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Abstract

In-context learning (ICL) has emerged as a powerful paradigm enabling Large
Language Models (LLMs) to perform new tasks by prompting them with few
training examples, eliminating the need for fine-tuning. Given its potential to adapt
and personalize the model’s behaviour using private user data, recent studies have
introduced techniques for ICL that satisfy Differential Privacy guarantees (DP ICL).
Existing DP ICL approaches claim to attain such guarantees while maintaining
negligible utility degradations when adapting the models to perform new tasks.
In this paper, we present preliminary empirical evidence suggesting that these
claims may hold only for tasks aligned with the model’s pre-training knowledge
and biases. We do so by showing the performance of DP ICL significantly degrades
with respect to the non-private counterpart in scenarios that introduce tasks and
distribution shifts that challenge the model’s prior knowledge. To mitigate the risk
of overly optimistic evaluations of DP ICL, we invite the community to consider
our sanity checks to attain a more accurate understanding of its capabilities and
limitations.

1 Introduction

In-Context Learning (ICL) [1] has recently emerged as a novel paradigm to leverage the long-context
understanding capabilities of modern Large Language Models (LLMs) in order to instruct them to
perform novel tasks without additional fine-tuning. The idea is to prompt them with a sequence of
input-output examples that demonstrate the task to be performed and induce it to infer the correct
output on a previously unseen input sample. Given ICL is computationally inexpensive in comparison
to other forms of learning, several works have proposed to use it to personalise and adapt the
LLM behaviour on user data [1–3]. However, it is also demonstrated that LLMs may regurgitate
information from the in-context demonstrations, leading to the unintended leakage of such data.
To tackle this issue, several works have proposed Differentially Private (DP) ICL algorithms [4–9].
These works claim to provide DP guarantees while maintaining ICL task performance at a level
that is comparable to the non-private baseline. This may apparently contradict the literature that
has consistently observed DP algorithms to require more data in order to attain similar levels of
performance [10, 11].

In this work, we design a set of regression and classification tasks that aim at developing a more
nuanced understanding of the factors contributing to the success of DP ICL, and outline possible
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conditions for its failure. By generating tasks for which the feature-target mappings contradict the
model’s pre-training knowledge and biases (e.g., with flipped label ICL [12]), we find that DP-ICL
may fail to match the non-private counterpart or show little improvement over zero-shot performance.
This observation aligns with the findings of the semi-private learning literature, which relies on the
availability of additional public data (either for pre-training or fine-tuning) exhibitin some level of
similarity with respect to the private one in order to circumvent the expected performance degradation
[13–15]. Therefore, our contributions are as follows:

• We demonstrate the impact of the alignment between task feature-label mapping and the LLM’s
pre-training knowledge on the performance gap between DP-ICL and the public counterparts.
We highlight that, while state-of-the-art DP-ICL techniques show marginal utility degradation
when assessed on tasks that leverage the LLM’s pre-training knowledge, they can fail when the
downstream tasks do not align with it.

• Drawing on empirical evidence, we propose several test scenarios that can act as sanity checks for
a more practical and thorough evaluation of DP-ICL methodologies. These suggestions aim to
create a more comprehensive evaluation framework to determine the capabilities and limitations of
DP-ICL techniques.

2 Related Works: Differentially Private In-Context learning (DP ICL)

2.1 Differential Privacy

Differential Privacy (DP) [16, 17] upper bounds the likelihood an attacker can reliably infer the
membership of a sample to the input set of a randomised algorithm. Informally, this is attained by
limiting and obfuscating the impact any single data sample can have on its output. This allows for the
protection of private information contained in individual data points, while still allowing to extract
distributional trends.

In particular, any randomised algorithm M is said to satisfy (ϵ, δ)-Differential Privacy guarantees
if for any pair of neighbouring datasets D and D′ differing by at most one element, and for any
potential output S ⊆ Range(M), it holds that:

Pr[M(D) ∈ S] ≤ eϵ · Pr[M(D′) ∈ S] + δ

Where ϵ is the privacy budget. A smaller value implies stronger privacy protection. The scenario
in which δ = 0 is referred to as pure DP or (ϵ, 0)-DP) pure DP guarantees that (assuming perfect
numerical precision [18, 19]), while δ in (ϵ, δ)-DP introduces a small probability δ of the mechanism
failing to preserve ϵ-DP.

