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Abstract

Generating paragraph captions for untrimmed
videos without event annotations is challenging,
especially when aiming to enhance precision
and minimize repetition at the same time. To
address this challenge, we propose a module
called Sparse Frame Grouping (SFG). It dynam-
ically groups event information with the help
of action information for the entire video and
excludes redundant frames within pre-defined
clips. To enhance the performance, an Intra-
Contrastive Learning technique is designed to
align the SFG module with the core event con-
tent in the paragraph, and an Inter-Contrastive
Learning method is employed to learn action-
guided context with reduced static noise si-
multaneously. Extensive experiments are con-
ducted on two benchmark datasets (ActivityNet
Captions and YouCook2). Results demonstrate
that SFG outperforms the state-of-the-art meth-
ods on all metrics.

1 Introduction

Video Paragraph Captioning for untrimmed video
aims to describe multiple events in the video with
three or four sentences. Initially, the focus was
on describing each event with a single sentence
in a long video (J. Lei and Mohit, 2020) (J. Mun
and Han, 2019), until (Y. Song and Jin, 2021) pro-
posed to directly generate paragraph captions with-
out event ground truths. This refined approach
to paragraph captioning is more practical but also
more challenging. Firstly, without event labels, it
becomes difficult to precisely locate the transitions
between different events and to summarize the com-
plete story from a holistic perspective. Secondly,
most prior studies generated one sentence for each
event, whereas paragraph captioning without event
ground truths requires generating sentences that
are two or three times longer. This naturally exac-
erbates issues of redundancy and repetition. Our
work focuses on video paragraph captioning with-
out event annotations as shown in Fig. 1.

Figure 1: Comparison of SFG with traditional methods.

As a common frame sampling strategy in most
existing works, random sampling method randomly
selects one frame every one or two seconds. The
hypothesis of previous works is that the frames in
one second are highly similar, so random sampling
does not result in significant information loss. How-
ever, actions often occur rapidly, such as within a
one-second time frame, and usually lead changes to
events. Random sampling may miss crucial action
frames that occur quickly and retain many similar
frames as noise. According to (J. Lei and Mohit,
2022), one or two key frames are sufficient to cap-
ture important content, and the “redundant” frames
can be neglected in an action clip. In this way, we
can learn the visual content from a small number
of frames that contain critical information.

Therefore, our objective is to learn event distribu-
tions guided by action frames, and utilize them as
estimations for event locations, enabling us to con-
struct comprehensive paragraph stories by incorpo-
rating these momentary yet important actions. Con-
sidering the impracticality of including all frames
(often averaging hundreds) into the analysis, it be-
comes essential to find an effective way for frame
selection and information grouping. Our work
specifically focuses on action-driven video para-
graph captioning. It tackles the captioning task
by utilizing sparse frames and refined video an-



chors with action visual representation. No event
annotation or any other additional information is
used except for the video and paragraph captions,
thereby ensuring the practicality of our method.

We propose our vanilla model based on the
Transformer architect (J. Lei and Mohit, 2020).
A new grouping module, named Sparse Frame
Grouping (SFG), is introduced. It uses a set of
designed anchors as queries to select and group
useful frames. The objective is to extract two types
of content from the video: event distributions and
action changes between adjacent frames. The idea
is to progressively estimate the actual event distri-
butions by grouping visually similar video frames
using these designed anchors.

At each encoder layer, SFG is first applied to ev-
ery two frames and selects one informative frame,
where anchors are random frames. As a result, a se-
quence of sparse and important video frames are ob-
tained, instead of using the randomly sampled ones.
This process is referred to as clip-level SFG. Next,
SFG is employed to group event context across the
entire video. Video anchors are initialized using
triplets of ground truths during the training phase.
The objective is to ensure that the anchors capture
the action-driven event distributions in the video,
while the triplets provide a concise representation
of the main action content in the sentences. This
process is referred to as video-level SFG. At this
stage, the video anchors are updated by grouping
the newly selected frames. The remaining steps
follow the standard transformer computation. In
the decoder, we modify the cross-attention mecha-
nism by attending video anchors in the video-level
SFG additionally. The weighted anchors, along
with the weighted video frames, guide the decoder
to generate each word at each decoding step.

