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Abstract
In a neural network with ReLU activations, the
number of piecewise linear regions in the output
can grow exponentially with depth. However, this
is highly unlikely to happen when the initial pa-
rameters are sampled randomly, which therefore
often leads to the use of networks that are un-
necessarily large. To address this problem, we
introduce a novel parameterization of the network
that restricts its weights so that a depth d network
produces exactly 2d linear regions at initializa-
tion and maintains those regions throughout train-
ing under the parameterization. This approach
allows us to learn approximations of convex, one-
dimensional functions that are several orders of
magnitude more accurate than their randomly ini-
tialized counterparts. We further demonstrate a
preliminary extension of our construction to mul-
tidimensional and non-convex functions, allowing
the technique to replace traditional dense layers
in various architectures.

1. Introduction
Beyond complementary advances in areas like hardware,
storage, and networking, the success of neural networks
is primarily due to their ability to efficiently capture and
represent nonlinear functions (Gibou et al., 2019). In a
neural network, the goal of an activation function is to intro-
duce nonlinearity between the network’s layers so that the
network does not simplify to a single linear function. The
rectified linear unit (ReLU) has a unique interpretation in
this regard. Since it either deactivates a neuron or acts as
an identity, the resulting transformation on each individual
input remains linear. However, each possible configuration
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of active and inactive neurons can produce a unique linear
transformation over a particular region of input space. The
number of these activation patterns and their corresponding
linear regions provides a way to measure the expressivity of
a ReLU network1 and can theoretically scale exponentially
with the depth of the network (Montufar et al., 2014; Serra
et al., 2018). Hence deep architectures may outperform
shallow ones.

Surprisingly, though, a sophisticated theory of how to best
encode functions into ReLU networks is lacking, and in
practice, adding depth is often observed to help less than
one might expect from this exponential intuition. Lacking
more advanced theory, practitioners typically use random
parameter initialization and gradient descent, the drawbacks
of which often lead to extremely inefficient solutions. In-
deed, Hanin & Rolnick (2019) show a rather disappointing
bound for randomly initialized networks: the average num-
ber of linear regions formed at initialization is invariant with
depth. Whether using a deep or shallow architecture, only
the total number of neurons matters. They further observed
that gradient descent has a difficult time creating new activa-
tion regions, and thus their bounds approximately held after
training. As we will discuss later, the total number of linear
regions is not a “local” property in parameter space that gra-
dient descent can directly optimize (see Figure 5). Gradient
descent is also prone to redundancy; for instance, Frankle &
Carbin (2019) show how around 95% of weights may ulti-
mately be eliminated from a network without significantly
degrading accuracy.

The present work presents mathematical algorithms that
avoid the limitations of random initialization. Our contribu-
tions include:

• A reparameterization of a 4-neuron-wide, depth d
ReLU network that constrains it to initialize with 2d

activation regions over the input domain (Section 3)

• A novel pretraining strategy, which enforces the exis-
tence of 2d activation regions during optimization to
produce its initial solution (Sections 3, 3.1)

1See Appendix A.2 for definitions of terms like linear regions,
activation patterns, and activation regions.
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• Numerical results for one-dimensional test cases that
yield orders-of-magnitude improvements in network
performance (Section 4)

• Extensions to non-convex and multidimensional func-
tions, and use of our method as a drop-in replacement
for dense layers in arbitrary networks (Sections 5 and
6; Appendices B.2–B.3)

While an exponential increase in the expressiveness of a
ReLU network does not necessarily imply an exponential
increase in performance, one may intuitively expect a sub-
stantial benefit, and our results bear this out, yielding error
values orders of magnitude lower than a traditionally-trained
network of equal size for simple test problems (Section 4),
and outpacing such networks’ performance during pretrain-
ing on more practical test cases such as ImageNet (Section
6). We emphasize that while the preliminary mathematical
analysis in this work pertains to a specific ReLU construc-
tion, this construction can be repeated and combined in
useful ways to obtain performance improvements on larger
networks (Section 5). We conclude in Section 7 with dis-
cussions on extending the mathematical framework of our
method to arbitrary ReLU networks and other types of net-
works, which would have significant practical utility.

2. Related Work
This work is primarily concerned with a novel training
methodology for ReLU networks, but its development stems
from a more abstract idea of an exponentially accurate ap-
proximation to the function x2, which can be encoded into a
ReLU network. Our work generalizes this construction into
a trainable family of differentiable convex one-dimensional
functions (see Appendix A.3).