2.2 Differentially Private In-Context Learning

Various studies have demonstrated that LLMs can memorize and regurgitate information contained in
their training data [20–26], and in-context learning (ICL) demonstration sets [8, 27, 28, 20], leading
to unintended leakage of private data [21, 26, 28]. In response to these privacy concerns, several
methods have been introduced to achieve DP ICL, with varying levels of assumptions regarding
the trustworthiness of LMs. We separate them in two categories depending on where in the ICL
procedure the DP algorithm is applied.

DP Inference. The first category of algorithms consists of DP learning algorithms, which assume
the presence of a trusted LM (the context data being fed to the LM is not required to be DP) and
propose inference or post-processing methods to ensure that the model’s output is DP-compliant
for end users. Notable examples in this category include DP-ICL [9] which generates DP responses
through a noisy consensus among an ensemble of LLM’s responses based on disjoint exemplar sets;
PromptPATE [8] which uses an ensemble of teacher models to privately generate labelled data for
training a student model’s prompts and Prompt-DPSGD [8] which directly applies differentially private
stochastic gradient descent to update the prompts during training.

DP Context Synthesis. The second category involves DP data-synthesis algorithms, which impose
stricter safety constraints by assuming that LMs are accessed through third-party APIs and, therefore,
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should not be trusted. In this case, the inputs to the LMs are required to be DP-compliant, and these
methods focus on the construction of a DP-compliant few-shot demonstration set for ICL inference.
Under this category, DP-OPT [4] generates prompt tokens using a limited-domain mechanism and
selects the best prompt using an exponential mechanism whereas DP-FSG [5] leverages an auxiliary
LM to generate DP-compliant pseudo-examples. More recently, inspired by traditional DP methods
for tabular data, DP-TabICL [6] explores the application of both local and global DP techniques
for ICL using semi-structured natural language data derived from tabular features. DP-LLMTGen [7]
offers a novel framework for generating differentially private tabular data with LLMs.

Limitations of current DP ICL evaluations. Existing DP-ICL methodologies claim to respect
DP guarantees while maintaining utility comparable to their non-private counterpart. However, the
evaluation of these methods is flawed for several reasons:

1. They are usually only evaluated on coarse-grained classification tasks (e.g. [29–31]) that LLMs
can perform relying solely on pre-training knowledge and biases, without genuine learning from
ICL samples. This obfuscates the negative impact of DP on utility.

2. Evaluations are limited to well-known, simplistic, and open-source classification tasks and datasets
which are likely included in the LM’s pre-training data [32, 33]. Therefore it is unclear whether
the claimed guarantees actually hold.

To address these issues and develop a more comprehensive evaluation framework for DP ICL, we
draw inspiration from flipped-label ICL (FL-ICL) and semantically unrelated label ICL (SUL-ICL)
[34] tasks to examine the effect of LM pre-training bias on privacy-utility trade-offs.

3 Experiments and Evaluation

To identify the limitations of current DP ICL and thoroughly assess their performance, we have
designed a series of challenging test scenarios that extend beyond commonly used NLP datasets
(such as DBPedia [29] and AGNews [30]).

In order to maintain precise control of the feature distributions and their relationship with the labels,
we focus on natural language data that is generated starting from tabular data. The tabular data
is crafted following specific rules for each task detailed in the remainder of this section and then
converted into natural language using fixed, non-data-dependent templates specified in Appendix A. In
the same appendix, we also provide additional details regarding the prompt construction procedures.

In our experiments, we evaluate three DP-ICL methods: PATE-CTGAN [35], DP Few-Shot Generation
(DP-FSG) [5], and DP-OPT [4]. We use the pure DP ((ϵ, 0)-DP) variant of DP-FSG (report noisy max
with exponential mechanism). We use N = 2000 samples to train PATE-CTGAN in each scenario and
use a default δ = N−1.5 = 1.11× 10−5 [36]. For DP-OPT, we use the default δ = 5× 10−7 These
methods are tested across various ϵ budgets and across various scenarios using two LLMs, namely
GPT-4o [37] and Claude-3.0-Haiku [38].

