
Under review as a conference paper at ICLR 2024

LEARNING AN EFFICIENT-AND-RIGOROUS NEURAL
MULTIGRID SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial Differential Equations (PDEs) and their efficient numerical solutions are
of fundamental significance to science and engineering involving heavy compu-
tation. To date, the historical reliance on legacy generic numerical solvers has
circumscribed possible integration of big data knowledge and exhibits sub-optimal
efficiency for certain PDE formulations. In contrast, AI-inspired neural methods
have the potential to learn such knowledge from big data and endow numerical
solvers with compact structures and high efficiency, but still with unconquered
challenges including, a lack of sound mathematical backbone, no guarantee of
correctness or convergence, and low accuracy, thus unable to handle complex,
unseen scenarios. This paper articulates a mathematically rigorous neural PDE
solver by integrating iterative solvers and the Multigrid Method with Convolutional
Neural Networks (CNNs). Our novel UGrid neural solver, built upon the principled
integration of U-Net and MultiGrid, manifests a mathematically rigorous proof
of both convergence and correctness, and showcases high numerical accuracy and
strong generalization power to complicated cases not observed during the training
phase. In addition, we devise a new residual loss metric, which enables unsu-
pervised training and affords more stability and a larger solution space over the
legacy losses. We conduct extensive experiments on Poisson’s equations, and our
comprehensive evaluations have confirmed all of the aforementioned theoretical
and numerical advantages. Finally, a mathematically-sound proof affords our new
method to generalize to other types of linear PDEs.

1 INTRODUCTION

Background and Major Challenges. PDEs are quintessential to a wide range of computational
problems in science, engineering, and relevant applications in simulation, modeling, and scientific
computing. Numerical solutions play an irreplaceable role in common practice because in rare cases
do PDEs have analytic solutions, and many general-purpose numerical methods have been made
available. Iterative solvers (Saad (2003)) are one of the most-frequently-used methods to obtain
a numerical solution of a PDE. Combining iterative solvers with the multigrid method (Briggs &
McCormick (2000)) significantly enhances the performance for large-scale problems. Meanwhile,
recent deep neural methods have achieved impressive results (Marwah et al. (2021)), yet many
currently available neural methods treat deep networks as black boxes. Other neural methods are
typically trained in a fully supervised manner on loss functions that directly compare the prediction
and the ground truth solution, confining the solution space and resulting in numerical oscillations
in the relative residual error even after convergence. These methods generally lack a mathematical
backbone, thus offering no guarantee of convergence and correctness. In addition, they may suffer
from low accuracy and weak generalization power.

Motivation and Method Overview. Partially inspired by the prior work on the structure of multigrid
V-cycles (Briggs & McCormick (2000)) and U-Net (Ronneberger et al. (2015)), and to achieve high
efficiency and strong robustness, we aim to fully realize neural methods’ modeling and computational
potential by implanting the legacy numerical methods’ mathematical backbone into neural methods in
this paper. In order to make our new framework fully explainable, we propose the UGrid framework
(illustrated in Fig. 1) based on the structure of multigrid V-cycles for learning the functionality of
multigrid solvers. We devise the convolutional operators to incorporate arbitrary boundary conditions

1

Under review as a conference paper at ICLR 2024

Figure 1: Overview of our novel method. Given PDE parameters and its current numerical estimation,
the smoothing operations are applied multiple times first. Then, the current residue is fed into our
UGrid submodule (together with the boundary mask). Next, the regressed correction term is applied
and post-smoothed several times. Collectively, it comprises one iteration of the neural solver. The
UGrid submodule (detailed in Fig. 2) aims to mimic the multigrid V-cycle, and its parameters are
learnable, so as to endow our framework with the ability to learn from data.

without modifying the overall structure of the key iteration process, and transform the iterative update
rules and the multigrid V-cycles into a concrete CNN structure.

Key Contributions. The salient contributions of this paper comprise: (1) Theoretical insight.
We introduce a novel explainable neural PDE solver founded on a solid mathematical background,
affording high efficiency, high accuracy, strong generalization power, and a mathematical guarantee to
generalize to linear PDEs; (2) New loss metric. We propose a residual error metric as the loss function,
which optimizes the residue of the prediction. Our newly-proposed error metric enables unsupervised
learning and facilitates the unrestricted exploration of the solution space. Meanwhile, it eliminates
the numerical oscillation on the relative residual error upon convergence, which has been frequently
observed on the legacy mean-relative-error-based loss metrics; and (3) Extensive experiments. We
demonstrate our method’s capability to numerically solve PDEs by learning multigrid operators of
Poisson’s equations subject to arbitrary boundary conditions of complex geometries and topology,
whose patterns are unseen during the training phase. Extensive experiments and comprehensive
evaluations have verified all of the aforementioned advantages, and confirmed that our proposed
method outperforms the state-of-the-art.

2 RELATED WORK

Black-box-like Neural PDE Solvers. Much research effort has been devoted to numerically solve
PDEs with neural networks and deep learning techniques. However, most of the previous work
treats neural networks as black boxes and thus come with no mathematical proof of convergence and
correctness. As early as the 1990s, Wang & Mendel (1990a;b; 1991) applied simple neural networks
to solve linear equations. Later, more effective neural-network-based methods like Polycarpou &
Ioannou (1991); Cichocki & Unbehauen (1992); Lagaris et al. (1998) were proposed to solve the
Poisson equations. On the other hand, Wu et al. (1994); Xia et al. (1999); Takala et al. (2003); Liao
et al. (2010); Li et al. (2017) used Recurrent Neural Networks (RNNs) in solving systems of linear
matrix equations. Most recently, the potential of CNNs and Generative Adversarial Networks (GANs)
on solving PDEs was further explored by Tompson et al. (2017); Tang et al. (2017); Farimani et al.
(2017); Sharma et al. (2018); Özbay et al. (2021). Utilities used for neural PDE solvers also include
backward stochastic differential equations (Han et al. (2018)) and PN junctions (Zhang et al. (2019)).

Physics-informed Neural PDE Solvers. Physics-informed Neural Networks (PINNs) have also
gained much popularity in recent years. Physics properties, including pressure, velocity (Yang et al.
(2016)) and non-locality (Pang et al. (2020)) were used to articulate neural solvers. Mathematical
proofs on the minimax optimal bounds (Lu et al. (2022)) and structural improvements (Lu et al.

2

Under review as a conference paper at ICLR 2024

(2021a;b)) were also made on the PINN architecture itself, endowing physics-informed neural PDE
solvers with higher efficiency and interpretability in physics.

Neural PDE Solvers with Mathematical Backbones. In 2009, Zhou et al. (2009) proposed a
neural-network-based linear system and its solving algorithm with a convergence guarantee. Later
on, researchers showed great interest in the multigrid method. Hsieh et al. (2019) modified the
Jacobi iterative solver by predicting an additional correction term with a multigrid-inspired linear
operator. Greenfeld et al. (2019) proposed to learn a mapping from a family of PDEs to the optimal
prolongation operator used in the multigrid Method, which is then extended to Algebraic Multigrids
(AMGs) on non-square meshes via Graph Neural Networks (GNNs) by Luz et al. (2020). On the
other hand, Li et al. (2021) proposed a Fourier neural operator that learns mappings between function
spaces by parameterizing the integral kernel directly in Fourier space. In theory, Marwah et al. (2021)
proved that when a PDE’s coefficients are representable by small neural networks, the number of
parameters needed to better approximate its solution will increase in a polynomial fashion with the
input dimension.