To train SFG without using event annotations,
we introduce an Intra- and Inter-Contrastive Learn-
ing technique. The objective is to ensure that
the video anchors are close to their relevant event
contents in the video. This process naturally in-
volves contrastive learning between anchors and
paragraph. The challenge is that the embedding
of the entire paragraph contains excessive noise
for the video anchors which are intended to rep-
resent the center of events. What we aim to learn
is a summary of the event context within the para-
graph, while disregarding those static descriptions
that are not relevant to the actions in our video an-
chors. We modify the positive contrastive pair from

visual-paragraph to visual-triplets, while the neg-
ative pairs consist of unmatched pairs within the
batch. For each sentence in the paragraph, triplet
(s, v, o) (Sec. 3.2) is extracted and the embeddings
of all triplets are averaged. This contrastive learn-
ing approach is referred to as Intra-Contrastive
Learning, and its purpose is to minimize the dis-
tance between the overall video anchors and the
paragraphs.

Besides, it is crucial to differentiate the video
anchors from other visual contents in the video.
The Inter-Contrastive Learning method takes the
left video representation as a negative visual part.
It requires the distance between the video anchors
and the triplet embeddings is at least smaller than
the distance from the negative visual part to the
triplet embeddings. We conduct experiments on
ActivityNet Caption and YouCook2 datasets. The
results demonstrate that our model outperforms the
state-of-the-art (SOTA) methods when evaluated
using the event ground truths on both datasets.

The contributions of this work are as follows:
(1) We propose a Sparse Frame Grouping (SFG)

module to estimate event locations and catch action-
driven visual content. It operates at both the short
clips and the whole video levels without relying on
event annotations, thereby enhancing the practical-
ity of video paragraph captioning.

(2) We build an Intra- and Intro-contrastive loss
for SFG training. It helps the model focus more on
learning event distribution rather than other noisy
contextual information, reducing redundancy and
improving precision of the captions.

(3) Our model achieves SOTA results on bench-
mark datasets ActivityNet and YouCook2, outper-
forming even the methods using event annotations.

2 Related work

Dense Video Captioning As a multi-modal task,
it has attracted much attention. Popular catego-
rization of dense video captioning falls into three:
predicting event location and sentences, solely pre-
dicting sentences with event annotations, and pre-
dicting paragraphs without event annotations. In
this paper, our focus falls into the third category.
(L. Zhou and Xiong, 2018) is the first adopting
transformer to decode sentences and create differ-
entiable masks for the consistency between propos-
als and captions. (J. Mun and Han, 2019) used a
pointer network to select possible event proposals
from candidates and to recurrently generate sen-



tence for each event. (T. Wang and Luo, 2021)
firstly tackled this task as a parallel multitask. Lo-
calization and caption generation are predicted at
the same time using a DETR scheme. (P. Jae Sung
and Anna, 2019) adopted adversarial inference to
evaluate the paragraph quality. (J. Lei and Mohit,
2020) proposed a memory module in decoder to
remove redundant visual and text information dy-
namically. These prior studies all rely on event
annotations. (Y. Song and Jin, 2021) focused on
reducing redundancy using an adding and erasing
module at each decoding step without event anno-
tations. However, little attention have been paid to
video redundancy itself at the encoder stage. In our
work, we aim to address this issue by tackling it
from the initial frame selection stage and capturing
the core action content of the video.

Video Action Understanding Action localiza-
tion in video is an important task for video under-
standing. (Yeung et al., 2016) and (Zhou et al.,
2018) utilized reinforce learning to dynamically
determine the next frame. (Z. Yuan and Gangshan,
2021) proposed to sample motion from cumula-
tive distribution. (B. Korbar and Torresani, 2019)
proposed to understand video only through some
salient clips which were ranked and selected for
further understanding. (Gowda et al., 2021) se-
lected single frame and utilized high level feature
for video classification. The previous works sel-
dom combine the two modalities (visual and text)
together. Our work utilizes both to better select key
frames.

3 Methods

The proposed Sparse Frame Grouping Network is
shown in Fig. 2. It consists of three modules: clip-
level SFG, video-level SFG, and Intra- and Inter-
Contrastive Learning. Together with the vanilla
transformer, these modules generate action-driven
and event annotation-free paragraphs. In this sec-
tion, the vanilla transformer is first described, fol-
lowed by the introduction to the three modules.