3.1 Binary Classification with Varied Feature–Label Mappings.

To investigate how DP-ICL performance is affected when the model encounters distributions that
contradict its pre-existing knowledge and biases [39], we have designed two binary classification
tasks as follows:

Task 1: Gender-Product Category Preferences The objective of the first task is to predict whether
a customer is interested in a product advertisement. This prediction is based on two binary features:
(1) gender g ∈{Male, Female} (2) product category p ∈{fashion and beauty, electronics
and gadgets}. Data is structured as X = {(gi, pi, yi)}Ni=1. The outcome of this task is a binary
classification indicating whether the customer is interested or not interested in the product y ∈ {0, 1}.
This task includes two variants:

• Expected: This variant aligns with traditional gender stereotypes, assuming women are more likely
to be interested in fashion and beauty products while men are more interested in electronics and
gadgets. Results correspond to blue lines in the figures.
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Figure 1: Performance of the two binary classification tasks introduced in Sec 3.1 evaluated under
varying ϵ budget, number of demonstration samples and feature-output mapping. From left to
right: Gender-Product Category Preferences prediction from (a) GPT and (b) Claude; Income-Age-
Residency prediction for (c) GPT and (d) Claude. Blue curves represent expected scenarios which
conform to LMs’ pre-training biases. Orange curves represent flipped-label tasks. Performance gaps
between DP and non-DP orange curves are significantly larger than those between the blue curves,
suggesting that flipped-label or OOD tasks experience more significant utility-privacy trade-offs.

Scenario Model ϵ = ∞ ϵ = 4.0
N=8; N=0 PATE-CTGAN [35] DP-FSG [5] DP-OPT [4] GaussianNB

0.97 ± 0.04 0.70 ± 0.06 0.60 ± 0.07 0.77 ± 0.04GPT-4o
0.83 ± 0.06 -0.27 -0.37 -0.20 0.98 ± 0.00

0.98 ± 0.02 0.79 ± 0.04 0.62 ± 0.16 0.50 ± 0.00 +0.01Expected
Claude

0.74 ± 0.06 -0.19 -0.32 -0.35
0.97 ± 0.02 0.32 ± 0.07 0.47 ± 0.08 0.17 ± 0.11GPT-4o

0.18 ± 0.07 -0.65 -0.50 -0.82 0.82 ± 0.01
0.88 ± 0.02 0.26 ± 0.11 0.30 ± 0.16 0.15 ± 0.05 -0.15Reversed

Claude
0.18 ± 0.07 -0.62 -0.58 -0.73

Table 1: Accuracy (↑) of 8-shot Age-Income-Residency Classification under ϵ = 4. Bold numbers
are performance differences between each DP-ICL method and non-DP ϵ = ∞ baselines. Columns
in grey are non-ICL traditional ML methods that serve to indicate the quality of labels. Metrics in
smaller font sizes are zero-shot baselines that indicates model’s pretraining biases.
Notably, the performance gaps between DP and non-DP methods are significantly more pronounced
for unexpected or OOD feature-label mapping compared to expected or in-distribution counterparts.
In both tables, higher performance gap implies a more significant utility loss as a result of DP.

• Reversed: This variant challenges gender stereotypes, assuming that women are more likely to be
interested in electronics and gadgets, while men are more interested in fashion and beauty products.
Results correspond to orange lines in the figures.

Task 2: Age-Income-Residency Classification The objective of the second task is to predict
whether an individual resides in y ∈{Massachusetts, Louisiana}, a binary target indicating the
state of residence. This prediction is based on two continuous numerical features: age a ∈ (18, 80)
and annual income m ∈ (15k, 100k). Data is structured as X = {(ai,mi, yi)}Ni=1. The two data
clusters are linearly separable and the ground truth decision boundary is linear. Similar to the first
task, this task includes two variants with varied feature–label mappings.

• Expected: This variant reflects real-world economic disparities between the states, assuming that
individuals in Massachusetts have a higher income than those in Louisiana.

• Reversed: This variant reverses the expected feature-label mapping, assuming that individuals in
Louisiana have a higher income than those in Massachusetts.

Our analysis of the experimental results reveals several key findings.

Good DP-ICL performance derives from distributional alignment between the pretraining and
ICL distributions. Following known trends, for both expected and reversed scenarios, stricter
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DP constraints (ϵ ↓) generally lead to worse performance. When comparing scenarios with equiv-
alent privacy constraints (represented by the same line type), we note a different behaviour in the
performance of the expected versus reversed cases. In the few-shot regime, the reversed mappings
consistently underperform compared to their counterparts in the expected case. As the number of
examples (shots) increases, the performance gap between reversed and expected mappings tends to
narrow. This demonstrates DP ICL may introduce significant performance degradation even for loose
privacy guarantees (ϵ = 4) when the ICL distribution does not align with the pre-training knowledge
of the model.