3 MATHEMATICAL PRELIMINARY

For mathematical completeness, we provide readers with a brief introduction to the concepts that are
frequently seen in this paper.

Discretization of 2D Linear PDEs. A linear PDE with Dirichlet boundary condition could be
discretized with finite differencing techniques (Saad (2003)), and could be expressed in the following
form: {Du(x, y) = f(x, y), (x, y) ∈ I

u(x, y) = b(x, y), (x, y) ∈ B , (1)

where D is a 2D discrete linear differential operator, S is the set of all points on the discrete grid, B
is the set of boundary points in the PDE, I = S \ B is the set of interior points in the PDE, ∂S ⊆ B
is the set of trivial boundary points of the grid.

Using D’s corresponding finite difference stencil, Eq. 1 can be formulated into a sparse linear system
of size n2 × n2: {

(I−M)Au = (I−M)f

Mu = Mb
, (2)

where A ∈ Rn2×n2

is the 2D discrete differential operator, u ∈ Rn2

encodes the function values of
the interior points and the non-trivial boundary points; f ∈ Rn2

encodes the corresponding partial
derivatives of the interior points; b ∈ Rn2

encodes the non-trivial boundary values; I denotes the
n2 × n2 identity matrix; M ∈ {0, 1}n2×n2

is a diagonal binary boundary mask defined as

Mk,k =

{
1, Grid point (i, j) ∈ B \ ∂S
0, Grid point (i, j) ∈ I , k = in+ j, 0 ≤ i, j < n. (3)

On the contrary of Eq. 1, both equations in Eq. 2 hold for all grid points.

Error Metric And Ground-truth Solution. When using numerical solvers, researchers typically
substitute the boundary mask M into the discrete differential matrix A and the partial derivative
vector f , and re-formulate Eq. 2 into the following generic sparse linear system:

Ã u = f̃ . (4)

The residue of a numerical solution u is defined as

r(u) = f̃ − Ã u. (5)

In the ideal case, the absolute residual error of an exact solution u∗ should be ru∗ = ∥r(u∗)∥ = 0.
However, in practice, a numerical solution u could only be an approximation of the exact solution u∗.
The precision of u is evaluated by its relative residual error, which is defined as

εu =
∥∥∥f̃ − Ã u

∥∥∥/∥∥∥f̃∥∥∥. (6)

Typically, the ultimate goal of a numerical PDE solver is to seek the optimization of the relative
residual error. If we have εu ≤ εmax for some small εmax, we would consider u to be a ground-truth
solution.

3

Under review as a conference paper at ICLR 2024

Linear Iterator. A linear iterator (also called an iterative solver or a smoother) for generic linear
systems like Eq. 4 could be expressed as

uk+1 =
(
I− P̃−1Ã

)
uk + P̃−1f̃ , (7)

where P̃−1 is an easily invertible approximation to the system matrix Ã.

4 NOVEL APPROACH

In spite of high efficiency, generalization power remains a major challenge for neural methods. Many
SOTA neural solvers, e.g., Hsieh et al. (2019), fail to generalize to new scenarios unobserved during
the training phase. Such new scenarios include: (i) New problem sizes; (ii) New, complex boundary
conditions and right-hand sides, which includes geometries, topology, and values (noisy inputs); and
(iii) Other types of PDEs. Our newly proposed UGrid neural solver resolves problems (i) and (ii),
and we provide a mathematical derivation of how UGrid could generalize to other types of linear
PDEs. UGrid is comprised of the following two components: (1) The fixed neural smoother, which
includes our proposed convolutional operators; (2) The learnable neural multigrid, which consists of
our UGrid module.

4.1 CONVOLUTIONAL OPERATORS

Therotical Insights. For a specific discrete differential operator D, its corresponding system matrix
A could be expressed as a convolution kernel with known (fixed) parameters. In practice, however,
A encodes the boundary geometry and turns into matrix Ã in Eq. 4, and is thus impossible to be
expressed as a fixed convolution kernel. The introduction of Eq. 2 and the masked convolutional
iterator seamlessly resolves this problem. Furthermore, we provide a proof of correctness upon
convergence (typically circumscribed by neural solvers) for such masked convolutional iterators, and
use them as the mathematical backbone of our UGrid solver.

Masked Convolutional Iterator. Eq. 7, which is tuned for Eq. 4, could be modified into a masked
version tuned for Eq. 2. The modification could be roughly expressed as “multiplying the right-hand-
side of Eq. 7 by I−M and adding the product with Mb”:

uk+1 = (I−M)
((
I−P−1A

)
uk +P−1f

)
+Mb, (8)

where P is an easily-invertible approximation on the discrete differential operator A. (The correctness
of Eq. 8 is detailed later.) For 2D Poisson problems, A could be assembled by the five-point finite
difference stencil for 2D Laplace operators (Saad (2003)), and we could simply let P = −4I, where
I denotes the identity matrix. The update rule specified in Eq. 8 thus becomes

uk+1(i, j) =
1

4
(I−M) (uk(i− 1, j) + uk(i+ 1, j) + uk(i, j − 1) + uk(i, j + 1)− f) +Mb.

(9)

To transform the masked iterator into a convolution layer, we reorganize the column vectors u, b,
M and f into n× n matrices with their semantic meanings untouched. Then, the convolution layer
could be expressed as

uk+1 = smooth(uk) = (1−M) (uk ∗ J− 0.25f) +Mb , J =

(
0 0.25 0

0.25 0 0.25
0 0.25 0

)
. (10)

Convolutional Residual Operator. Except for the smoother, the multigrid method also requires the
calculation of the residue in each iteration step. In practice, the residue operator Eq. 5 can also be
seamlessly implemented as a convolution layer. Because our masked iterator (Eq. 8) guarantees that
u satisfies Mu = Mb at any iteration step, the residue operator could be simplified into

r(u) = (1−M) (f − u ∗ L) , L =

(
0 1 0
1 −4 1
0 1 0

)
. (11)

Proof of Correntness of Eq. 8. The following Lemmas and Theorems guarantee that upon conver-
gence, Eq. 8 will yield a ground-truth solution:

4

Under review as a conference paper at ICLR 2024

Lemma 1. For a fixed linear iterator in the form of
uk+1 = G · uk + c , (12)

with a square update matrice G having a spectral radius ρ(G) < 1, I −G is non-singular, and
Eq. 12 converges for any constant c and initial guess u0. Conversely, if Eq. 12 converges for any c
and u0, then ρ(G) < 1.

Proof. Proved as Theorem 4.1 in Saad (2003).

Lemma 2. For all operator norms ∥·∥k, k = 1, 2, . . . ,∞, the spectral radius of a matrix G satisfies
ρ(G) ≤ ∥G∥k.

Proof. Proved as Lemma 6.5 in Demmel (1997).

Theorem 1. Eq. 8 converges to the ground-truth solution of Eq. 2 when P is full-rank diagonal.

Proof. To prove this Theorem, we only need to prove: (1) Eq. 8 converges to a fixed point u; and (2)
The fixed point u satisfies Eq. 2.

