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Abstract001

LLM-based optimization has shown remark-002
able potential in enhancing agentic systems.003
However, the conventional approach of prompt-004
ing LLM optimizer with the whole training tra-005
jectories on training dataset in a single pass006
becomes untenable as datasets grow, leading007
to context window overflow and degraded pat-008
tern recognition. To address these challenges,009
we propose Fine-Grained Optimization (FGO),010
a scalable framework that divides large opti-011
mization tasks into manageable subsets, per-012
forms targeted optimizations, and systemati-013
cally combines optimized components through014
progressive merging. Evaluation across ALF-015
World, LogisticsQA, and GAIA benchmarks016
demonstrate that FGO outperforms existing017
approaches by 1.6-8.6% while reducing av-018
erage prompt token consumption by 56.3%.019
Our framework provides a practical solution020
for scaling up LLM-based optimization of in-021
creasingly sophisticated agent systems. Further022
analysis demonstrates that FGO achieves the023
most consistent performance gain in all train-024
ing dataset sizes, showcasing its scalability and025
efficiency.026

1 Introduction027

Large Language Models (LLMs) have emerged028

as powerful optimizers for LLM systems, capa-029

ble of analyzing execution trajectories and refining030

system modules like prompts (Yang et al., 2024;031

Zhou et al., 2022; Khattab et al., 2023; Opsahl-Ong032

et al., 2024), tools (Qian et al., 2023; Zhang et al.,033

2024c,b; Wang et al., 2024a). These agentic sys-034

tems have shown promising results in enhancing035

agent performance across various domains, includ-036

ing reasoning (Cheng et al., 2024; Zelikman et al.,037

2023), software engineering (Jimenez et al., 2023;038

Pan et al., 2024), data analysis (Hu et al., 2024b;039

Jing et al., 2024), computer using (Wang et al.,040

2025; Xie et al., 2025; Abuelsaad et al., 2024).041
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Figure 1: Agent optimization approaches. (a) Basic
agent execution process. (b) Traditional all-at-once
optimization faces context overflow and inferior per-
formance with large trajectory data. (c) Our method:
divide-and-conquer optimization with progressive merg-
ing enables scalable processing of large datasets.

However, due to the increasing volume of data 042

required for optimizing LLM agentic systems au- 043

tonomously, directly applying LLM-based opti- 044

mization approaches encounters a fundamental 045

scalability issue. Existing methods typically con- 046

catenate all execution trajectories on the training 047

data and perform optimization in an all-at-once 048

manner, feeding the entire dataset into the LLM 049

optimizer in a single prompt. While this approach 050

works for optimization tasks with small-scale data, 051

it becomes problematic as the data grows. For 052

instance, in the GAIA benchmark (Mialon et al., 053

2023), agents normally rely on external tools to col- 054
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lect real-world information and generate lengthy ex-055