Handling strong distribution shifts requires more data. We observe an interesting interplay
between the strictness of DP constraints and the convergence of performance between reversed
and expected label mappings. Notably, the performance gaps between DP and non-DP methods
are significantly more pronounced in reversed scenarios (when evaluating with unexpected or out-
of-distribution feature-label mapping) compared to expected or in-distribution counterparts. This
cautions against expecting ICL to be effective in low-data regimes: positive results in such situations
are likely because the model’s pre-training aligns well with the specific task at hand.

As DP constraints become more stringent, a larger number of examples (shots) is required for the
performance of flipped label mappings to approach that of expected label mappings.

These observations suggest that when evaluating the efficacy of DP-ICL methods one needs to take
into consideration how the alignment of the task with pre-existing biases or expectations in the model
affects the metrics. This may hint that the illusion of “DP for free” is only applicable to cases where
little or no genuine learning occurs with respect to the in-context examples and the LM relies on
pre-training bias for ICL inference. To thoroughly evaluate a DP-ICL methodology, we strongly
recommend considering different feature-label mappings (testing scenarios that align or reverse
pre-training biases) to provide a more complete understanding of the method’s performance and
limitations.

3.2 eICU Lab-to-Survival Binary Classification

Building upon our analysis of binary classification tasks, we extend our evaluation to a real-world
clinically relevant dataset, eICU [40], performing a Lab-to-Survival binary prediction task. This
task aims to predict ICU patient survival binary outcomes y ∈{Expired, Alive} based on patient
demographics di (age, gender, ethnicity, height, weight) and 20 continuous real-valued
lab test results. The goal is to evaluate the impact of DP on tasks with varied levels of pretraining
knowledge reliance. For this task, we have explored three levels of elicitation of the model’s
pretraining knowledge to more extensively study the relationship between pretraining knowledge
reliance and the DP utility gap.

Experimental Setup. To explore how pretraining knowledge affects DP utility, we devised three
prompting formats with increasing reliance on pretraining knowledge:

• Original Prompting: Features were presented with their original clinical names and units, format-
ted alongside demographic information. Outputs were verbalized as Expired or Alive.

• Pseudonym Prompting: Demographic and clinical features were obfuscated with pseudonyms
and presented without units. Outputs were also pseudonymised (e.g., ir4cowgz and rixa11dp).

• Chain-of-Thought (CoT) Prompting: The original format was augmented with a step-by-step
reasoning process encouraging the model to utilize its pretraining knowledge extensively.

Each setting was evaluated under privacy budgets of ϵ = ∞ (non-DP), 8.0, and 4.0 actualised with
PATE-CTGAN [35] with varying numbers of shots N ranging from N = 0 to 32.

Results. Our findings align with the hypothesis that tasks relying more on pretraining knowledge
exhibit smaller DP-non DP performance gaps:

• Original Prompting: Accuracy decreased modestly with stricter privacy budgets, particularly in
higher-shot settings. This indicates that pretraining knowledge buffers the effects of DP.
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Table 2: Accuracy of eICU Lab-to-Survival Binary Prediction Task for GPT-4o under under various
DP budgets (ϵ) and Number of Shots N . Performance degradation from ϵ = ∞ is shown as ∆.

Prompting Variant Shots ϵ = ∞ ϵ = 8.0 ∆ϵ=8.0 ϵ = 4.0 ∆ϵ=4.0

Pseudonym

0 0.5000
8 0.7500 0.6451 −0.1049 0.4758 −0.2742

16 0.7258 0.5605 −0.1653 0.4758 −0.2500
32 0.6613 0.5484 −0.1129 0.4112 −0.2501

Original

0 0.7150
8 0.7258 0.7016 −0.0242 0.6774 −0.0484

16 0.7984 0.7273 −0.0711 0.7258 −0.0726
32 0.8181 0.8065 −0.0116 0.7273 −0.0908

CoT

0 0.7564
8 0.7419 0.7200 −0.0219 0.6408 −0.1011

16 0.7419 0.7273 −0.0146 0.6591 −0.0828
32 0.7339 0.7143 −0.0196 0.6154 −0.1185

Table 3: Accuracy of eICU Lab-to-Survival Binary Prediction Task for Claude-3 under various DP
budgets (ϵ) and Number of Shots N . Performance degradation from ϵ = ∞ is shown as ∆. The
model used for inference was claude-3-haiku-20240307.