To prove (1), we only need to prove that for the update matrix
G = (I−M)

(
I−P−1A

)
,

its spectral radius ρ(G) < 1. As shown in Demmel (1997), the Jacobi iterator converges for a huge
variety of linear PDEs with corresponding choices of full-rank diagonal Ps. E.g., for 2D Poisson
problems, we have ρ

(
I−P−1A

)
< 1 for P = −4I. From Lemma 2, taking the spectral norm ∥·∥2

(i.e., k = 2), we have
ρ(G) ≤

∥∥(I−M)
(
I−P−1A

)∥∥
2
≤ ∥I−M∥2

∥∥I−P−1A
∥∥
2
.

Furthermore, because I−P−1A is symmetric, we have ρ
(
I−P−1A

)
=
∥∥I−P−1A

∥∥
2
. On the

other hand, because I−M ∈ {0, 1}n2×n2

is a binary diagonal matrix, we have ∥I−M∥2 = 1. This
yields ρ(G) < 1.

To prove (2), we first notice that the fixed point u = uk+1 = uk of Eq. 8 satisfies
u = (I−M)

((
I−P−1A

)
u+P−1f

)
+Mb , i.e.,

(I−M)u+Mu = (I−M)
((
I−P−1A

)
u+P−1f

)
+Mb .

Again, since M ∈ {0, 1}n2×n2

is a binary diagonal matrix, we have{
(I−M)u = (I−M)

((
I−P−1A

)
u+P−1f

)
Mu = Mb

. (13)

The second equation in Eq. 13 is essentially the second equation in Eq. 2. Furthermore, the first
equation in Eq. 13 could be simplified into (I−M)P−1(Au− f) = 0. Since P is full-rank diagonal,
P−1 should also be full-rank diagonal. Then we have (I−M)(Au− f) = 0, which means that u
also satisfies the first equation in Eq. 2.

Generalization to Other Types of Linear PDEs. In this paper, we choose the 2D Poisson problem as
an example for mathematical derivations and qualitative experiments. However, our newly proposed
architecture is not for 2D Poisson’s equations only. For instance, for steady-state diffusion equations
in the form of ∇ · (k(x, y)∇u(x, y)) = f(x, y), where k(x, y) denotes a 2D diffusion coefficient
field (Poisson’s equations are special cases with k ≡ 1), we could easily extend Eq. 10 into:

uk+1 = (1−M)
((
uk ∗ J1 +

(((
k− ki

)
◦ u
)
∗ J2

)
÷ 16k

)
− 0.25f ÷ k

)
+Mb , (14)

where J1 is the regular convolution kernel as in Eq. 10; J2 is a new convolution kernel J2 =(
0 1 0
1 0 −1
0 −1 0

)
; ki is a reordered version of the coefficient field k, which could be pre-computed;

and ◦ and ÷ separately denote element-wise matrix multiplication/division. Then, we could apply the
same mask operations as in Eq. 10 to get the masked convolution iterator for steady-state diffusion
equations. If needed, a further extension to the 3D versions of these problems could also be done
with ease.

5

Under review as a conference paper at ICLR 2024

4.2 NEURAL NETWORK DESIGN

UGrid Iteration. We design the iteration step of our neural iterator as a sequence of operations as
follows (which is illustrated in Fig. 1):

u = smoothν1(u) (Apply pre-smoother for ν1 times);
r = r(u) (Calculate the current residue);
δ = UGrid(r,1−M) (Invoke our UGrid submodule recursively);
u = u+ δ (Apply the correction term);
u = smoothν2(u) (Apply post-smoother for ν2 times).

(15)

The entire iteration process is specifically designed to emulate the multigrid iteration (Saad (2003)):
We use the pre-smoothing and post-smoothing layers (as specified in Eq. 10) to eliminate the high-
frequency modes in the residue r, and invoke the UGrid submodule to eliminate the low-frequency
modes.

UGrid Submodule. Our UGrid submodule is also implemented as a fully-convolutional network,
whose structure is highlighted in Fig. 2. The overall structure of UGrid is built upon the principled
combination of U-Net (Ronneberger et al. (2015)) and multigrid V-cycle, and could be considered a
“V-cycle” with skip connections. Just like the multigrid method, our UGrid submodule is also invoked
recursively, where each level of recursion would coarsen the mesh grid by 2x.

Figure 2: Overview of our recursive UGrid submodule. The residue is smoothed by unbiased
convolution layers, downsampled to be updated by a 2x-coarser UGrid submodule, then upsampled
back to the fine grid, smoothed, and added with the initial residue by skip-connection. Boundary
values are enforced by interior mask via element-wise multiplication. The convolution layers (shown
in orange) are learnable; other layers (shown in blue) are the fixed mathematical backbone.

To approximate the linearity of the multigrid iteration, we implement the pre-smoothing layers and
the post-smoothing layers in the legacy multigrid V-cycle hierarchy (not to be confused with the
pre-smoother and the post-smoother in Eq. 15, which are outside of the V-cycle hierarchy) as learnable
2D convolution layers without any bias. For the same reason, we also drop many commonly-seen
neural layers which would introduce non-linearity, such as normalization layers and activation layers.

4.3 LOSS FUNCTION DESIGN

Legacy Loss Metric. We refer the equivalents of the mean relative error between the predicted value
and the ground-truth value as the legacy loss metric. Though intuitive, the legacy loss is unstable:

Theorem 2. When a neural network converges on a legacy loss metric such that its prediction x
satisfies Llegacy(x,y) = mean (|x− y|/|y|) ≤ lmax, where y denotes the ground truth value, x’s
relative residual error still oscillates between 0 and an input-dependent maximum value.

6

Under review as a conference paper at ICLR 2024

Proof. Denote εx as x’s relative residual error, then we have:

εx =

∥∥∥f̃ − Ã x
∥∥∥∥∥∥f̃∥∥∥ ≈

∥∥∥f̃ − Ã (y ± lmax y)
∥∥∥∥∥∥f̃∥∥∥ =

∥∥∥(f̃ − Ã y
)
∓
(
lmax Ã y

)∥∥∥∥∥∥f̃∥∥∥
≤

∥∥∥f̃ − Ã y
∥∥∥∥∥∥f̃∥∥∥ +

∥∥∥lmax Ã y
∥∥∥∥∥∥f̃∥∥∥ = εy +

∥∥∥lmax Ã y
∥∥∥∥∥∥f̃∥∥∥ , (16)

where εy denotes the relative residual error of the “ground-truth” value y. εy ̸= 0 because in most
cases, a PDE’s ground-truth solution could only be a numerical approximation with errors. The
maximum value is input-dependent because Ã and f̃ are input-dependent.

From Theorem 2, we observe that there is no guarantee that optimizing the legacy loss metric between
x and y would increase the precision in terms of the relative residual error. The cause of the observed
numerical oscillation is nothing but setting a non-exact numerical approximation as the “ground
truth” value. Moreover, the legacy loss metric also restricts the solution space: A numerical solution
with low relative residual error may have a large relative difference from the so-called “ground truth”
value, and such valid solutions are unnecessarily rejected by the legacy loss metric, which clearly
indicates one of its another major shortcomings.

