three runs in Table 2. Without progressive merging,
the method achieves a 73.1% average success rate,
demonstrating that even basic merging provides
substantial improvement over the vanilla agent. In
comparison, the introduction of progressive merg-
ing significantly boosts performance. Regardless of
the clustering algorithm employed during merging,
the final performances all demonstrate consistent
improvement to no merging. This consistency sug-
gests that the progressive nature of the merging
strategy, rather than the specific clustering algo-
rithm, is the key driver of improvement.

Does the division of training data affect perfor-
mance? To examine the robustness of FGO, we
compare our default category-based partitioning
against random partitioning of training tasks in
ALFWorld. As shown in Table 3, while random
partitioning shows a slight performance drop, the
system still maintains strong performance thanks to
the progressive merging process, which effectively
combines optimization insights across partitions.
This demonstrates that FGO’s performance remains
robust even with suboptimal partitioning strategies.

How does the number of divided subsets affect
performance? To answer this question, we con-
duct ablation study on the number of independent

ALFWorld

Partition Avgof 3 Bestof 3
Random 80.3 88.1
Category 83.6 89.6

Table 3: Ablation on the data partitioning strategy. *Cat-
egory’ denotes we partition the training data according
to the task type.

2400 # subsets=12
¢)
—~ 2200
2
(9]
€ 20001
'_
g 1800 # subsets=3
£
S # subsets=6
F 1600 R —# subsets=B
subsets=4
®
1400 j ; ‘
»® 0 45 50 55

Accuracy (%)

Figure 5: Ablation study on the number of divided
subsets. Most parameter settings achieve similar perfor-
mance, with varying time for optimization.

agent optimizers. We trained agents on Logistic-
sQA and set the number of divided subsets to 3, 4,
6, 8, 12. Due to the high cost in running gpt-4o,
we sampled 100 tasks from the test set and val-
idate the optimized agent’s performance respec-
tively. We plot the relationship between perfor-
mance and training time in Figure 5. The results
suggest that the choice of agent number primar-
ily impacts computational efficiency rather than
optimization quality.

How does performance change with respect to
backbone LLM? Finally, to ensure FGO well
generalizes to different backbones, we change the
optimizer backbone to 03-mini and observe the
metrics. We report the token consumption for train-
ing, wall-clock time, and performance in Table 4.
In line with the main results, FGO maintains strong
performance while reaching most efficiency, with
slightly overhead in token consumption.

Method # Tokens (107) Time (s) Avgof 3 Bestof 3
All-at-once 8.15 7583 87.8 93.3
Batch-wise 1.59 2969 83.1 92.3

Bootstrapping 1.34 2521 88.8 95.0
FGO 1.97 2142 89.3 95.5

Table 4: Ablation on the optimizer backbone. We lever-
age 03-mini as the backbone for optimization, and report
the metrics. Best result is in bold.

5 Related Work

LLM as Optimizer. LLMs are increasingly used
as a blackbox optimizer for different LLM sys-
tems. In prompt optimization, LLM is leveraged
to automously maximizing LLLM’s performance to
novel tasks without expensive model tuning (Zhou
et al., 2022; Pryzant et al., 2023; Cheng et al., 2023;
Prasad et al., 2022; Opsahl-Ong et al., 2024; Khat-
tab et al., 2024). In the realm of in-context learn-
ing (Min et al., 2021; Dong et al., 2022; Brown,
2020), by automatically retrieving demonstrations
from training set (Zhao et al., 2021; Lu et al., 2021;
Liu et al., 2021) or from adaptively annotated sam-
ples by LLM (Zhang et al., 2023; Wu et al., 2022;
Su et al., 2022), prompt with autonomously se-
lected in-context examples can reach performance
better can human crafted prompts. LLM based
optimizers are also used as a meta-optimizers to
improve an LLM based system (Zelikman et al.,
2023; Yin et al., 2024).