ecution traces for subsequent optimization, which056

is filled with raw documents and complex interme-057

diate reasoning steps, even challenge for human to058

parse. This increasing complexity leads to two crit-059

ical limitations: (1) The concatenated trajectories060

exceed LLM context windows, forcing truncation061

of valuable optimization signals. (2) Even when062

content fits within context windows, LLMs struggle063

with analyzing long-range dependencies in exten-064

sivecorpus (Bai et al., 2024; Liu et al., 2024; Ni065

et al., 2024; Ravaut et al., 2024), making it hard066

for the LLM optimizer to capture subtle patterns067

and relationships between execution traces. As a068

result, such approaches can produce suboptimal069

solutions, particularly in complex scenarios where070

understanding the intricate relationships between071

different execution trajectories is crucial for im-072

proving agent performance.073

To address these scalability challenges, we intro-074

duce FGO, a framework that enables efficient opti-075

mization of LLM-based agentic systems with large-076

scale data. Specifically, FGO operates through077

three components: (1) Task division that breaks078

down the large training dataset into more man-079

ageable subsets, (2) Fine-grained optimization en-080

abling efficient processing of each subset, and (3)081

Progressive module merging that adaptively com-082

bines optimized modules while preserving crucial083

insights from each subset. This design allows FGO084

to effectively handle larger optimization tasks while085

maintaining high-quality results.086

We evaluate FGO by optimizing two agent mod-087

ules: instruction prompts and tools agent could088

access. Across diverse tasks including ALF-089

World (Shridhar et al., 2020), LogisticsQA, and090

GAIA (Mialon et al., 2023). Agent trained with091

FGO produces significant performance gains across092

all datasets, ranging from 8.3% to 38.1%, outper-093

forming other optimization methods by 1.6%-8.6%.094

Further analysis reveals that FGO maintains supe-095

rior performance across varying training dataset096

sizes, highlighting its scalability and stability. No-097

tably, FGO achieves these improvements while re-098

ducing prompt token consumption by 56.3% and099

increasing optimization efficiency by 7.6% com-100

pared to conventional all-at-once optimization.101

Our contributions are threefold: (1) We identify102

and analyze the scalability limitations in current103

LLM-based optimization approaches for agentic104

systems. (2) To address the scalability limitation,105

we propose FGO, a scalable optimization frame-106

work that effectively handles large-scale agent op- 107

timization through task division and progressive 108

merging. (3) We demonstrate FGO’s effectiveness 109

across diverse tasks and provide insights into its 110

scalability advantages through comprehensive em- 111

pirical analysis. 112

2 Preliminary 113

2.1 Problem Setup 114

LLM Agent Optimizable Modules Agentic sys- 115

tems exhibit complex behavioral patterns emerg- 116

ing from multiple factors. A critical insight in de- 117

signing such systems lies in the decomposition of 118

the agent’s parameter space into modules that can 119

be independently optimized (Anthropic, 2024a). 120

This decomposition enables targeted optimization 121

of specific functional aspects while maintaining 122

global system coherence. Denote the parameter 123

space of agentic system as Θ, which partitions into 124

trainable modules {Θi}ni=1 governing distinct be- 125

havioral dimensions. Each module must satisfy two 126

key properties to qualify as a modular unit. First, 127

the trainability property requires that each mod- 128

ule can meaningfully influence the agent’s policy 129

gradients when exposed to specific queries. This 130

ensures the module is sufficiently responsive to 131

reward signals during optimization. Second, the 132

orthogonality property mandates that parameter 133

gradients across different modules exhibit minimal 134

directional alignment during optimization. Such 135

orthogonality constraint ensures modules encode 136

non-redundant functionalities while guaranteeing 137

each contributes uniquely to performance optimiza- 138

tion. 139

Agentic System Optimization An agent inter- 140

acts with an environment E by generating a se- 141

quence of actions in response to a query. Given 142

parameters θ, the agent’s policy determines actions 143

based on the current state of interaction and obser- 144

vation. These actions along with the observations 145

form a trajectory τ that represents the agent’s solu- 146

tion attempt for the given query. 147

at ∼ π(·|a1:t, o1:t; θ), ot+1 ∼ E(·|at), ∀t ∈ [T ]