Proposed Residual Loss Metric. A prediction x should be considered as a ground truth solution as
long as its relative residual error is below the threshold εmax. We now propose to optimize the neural
solver in an unsupervised manner. To be specific, we optimize

Lrabs
(x) = Ex[∥(1−M)(f −Ax)∥2] , (17)

which evaluates the absolute residual error in the interior area of the Poisson problem. The reason why
we optimize absolute residues instead of relative residues is that: (1) The absolute residues uniformly
reflect the relative residues with normalized data, and (2) Our experiments show that adding the
relative residue term does not improve performance. It is worth mentioning that the boundaries is
preserved naturally by our new method, thus need not be optimized. Compared to the legacy loss
metric, the proposed residual loss metric is closer to the fundamental definition of the precision of
a PDE’s solution, and is more robust and stable because it does not oscillate like the legacy loss
metrics. Moreover, the unsupervised training process makes it much easier to gather data and thus
achieve better numerical performance.

5 EXPERIMENTS AND EVALUATIONS

Data Generation and Implementation Details. Our new neural PDE solver is trained in an
unsupervised manner on the newly-proposed residual loss. Before training, we synthesized a dataset
with 16000 (M,b, f) pairs. To examine the generalization power of our method, the geometries of
boundary conditions in our training data are limited to “Donuts-like” shapes as shown in Fig. 3 (h).
Moreover, all training data are restricted to Laplacian equations only, i.e., f ≡ 0. Our UGrid model
has 6 recursive multigrid submodules. We train our model and perform all experiments on a personal
computer with 64GB RAM, AMD Ryzen 9 3950x 16-core processor, and NVIDIA GeForce RTX
2080 Ti GPU. We train our model for 300 epochs with the Adam optimizer. The learning rate is
initially set to 0.001, and decays by 0.1 for every 50 epochs. We initialize all learnable parameters
with PyTorch’s default initialization policy.

Experimental Results. We compare our model with two state-of-the-art legacy solvers, AMGCL
(Demidov (2019)), and NVIDIA AmgX (NVIDIA Developer (2022)), as well as one SOTA neural
solver proposed by Hsieh et al. (2019). 1 We apply our model and the baselines to the task of

1AMGCL is a C++ multigrid library with multiple GPU backends, we are comparing with its CUDA backend,
with CG solver at the coarsest level. AmgX is part of NVIDIA’s CUDA-X GPU-Accelerated Library, and
we adopt its official AMGX_LEGACY_CG configuration. Hsieh et al. (2019)’s code is available at https:
//github.com/ermongroup/Neural-PDE-Solver. They did not release a pre-trained model, so we
train their model with configurations as-is in their training and data-generation scripts, with minimal changes to
make the program run.

7

https://github.com/ermongroup/Neural-PDE-Solver
https://github.com/ermongroup/Neural-PDE-Solver

Under review as a conference paper at ICLR 2024

(a) L-Shape (b) Star (c) Lock (d) Cat (e) Bag

(f) Note (g) Sharp Feature (h) Noisy Input (i) Lap. Square (j) Poisson Square

Figure 3: Illustration of the Laplacian distributions of our testcases. The boundaries are shown in
bold red lines for a better view. (Boundary values are available in supplemental materials.)

2.5D freeform surface modeling. These surfaces are modeled by Poisson’s equations as 2D height
fields. Each subfigure in Fig. 3 illustrates the Laplacian distribution of a surface with either trivial or
complex geometry/topology. The Poisson equation for each surface is discretized into: (1) Large-scale
problem: A linear system of size 1, 050, 625× 1, 050, 625, whose qualitative results are documented
in Table 1; and (2) Small-scale problem: A linear system of size 66, 049× 66, 049, whose qualitative
results are documented in Table 2.

Our testcases as shown in Fig. 3. These are all with complex geometry and topology, and none of
which are present in the training data, except the geometry of Fig. 3 (h). Testcase(s) (a-f) examines the
strong generation power and robustness of UGrid for irregular boundaries with complex geometries
and topology unobserved during the training phase; (g) is designed to showcase UGrid’s power to
handle both sharp and smooth features in one scene (note that there are two sharp-feature circles on
the top-left and bottom-right corners, as well as two smooth-feature circles on the opposite corners);
(h) examines UGrid’s robustness against noisy input (boundary values, boundary geometries/topology,
and Laplacian distribution); (i-j) are two baseline surfaces separately modeled by Laplace’s equation
and Poisson’s equation.

Table 1: Comparison of our model and state-of-the-art on large-scale problems. “Time” denotes the
time (ms) to reach relative residual errors ≤ 10−4; “Error” denotes the final relative residual errors,
divided by 10−5. Convergence maps are also available in the supplemental materials.

Testcase UGrid AMGCL AmgX Hsieh et al.
Large-scale Time / Error Time / Error Time / Error Time / Error

Bag 18.66 / 2.66 199.23 / 4.80 94.68 / 4.25 58.09 / 420
Cat 10.09 / 2.70 276.96 / 6.62 114.69 / 6.66 49.79 / 14.6

Lock 10.55 / 9.88 140.18 / 4.05 67.54 / 4.96 49.92 / 55.78
Noisy Input 10.16 / 2.64 262.06 / 3.52 116.91 / 9.19 51.07 / 2654

Note 10.31 / 4.06 127.28 / 3.00 64.35 / 4.56 20.26 / 8.67
Sharp Feature 20.01 / 3.80 422.49 / 4.14 176.34 / 3.87 51.22 / 24883

L-shape 15.26 / 8.43 221.87 / 6.74 110.07 / 4.89 50.53 / 96.1
Laplacian Square 15.10 / 3.88 422.13 / 3.63 188.98 / 9.76 31.43 / 9.03
Poisson Square 15.07 / 9.37 414.85 / 5.24 189.49 / 9.93 50.57 / 974

Star 15.18 / 7.50 152.83 / 6.65 72.90 / 5.29 50.45 / 384

In Table 1, our UGrid model reaches the desirable precision 10-20x faster than AMGCL, 5-10x faster
than NVIDIA AmgX, and 2-3x faster than Hsieh et al. (2019). This shows the efficiency and accuracy

8

Under review as a conference paper at ICLR 2024

of our method. Moreover, the testcase “Noisy Input” showcases the robustness of our solver (i.e.,
converging efficiently on noisy inputs). Furthermore, among all the ten testcases, only (the geometry
of) the “Noisy Input” case is observed in the training phase of UGrid. This shows that UGrid is able
to converge to unseen scenarios whose boundary conditions are of complex geometry (e.g., “Cat”,
“Star”, and “L-shape”) and topology (e.g., “Note”, “Bag”, and “Cat”). On the contrary, Hsieh et al.
(2019) failed to converge in most of our testcases, which verifies one of their claimed limitations
(i.e., no guarantee of convergence to unseen cases), and showcases the strong generalization power of
our method. In addition, even for those converged cases, our method is still faster than Hsieh et al.
(2019).

Table 2: Comparison of our model and state-of-the-art on small-scale problems.