3.1 Vanilla Model

Given an untrimmed video V = {v1, ..., vn}, vi ∈
Rdv , where vi is the i-th video frame representa-
tion (referred to as frame hereafter), n is the total
number of frames in V , and dv is the dimension
of video frame. The video paragraph captioning
task aims to describe the content of V with a para-
graph Y = {y1, ..., yk}, yj ∈ Rdw , where yj is the

j-th word in the k length paragraph, and dw is the
dimension of word embeddings. Here we build
our vanilla model based on the transformer struc-
ture, following the approach described in (L. Zhou
and Xiong, 2018) and (J. Lei and Mohit, 2020).
The encoder transformer E is used to learn the
video representation Ve from video input V and
the decoder transformer D generates the captions
conditioned on Ve. Specifically, we first adopt N-
layer transformer encoder to model the long range
interactions:

Vi+1 = FFN(Vi +MultiHead(Vi, Vi, Vi)) (1)

where Vi is the output of i-th transformer layer.
FFN() and MultiHead() denote feed-forward
network and multi-head attention as in (L. Zhou
and Xiong, 2018). For the decoder, we first use
the masked multi-head self attention (L. Zhou and
Xiong, 2018) to model the hidden states of the last
layer, then we introduce cross attention to fuse the
text modality and the visual modality. For cross
attention, we use the text embeddings at each de-
coding step as the query, and Vn from the last layer
of the encoder as key and value, so that each word
can be generated based on the previously predicted
words and the attended video contents. The vanilla
model is trained typically by the Maximum Likeli-
hood Estimation (MLE) loss:

Lmle = − 1

T

T∑
t=0

log p(y∗t |y∗<t, Ve) (2)

Lmle = − 1

T

T∑
t=0

log p(y∗t |y∗<t, Ve) (3)

where Ve is conditioned video representation. y∗t
is the predicted word at the t-th step and T is the
length of caption. Without event segment annota-
tions, there are three challenges in video paragraph
captioning. Firstly, directly decoding the entire
video usually leads to confusion in recognizing
clear contexts and decoding each into word out-
put. Secondly, the random frame sampling strategy
results in the loss of essential key information, af-
fecting the decoder’s ability to catch action changes
and decode precise words. Lastly, the MLE loss
tends to generate high frequency and repetitive
words in previous steps.



Figure 2: Overview of SFG Network. (a) Architect of the network. SFG is applied at both the clip and video level
in every encoder layer. The decoder dynamically generates words based on previous video anchors and selected
video frames. Intra- and Inter-Contrastive Learning is introduced for video anchor training. (b) Detail of SFG.

3.2 Progressive Grouping Transformer

As shown in Fig. 2(a), based on the vanilla trans-
former (Sec.3.1), instead of directly feeding all
the video frames into the transformer encoder,
we incorporate the clip-level sparse frame group-
ing (SFG) module and video-level grouping mod-
ule prior to each transformer layer, denoted as
SFGclip and SFGvideo. We employ dynamic to-
kens, known as anchors, to selectively choose use-
ful frames from the input or the previous trans-
former layer. The objective of these modules is to
obtain a set of sparse video frames and a collection
of video anchors that can learn event distributions
dynamically.

Formally, we take the l-th transformer layer
as an example and have the video frames V l as
the input. Firstly, we randomly select one frame
from every two frames as anchors for SFGclip

as V l1 = SFGclip(V
l, Al

clip), where Al
clip rep-

resents anchors at the clip level. V l1 is the half
length of the input frames. To help SFG learn
the action-driven event context, we initialize the
video level frames via triplet embeddings. Assum-
ing that triplets highly summarize the main con-
tents of the sentence in captions, we extract one
triplet (L. Wang and Svetlana, 2016) from each sen-
tence and project it to the same latent space as the
video frames through linear projection. E.g., one
triplet from a sentence is < s, v, o >, which can

be embedded as {ys, yv1, ..., yvk, yo}. ys is subject,
yv1, ..., yvk is one verb or verb phrase, and yo is
object. We sum the word embeddings in the triplet
and project them to the video representation space:
ali = Linear(