τ = A(q; θ) = (o1, a1, ..., oT , aT )
(1) 148

The performance is quantified through a loss func- 149

tion L. Given a distribution D over query-label 150

pairs (q, y), we aim to find optimal agent param- 151

eters that minimize expected loss across the task 152

2



distribution. The optimization objective is:153

θ∗ = argmin
θ∈Θ

E(q,y)∼D [L(A(q; θ), y)] (2)154

This formulation of optimization via tuning mod-155

ules provides a unified abstraction for analyzing156

performance-critical factors in agentic system de-157

sign. In practice, the modules include prompt for158

task handling (Wen et al., 2024; Wu et al., 2024b),159

long term memory (Zhang et al., 2024e), the avail-160

able toolbox (Zhang et al., 2024c), the weights of161

backbone LLM (Zeng et al., 2024; Ma et al., 2024).162

2.2 Motivation163

In LLM-as-optimizer setting, we assume the nu-164

meric value of the policy gradient is not accessi-165

blein Eq. 2. This constraint emerges from a prac-166

tical reality in modern LLM agent systems - the167

increasing reliance on proprietary Large Language168

Models like GPT-4 (OpenAI, 2023) and Claude169

(Anthropic, 2024b), where internal parameters are170

inaccessible.171

Current approaches that leverage LLM as opti-172

mizer typically follow a two-step iterative process:173

first evaluating modules on training data to collect174

trajectories and losses, then prompting the LLM op-175

timizer with this information to generate improved176

modules. While these methods have shown promis-177

ing results (Yang et al., 2024; Zhang et al., 2024c;178

Cheng et al., 2024), they face fundamental scalabil-179

ity challenges that limit their practical applications.180

Context window limit. The inherent constraint181

of LLM context windows is a critical bottleneck in182

optimization. As training samples grow, the con-183

catenated trajectories and module-loss pairs can184

exceed the context capacity of even the most ca-185

pable LLMs. This limitation becomes particularly186

acute in complex tasks where individual trajecto-187

ries contain extensive reasoning steps or multi-turn188

interactions. In such scenarios, even a modest num-189

ber of samples can overwhelm the context window,190

severely limiting the LLM optimizer’s ability to191

process comprehensive training data.192

Insufficient context utilization. Even when the193

content fits within context limits, LLMs can face194

significant challenges in effectively processing and195

discovering patterns across extensive collections196

of trajectories (Ni et al., 2024). Recent bench-197

marks on long-form text comprehension and sum-198

marization tasks have consistently demonstrated199

that LLM’s performance deteriorates significantly200

with increasing text length, particularly in process- 201

ing complex dialogues and lengthy documents (Bai 202

et al., 2024; Wu et al., 2024a; Ni et al., 2024; Song 203

et al., 2024; Zhang et al., 2024d). In the context 204

of LLM based optimizers, optimization requires 205

grasping long-range dependencies and analyzing 206

fine-grained details to capture subtle patterns across 207

multiple lengthy samples. This inherent limitation 208

of LLMs can lead to suboptimal module updates 209

that fail to capture the full complexity of the opti- 210

mization problem, especially in real-world applica- 211

tions where performance depends on understanding 212

both broad patterns and fine-grained details across 213

diverse samples. 214

3 Methods 215

3.1 Overview 216

The overall pipeline of FGO is illustrated in Figure 217

2. The core concept behind our proposed frame- 218

work is to divide the large task set into smaller, 219

more manageable subsets and optimize them inde- 220

pendently. After we obtain the optimal modules 221

trained on each subsets, we develop an algorithm to 222

progressively merge them into an optimal module. 223

3.2 Fine-Grained LLM Agent Optimization 224

Basic Module Optimization We begin with de- 225

scribing how we perform agent optimization. The 226

pipeline is illustrated in Algorithm 1. In each epoch, 227

the agent undergoes a three-phase cycle: explo- 228

ration, evaluation, and optimization. During explo- 229

ration, the agent interacts with the given task with 230

the current module, generating the solution trajec- 231

tories. The evaluation phase introduces a post-hoc 232

LLM based evaluator that analyzes these trajec- 233

tories to determine correctness, identify failures, 234

patterns as well as potential areas for improvement 235

based on the ground truth and trajectory. The eval- 236

uations serve as textual gradients to guide the di- 237

rection for updating the instruction toward better 238

performance. The optimization phase then lever- 239

ages these insights by feeding the trajectories, tex- 240

tual gradients into an LLM based optimizer, which 241

synthesizes this information to generate an updated 242

module. 243

Divide As the number and complexity of task 244

set scales, the length and number of the trajecto- 245

ries can quickly increase, posing challenge to LLM 246

based optimization. To address the issue, we pro- 247

pose a divide-and-conquer based strategy that de- 248

composes the training dataset D into N disjoint 249
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Figure 2: Illustration of FGO’s optimization pipeline. The system operates in three stages: (1) Divide: the full
dataset is split into manageable subsets, (2) Optimize: parallel optimization is performed on each subset using
LLM-based optimization with multiple iterations, and (3) Merge: optimized modules are progressively combined
using recursive clustering to produce the final optimal agent system.

Algorithm 1 Module Optimization

Input: Task set D, number of epochs E
Output: Optimized module θ
θ ← ϕ ▷ Start from scratch
for e← 1 to E do
H ← {} ▷ Empty trajectory history
for (q, y) ∈ D do

τ ← A(q; θ) ▷ Eq. 1
r ← Evaluate(τ, y)
H.append((τ, r))

end for
θ ← LLMoptim(H, θ) ▷ Update module

end for
return θ

subsets {Di}Ni=1, and perform optimization on the250

subsets independently. By operating on smaller,251

focused subsets, the intuition is to capture subtle252

patterns and requirements that might be overlooked253

in global optimization. The process yields N dis-254

tinct module-loss pairs, each specialized for its255

respective subset’s characteristics.256

Progressive Merging While decomposition ad-257

dresses the immediate scalability constraints, it258

introduces the challenge of integrating N inde-259

pendently optimized modules while preserving260

Algorithm 2 Progressive Module Merging

Input: ListM = {(θi, Ti, pi)} containing mod-
ules, their tasks, and performances
Output: Optimized module θ∗

function PROGRESSIVEMERGE(M, t)
if |M| ≤ t then

θ, p←Merge(M) ▷ Base: Direct Merge
return θ

end if
C ← KMeans(S,

√
|M|) ▷ Adaptive cluster

for each cluster ci ∈ C do
θi, pi ← ProgressiveMerge(ci, t)

end for
return Merge({θi, pi})

end function
return ProgressiveMerge(M, t)

their specialized insights. The straightforward ap- 261

proach would be to directly prompt an LLM with 262

all module-performance pairs and generate an up- 263

dated module. However, such all-at-once merging 264

struggles to effectively process and synthesize pat- 265

terns across many modules simultaneously, poten- 266

tially losing the specialized optimizations gained 267

through divided optimization. We propose progres- 268

sive merging, implemented as a recursive algorithm 269

that controls merging granularity through a cluster 270
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size threshold. Algorithm 2 shows the process of271