Testcase UGrid AMGCL AmgX Hsieh et al.
Small-scale Time / Error Time / Error Time / Error Time / Error

Bag 8.76 / 8.05 12.14 / 3.00 22.34 / 8.20 47.69 / 252
Cat 51.96 / 6.21 17.03 / 6.98 27.66 / 4.83 23.02 / 9.95

Lock 9.00 / 2.11 15.77 / 7.89 16.96 / 9.36 48.72 / 117.9
Noisy Input 8.94 / 6.00 14.00 / 9.39 26.30 / 3.14 51.79 / 5576

Note 8.87 / 2.75 8.79 / 9.02 16.68 / 7.23 36.66 / 8.28
Sharp Feature 13.31 / 7.52 21.47 / 4.15 49.59 / 6.85 49.31 / 24876

L-shape 40.60 / 7.09 12.36 / 9.97 24.08 / 9.35 50.06 / 96.44
Laplacian Square 13.21 / 3.27 22.22 / 5.60 48.60 / 3.98 24.57 / 6.54
Poisson Square 13.21 / 2.88 21.93 / 5.51 47.56 / 4.03 49.77 / 473

Star 8.92 / 2.36 18.93 / 2.17 17.96 / 9.42 48.68 / 456

In Table 2, even on small-scale problems that hinder our solver with a compact multigrid-like hierarchy
from delivering its full power, the UGrid model is still faster than or exhibits comparable efficiency
with respect to the three SOTA legacy/neural solvers. Again, this shows the high efficiency as well as
the strong generalization power of our new method. The testcases “Cat” and “L-shape” showcase that
the generalization power (in terms of problem size) does come with a price of potentially downgraded
efficiency. Thus, for the sake of the best efficiency, we still recommend re-training UGrid for problems
of different sizes.

Limitations. As shown in Section 3, our neural PDE solver is designed for linear PDEs only, as
non-linear PDEs generally have no linear iterative solver and our analysis on the correctness of
Eq. 8 does not hold for non-linear PDEs. Another limitation lies in the fact that there is no strict
mathematical guarantee on how fast our solver will converge (i.e., there is no practical upper bound
that confines the maximum number of iterations), which results in similar difficulties for legacy
numerical methods. As a consequence, as observed in Table 2, our solver does not necessarily
converge faster on small grids.

6 CONCLUSION AND FUTURE WORK

This paper has articulated a novel efficient-and-rigorous neural PDE solver which is built upon the
U-Net and the Multigrid Method, naturally combining the mathematical backbone of correctness
and convergence as well as the knowledge gained from data observations. Extensive experiments
validate all the self-claimed advantages of our proposed approach. Our future research efforts will be
extending the current framework to non-linear PDEs. The critical algorithmic barrier between our
approach and non-linear PDEs is the limited expressiveness of the convolution semantics. We would
like to explore more alternatives with stronger expressive power.

Reproducibility Statement. We are working to the best of our knowledge to make sure that our
work can be easily reproduced. The technical details are available in Section 5, the supplemental
materials, as well as the README documents of our source code.

9

Under review as a conference paper at ICLR 2024

REFERENCES

W. L. Briggs and S. F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied
Mathematics (SIAM), 2000.

A. Cichocki and R. Unbehauen. Neural Networks for Solving Systems of Linear Equations and
Related Problems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 39(2):124–138, 1992.

D. Demidov. AMGCL: An Efficient, Flexible, and Extensible Algebraic Multigrid Implementation.
Lobachevskii Journal of Mathematics, 40(5):535–546, 2019.

J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics
(SIAM), 1997.

A. B. Farimani, J. Gomes, and V. S. Pande. Deep Learning the Physics of Transport Phenomena.
CoRR, abs/1709.02432, 2017.

D. Greenfeld, M. Galun, R. Kimmel, I. Yavneh, and R. Basri. Learning to Optimize Multigrid PDE
Solvers. In Proceedings of Machine Learning Research: International Conference on Machine
Learning (ICML), volume 97, pp. 2415–2423, 2019.

J. Han, A. Jentzen, and W. E. Solving High-dimensional Partial Differential Equations using Deep
Learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018. doi:
10.1073/pnas.1718942115.

J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon. Learning Neural PDE Solvers with
Convergence Guarantees. In International Conference on Learning Representations (ICLR), 2019.

I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial Neural Networks for Solving Ordinary and
Partial Differential Equations. IEEE Transactions on Neural Networks and Learning Systems, 9(5):
987–1000, 1998.

Z. Li, H. Cheng, and H. Guo. General Recurrent Neural Network for Solving Generalized Linear
Matrix Equation. Complexity, 2017:545–548, 2017.

Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier Neural Operator for Parametric Partial Differential Equations. In International Conference
on Learning Representations (ICLR), 2021.

W. Liao, J. Wang, and J. Wang. A Discrete-time Recurrent Neural Network for Solving Systems of
Complex-valued Linear Equations. International Conference in Swarm Intelligence (LCSI), 1(2):
315–320, 2010.

L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning Nonlinear Operators via DeepONet
Based on The Universal Approximation Theorem of Operators. Nature Machine Intelligence, 3(3):
218–229, 2021a.

L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving
differential equations. SIAM Review (SIREV), 63(1):208–228, 2021b. doi: 10.1137/19M1274067.

Y. Lu, H. Chen, J. Lu, L. Ying, and J. Blanchet. Machine Learning For Elliptic PDEs: Fast Rate
Generalization Bound, Neural Scaling Law and Minimax Optimality. In International Conference
on Learning Representations (ICLR), 2022.

I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. Learning Algebraic Multigrid Using Graph
Neural Networks. In Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020.

T. Marwah, Z. Lipton, and A. Risteski. Parametric Complexity Bounds for Approximating PDEs with
Neural Networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,
pp. 15044–15055, 2021.

NVIDIA Developer. AmgX. https://developer.nvidia.com/amgx, 2022.

10

https://developer.nvidia.com/amgx

Under review as a conference paper at ICLR 2024

G. Pang, M. D’Elia, M. Parks, and G. Karniadakis. nPINNs: Nonlocal Physics-informed Neural
Networks for a Parametrized Nonlocal Universal Laplacian Operator. Algorithms and Applications.
Journal of Computational Physics, 422(5):109760, 2020.

M. M. Polycarpou and P. A. Ioannou. A Neural-type Parallel Algorithm for Fast Matrix Inversion.
Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS), 5:
108–113, 1991.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image
Segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
volume 9351, pp. 234–241, 2015.

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics
(SIAM), second edition, 2003.

R. Sharma, A. B. Farimani, J. Gomes, P. K. Eastman, and V. S. Pande. Weakly-Supervised Deep
Learning of Heat Transport via Physics Informed Loss. CoRR, abs/1807.11374, 2018.

K. Stüben. A Review of Algebraic Multigrid. Journal of Computational and Applied Mathematics,
128(1):281–309, 2001.

J. Takala, A. Burian, and M. Ylinen. A Comparison of Recurrent Neural Networks for Inverting
Matrices. Proceedings of IEEE International Symposium on Signals, Circuits and Systems (ISSCS),
2:545–548, 2003.

W. Tang, T. Shan, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu. Study on a Poisson’s Equation
Solver based on Deep Learning Technique. In IEEE Electrical Design of Advanced Packaging and
Systems Symposium (EDAPS), volume 16, pp. 1–3, 2017.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating Eulerian Fluid Simulation
with Convolutional Networks. Computer Animation and Virtual Worlds, 70(3/4):3424–3433, 2017.

L. Wang and J. M. Mendel. Structured Trainable Networks for Matrix Algebra. Proceedings of
International Joint Conference on Neural Networks (IJCNN), 2:125–132, 1990a.

L. Wang and J. M. Mendel. Three-Dimensional Structured Networks for Matrix Equation Solving.
IEEE Transactions on Computers, 40(12):1337–1346, 1991.