∑
ytriplet), ali ∈ Rdv is one anchor

among the video anchors. By initializing the left
video anchors and setting the number of anchors to
be equal to the number of sentences in the captions,
the anchors can effectively group the content with
action-related visual features and learn the event
distributions through different anchors. We get
the updated video anchors Al+1

video and the selected
video frames via:

I l, Al+1
video = SFGvideo(V

l1 , Al
video) (4)

V l+1 = Transfromer_Layer(V l1), (5)

where I l is the outcome of ArgMax, which is
the index of center frames at this stage. We adopt
the video frames selected by SFGclip and forward
them to l-th transformer layer. With the stacked
encoder transformer layers and SFG modules, we
get a set of sparse video frames with fewer redun-
dant frames and the most representative anchors.
These anchors already group the core content of
the events in the video.

3.3 Sparse Frame Grouping Block
As shown in Fig. 2(b), SFG utilizes the dynamic
anchors to select the center frames for each anchor



and group action-driven event content around the
updated anchors.

Formally, we take anchors A =
{a1, ..., am}, ai ∈ Rdv as the query, and the
video frames V as the key and value pairs to
compute the weights of video frames. To select
target frames, we change the original SoftMax to
ArgMax and weight matrix to one-hot matrix.
Then we select the center frames and obtain the
updated anchors Â through the ArgMax function:

Â = A+ArgMax(A× V )× V, (6)

where A represents the anchors discussed in Sec.
3.2. However, the one-hot matrix from ArgMax is
not differentiable. We further use Gumbel SoftMax
(E. Jang and Ben, 2016) and transform Eq. 6 as
follows:

Â = A+
exp(A× V + β)∑
exp(A× V + β)

× V, (7)

where Â represents the updated anchors. β is sam-
pled from the Gumble(0, 1) distribution to ensure
that SFG can merge the video event information
progressively during the training phase.

3.4 Intra- and Inter-Video Contrastive
Learning

We obtain a sparse video representation Ve with sig-
nificantly fewer frames compared to the raw video
and a set of event context anchors after encoding.
To effectively train the proposed video anchors, es-
pecially in the absence of event annotations, we
introduce an Intra- and Inter-Video Contrastive
Learning technique. This technique enables the
learning of event context, which is mainly action
context-driven. Specially, we first employ intra-
video contrastive learning to minimize the distance
between the representation of dynamic anchors A
and the text representation. However, the ground
truth information may contain noise. For example,
grouping frames should not include an excessive
number of static or descriptive words such as color,
position and background. We aim to extract some
confined context from the captions that includes
action description while excluding the “unimpor-
tant” words. Therefore, triplets are used (Sec.3.2).
Assuming that short triplets highly summarize the
main contents of the video, we denote the posi-
tive pair as < A, T >, where A is the average
of anchor representation and T is the average of
triplet embeddings. The unmatched pairs in the

batch are negative pairs. The Intra-contrastive loss
Lintra = La−→t + Lt−→a is as follows:

La−→t =
1

Tb

Tb∑
i=1

log
exp(Ai · Ti)/τ∑Tb
j=1 exp(Ai · Tj)/τ

, (8)

Lt−→a =
1

Tb

Tb∑
i=1

log
exp(Ti ·Ai)/τ∑Tb
j=1 exp(Ti ·Aj)/τ

, (9)

where Tb is the batch size. We use dot produc-
tion to measure the similarity between A and T .
The loss aims to ensure that all the anchors cap-
ture similar contextual information as the possi-
ble events described in the captions. However, to
reduce redundancy in the generated captions, we
also need to secure that the video anchors learn
less static noise. Therefore, we further apply Inter-
Contrastive Learning to guarantee that the video
anchors are at least closer to the triplet embeddings
compared to the surrounding visual features. For
negative pairs, we select the frames that are not cho-
sen by SFGvideo in the last transformer encoder
layer, which is An = (1 − IL) × V . Thus the
negative visual pair becomes < An, T >. The pos-
itive pair in the Inter-Constrastive Learning is the
same as that in the Intra-Contrastive Learning. The
Inter-contrastive loss is as below:

Linter = max(Ap · T −An · T + σ, 0), (10)

where σ is a margin constant. This inter-video
loss helps distinguish the representation of video
anchors from the other parts of the video. The total
training loss is:

Loss = Lmle + λ1Lintra + λ2Linter, (11)

where λ1 and λ2 are loss weights over zero.