progressive merging. For a given list of module-272

performance pairs, we first check if the list size273

exceeds the threshold. For larger lists, we partition274

it into k = ⌊
√
n⌋ clusters based on similarities,275

where n is the number of modules. Each resulting276

cluster then undergoes recursive merging. When a277

cluster’s size falls below the threshold, we merge278

its modules by prompting an LLM with the mod-279

ule contents and their corresponding performance280

statistics. After each merge operation, we evaluate281

the merged module’s performance through validat-282

ing on the combined task set from all constituent283

modules. The recursive process naturally builds a284

bottom-up merging tree, where each internal node285

represents a validated merge of its children’s mod-286

ules. This controlled, progressive approach ensures287

that each merge operation stays within LLM con-288

text limits while capturing intricate relationships289

between similar modules, ultimately enabling effi-290

cient optimization of large-scale agentic systems.291

4 Evaluations292

4.1 Experiment Setup293

We evaluate FGO by optimizing two different mod-294

ules of the agentic system: instructions and tools.295

With proper instructions on the guidelines for the296

tasks, the agent can comprehend the scenario and297

solve it with ease (Fu et al., 2024; Chen et al.,298

2024; Wu et al., 2024b; Zhao et al., 2024). The299

tools expand the action space available to the agent,300

functioning as specialized modules that enable spe-301

cific capabilities. Optimizing the tool configuration302

directly impacts the agent’s ability to execute com-303

plex tasks efficiently and accurately.304

Datasets We conduct experiments on three differ-305

ent benchmarks to study the performance of FGO.306

• ALFWorld (Shridhar et al., 2020) is a text-based307

benchmark in which the agent is tasked with per-308

forming household tasks. Given a high-level ob-309

jective, the agent needs to interact with the virtual310

environment and perform actions through natural311

language to finish the task. We randomly select312

60 tasks from the training datasets (10 for each313

task type), and use the unseen set containing 134314

tasks as test set. The benchmark contains 6 types315

of tasks, we set the number of agent optimiz-316

ers to 6, with each agent optimizer optimizing317

each type of task. We report the success rate on318

different types of tasks and the overall success319

rate.320

• LogisticsQA is our own curated benchmark. The 321

dataset consists of UBL format shipping invoice 322

documents from real world scenarios. The agent 323

is tasked to understand and extract the trans- 324

port reference number from the document. The 325

dataset contains 267 document instances. For 326

further details of the dataset, please refer to Ap- 327

pendix B. We randomly select 48 documents for 328

training, the remaining 219 for testing. We set the 329

number of agent optimizers to 8, each performs 330

optimization on randomly split 6 tasks. A task is 331

considered successful if the agent’s answer is an 332

exact match with the ground truth. 333

• GAIA (Mialon et al., 2023) is a benchmark de- 334

signed to test the capability of agents as general 335

assistants. It encompasses tasks from different 336

domains such as file browsing, web searching and 337

scraping, making it a perfect testbed for bench- 338

marking agent’s tool usage capability as well as 339

the quality of the toolbox. We utilize 36 tasks 340

from the training set and evaluate on 60 tasks. 341

The optimization is distributed across 4 optimiz- 342

ers, each handling a distinct subset of tasks. 343

Baselines for Comparison. We compare perfor- 344

mance with different agent optimization methods: 345

(1) All-at-once optimization represents the conven- 346

tional approach of performing agent optimization 347

on the whole training set using the algorithm illus- 348

trated in Section 3.2; (2) Batch-wise optimization 349

employs a fixed-size batching strategy, splitting 350

the training dataset into predetermined chunks and 351

performing optimization sequentially on each task 352

batch within an epoch; (3) Bootstrapping opti- 353

mization implements a stochastic approach, sam- 354

pling task batches from the training dataset with 355

replacement. 356

Implementation details. We optimize the in- 357

structions for the agent on ALFWorld and Logistic- 358

sQA, and optimize the tools on GAIA. For ALF- 359

World, we leverage gpt-4o-mini as the backbone for 360

the agent and evaluator, and gpt-4o for optimization 361

and merging. For LogisticsQA and GAIA, we use 362

gpt-4o in the whole process. For a fair comparison, 363

all methods use the same number of optimization 364

steps. 365

4.2 Main Results 366

Finding 1: FGO demonstrates superior opti- 367

mization performance across multiple domains. 368

We present the optimized agent’s performance on 369

different bencmarks in Table 1. For the majority of 370
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ALFWorld
Methods

Pick Clean Heat Cool Look Pick Two Average
LogisticQA GAIA

Vanilla Agent 69.4 50.5 65.2 20.6 31.5 21.6 45.5 36.3 15.0
All-at-once 90.2 72.6 78.3 78.6 66.7 55.9 75.0 52.1* 21.7*
Batch-wise 77.1 71.0 67.4 64.3 86.1 73.5 72.8 55.7 10.0

Bootstrapping 91.7 77.4 73.9 74.6 87.0 41.2 75.6 62.6 20.0
FGO 90.2 83.8 87.0 88.9 86.1 62.7 83.6 64.8 23.3

Table 1: Performance of the optimized agent using different optimization methods on ALFWorld, LogisticQA and
GAIA. The best results are in bold. * denotes that we encounter context window exceeded error during optimization
and have to trim the number of trajectory reward pairs sent to the LLM optimizer.

the tasks, the agent demonstrates performance gain371

in most cases after optimization. This highlights372

how targeted prompt and tool refinement can sig-373

nificantly enhance LLM agent capabilities. Among374

the optimization methods, FGO achieves the most375

performance boost in all cases, with gains rang-376

ing from 8.3% to 38.1% compared to the vanilla377

agents.378

Finding 2: Progressive merging effectively pre-379

serves task-specific patterns while achieving380

global optimal. The superior performance of381

FGO can be attributed to its divide-and-conquer-382

based methodology. The All-at-once approach pro-383

cesses the entire training dataset simultaneously,384

requiring the LLM optimizer to learn from trajec-385

tories across the complete dataset. This leads to386

suboptimal performance due to the optimizer’s diffi-387

culty in processing complex patterns in long corpus,388

as evidenced by the suboptimal performance on389

ALFWorld subtasks. Alternative methods like boot-390

strapping optimization and batch-wise optimization391

demonstrate strong performance in specific cate-392

gories, but fail to maintain consistent performance393

across the task spectrum. Their batch-wise op-394

timization approach introduces instability in the395

training process, as the LLM optimizer encounters396

different data distributions in successive iterations,397

potentially compromising previously learned pat-398

terns. In contrast, FGO overcomes these limitations399

through its systematic merging of independently400

optimized instructions and tools. By first optimiz-401

ing subset-specific instructions and tools and then402

progressively merging them, FGO can preserve403

task-specific patterns while building toward global404

optimization. We further examine the implication405

of merging on FGO performance in Section 4.4.406

4.3 Further Analysis407
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Figure 3: Analysis of the number of training tasks. We
run optimization on varied training dataset sizes and plot
the performance. FGO achieves best performance in all
training settings, and demonstrate a steady increase as
the training taskset size increases.