2.1. Function Approximation

Infinitely wide neural networks are known to be universal
function approximators, even with only one hidden layer
(Hornik et al., 1989; Cybenko, 1989). Infinitely deep net-
works of fixed width are universal approximators as well
(Lu et al., 2017; Hanin, 2019). In finite cases, one may study
trade-offs between width and depth to assess a network’s
ability to approximate (learn) a function.

Notably, there exist functions that can be represented with
a sub-exponential number of neurons in a deep architec-
ture, yet which require an exponential number of neurons
in a wide and shallow architecture. For example, Telgar-
sky (2015) shows that deep neural networks with ReLU
activations on a one-dimensional input are able to gener-
ate symmetric triangle waves with an exponential number
of linear segments (shown in Figure 1 as the ReLU net-
work T (x)). This network functions as follows: each layer

Figure 1. (Top to bottom) Composed triangle waves; using collec-
tions of the above function to approximate x2; derivatives of the
above approximations.

takes a one-dimensional input on [0, 1], and outputs a one-
dimensional signal also on [0, 1]. The function they produce
in isolation is a single symmetric triangle. Together in a
network, each layer inputs its output to the next, performing
function composition. Since each layer converts lines from 0
to 1 into triangles, it doubles the number of linear segments
in its input signal, exponentially scaling with depth.

The same effect can be achieved with non-symmetric tri-
angle waves (Huchette et al., 2023) (or any shape that suf-
ficiently “folds” the input space (Montufar et al., 2014)).
Our reparameterization strategy (Section 3) focuses on non-
symmetric triangle waves.

The dilated triangular waveforms produced in this manner
are not particularly useful on their own. Their oscillations
quickly become excessively rapid, and their derivatives do
not exist everywhere (especially in the infinite-depth limit).
But these problems can be rectified by taking a sum over the
layers of a network. Yarotsky (2017) and Liang & Srikant
(2016) construct y = x2 on [0, 1] with exponential accu-
racy using symmetric triangle waves. To produce their ap-
proximation, one begins with f0(x) = x, then computes
f1(x) = f0(x) − T (x)/4, f2(x) = f1(x) − T (T (x))/16,
f3(x) = f2(x)−T (T (T (x)))/64, and so forth, as pictured
in Figure 1. As these successive approximations are com-
puted, Figure 1 plots their convergence to x2, as well as the
convergence of the derivative to 2x. Our reparameteriza-
tion generalizes this approximation to use non-symmetric
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triangle waves to approximate a wider class of convex, dif-
ferentiable, one-dimensional functions.

The x2 approximation is used by other theoretical works
as a building block to guarantee exponential convergence
rates in more complex systems. Perekrestenko et al. (2018)
construct a multiplication gate via the identity (x+ y)2 =
x2 + y2 + 2xy. The squared terms can all be moved to
one side, expressing the product xy as a linear combina-
tion of squared terms. They then further assemble these
multiplication gates into an interpolating polynomial, which
can have an exponentially decreasing error when the in-
terpolation points are chosen to be the Chebyshev nodes.
Polynomial interpolation does not scale well into high di-
mensions, so this and papers with similar approaches will
usually come with restrictions that limit function complex-
ity: Wang et al. (2018) requires low input dimension, Mon-
tanelli et al. (2020) uses band limiting, and Chen et al. (2019)
approximates low-dimensional manifolds. These works all
make use of a fixed representation of x2. If our networks
were substituted in for the x2 approximation, these works
would provide theoretical guarantees about the capabilities
of the resulting model. Even though the approximation
rates will not scale well with input dimension, they serve
as a bound that can be improved upon. In Section 5, we
further elaborate on how to use our networks to represent
higher-dimensional or non-convex functions.

Other works focus on showing how ReLU networks can
encode and subsequently surpass traditional approximation
methods (Lu et al., 2021; Daubechies et al., 2022), includ-
ing spline-type methods (Eckle & Schmidt-Hieber, 2019).
Interestingly, certain fundamental themes from above like
composition, triangles, or squaring are still present. Another
interesting comparison of the present work is to Ivanova
& Kubat (1995), which uses decision trees as a means to
initialize sigmoid neural networks for classification. Similar
to the spirit of our work, which restricts parameterizations
of ReLU networks, Elbrächter et al. (2019) explores theo-
retical aspects of the conditionining of ReLU network train-
ing and provides constructive results for a parameterization
space that is well-conditioned. Chen & Ge (2024) present a
creative approach where they explore reparameterizing the
direction of weight vectors using hyperspherical coordinates
to improve training dynamics. Unlike their reparameteriza-
tion, ours will restrict the network’s expressivity in order to
prevent it from learning inefficient weight patterns. Lastly,
Park et al. (2021) approaches the problem of linear region
maximization from an information theory perspective and
uses a loss penalty rather than a reparameterization to in-
crease the number of linear regions.