L. X. Wang and J. M. Mendel. Matrix Computations and Equation Solving using Structured Networks
and Training. IEEE Conference on Decision and Control (CDC), 40(12):1747–1750, 1990b.

G. Wu, J. Wang, and J. Hootman. A Recurrent Neural Network for Computing Pseudo-inverse
Matrices. Mathematical and Computer Modelling, 20(1):13–21, 1994.

Y. Xia, J. Wang, and D. L. Hung. Recurrent Neural Networks for Solving Linear Inequalities and
Equations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
46(4):452–462, 1999.

C. Yang, X. Yang, and X. Xiao. A Comparison of Recurrent Neural Networks for Inverting Matrices.
Computer Animation and Virtual Worlds, 27(3/4):415–424, 2016.

Z. Zhang, L. Zhang, Z. Sun, N. Erickson, R. From, and J. Fan. Solving Poisson’s Equation using Deep
Learning in Particle Simulation of PN Junction. In 2019 Joint International Symposium on Elec-
tromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic
Compatibility (EMC Sapporo & APEMC), pp. 305–308, 2019.

Z. Zhou, L. Chen, and L. Wan. Neural Network Algorithm for Solving System of Linear Equations.
Proceedings of International Conference on Computational Intelligence and Natural Computing
(ICCIC), 1:7–10, 2009.

A. G. Özbay, A. Hamzehloo, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller. Poisson CNN:
Convolutional Neural Networks for The Solution of The Poisson Equation on A Cartesian Mesh.
Data-Centric Engineering, 2:e6, 2021.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

This supplemental material is provided to readers in the interest of our paper’s theoretical and
experimental completeness.

A.1 A BRIEF INTRODUCTION TO THE MULTIGRID METHOD

Note: This subsection is amended as NEW material.

The section briefly introduces the multigrid method. We recommend readers who are not familiar
with the multigrid method with texts like Saad (2003) and Stüben (2001).

It has been proved that the linear iterators damp the high-frequency components of the residue (Eq. 5)
very rapidly. Linear iterators are thus called smoothers. The other components (low-frequency or
smooth modes) of the residue are difficult to damp with regular smoothers. However, many of these
modes are mapped naturally into high-frequency modes on a coarser mesh. This leads to the multigrid
method (Saad (2003)) as detailed in Algorithm 1, which naturally hints at a possible implementation
of a similar hierarchy with CNN modules.

Algorithm 1 Multigrid method on Eq. 4: H denotes coarse grid, h denotes fine grid.

Require: Input Ãh, u0, f̃h; Hyper-parameters RH
h , Ph

H , ν1, ν2, γ, εmax;
Ensure: uh = MG(Ãh,u0, f̃h, ν1, ν2, γ, εmax);

repeat
Pre-smooth: uh ← smoothν1(Ãh,u0, f̃h) ▷ Apply pre-smoother for ν1 times
Get residual: rh ← f̃h − Ãhuh

Coarsen: rH ← RH
h rh ▷ Fine-to-coarse transfer

Construct coarse system: ÃH = RH
h ÃhP

h
H

if coarse enough for direct solvers then
Solve: ÃHδH = rH

else
Recursion: δH ← MGγ(ÃH ,0, rH , ν1, ν2, γ − 1) ▷ Apply multigrid method for γ times

end if
Correct: uh ← uh +Ph

HδH ▷ Coarse-to-fine transfer
Post-smooth: uh ← smoothν2(Ãh,uh, f̃h) ▷ Apply post-smoother for ν2 times

until ∥rh∥ =
∥∥∥f̃h − Ãhuh

∥∥∥ ≤ εmax

∥∥∥f̃h∥∥∥
Return uh

One of the keys to the multigrid method is the grid transfer operators. It has been proved that
applying the on-the-shelf versions of these operators, e.g., half-weighting restriction operator or
linear interpolation (prolongation) operator, is sub-optimal (Greenfeld et al. (2019)). Each specific
problem would require one specific operator for best performance. We thus learn correction terms to
the legacy grid transfer operators as linear convolution layers.

A.2 MORE SPECIFICATIONS ON OUR TRAINING DATA

UGrid is trained only with pairs of boundary masks and boundary values as shown in Fig. 4 (h).
To be specific, throughout the whole training phase, UGrid is exposed only to zero Laplacians
and piecewise-constant Dirichlet boundary conditions with the “Donut-like” geometries. UGrid is
unaware of all other complex geometries, topology, as well as the irregular/noisy distribution of
boundary values/Laplacians observed in our testcases. This showcases the strong generalization
power of our UGrid neural solver.

12

Under review as a conference paper at ICLR 2024

A.3 MORE SPECIFICATIONS ON OUR TESTCASES

(a) L-Shape (b) Star (c) Lock (d) Cat (e) Bag

(f) Note (g) Sharp Feature (h) Noisy Input (i) Lap. Square (j) Poisson Square

Figure 4: Illustration of the Dirichlet boundary values of our ten testcases. Again, all boundaries are
shown in bold for a better view. Note that these boundaries are not required to be constant and could
have discontinuities, which could be observed in testcases (g-j).

(a) 2D Heatmap (b) Rendered as 3D surface

Figure 5: The 2.5D height field modeled by testcase “Sharp feature” (Fig. 3 (g) and Fig. 4 (g)). (a)
The 2D ground-truth heatmap; (b) The ground truth is rendered as a 3D surface for a better view.
Note the sharp bumps at the top-left and bottom-right corners as well as the soft counterparts at the
opposite corners. This example illustrates UGrid’s capability of preserving both sharp and smooth
features in one scene.

A.4 MORE SPECIFICATIONS ON OUR QUALITATIVE EVALUATIONS

All of our testcases are tested for 100 times and the results are averaged. For UGrid and Hsieh et al.
(2019), we set the maximum number of iterations as 64, and the iteration is terminated immediately
upon reaching this threshold, no matter whether the current numerical solution has reached the
desirable precision. AmgX has no direct support for relative residual errors, so we set tolerance on
absolute residual errors case-by-case to achieve similar precision.

For the experimental completeness of this paper, we also provide readers with the convergence maps
of UGrid and the three SOTA solvers we compare with. The convergence maps are plotted for all of
our ten testcases, each for its two different scales.

13

Under review as a conference paper at ICLR 2024

(a) L-Shape (b) Star (c) Lock (d) Cat (e) Bag

(f) Note (g) Sharp Feature (h) Noisy Input (i) Lap. Square (j) Poisson Square

Figure 6: Convergence map on large-scale testcases. The x coordinates are time(s), shown in ms; the
y coordinates are the relative residual errors, shown in logarithm (log

(
r × 105

)
) for a better view.

(a) L-Shape (b) Star (c) Lock (d) Cat (e) Bag

(f) Note (g) Sharp Feature (h) Noisy Input (i) Lap. Square (j) Poisson Square

Figure 7: Convergence map on small-scale testcases.

A.5 ABLATION STUDY

Note: This subsection is amended as NEW material.

For experimental completeness, we conduct ablation studies with respect to our residual loss and
the UGrid architecture itself. In addition to the UGrid model trained with residual loss (as proposed
in the main content), we also train another UGrid model with legacy loss, as well as one vanilla
U-Net model with residual loss. This U-Net model has the same number of layers as UGrid, and
has non-linear layers as proposed in Ronneberger et al. (2015), We let the U-Net directly regress the
solutions to Poisson’s equations. All these models are trained with the same data in the same manner
(except for the loss metric), as detailed in Section 5.