Prompting Variant Shots ϵ = ∞ ϵ = 8.0 ∆ϵ=8.0 ϵ = 4.0 ∆ϵ=4.0

Pseudonym

0 0.5000
8 0.6290 0.5484 −0.0806 0.5323 −0.0967

16 0.6451 0.5323 −0.1128 0.4919 −0.1532
32 0.6463 0.5000 −0.1463 0.4355 −0.2108

Original

0 0.7091
8 0.7661 0.7016 −0.0645 0.7420 −0.0241

16 0.7500 0.6935 −0.0565 0.7258 −0.0837
32 0.8409 0.8086 −0.0323 0.7623 −0.0786

CoT

0 0.6818
8 0.6813 0.6364 −0.0449 0.6290 −0.0523

16 0.7045 0.6048 −0.0997 0.6613 −0.0432
32 0.6500 0.5800 −0.0700 0.5385 −0.1115

• Pseudonym Prompting: Accuracy suffered significantly under DP constraints, with the largest
drops observed at ϵ = 4.0. This supports the hypothesis that genuine learning from context is more
affected by DP.

• CoT Prompting: The inclusion of reasoning steps mitigated the impact of DP constraints, resulting
in a smaller performance gap compared to Pseudonym Prompting.

These results reinforce the importance of considering pretraining knowledge alignment when evalu-
ating DP ICL methods, as performance degradation is notably more pronounced in tasks requiring
genuine context-driven learning.

4 Conclusions.

Our findings underscore the importance of task-specific evaluation and caution against overly broad
claims about DP-ICL performance. We provide insights into the factors influencing the privacy-utility
trade-off in different contexts and propose guidelines for more nuanced reporting of DP-ICL results.
This work contributes to a more realistic understanding of the capabilities and limitations of DP-ICL,
paving the way for future research in privacy-preserving machine learning techniques. We aim for
our work to enhance the protection of sensitive user data in real-world applications like personalized
healthcare and finance, fostering the responsible implementation of machine learning systems that
effectively balance utility and privacy.
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A Further Details on Prompt Construction

A.1 Gender-Product Category Preferences

For the Gender-Product Category Preferences Binary Classification task, prediction is based
on two binary features: (1) gender gi ∈{M, F} (2) product category pi ∈{fashion and
beauty, electronics and gadgets}. The outcome of this task is a binary classification in-
dicating whether the customer is interested or not interested in the product yi ∈ {0, 1}.

The Global Prefix is:

You pay attention to how one’s gender affects one’s interest in certain
product categories.
Based on your observations, predict whether an is interested or not
interested. Answer in at most two words.

Each demonstration is formatted as: “ I am gi. I am looking at a product from the ci
category. I am yi.” where:

gi ∈ {a man, a woman}
pi ∈ {fashion and beauty, electronics and gadgets}
yi ∈ {interested, not interested}

A.2 Age-Income-Residency

For the Age-Income-Residency Binary Classification task, the dataset is structured as
X = {(ai,mi, yi)}Ni=1. The objective is to predict whether an individual resides in
yi ∈{Massachusetts, Louisiana}, a binary target indicating the state of residence. This pre-
diction is based on two continuous numerical features: age ai ∈ (18, 80) and annual income
mi ∈ (15k, 100k).

The data are generated using sklearn.datasets.make_classification, then rotated by 45
degrees, then scaled to ai ∈ (18, 80) and mi ∈ (15k, 100k)

from sklearn.preprocessing import MinMaxScaler
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=2000, n_features=2, n_redundant=0,
n_informative=2, random_state=1, n_clusters_per_class=1)

# 45 degree rotation to make both features relevant
theta = np.pi / 4
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],

[np.sin(theta), np.cos(theta)]])
rng = np.random.RandomState(2)
X += rng.uniform(size=X.shape)
X = X.dot(rotation_matrix)
linearly_separable = (X, y)

# rescale features to reasonable ranges
scaler_feature_1 = MinMaxScaler(feature_range=(15, 100))
scaler_feature_2 = MinMaxScaler(feature_range=(18, 80))

def rescale_features(X):
X_rescaled = np.copy(X)
X_rescaled[:, 0] = scaler_feature_1.fit_transform(X[:, [0]]).flatten()
X_rescaled[:, 1] = scaler_feature_2.fit_transform(X[:, [1]]).flatten()
return X_rescaled

rescaled_datasets = [(rescale_features(X), y) for X, y in datasets]
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The Global Prefix is:

You pay attention to how one’s age and income are correlated with their state
of residence.
Based on your observations, predict whether an individual’s state of residence
is Massachusetts or Louisiana. Answer in one word.

Each demonstration is formatted as: “ I am ai years old. I am looking at a product from
the ci category. I am yi.” where:

ai ∈ (18, 80)

mi ∈ (15000, 100000)

yi ∈ {Massachusetts, Louisiana}
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