Finding 3: FGO demonstrates extraordinary 408

scalability. We evaluated how training data vol- 409

ume affects optimization performance on ALF- 410

World. As shown in Figure 3, FGO maintains 411

stable performance across all dataset sizes, with 412

consistent improvements as training samples in- 413

crease. While batch-wise optimization shows 414

similar training accuracy in low-data settings, it 415

yields lower performance compared to bootstrap- 416

ping optimization, indicating poorer generalization. 417

This aligns with established machine learning prin- 418

ciples where bootstrapping enhances generaliza- 419

tion (Breiman, 1996). Additionally, All-at-once 420

optimization proves impractical for LogisticsQA 421

and GAIA due to their extensive document lengths 422

(>3,000 tokens) and complex solution trajectories 423

exceeding LLM context windows, validating the 424

need for our scalable approach. 425

Finding 4: FGO achieves an optimal balance 426

between token cost, efficiency and performance. 427

We visualize the relationship between prompt to- 428
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Figure 4: Comparison of prompt token efficiency across different optimization methods on ALFWorld, LogisticsQA,
and GAIA. Each panel plots the trained agent’s performance against the total prompt tokens consumed during
optimization. Circle diameters are proportional to the optimization token consumption, with crosses (+) indicating
circle centers.

ken used for optimization and the performance after429

training with different optimization methods in Fig-430

ure 4, and outline the time to train and performance431

in Figure 5. In terms of token cost, FGO requires432

larger number of prompt tokens compared to Batch-433

wise optimization and Boostrapping optimization.434

This is because the merging process requires eval-435

uating on the combined task set from all the con-436

stituent modules. This is a sacrifice in exchange437

for accurately modeling the merged module’s capa-438

bility in order to generate more accurate modules439

in the merging process. In contrast, All-at-once440

prompts the LLM optimizer with the whole list of441

trajectories and losses, leading to the largest token442

consumption requirements than other methods. In443

terms of efficiency, FGO can perform optimization444

in parallel and gather the optimized modules at445

once, which is an unique advantage compared to446

the sequential training methods.447

4.4 Ablation Study448

We investigate the following questions to under-449

stand the impact of different components and hy-450

perparameters in FGO:451

How does progressive merging and choice of452

clustering algorithm affect performance? To453

analyze the impact of progressive merging and eval-454

uate different clustering algorithms in the merging455

process, we conduct experiments on the ALFWorld456

benchmark. We first establish a baseline by remov-457

ing the progressive merging entirely, and instead458

prompting an LLM to generate the final module di-459

rectly from the module-performance pairs obtained460

from divided optimization. We then evaluate the461

effect of different clustering algorithms by fixing462

the independently optimized modules and chang-463

ing the clustering method to Spectral clustering and464

Bisect K-Means. We report the average and best of465

ALFWorld
Methods

Cluster
Algorithm Avg of 3 Best of 3

Vanilla - 45.5 61.9
None 73.1 84.3

Spectral 81.6 89.6
Bisect K-Means 80.1 91.0FGO

K-Means 83.6 89.6

Table 2: Ablation study on the effects of clustering
algorithms used. "None" means we skip the clustering
step and directly merge the optimized modules.

three runs in Table 2. Without progressive merging, 466

the method achieves a 73.1% average success rate, 467

demonstrating that even basic merging provides 468

substantial improvement over the vanilla agent. In 469

comparison, the introduction of progressive merg- 470

ing significantly boosts performance. Regardless of 471

the clustering algorithm employed during merging, 472

the final performances all demonstrate consistent 473

improvement to no merging. This consistency sug- 474

gests that the progressive nature of the merging 475

strategy, rather than the specific clustering algo- 476

rithm, is the key driver of improvement. 477

Does the division of training data affect perfor- 478

mance? To examine the robustness of FGO, we 479

compare our default category-based partitioning 480

against random partitioning of training tasks in 481

ALFWorld. As shown in Table 3, while random 482

partitioning shows a slight performance drop, the 483

system still maintains strong performance thanks to 484

the progressive merging process, which effectively 485

combines optimization insights across partitions. 486

This demonstrates that FGO’s performance remains 487

robust even with suboptimal partitioning strategies. 488

How does the number of divided subsets affect 489

performance? To answer this question, we con- 490

duct ablation study on the number of independent 491
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ALFWorld
Partition

Avg of 3 Best of 3
Random 80.3 88.1
Category 83.6 89.6

Table 3: Ablation on the data partitioning strategy. ’Cat-
egory’ denotes we partition the training data according
to the task type.
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Figure 5: Ablation study on the number of divided
subsets. Most parameter settings achieve similar perfor-
mance, with varying time for optimization.