Automated Agentic System Design. There has
been efforts in exploring inference time perfor-
mance boost since the emergence of Large Lan-
guage Models (Shinn et al., 2024; Madaan et al.,
2024; Yao et al., 2023, 2024; Wei et al., 2022; Guo
et al., 2024). Recent works have extended this
paradigm to agentic systems. Some works repre-
sent and learn the optimal workflow of agentic sys-
tems in the form of complex graphs (Zhuge et al.,
2024; Wu et al., 2024c¢), code (Hu et al., 2024a),
and trees (Zhang et al., 2024a) to improve the sys-
tem’s performance on complex tasks, while others
learns reusable tools (Zhang et al., 2024c; Cai et al.,
2023; Qian et al., 2023; Yuan et al., 2023) and ex-
perience (Zhao et al., 2024; Wang et al., 2024b) for
agentic systems.

6 Conclusion

In this paper, we addressed the scalability chal-
lenges in LLM-based agent optimization by in-
troducing FGO, a framework that effectively pro-
cesses large-scale execution trajectories through
task division, fine-grained optimization, and pro-
gressive module merging. Our evaluation across
multiple dataset demonstrates consistent perfor-
mance improvements. FGO reaches an optimal
balance between performance, efficiency and token
consumption.

Limitations

The merging process introduces computational
overhead, as it requires to back test the merged
module on the merged training dataset, resulting
in larger token cost compared to Batch-wise op-
timization and Bootstrappingoptimization. In fu-
ture works, we attempt to leverage LLM to predict
the performance of the merged module using in-
context learning, or approximate the performance
using Bayesian methods.

References

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish
Jagmohan, Aditya Vempaty, and Ravi Kokku. 2024.
Agent-e: From autonomous web navigation to foun-
dational design principles in agentic systems. arXiv
preprint arXiv:2407.13032.

Anthropic. 2024a. Building effective agents.
https://www.anthropic.com/research/
building-effective-agents.

Anthropic. 2024b. Model card addendum: Claude 3.5
haiku and upgraded claude 3.5 sonnet.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xi-
aozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei
Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. 2024.
Longbench v2: Towards deeper understanding and
reasoning on realistic long-context multitasks. arXiv
preprint arXiv:2412.15204.

Leo Breiman. 1996. Bagging predictors. Machine

learning, 24:123-140.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu,
Binbin Lin, and Xiaofei He. 2024. Automanual:
Generating instruction manuals by 1lm agents via
interactive environmental learning. arXiv preprint
arXiv:2405.16247.

Ching-An Cheng, Allen Nie, and Adith Swaminathan.
2024. Trace is the next autodiff: Generative opti-
mization with rich feedback, execution traces, and
llms. arXiv preprint arXiv:2406.16218.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang.
2023. Black-box prompt optimization: Aligning
large language models without model training. arXiv
preprint arXiv:2311.04155.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Yao Fu, Dong-Ki Kim, Jackyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. 2024. Autoguide: Automated gener-
ation and selection of context-aware guidelines for
large language model agents. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui
Fan, Natalia Vélez, Qingyun Wu, Huazheng Wang,
Thomas L Griffiths, and Mengdi Wang. 2024. Em-
bodied 1lm agents learn to cooperate in organized
teams. arXiv preprint arXiv:2403.12482.

Shengran Hu, Cong Lu, and Jeff Clune. 2024a. Au-
tomated design of agentic systems. arXiv preprint
arXiv:2408.08435.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, et al. 2024b. Infiagent-dabench: Eval-
uating agents on data analysis tasks. arXiv preprint
arXiv:2401.05507.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2024. Dsbench: How far
are data science agents to becoming data science ex-
perts? arXiv preprint arXiv:2409.07703.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. DSPy: Com-
piling declarative language model calls into state-
of-the-art pipelines. In The Twelfth International
Conference on Learning Representations.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T
Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. arXiv preprint arXiv:2310.03714.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Zixian Ma, Jianguo Zhang, Zhiwei Liu, Jieyu Zhang,
Juntao Tan, Manli Shu, Juan Carlos Niebles, Shelby
Heinecke, Huan Wang, Caiming Xiong, et al. 2024.
Taco: Learning multi-modal action models with syn-
thetic chains-of-thought-and-action. arXiv preprint
arXiv:2412.05479.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943.