Reviewers may note that the U-Net model is not trained with the legacy loss. This is because our
training data are all generated from Laplacian equations (which, the ability to train on Laplacian
and generalize to Poisson, is one of UGrid’s technical merits). At present, we don’t have enough
Poisson data with ground truth values to train such a model on the legacy loss. On the contrary, for

14

Under review as a conference paper at ICLR 2024

the residual loss, we could simply input randomly-sampled noises as the Laplacian field and optimize
the U-Net model with respect to the residue in an unsupervised manner.

We conduct qualitative experiments on the same set of testcases as detailed in Section 5, and the
results are as follows:

Table 3: Comparison of UGrid with residual loss, UGrid with legacy loss (UGrid (L)), and U-Net
with residual loss, on large-scale problems. “Time” denotes the time (ms) to reach relative residual
errors ≤ 10−4 or for 64 iterations, whichever comes first; “Error” denotes the final relative residual
errors, divided by 10−5.

Testcase UGrid UGrid (L) U-Net
Large-scale Time / Error Time / Error Time / Error

Bag 18.66 / 2.66 28.81 / 4.86 81.71 / 1384131
Cat 10.09 / 2.70 23.80 / 1.43 70.09 / 2539002

Lock 10.55 / 9.88 Diverge 70.92 / 1040837
Noisy Input 10.16 / 2.64 20.65 / 2.42 73.05 / 21677

Note 10.31 / 4.06 Diverge 69.97 / 614779
Sharp Feature 20.01 / 3.80 31.34 / 5.14 70.08 / 222020

L-shape 15.26 / 8.43 Diverge 74.67 / 1800815
Laplacian Square 15.10 / 3.88 30.72 / 2.76 72.24 / 30793035
Poisson Square 15.07 / 9.37 31.52 / 3.33 71.74 / 31043896

Star 15.18 / 7.50 Diverge 70.01 / 1138821

In Table 3, the residual loss endows our UGrid model with as much as 2x speed up versus the legacy
loss. The residual loss also endows UGrid to converge to the failure cases of its counterpart trained
on legacy loss. These results demonstrate the claimed merits of the residual loss. On the other hand,
it will diverge if we naively apply the vanilla U-Net architecture directly to Poisson’s equations. For
experimental completeness only, we list the diverged results in the last column. (The “time” column
measures the time taken for 64 iterations; the iterators are shut down once they reach this threshold.)
This showcases the significance of UGrid’s mathematically-rigorous network architecture.

Table 4: Comparison of UGrid with residual loss, UGrid with legacy loss (UGrid (L)), and U-Net
with residual loss, on small-scale problems. “Time” denotes the time (ms) to reach relative residual
errors ≤ 10−4 or for 64 iterations, whichever comes first; “Error” denotes the final relative residual
errors, divided by 10−5.

Testcase UGrid UGrid (L) U-Net
Small-scale Time / Error Time / Error Time / Error

Bag 8.76 / 8.05 17.89 / 4.50 71.86 / 678141
Cat 51.96 / 6.21 Diverge 68.89 / 1317465

Lock 9.00 / 2.11 18.32 / 2.83 69.47 / 189412
Noisy Input 8.94 / 6.00 17.88 / 6.58 69.54 / 21666

Note 8.87 / 2.75 17.79 / 3.06 69.59 / 24715
Sharp Feature 13.31 / 7.52 26.64 / 1.91 70.57 / 191499

L-shape 40.60 / 7.09 Diverge 69.71 / 1011364
Laplacian Square 13.21 / 3.27 22.23 / 9.55 73.80 / 15793109
Poisson Square 13.21 / 2.88 22.13 / 9.76 71.56 / 15393069

Star 8.92 / 2.36 17.60 / 5.69 73.72 / 502993

In Table 4, for small-scale problems, the residual loss still endows UGrid with as much as 2x speedup
and stronger generalization power against its counterpart trained with legacy loss. Once again, the
vanilla U-Net model diverged for all testcases, and we list its diverged results for experimental
completeness only.

15

Under review as a conference paper at ICLR 2024

A.6 QUALITATIVE EVALUATIONS ON INHOMOGENEOUS HELMHOLTZ EQUATIONS WITH
SPATIALLY-VARYING WAVENUMBERS

Note: This subsection is amended as NEW material.

Under Dirichlet boundary condition, an inhomogeneous Helmholtz equation with spatially-varying
wavenumber may be expressed as follows:{

∇2u(x, y) + k2(x, y)u(x, y) = f(x, y), (x, y) is an interior point
u(x, y) = b(x, y), (x, y) is a boundary point

, (18)

where u is the unknown scalar field, k2 is the spatially-varying wavenumber, f is the (non-zero) right
hand side, and b is the Dirichlet boundary condition. Such an equation is generally non-self-adjoint.

For our proposed UGrid solver, we could naturally extend Eq. 10 into the following form to incorporate
Eq. 18:

uk+1 =
1

4− k2
(1−M)(uk ∗ 4J− f) +Mb (4− k2 ̸= 0) , (19)

where all notations retain their meanings as in Eq. 10; and further extend Eq. 11 into

r(u) = (1−M)
(
f − u ∗ L− k2u

)
, (20)

where all notations retain their meanings as in Eq. 11. We train UGrid with the same training data
and residual loss as mentioned in Section 5. As one exception, we also input randomly-sampled k2

during training, evaluation, and testing. The randomly-sampled k2s used for training are illustrated in
Fig. 8 (h).

For qualitative experiments, we use the same boundary conditions and Laplacian distributions as
shown in Fig. 4 and Fig. 3, and we randomly initialize the wavenumber field k2 across the whole
domain, resulting in a noisy distribution:

(a) L-Shape (b) Star (c) Lock (d) Cat (e) Bag

(f) Note (g) Sharp Feature (h) Noisy Input (i) Lap. Square (j) Poisson Square

Figure 8: Illustration of the wavenumber distributions of our testcases. The boundaries are shown in
bold red lines for a better view. (Boundary values are shown in Fig. 4.)

16

Under review as a conference paper at ICLR 2024

The qualitative results are as follows:

Table 5: Comparison of our model and state-of-the-art on large-scale problems. “Time” denotes the
time (ms) to reach relative residual errors ≤ 10−4; “Error” denotes the final relative residual errors,
divided by 10−5.

Testcase UGrid AMGCL AmgX
Large-scale Time / Error Time / Error Time / Error

Bag 20.03 / 8.08 203.71 / 5.69 94.00 / 6.24
Cat 16.85 / 0.51 278.07 / 7.26 119.16 / 3.26

Lock 12.83 / 6.82 144.10 / 4.24 70.71 / 5.16
Noisy Input 11.98 / 6.79 260.48 / 3.92 116.76 / 9.27

Note 12.18 / 6.48 131.58 / 3.02 94.47 / 4.73
Sharp Feature 57.68 / 9.86 422.55 / 9.85 Diverge

L-shape 23.14 / 4.68 231.89 / 9.98 113.06 / 5.19
Laplacian Square 44.91 / 9.98 419.92 / 5.81 188.47 / 7.64
Poisson Square 43.55 / 8.31 421.44 / 9.84 193.35 / 8.96

Star 15.18 / 7.50 154.81 / 7.63 72.24 / 5.31

In Table 5, our UGrid model reaches the desirable precision 7-20x faster than AMGCL and 5-10x
faster than NVIDIA AmgX.