agent optimizers. We trained agents on Logistic-492

sQA and set the number of divided subsets to 3, 4,493

6, 8, 12. Due to the high cost in running gpt-4o,494

we sampled 100 tasks from the test set and val-495

idate the optimized agent’s performance respec-496

tively. We plot the relationship between perfor-497

mance and training time in Figure 5. The results498

suggest that the choice of agent number primar-499

ily impacts computational efficiency rather than500

optimization quality.501

How does performance change with respect to502

backbone LLM? Finally, to ensure FGO well503

generalizes to different backbones, we change the504

optimizer backbone to o3-mini and observe the505

metrics. We report the token consumption for train-506

ing, wall-clock time, and performance in Table 4.507

In line with the main results, FGO maintains strong508

performance while reaching most efficiency, with509

slightly overhead in token consumption.510

Method # Tokens (107) Time (s) Avg of 3 Best of 3
All-at-once 8.15 7583 87.8 93.3
Batch-wise 1.59 2969 83.1 92.3

Bootstrapping 1.34 2521 88.8 95.0
FGO 1.97 2142 89.3 95.5

Table 4: Ablation on the optimizer backbone. We lever-
age o3-mini as the backbone for optimization, and report
the metrics. Best result is in bold.

5 Related Work 511

LLM as Optimizer. LLMs are increasingly used 512

as a blackbox optimizer for different LLM sys- 513

tems. In prompt optimization, LLM is leveraged 514

to automously maximizing LLM’s performance to 515

novel tasks without expensive model tuning (Zhou 516

et al., 2022; Pryzant et al., 2023; Cheng et al., 2023; 517

Prasad et al., 2022; Opsahl-Ong et al., 2024; Khat- 518

tab et al., 2024). In the realm of in-context learn- 519

ing (Min et al., 2021; Dong et al., 2022; Brown, 520

2020), by automatically retrieving demonstrations 521

from training set (Zhao et al., 2021; Lu et al., 2021; 522

Liu et al., 2021) or from adaptively annotated sam- 523

ples by LLM (Zhang et al., 2023; Wu et al., 2022; 524

Su et al., 2022), prompt with autonomously se- 525

lected in-context examples can reach performance 526

better can human crafted prompts. LLM based 527

optimizers are also used as a meta-optimizers to 528

improve an LLM based system (Zelikman et al., 529

2023; Yin et al., 2024). 530

Automated Agentic System Design. There has 531

been efforts in exploring inference time perfor- 532

mance boost since the emergence of Large Lan- 533

guage Models (Shinn et al., 2024; Madaan et al., 534

2024; Yao et al., 2023, 2024; Wei et al., 2022; Guo 535

et al., 2024). Recent works have extended this 536

paradigm to agentic systems. Some works repre- 537

sent and learn the optimal workflow of agentic sys- 538

tems in the form of complex graphs (Zhuge et al., 539

2024; Wu et al., 2024c), code (Hu et al., 2024a), 540

and trees (Zhang et al., 2024a) to improve the sys- 541

tem’s performance on complex tasks, while others 542

learns reusable tools (Zhang et al., 2024c; Cai et al., 543

2023; Qian et al., 2023; Yuan et al., 2023) and ex- 544

perience (Zhao et al., 2024; Wang et al., 2024b) for 545

agentic systems. 546

6 Conclusion 547

In this paper, we addressed the scalability chal- 548

lenges in LLM-based agent optimization by in- 549

troducing FGO, a framework that effectively pro- 550

cesses large-scale execution trajectories through 551

task division, fine-grained optimization, and pro- 552

gressive module merging. Our evaluation across 553

multiple dataset demonstrates consistent perfor- 554

mance improvements. FGO reaches an optimal 555

balance between performance, efficiency and token 556

consumption. 557
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Limitations558

The merging process introduces computational559

overhead, as it requires to back test the merged560

module on the merged training dataset, resulting561

in larger token cost compared to Batch-wise op-562

timization and Bootstrappingoptimization. In fu-563

ture works, we attempt to leverage LLM to predict564

the performance of the merged module using in-565

context learning, or approximate the performance566

using Bayesian methods.567
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A More Experiments882

How is the efficiency of FGO in terms of opti-883

mizing time consumption? In this section, we884

present the time for optimization on each method.885

Ours are the most efficient thanks to the parallel886

implementation.887

How does the trained agent perform after differ-888

ent optimization methods? We plot the token889

consumption for inferencing on the dataset with890

the modules trained with different methods. As891

shown in Table 6, 7, 8,FGO can reach competent892

performance with reasonable token consumption893

overhead.894

B LogisticQA Dataset895

B.1 Background896

We evaluate our system on a collection of real-897

world Universal Business Language invoice doc-898

uments, developed in cooperation with one of the899

world’s largest logistics companies. The primary900

task is to extract transport reference numbers from901

these documents. The reference numbers exist in902

these invoice documents in a non-fixed pattern. It903

typically requires human effort to extract it man-904

ually during real-world business operations. AI905

agents that can effectively understand the context906

and extract reference numbers can make the busi-907

ness workflow more efficient. The LogisticQA908

dataset shows LLMs’ ability to achieve such a909

goal. It contains 267 valid invoice documents and910

transport reference pairs. It can also reflect LLM’s911

instruction-learning capability in real-world docu-912

ment understanding tasks.913

The dataset presents several challenging char-914

acteristics that make it an ideal testbed for eval-915

uating the instruction learning capabilities. First,916

it requires specialized domain knowledge of busi-917

ness documents and terminology not commonly918

found in general language model training. Second,919

the hierarchical structure of UBL documents and920

Methods ALFWorld LogisticQA GAIA

all 8372 3600 7400
batch 2975.67 2550 4798

bootstrap 2567.72 2621 3957
FGO 1998 2434.0691 5906

Table 5: Performance comparison across different meth-
ods on ALFWorld, LogisticQA and GAIA datasets.