4 Experiments

4.1 Datasets and Implementation
Datasets and Evaluation Metrics: All the exper-
iments are conducted on two widely used bench-
mark datasets, i.e., ActivityNet Captions(K. Ran-
jay and Juan, 2017) and YouCook2(L. Zhou and
J, 2018). For fair comparison, we use four
mainstream evaluation metrics, including BLEU-4
(B@4), METEOR, CIDER and R@4. A higher
score for any metric indicates better performance
in captioning. Besides, we evaluate repetition using
R@4, following the previous work in (P. Jae Sung
and Anna, 2019). A lower R@4 score indicates



better performance, suggesting less repetition in
the paragraph caption.
Implementation Details: For visual features, we
utilize the video features extracted by ResNet-200
and BNInception, as provided by (L. Zhou and
Xiong, 2018). The length of video anchors is set to
10 for ActivityNet Captions and 14 for YouCook2.
In the inference phase, random frames are used to
initialize the video anchors for SFGvideo. For text
features, words are initialized using Glove embed-
dings. Text is limited to 60 words. Empirically, the
loss weight λ1 is set to 1 and λ2 to 0.5. The batch
size is 32. Greedy decoding is adopted which is
comparable to beam search.

4.2 Comparison with SOTA Methods

In Tab. 1, we compare our model with SOTA
methods on ActivityNet Captions. These meth-
ods can be divided into two categories: (1) infer-
ring without event annotations, including TDPC
(CVPR21) (Y. Song and Jin, 2021); (2) with an-
notations, including VTrans (CVPR18) (L. Zhou
and Xiong, 2018), MFT (ECCV18) (Y. Xiong and
Lin, 2018), GVD (CVPR19) (L. Zhou and Mar-
cus, 2019), GVDsup (CVPR19) (L. Zhou and Mar-
cus, 2019), AdvInf (CVPR19) (P. Jae Sung and
Anna, 2019), Transformer-XL (ACL19) (Z. Dai
and Ruslan, 2019), MART (ACL20) (J. Lei and
Mohit, 2020), PDVC (ICCV21) (T. Wang and Luo,
2021). It is worth noting that GVD, GVDsup and
AdvInf adopt additional object features to align the
descriptions and objects in the video. Naturally
stronger feature leads to impressive performance.
However, our model outperformas them, regard-
less of whether the object features are integrated or
event annotations are used.

Without the event ground truths, our model still
achieves the best performance on B@4, Meteor
and CIDER with a relative improvement of 3.7%,
6.5% and 5.9% respectively compared to PDVC
(on ActivityNet ae-val). The uplift is achieved even
with fewer frames and no event annotations. While
TDPC also utilizes key frames, it relies on the pre-
trained model to reconstruct the common represen-
tation space between text and video. It should be
the strong prior knowledge in our model that makes
the generation more precise. Additionally, TDPC
tends to generate shorter sentences, which may re-
sult in lower METEOR score for AdvInf. This
could be attributed to TDPC encoding all frames
directly and overlooking event distributions in the

video. TDPC may learn the fragmented informa-
tion scattered throughout the frames. In contrast,
our model makes more efforts to address this prob-
lem, resulting in more action-driven and organized
descriptions. The uplift in METEOR score serves
as evidence of a preference for longer sentences in
our approach.

Tab. 2 shows the performance on YouCook2
validation set. Our method achieves the SOTA
performance, demonstrating a significant improve-
ment over the other methods across all the metrics.
Also, YouCook2 contains a large number of events,
which highlights the importance of event distribu-
tions for caption generation.

4.3 Ablation Studies

To verify the effectiveness of the proposed group-
ing module and loss, we conduct ablation studies
on ActivityNet.