Table 6: Comparison of our model and state-of-the-art on small-scale problems. “Time” denotes the
time (ms) to reach relative residual errors ≤ 10−4; “Error” denotes the final relative residual errors,
divided by 10−5.

Testcase UGrid AMGCL AmgX
Small-scale Time / Error Time / Error Time / Error

Bag 14.70 / 6.29 12.92 / 3.00 25.82 / 1.79
Cat 16.63 / 7.86 16.82 / 6.98 28.37 / 3.03

Lock 9.78 / 5.87 16.23 / 7.88 19.75 / 2.02
Noisy Input 14.95 / 0.76 14.34 / 9.40 28.92 / 0.04

Note 14.37 / 8.28 9.01 / 9.02 18.76 / 2.55
Sharp Feature 19.46 / 1.18 21.37 / 4.21 52.82 / 0.13

L-shape 14.64 / 0.88 12.29 / 9.99 26.90 / 2.10
Laplacian Square 14.60 / 4.60 22.43 / 5.59 43.68 / 17.8
Poisson Square 15.27 / 6.53 22.35 / 5.50 43.57 / 17.2

Star 9.77 / 5.96 19.09 / 2.16 20.89 / 2.18

In Table 6, again, even on small-scale problems that hinder our solver with a compact multigrid-like
hierarchy from delivering its full power, UGrid is still faster than or exhibits comparable efficiency
with respect to the SOTA.

A.7 QUALITATIVE EVALUATIONS ON INHOMOGENEOUS STEADY-STATE
CONVECTION-DIFFUSION-REACTION EQUATIONS

Note: This subsection is amended as NEW material.

Under Dirichlet boundary condition, an inhomogeneous steady-state convection-diffusion-reaction
equation may be expressed as follows:{

v(x, y) ·∇u(x, y)− α∇2u(x, y) + βu(x, y) = f(x, y), (x, y) is an interior point
u(x, y) = b(x, y), (x, y) is a boundary point

, (21)

where u is the unknown scalar field, v = (vx, vy)
⊤ is the vector velocity field, α, β are constants, f

is the (non-zero) right-hand side, and b is the Dirichlet boundary condition. Such an equation is also
generally non-self-adjoint.

17

Under review as a conference paper at ICLR 2024

For our proposed UGrid solver, we could naturally extend Eq. 10 into the following form to incorporate
Eq. 21:

uk+1 =
1

4α+ β
(1−M)(αuk ∗ 4J+ vx(uk ∗ Jx) + vy(uk ∗ Jy) + f) +Mb (4α+ β ̸= 0) ,

(22)

where Jx =

(
0 0 0
0.5 0 −0.5
0 0 0

)
and Jy =

(
0 −0.5 0
0 0 0
0 0.5 0

)
are two convolution kernels introduced

for the gradient operator in Eq. 21, and all notations retain their meanings as in Eq. 10.

Furthermore, we also extend Eq. 11 into

r(u) = (1−M)(f + vx(u ∗ Jx) + vy(u ∗ Jy) + αu ∗ L− βu) , (23)

where all notations retain their meanings as in Eq. 11.

We then train UGrid in the same manner as for Helmholtz equations. As one exception, we input
randomly-sampled vs, αs, and βs during training, evaluation, and testing. These values are sampled
using the same routine as for Helmholtz equations, resulting in noisy velocity fields like Fig. 8 as
well as randomized α, β coefficients (4α+ β ̸= 0). The qualitative results are as follows:

Table 7: Comparison of our model and state-of-the-art on large-scale problems. “Time” denotes the
time (ms) to reach relative residual errors ≤ 10−4; “Error” denotes the final relative residual errors,
divided by 10−5.

Testcase UGrid AMGCL AmgX
Large-scale Time / Error Time / Error Time / Error

Bag 41.89 / 4.77 198.19 / 5.28 106.84 / 1.09
Cat 100.68 / 9.06 270.55 / 9.21 138.44 / 1.22

Lock 58.79 / 4.78 135.86 / 4.72 70.23 / 3.97
Noisy Input 84.29 / 8.75 256.90 / 4.40 122.29 / 0.08

Note 25.24 / 7.42 124.04 / 6.72 69.40 / 4.54
Sharp Feature 33.80 / 7.90 407.64 / 4.25 191.97 / 0.46

L-shape 30.09 / 4.70 214.45 / 6.28 110.21 / 4.53
Laplacian Square 60.31 / 6.62 409.15 / 4.56 198.03 / 7.50
Poisson Square 48.60 / 7.89 409.05 / 5.11 212.48 / 3.15

Star 25.59 / 9.38 147.47 / 6.01 71.75 / 4.16

In Table 7, our UGrid model reaches the desirable precision 2-12x faster than AMGCL and on
average 2-6x faster than NVIDIA AmgX.

Table 8: Comparison of our model and state-of-the-art on large-scale problems. “Time” denotes the
time (ms) to reach relative residual errors ≤ 10−4; “Error” denotes the final relative residual errors,
divided by 10−5.

Testcase UGrid AMGCL AmgX
Small-scale Time / Error Time / Error Time / Error

Bag 16.99 / 3.79 12.34 / 9.94 22.58 / 3.66
Cat 69.12 / 8.76 16.57 / 9.79 27.44 / 6.74

Lock 17.07 / 1.43 16.07 / 6.34 18.34 / 4.06
Noisy Input 22.84 / 6.47 15.94 / 2.74 24.35 / 0.42

Note 22.76 / 1.17 9.38 / 2.67 19.25 / 3.79
Sharp Feature 17.05 / 5.15 21.41 / 4.29 41.67 / 0.72

L-shape 35.18 / 6.25 13.02 / 2.30 25.51 / 3.97
Laplacian Square 90.73 / 64.5 22.14 / 8.17 50.49 / 3.50
Poisson Square 50.95 / 5.01 22.05 / 7.34 50.06 / 3.28

Star 17.06 / 3.69 18.70 / 7.55 18.88 / 4.71

18

Under review as a conference paper at ICLR 2024

In Table 8, again, even on small-scale problems that hinder our solver with a compact multigrid-like
hierarchy from delivering its full power, UGrid is still exhibits comparable efficiency with respect
to the SOTA. This demonstrates UGrid’s generalization power over problem sizes, though possibly
at the price of relatively lower efficiency compared to the size it is trained on. Thus, the authors
recommend users of UGrid to train it on the actual size of the problems to be solved.

19

	Introduction
	Related Work
	Mathematical Preliminary
	Novel Approach
	Convolutional Operators
	Neural Network Design
	Loss Function Design

	Experiments and Evaluations
	Conclusion and Future Work
	Appendix
	A Brief Introduction to The Multigrid Method
	More Specifications on Our Training Data
	More Specifications on Our Testcases
	More Specifications on Our Qualitative Evaluations
	Ablation Study
	Qualitative Evaluations on Inhomogeneous Helmholtz Equations with Spatially-varying Wavenumbers
	Qualitative Evaluations on Inhomogeneous Steady-state Convection-diffusion-reaction Equations