Method Tokens Performance
All-at-once 8,856,145 75.0
Batch-wise 9,018,478 72.8

Boostrapping 8,172,052 75.6
FGO 7,594,598 83.6

Table 6: Inference cost and performance for ALFWorld.

Method Tokens Performance
All-at-once 6,483,562 52.1
Batch-wise 6,872,656 55.7

Boostrapping 5,703,318 62.6
FGO 6,287,424 64.8

Table 7: Inference cost and performance for Logistic-
sQA.

the significant variability in format and identifica- 921

tion patterns pose substantial extraction challenges. 922

Additionally, as a novel benchmark without prior 923

literature coverage, this dataset offers unique oppor- 924

tunities to assess agents’ adaptive learning abilities 925

in a practical, high-stakes business context. 926

B.2 Dataset Statistics 927

The analysis of our XML business document 928

dataset demonstrates strong alignment with real- 929

world business documentation patterns, as shown in 930

Figure 6. The document length distribution peaks 931

between 200-500 lines, while the XML structure 932

complexity with most documents containing 100- 933

400 tags. The token distribution centered around 934

2,000-4,000 tokens indicates a long-context un- 935

derstanding challenge for LLMs. Notably, the 936

language distribution across documents (Turkish: 937

39.5%, English: 29.6%, Spanish: 22.0%, Italian: 938

8.9%) reflects a realistic multinational business en- 939

vironment, particularly common in European and 940

Mediterranean operations where English serves as 941

a lingua franca alongside regional languages. 942

B.3 Dataset Example 943

Here is an example XML business document in the 944

dataset. The ground truth extraction is 847 5321 945

9084. The named and loations in the dataset are all 946

anonymized. 947

948
<?xml version="1.0" encoding="UTF-8"?> 949
<Invoice xmlns="urn:oasis:names:specification:ubl:schema:xsd: 950

Invoice-2" 951
xmlns:cac="urn:oasis:names:specification:ubl:schema: 952

xsd:CommonAggregateComponents-2" 953
xmlns:cbc="urn:oasis:names:specification:ubl:schema: 954

xsd:CommonBasicComponents-2"> 955
<cbc:UBLVersionID>2.1</cbc:UBLVersionID> 956
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Figure 6: Statistical analysis of XML business documents. Top left: Distribution of document lengths showing
typical business document sizes. Top right: Distribution of XML tags indicating document structure complexity.
Bottom left: Token distribution demonstrating the long context challenge for LLM. Bottom right: Language
distribution across documents reflects business documents’ multinational nature.

Method Tokens Performance
All-at-once 527,551 21.7
Batch-wise 436,337 10.0

Boostrapping 877,283 20.0
FGO 787,921 23.3

Table 8: Inference cost and performance for GAIA.

<cbc:CustomizationID>urn:cen.eu:en16931:2017#compliant#urn:957
fdc:peppol.eu:2017:poacc:billing:3.0</cbc:958
CustomizationID>959

<cbc:ID>rmCMsB6Km6J4Qp2a</cbc:ID>960
<cbc:IssueDate>2023-10-11</cbc:IssueDate>961
<cbc:InvoiceTypeCode>Invoice</cbc:InvoiceTypeCode>962
<cbc:DocumentCurrencyCode>TRY</cbc:DocumentCurrencyCode>963

964
<cbc:Note>SALE965

HADIMKOY BRANCH 847 5321 9084966
No withholding tax applies when not self-owned according to967

law968
This invoice must be paid by: 01/08/24969
PLEASE INDICATE THE VEHICLE PLATE NUMBER AND INVOICE NUMBER IN970

THE DESCRIPTION OF YOUR BANK TRANSFER RECEIPT971
For invoices not paid by due date, late payment interest will972

be charged according to the Law on Collection Procedure973
of Public Receivables (AATUHK).974

Only FourThousandThirtyTwoTL</cbc:Note>975

976
977

<cac:AccountingSupplierParty> 978
<cac:Party> 979

<cac:PartyName> 980
<cbc:Name>S.S 350 COOPERATIVE AIRPORT CARGO 981

TERMINAL LOGISTICS SERVICES MOTOR CARRIERS 982
</cbc:Name> 983

</cac:PartyName> 984
<cac:PostalAddress> 985

<cbc:StreetName>Cargo Terminal Cooperative 986
Service</cbc:StreetName> 987

<cbc:CityName>Springfield</cbc:CityName> 988
<cbc:PostalZone>None</cbc:PostalZone> 989
<cac:Country> 990