Xuanfan Ni, Hengyi Cai, Xiaochi Wei, Shuaigiang
Wang, Dawei Yin, and Piji Li. 2024. XI © bench:
A benchmark for extremely long context understand-
ing with long-range dependencies. arXiv preprint
arXiv:2404.05446.

OpenAl. 2023. Gpt-4 system card.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar
Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9340-9366, Miami, Florida, USA. Association for
Computational Linguistics.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024.
Training software engineering agents and verifiers
with swe-gym. arXiv preprint arXiv:2412.21139.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957-7968, Singapore. Association for Computa-
tional Linguistics.

10

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. arXiv preprint arXiv:2305.14318.

Mathieu Ravaut, Aixin Sun, Nancy Chen, and Shafiq
Joty. 2024. On context utilization in summariza-
tion with large language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2764-2781, Bangkok, Thailand. Association
for Computational Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Co6té,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Mingyang Song, Mao Zheng, and Xuan Luo. 2024.
Counting-stars: A simple, efficient, and reasonable
strategy for evaluating long-context large language
models. arXiv preprint arXiv:2403.11802.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Zhenhailong Wang, Haiyang Xu, Junyang Wang,
Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. 2025. Mobile-agent-e: Self-evolving mo-
bile assistant for complex tasks. arXiv preprint
arXiv:2501.11733.

Zhiruo Wang, Daniel Fried, and Graham Neubig. 2024a.
Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks. arXiv preprint
arXiv:2401.12869.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and
Graham Neubig. 2024b. Agent workflow memory.
arXiv preprint arXiv:2409.07429.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2024. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. Advances
in Neural Information Processing Systems, 36.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-
Wei Chang, and Dong Yu. 2024a. Longmemeval:
Benchmarking chat assistants on long-term interac-
tive memory. arXiv preprint arXiv:2410.10813.

https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2024.acl-long.153
https://doi.org/10.18653/v1/2024.acl-long.153
https://doi.org/10.18653/v1/2024.acl-long.153

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis N Ioan-
nidis, Karthik Subbian, Jure Leskovec, and James
Zou. 2024b. Avatar: Optimizing 1lm agents for
tool-assisted knowledge retrieval. arXiv preprint
arXiv:2406.11200.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang,
and Qingyun Wu. 2024c. Stateflow: Enhancing llm
task-solving through state-driven workflows. arXiv
preprint arXiv:2403.11322.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2022. Self-adaptive in-context learn-
ing: An information compression perspective for
in-context example selection and ordering. arXiv
preprint arXiv:2212.10375.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Jing Hua Toh, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2025.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. Ad-
vances in Neural Information Processing Systems,
37:52040-52094.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun
Wan, and William Yang Wang. 2024. G\" odel agent:
A self-referential agent framework for recursive self-
improvement. arXiv preprint arXiv:2410.04444.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung,
Hao Peng, and Heng Ji. 2023. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. arXiv preprint arXiv:2309.17428.

Eric Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2023. Self-taught optimizer
(stop): Recursively self-improving code generation.
arXiv preprint arXiv:2310.02304.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTun-
ing: Enabling generalized agent abilities for LLMs.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 3053-3077, Bangkok,
Thailand. Association for Computational Linguistics.

11

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024a. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-
Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. 2023. Ideal: Influence-driven selective annota-
tions empower in-context learners in large language
models. arXiv preprint arXiv:2310.10873.