Effects of SFG As shown in Tab. 3, V anilla is
the baseline with MLE loss. V anilla+ SFGclip

refers to only SFGclip is used in every layer of
the encoder transformer. V anilla + SFGvideo +
Lintra + Linter is the complete module for our
video-level SFG. The last row is the full model.
The experiments report that: (1) SFGclip con-
tributes to a reduction in repetition, as indicated
by the improvement in R@4. R@4 is improved by
38% and by 59% in rows 1 & 2 and rows 5 & 6.
This suggests that the dynamic frame sampling per-
formed by SFGclip not only benefits the selection
of informative frame, but also results in a sparse
video representation, reducing the redundancy from
the video side; (2) for SFGvideo in row 5, there
are considerable improvements in the precision and
repetition. This indicates the video anchors indeed
learn to estimate the video content, reducing the
static noise and, consequently the redundancy.

Effects of Intra- and Inter-Contrastive Loss
In Tab. 3, V anilla + SFGvideo + Lintra refers
to only SFGvideo is used in every encoder layer
with Lossintra. V anilla+ SFGvideo + Linter is
to verify whether the distinction of anchors alone
is sufficient to summarize the event distribution in
the video, without the supervision of triplets. From
the results, it can be concluded that Lossintra has
a greater impact on improving the model precision
(B@4, METEOR and R@4), while Lossinter sig-
nificantly reduces R@4. Specifically, when com-
paring with row 2, row 3 (Lossintra + SFGvideo)
has improvements in B@4, METEOR and CIDER



Table 1: Performance Comparison on ActivityNet. ae-val. V , F , O: visual, flow and obj features. *: utilizing
stronger features. The italic number means they are significant in hypothesis testing,

Model
Event Annotation

Features
ae-val ae-test

Train Infer B@4↑ METEOR↑ CIDER↑ R@4↓ B@4↑ METEOR↑ CIDER↑ R@4↓

HSE(B. Zhang and Sha, 2018) Y Y V 9.84 13.78 18.78 13.22 - - - -
VTrans(L. Zhou and Xiong, 2018) Y Y V+F 9.75 15.64 22.16 7.79 9.31 15.54 21.33 7.45
Tansformer-XL(Z. Dai and Ruslan, 2019) Y Y V+F 10.39 15.09 21.67 8.54 10.25 14.91 21.71 8.79
MART(J. Lei and Mohit, 2020) Y Y V+F 10.33 15.68 23.42 5.18 9.78 15.57 22.16 5.44
PDVC(T. Wang and Luo, 2021) Y Y V+F 11.80 15.93 27.27 - - - - -
GVD(L. Zhou and Marcus, 2019) Y Y V+F+O 11.04 15.71 21.95 8.76 10.50 15.60 21.60 -
GVDsup(L. Zhou and Marcus, 2019) Y Y V+F+O 11.30 16.41 22.94 7.04 10.70 16.10 22.20 -
AdvInf(P. Jae Sung and Anna, 2019) Y Y V+F+O 10.04 16.60 20.97 5.76 - - - -

MFT(Y. Xiong and Lin, 2018) Y N V+F 8.45 14.75 14.15 17.59 - - - -
PDVC(T. Wang and Luo, 2021) Y N V+F 10.24 15.80 20.45 - - - - -

TDPC*(Y. Song and Jin, 2021) N N V+F - - - - 12.20 16.10 27.36 2.63
Vanilla N N V+F 11.23 15.34 25.23 7.38 10.87 15.21 25.12 8.23
Ours N N V+F 12.24 16.97 28.89 2.51 12.21 16.62 28.54 2.53

Table 2: Performance Comparison on YouCook2.

Model B@4↑ METEOR↑ CIDER↑ R@4↓

VTrans(Z. Dai and Ruslan, 2019) 7.62 15.65 32.26 7.83
Tansformer-XL(Z. Dai and Ruslan, 2019) 6.56 14.76 26.35 6.30
MART(J. Lei and Mohit, 2020) 8.00 15.90 35.74 4.39

Vanilla 7.54 15.32 32.46 5.89
Ours 8.53 16.24 39.27 4.12

Table 3: Ablation Studies.