<cbc:IdentificationCode>TR</cbc: 991
IdentificationCode> 992

</cac:Country> 993
</cac:PostalAddress> 994

</cac:Party> 995
</cac:AccountingSupplierParty> 996

997
<cac:AccountingCustomerParty> 998

<cac:Party> 999
<cac:PartyName> 1000

<cbc:Name>GLOBAL LOGISTICS SOLUTIONS LTD.</cbc: 1001
Name> 1002

</cac:PartyName> 1003
<cac:PostalAddress> 1004

<cbc:StreetName>INDUSTRIAL DISTRICT SPRINGFIELD< 1005
/cbc:StreetName> 1006

<cbc:CityName>None</cbc:CityName> 1007
<cbc:PostalZone>None</cbc:PostalZone> 1008
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<cac:Country>1009
<cbc:IdentificationCode>TR</cbc:1010

IdentificationCode>1011
</cac:Country>1012

</cac:PostalAddress>1013
</cac:Party>1014

</cac:AccountingCustomerParty>1015
1016
1017

<cac:PaymentTerms>1018
<cbc:Note>SALE1019

HADIMKOY BRANCH 847 5321 90841020
No withholding tax applies when not self-owned according to1021

law1022
This invoice must be paid by: 01/08/241023
PLEASE INDICATE THE VEHICLE PLATE NUMBER AND INVOICE NUMBER IN1024

THE DESCRIPTION OF YOUR BANK TRANSFER RECEIPT1025
For invoices not paid by due date, late payment interest will1026

be charged according to the Law on Collection Procedure1027
of Public Receivables (AATUHK).1028

Only FourThousandThirtyTwoTL</cbc:Note>1029
</cac:PaymentTerms>1030

1031
1032

<cac:LegalMonetaryTotal>1033
<cbc:LineExtensionAmount currencyID="TRY">1034

2243.261035
</cbc:LineExtensionAmount>1036
<cbc:TaxExclusiveAmount currencyID="TRY">1037

448.651038
</cbc:TaxExclusiveAmount>1039
<cbc:TaxInclusiveAmount currencyID="TRY">1040

2691.911041
</cbc:TaxInclusiveAmount>1042
<cbc:PayableAmount currencyID="TRY">1043

2691.911044
</cbc:PayableAmount>1045

</cac:LegalMonetaryTotal>1046
1047
1048

<cac:InvoiceLine>1049
<cbc:ID>1</cbc:ID>1050
<cbc:InvoicedQuantity unitCode="EA">1.0</cbc:1051

InvoicedQuantity>1052
<cbc:LineExtensionAmount currencyID="TRY">1053

2243.261054
</cbc:LineExtensionAmount>1055
<cac:Item>1056

<cbc:Description>THY-NEWTOWN transportation fee-781057
XYZ432</cbc:Description>1058

<cbc:Name>THY-NEWTOWN transportation fee-78XYZ432</1059
cbc:Name>1060

</cac:Item>1061
<cac:Price>1062

<cbc:PriceAmount currencyID="TRY">2243.26</cbc:1063
PriceAmount>1064

</cac:Price>1065
</cac:InvoiceLine>1066

1067
</Invoice>1068

C Complexity Analysis1069

In this section, we analyze the computational com-1070

plexity of the recursive clustering in the progressive1071

merging process.1072

C.1 Clustering Tree Depth1073

At each recursive step, the number of module is1074

reduced by taking the square root:1075

ni+1 =
√
ni, with n0 = N. (3)1076

The recursion stops when the number of items sat-1077

isfies:1078

nD = N (1/2)D ≤ t. (4)1079

Taking logarithms on both sides gives: 1080

(1/2)D · logN ≤ log t. (5) 1081

Solving for D yields: 1082

D = O (log logN) . (6) 1083

C.2 Backtesting Complexity 1084

Each merge operation performs a backward testing 1085

over all tasks contributing to the merged module. 1086

Since tasks are merged without duplication, the 1087

total number of unique tasks remains T throughout 1088

the process. As every level of the clustering tree 1089

processes T tasks and the depth of the tree is D = 1090

O(log logN), the overall complexity of testing is: 1091

O (T · log logN) . (7) 1092

This demonstrates that the overhead introduced 1093

by backward testing is modest as N scales. 1094

D Prompt 1095

D.1 ALFWorld 1096

1097

Perform actions and interact with a 1098

household to solve a task. At the 1099

beginning of your interactions, you 1100

will be given the detailed 1101

description of the current 1102

environment and your goal to 1103

accomplish. The environment only 1104

accept certain format of actions. 1105

Here are two examples, learn the 1106

pattern carefully. 1107

D.2 LogisticsQA 1108

1109

# Task background 1110

Read the content of a xml file which 1111

contains a shipment invoice document 1112

in UBL format. You are tasked to 1113

understand the content and extract 1114

the transport reference number from 1115

it. 1116

When you reach a conclusion, format your 1117

answer as "final answer: [extracted 1118

reference number]" 1119
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D.3 GAIA1120

1121

# Task1122

You need to solve the question below1123

given by a user. When you are1124

building tasks, explicitly consider1125

where the task can benefit from web1126

navigation capability.1127

1128

# Task1129

{task}1130

"""1131
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