Shaokun Zhang, Jieyu Zhang, Dujian Ding,
Mirian Hipolito Garcia, Ankur Mallick, Daniel
Madrigal, Menglin Xia, Victor Riihle, Qingyun Wu,
and Chi Wang. 2024b. Ecoact: Economic agent
determines when to register what action. arXiv
preprint arXiv:2411.01643.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song,
Chi Wang, Ranjay Krishna, and Qingyun Wu. 2024c.
Offline training of language model agents with func-
tions as learnable weights. In Forty-first Interna-
tional Conference on Machine Learning.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024d.
ooBench: Extending long context evaluation beyond
100K tokens. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15262—
15277, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen,
Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-
Rong Wen. 2024e. A survey on the memory mech-
anism of large language model based agents. arXiv
preprint arXiv:2404.13501.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024. Expel:
Llm agents are experiential learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632-19642.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697-12706.
PMLR.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. 2024. Language agents as optimizable
graphs. arXiv preprint arXiv:2402.16823.

https://openreview.net/forum?id=Bb4VGOWELI
https://doi.org/10.18653/v1/2024.findings-acl.181
https://doi.org/10.18653/v1/2024.findings-acl.181
https://doi.org/10.18653/v1/2024.findings-acl.181
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html

A More Experiments

How is the efficiency of FGO in terms of opti-
mizing time consumption? In this section, we
present the time for optimization on each method.
Ours are the most efficient thanks to the parallel
implementation.

How does the trained agent perform after differ-
ent optimization methods? We plot the token
consumption for inferencing on the dataset with
the modules trained with different methods. As
shown in Table 6, 7, 8, FGO can reach competent
performance with reasonable token consumption
overhead.

B LogisticQA Dataset
B.1 Background

We evaluate our system on a collection of real-
world Universal Business Language invoice doc-
uments, developed in cooperation with one of the
world’s largest logistics companies. The primary
task is to extract transport reference numbers from
these documents. The reference numbers exist in
these invoice documents in a non-fixed pattern. It
typically requires human effort to extract it man-
ually during real-world business operations. Al
agents that can effectively understand the context
and extract reference numbers can make the busi-
ness workflow more efficient. The LogisticQA
dataset shows LLMs’ ability to achieve such a
goal. It contains 267 valid invoice documents and
transport reference pairs. It can also reflect LLM’s
instruction-learning capability in real-world docu-
ment understanding tasks.

The dataset presents several challenging char-
acteristics that make it an ideal testbed for eval-
uating the instruction learning capabilities. First,
it requires specialized domain knowledge of busi-
ness documents and terminology not commonly
found in general language model training. Second,
the hierarchical structure of UBL documents and

Methods | ALFWorld LogisticQA GAIA
all 8372 3600 7400
batch 2975.67 2550 4798
bootstrap 2567.72 2621 3957
FGO 1998 2434.0691 5906

Table 5: Performance comparison across different meth-
ods on ALFWorld, LogisticQA and GAIA datasets.

12

Method Tokens Performance
All-at-once 8,856,145 75.0
Batch-wise 9,018,478 72.8

Boostrapping 8,172,052 75.6
FGO 7,594,598 83.6

Table 6: Inference cost and performance for ALFWorld.

Method Tokens Performance
All-at-once 6,483,562 52.1
Batch-wise 6,872,656 55.7

Boostrapping 5,703,318 62.6
FGO 6,287,424 64.8

Table 7: Inference cost and performance for Logistic-
sQA.

the significant variability in format and identifica-
tion patterns pose substantial extraction challenges.
Additionally, as a novel benchmark without prior
literature coverage, this dataset offers unique oppor-
tunities to assess agents’ adaptive learning abilities
in a practical, high-stakes business context.

B.2 Dataset Statistics

The analysis of our XML business document
dataset demonstrates strong alignment with real-
world business documentation patterns, as shown in
Figure 6. The document length distribution peaks
between 200-500 lines, while the XML structure
complexity with most documents containing 100-
400 tags. The token distribution centered around
2,000-4,000 tokens indicates a long-context un-
derstanding challenge for LLMs. Notably, the
language distribution across documents (Turkish:
39.5%, English: 29.6%, Spanish: 22.0%, Italian:
8.9%) reflects a realistic multinational business en-
vironment, particularly common in European and
Mediterranean operations where English serves as
a lingua franca alongside regional languages.

B.3 Dataset Example

Here is an example XML business document in the
dataset. The ground truth extraction is 847 5321
9084. The named and loations in the dataset are all
anonymized.