Index Model B@4 METEOR CIDER R@4

1 V anilla 11.23 15.34 25.23 7.38
2 V anilla+SFGclip 11.39 15.49 25.90 5.34
3 V anilla+SFGvideo+Lintra 11.42 15.90 26.76 5.89
4 V anilla+SFGvideo+Linter 11.58 16.00 27.06 4.67
5 V anilla+SFGvideo+Lintra+Linter 11.71 16.30 28.21 3.98
6 blueV anilla+SFGclip+SFGvideo+Lintra 11.83 16.41 28.54 3.90
7 blueV anilla+SFGclip+SFGvideo+Linter 11.80 16.54 28.67 3.20
8 V anilla+SFGclip+SFGvideo+Lintra+Linter 12.24 16.97 28.89 2.51

by 0.3%, 3.0% and 3.3% respectively, except for
R@4 which is increased. We speculate that the
increase in R@4 may be due to the absence of
SFGclip, but the precision benefits from the su-
pervision of Lossintra, which is similar to the
representation of triplets in the captions. As for
Lossinter, it boosts all the metrics, especially R@4,
suggesting that Lossinter helps video anchors ex-
clude many static visual content and reduce repeti-
tion.

Effect of Anchor Number During the training
phase, the initialization of the video anchors are
only related to triplets from captions. However, dur-
ing the testing phase, we currently select one frame
at regular intervals from the video as an anchor.
The difference is that the tokens in SFG are prede-
fined in terms of quantity, and a random frame is
used as the initial value. We conduct further analy-
sis to determine the optimal number of anchors for
the clip-level and video-level SFGs. As shown in
Tab. 5, clip-level refers to setting one anchor for
every 2/3 video frames, while video-level refers to

Table 4: Effects of Anchor Position in Testing Phase.

anchor position B@4↑ METEOR↑ CIDER↑ R@4↓

random sample 10.3 15.8 28.56 3.12
uniform sample 12.24 16.97 28.89 2.51

Table 5: Effects of Frame Num. at Clip- and Video-
levels.

Clip Level Video Level B@4↑ METEOR↑ CIDER↑ R@4↓

2 8 11.69 15.45 27.35 4.93
3 8 11.54 15.23 27.21 4.12
2 10 12.24 16.97 28.89 2.51
3 10 11.86 16.01 27.54 2.49

setting 8/10 anchors in video-level SFG. It can be
seen that selecting one video frame from every 2
frames for clip-level SFG and using 10 anchors in
video-level SFG yield the best performance. When
comparing 3 frames to 2 frames at the clip-level,
the precision decreases, but R@4 is improved by
20% (in rows 1 & 2). This represents a trade-off be-
tween repetition and precision. For video anchors,
using 10 anchors can cover most events in Activ-
ityNet Captions while 8 anchors may miss some.
Also, we test different ways of select anchors in the
testing phase, with randomly selecting frames as
anchors using a random seed or uniformly selecting
over total frames. The results are as Tab. 4 and it
can be observed that the random sampling method
is not as effective as uniform sampling.

Table 6: Effects of Anchors & Fusion in Decoder.

Decoder B@4↑ METEOR↑ CIDER↑ R@4↓

w/o anchors 11.95 16.34 28.56 3.12
add 12.12 16.01 28.23 3.09

concatenate 12.24 16.97 28.89 2.51



GT: A band plays an acoustic guitar with a band on stage during a party. A man sits down wearily and
his guitar is taken by a man in the crowd. The man from the crowd plays a guitar with the band on stage
happily. A man fights fights with his date in the crowd.

Vanilla (w/ event annotations): A man plays guitar on a stage while a band plays music. The man
finishes playing and the woman shake hands . The man plays guitar and then people play guitar . A
close up of a pool is shown followed by a woman speaking to the camera and the camera panning

Ours (w/o event annotations): A man is playing guitar with a group of people standing on stage. A man
gives his guitar to a man. The man begin to play the guitar in the crowd. A woman claps her hands. The
man fighting for the woman.

GT: A large group of people are shown from several shots walking around as well as divers jumping off
a drive. More shots of athletes and audiences are shown as well as people being interviewed on the
camera. More divers jump as well as several other interviews take place.

Vanilla (w/ event annotations): A large group of people are seen sitting around an indoor pool with one
man speaking to one another.
Two women are seen walking on a platform with a lot of people watching on the sidelines. A close up of
a pool is shown followed by a woman speaking to the camera and the camera panning. She flips
herself around and ends by jumping down.