<?xml version="1.0" encoding="UTF-8"?>
<Invoice xmlns="urn:oasis:names:specification:ubl:schema:xsd:
Invoice-2"
xmlns:cac="urn:oasis:names:specification:ubl:schema:
xsd: CommonAggregateComponents-2"
xmlns:cbhc="urn:oasis:names:specification:ubl:schema:
xsd:CommonBasicComponents-2">
<cbc:UBLVersionID>2.1</cbc:UBLVersionID>

Distribution of Number of Lines

Distribution of Number of Tags

120 W
100
100 |
80
80
o =
c < 60
3 3
o 60 o
40 |
40
) “H_lj_\ [)
0—= " — . 0—= : . — - -
0 500 1,000 1,500 0 200 400 600 800 1,000 1,200
Number of Lines Number of Tags
Distribution of Number of Tokens Language of Text Fields
100 B
80
Language
€ 60 @ turkish
3 > @ english
” @ spanish
40 @ italian
20
0 : ’> ! —"-I—,_h—\ ! — !
0 2,000 4,000 6,000 8,000

Number of Tokens

Figure 6: Statistical analysis of XML business documents. Top left: Distribution of document lengths showing
typical business document sizes. Top right: Distribution of XML tags indicating document structure complexity.
Bottom left: Token distribution demonstrating the long context challenge for LLM. Bottom right: Language
distribution across documents reflects business documents’ multinational nature.

Method Tokens Performance
All-at-once 527,551 21.7
Batch-wise 436,337 10.0

Boostrapping 877,283 20.0
FGO 787,921 23.3

Table 8: Inference cost and performance for GAIA.

<cbc:CustomizationID>urn:cen.eu:en16931:2017#compliant#urn:

fdc:peppol.eu:2017:poacc:billing:3.0</cbc:
CustomizationID>
<cbc:ID>rmCMsB6Km6J4Qp2a</cbc:ID>
<cbc:IssueDate>2023-10-11</cbc:IssueDate>
<cbc:InvoiceTypeCode>Invoice</cbc:InvoiceTypeCode>
<cbc:DocumentCurrencyCode>TRY</cbc:DocumentCurrencyCode>

<cbc:Note>SALE

HADIMKOY BRANCH 847 5321 9084

No withholding tax applies when not self-owned according to
law

This invoice must be paid by: 01/08/24

PLEASE INDICATE THE VEHICLE PLATE NUMBER AND INVOICE NUMBER IN
THE DESCRIPTION OF YOUR BANK TRANSFER RECEIPT

For invoices not paid by due date, late payment interest will
be charged according to the Law on Collection Procedure
of Public Receivables (AATUHK).

Only FourThousandThirtyTwoTL</cbc:Note>

13

<cac:AccountingSupplierParty>
<cac:Party>
<cac:PartyName>
<cbc:Name>S.S 350 COOPERATIVE AIRPORT CARGO
TERMINAL LOGISTICS SERVICES MOTOR CARRIERS
</cbc:Name>
</cac:PartyName>
<cac:PostalAddress>
<cbc:StreetName>Cargo Terminal Cooperative
Service</cbc:StreetName>
<cbc:CityName>Springfield</cbc:CityName>
<cbc:PostalZone>None</cbc:PostalZone>
<cac:Country>
<cbc:IdentificationCode>TR</cbc:
IdentificationCode>
</cac:Country>
</cac:PostalAddress>
</cac:Party>
</cac:AccountingSupplierParty>

<cac:AccountingCustomerParty>
<cac:Party>
<cac:PartyName>
<cbc:Name>GLOBAL LOGISTICS SOLUTIONS LTD.</cbc:
Name>
</cac:PartyName>
<cac:PostalAddress>
<cbc:StreetName>INDUSTRIAL DISTRICT SPRINGFIELD<
/cbc:StreetName>
<cbc:CityName>None</cbc:CityName>
<cbc:PostalZone>None</cbc:PostalZone>

<cac:Country>
<cbc:IdentificationCode>TR</cbc:
IdentificationCode>
</cac:Country>
</cac:PostalAddress>
</cac:Party>
</cac:AccountingCustomerParty>

<cac:PaymentTerms>
<cbc:Note>SALE
HADIMKOY BRANCH 847 5321 9084
No withholding tax applies when not self-owned according to
law
This invoice must be paid by: 01/08/24
PLEASE INDICATE THE VEHICLE PLATE NUMBER AND INVOICE NUMBER IN
THE DESCRIPTION OF YOUR BANK TRANSFER RECEIPT
For invoices not paid by due date, late payment interest will
be charged according to the Law on Collection Procedure
of Public Receivables (AATUHK).
Only FourThousandThirtyTwoTL</cbc:Note>
</cac:PaymentTerms>

<cac:LegalMonetaryTotal>
<cbc:LineExtensionAmount currencyID="TRY">
2243.26
</cbc:LineExtensionAmount>
<cbc:TaxExclusiveAmount currencyID="TRY">
448.65
</cbc:TaxExclusiveAmount>
<cbc:TaxInclusiveAmount currencyID="TRY">
2691.91
</cbc:TaxInclusiveAmount>
<cbc:PayableAmount currencyID="TRY">
2691.91
</cbc:PayableAmount>
</cac:LegalMonetaryTotal>

<cac:InvoicelLine>
<cbc:ID>1</cbc:ID>
<cbhc:InvoicedQuantity unitCode="EA">1.0</cbc:
InvoicedQuantity>
<cbc:LineExtensionAmount currencyID="TRY">
2243.26
</cbc:LineExtensionAmount>
<cac:Item>
<cbc:Description>THY-NEWTOWN transportation fee-78
XYZ432</cbc:Description>
<cbc:Name>THY-NEWTOWN transportation fee-78XYZ432</
cbc:Name>
</cac:Item>
<cac:Price>
<cbc:PriceAmount currencyID="TRY">2243.26</cbc:
PriceAmount>
</cac:Price>
</cac:InvoicelLine>

</Invoice>

C Complexity Analysis

In this section, we analyze the computational com-
plexity of the recursive clustering in the progressive
merging process.

C.1 Clustering Tree Depth

At each recursive step, the number of module is
reduced by taking the square root:

Ni4+1 = \/7”Ti, with ng = N. 3)

The recursion stops when the number of items sat-
isfies:
np=N2” <. (4)

14

Taking logarithms on both sides gives:

(1/2)P -log N < logt. 6))
Solving for D yields:
D =0 (loglogN) . ©6)

C.2 Backtesting Complexity

Each merge operation performs a backward testing
over all tasks contributing to the merged module.
Since tasks are merged without duplication, the
total number of unique tasks remains 7" throughout
the process. As every level of the clustering tree
processes 1" tasks and the depth of the tree is D =
O(loglog N), the overall complexity of testing is:

O (T -loglog N) . @)

This demonstrates that the overhead introduced
by backward testing is modest as N scales.

D Prompt
D.1 ALFWorld

Perform actions and interact with a
household to solve a task. At the
beginning of your interactions, you
will be given the detailed
description of the current
environment and your goal to
accomplish. The environment only
accept certain format of actions.
Here are two examples, learn the
pattern carefully.

D.2 LogisticsQA

Task background
Read the content of a xml file which
contains a shipment invoice document
in UBL format. You are tasked to
understand the content and extract
the transport reference number from
it.
When you reach a conclusion, format your
answer as "final answer: [extracted
reference number]”

D.3 GAIA

Task

You need to solve the question below
given by a user. When you are
building tasks, explicitly consider
where the task can benefit from web
navigation capability.

Task
{task}

nnn

15

	Introduction
	Preliminary
	Problem Setup
	Motivation

	Methods
	Overview
	Fine-Grained LLM Agent Optimization

	Evaluations
	Experiment Setup
	Main Results
	Further Analysis
	Ablation Study

	Related Work
	Conclusion
	More Experiments
	LogisticQA Dataset
	Background
	Dataset Statistics
	Dataset Example

	Complexity Analysis
	Clustering Tree Depth
	Backtesting Complexity

	Prompt
	ALFWorld
	LogisticsQA
	GAIA