Ours (w/o event annotations): A large group of people are sitting and people are walking in lines. The
divers jump into the pool with two women interviewed to the camera. The athletes keep jumping into
and a lot of people watching and talking. A woman and a man are interviewed to the camera.

GT: A gymnast is seen standing ready before uneven bars while many are watching on the
sides. The girl jumps up and begins performing a routine on the bars. She flips herself around
and ends by jumping down.

Vanilla (w/ event annotations): A group of people are standing on a mat. A man in blue shirt get
up a high beam. A woman in blue shirt is standing on the mat .

Ours (w/o event annotations): A gymnast stands under uneven bars with people watching. She
jumps and flips around. She jumps off and stands on the mat.

Figure 3: Qualitative Results1.

5 Qualitative results

Fig. 4 displays example captions produced by our
model on ActivityNet Captions. We compare them
with GT (the Ground Truth) and those generated
by the Vanilla models. The triplets in all para-
graphs are highlighted for comparison. Compared
to Vanilla, our model tends to generate more pre-
cise and action-driven descriptions, as evident in
the examples. Particularly in the third case, where
the surroundings are relatively static and only the
athlete is performing different actions, our model
is able to differentiate between these actions in the
neighbouring frames.

For event distributions, in the first case, there are
three events, and the second is momentary com-
pared with the other two. The vanilla model fails
to describe the second event even with annotation
information. Our model, however, captures the ac-
tion “is taken by” and decodes it to “give” in the
generated description.

Effects of Fusion Ways in Decoder To utilize
the dynamic anchors for generation guidance, we
use the anchor attention in the decoder cross at-
tention. Formally, the word embedding at the t-th

Figure 4: Qualitative Results2.
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Figure 5: Different Model Structures.

step is used as a query to attend to the anchors, and
the weighted anchors are fused by concatenating
them with the visual representation as V . This V is
then utilized to guide the decoding of the next step
word in the sequence. We verify the effectiveness
of anchors in the decoder and compare different
fusion ways including concatenating and adding.
As shown in Tab. 6, attending to the anchors indeed
improves the relevance of the generated captions.
Additionally, the results indicate that concatenation
is more effective compared to addition.

Effects of Different Model Structures We also
adjust the placements of the clip-level and video-
level SFG modules. In the left encoder struc-
ture shown in Fig. 5, the order of the modules
is SFGclip, SFGvideo and transformer layer. The
block (SFGclip, SFGvideo, transformer layer) is
stacked twice in the structure. The right structure in
Fig. 5 considers the information lost in the second
SFGclip, puts SFGvideo first in the second layer



Figure 6: Performance of Model Structures. a and b
represent the left and right structures in Fig. 5, respec-
tively.

of transformer, and conducts SFGclip after the last
layer of transformer.

Comparing the two structures, the left outper-
forms the right. This suggests that even though
SFGclip discards some frames before SFGvideo,
the key information is retained, allowing SFGvideo

to learn the event contributions. Also frame sam-
pling helps remove noise, which benefits SFGvideo

grouping center context of events. Fig. 6 shows the
performance of the two structures.

6 Conclusions

In this work, we present a network with Sparse
Frame Grouping (SFG) enhanced Transformer
via Contrastive Learning for event annotation-free
video paragraph captioning. The SFG module is
designed to select and group informative frames
and learn event distributions without relying on
event annotations. Additionally, an Intra- and Inter-
Contrastive Learning technique is proposed to train
the SFG, enabling it to learn the overall event
context in the video and distinguish it from the
static context. Experimental results on two bench-
mark datasets demonstrate that SFGTransformer
achieves SOTA performance. In the future, we plan
to extend the method to longer video data such as
movie data to further investigate the influence of
key action visual information. And we also inves-
tigate training method without triplets to simplify
the pre-process of data.

Limitations

Video paragraph captioning requires semantic con-
sistency between the generated captions and the
video content. Although the “action-guided frame
grouping” method provides some guidance for
frame selection and grouping, there are still po-
tential instances of semantic inconsistency. This

is especially true when there are multiple related
yet distinct actions in the video, which may result
in less accurate or consistent captions in terms of
semantic coherence.
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