2.2. Neural Network Initialization

Our work seeks to improve network initialization by making
use of explicit theoretical constructs. This stands in sharp
contrast current standard approaches, which treat neurons
homogeneously. Two popular initialization methods im-
plemented in PyTorch are the Kaiming (He et al., 2015)
and Xavier initialization (Glorot & Bengio, 2010). They
use weight values that are randomly sampled from distri-
butions defined by the input and output dimension of each
layer. Aside from sub-optimal approximation power asso-
ciated with random weights, a common issue is that the
initial weights and biases in a ReLU network can cause
every neuron in a particular layer to output a negative value.
The ReLU activation then sets the output of that layer to
0, blocking any gradient updates. This is referred to as the
dying ReLU phenomenon (Qi et al., 2024; Nag et al., 2023).
Worryingly, as depth goes to infinity, the dying ReLU phe-
nomenon becomes increasingly likely (Lu et al., 2020). Sev-
eral papers propose solutions: Shin & Karniadakis (2020)
use a data-dependent initialization, while Singh & Sree-
jith (2021) introduce an alternate weight distribution called
RAAI that can reduce the likelihood of the issue and in-
crease training speed. We observed during our experiments
that RAAI greatly reduces, but does not eliminate, the like-
lihood of dying ReLU. Our approach enforces a specific
network structure that does not collapse in this manner.

3. Initialization and Pretraining Construction
In this section we describe our ReLU network reparame-
terization strategy that ensures an exponential number of
linear regions with respect to depth. We focus on architect-
ing the weights of a 4-neuron-wide, arbitrary depth ReLU
network; while this is a constraint of the present manuscript,
we will show that despite this, we can effectively apply our
construction to a wide variety of examples.

As alluded to in Section 2.1, the overall strategy of our repa-
rameterization and initialization algorithm is to associate a
nonsymmetric triangle function with each layer of the net-
work. This yields a reparameterization of the ReLU network
in terms of the locations of each triangle’s peak on (0, 1),
ai, rather than in terms of the network’s weights. Unlike
the raw weights of a depth d ReLU network, any values
chosen for the triangle peak parameters will result in the
creation of 2d linear regions. Furthermore, this parameteri-
zation is trainable. By using the peak location to set the raw
weights of a layer, the gradients can backpropagate through
the raw weights to update the triangle peaks, effectively con-
fining the network to a subspace of weights that generates
many linear regions. Pseudocode for our entire algorithm is
provided in Appendix A.1.

To illustrate how we set weights, we first describe the math-
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ematical functions that arise in our analysis. Triangle func-
tions are defined as

Ti(x) =

{
x
ai

0 ≤ x ≤ ai

1− x−ai

1−ai
ai ≤ x ≤ 1

,

where 0 < ai < 1. This produces a triangular shape with
a peak at x = ai and zeros at x = 0 and x = 1. These
functions are implemented by two ReLU neurons in each
layer. In a deep network, each layer composes its triangle
function with the output of the layer before it. The result is
that each layer computes the following triangular waveform:

Wi(x) =⃝i
j=0Tj(x) = Ti(Ti−1(...T0(x))). (1)

These triangle waves will have 2i linear regions, doubling
with each layer. By allocating an extra neuron in each layer,
our construction will take a weighted sum over each layer’s
triangle wave, using them as a deep basis to build the output.
In the infinite depth limit, the network output takes the form:

F (x) =

∞∑
i=0

siWi(x), (2)

where si are scaling coefficients on each of the composed
triangular waveforms Wi. F (x) would be a parabola if we
exactly followed the related work. F (x) could also end up
being a fractal curve if the si are chosen to be too large.
Choosing si carefully to regularize F (x) is a major part of
our construction.

Now we will discuss how to encode these functions into
the weights of a ReLU network, beginning with a network
for a single triangle function (see the upper left diagram in
Figure 2). Each triangle function has two nonzero linear
pieces, requiring two ReLU neurons. For simplicity, we will
set both neurons’ input weights to 1. We will arrange for
neuron t1 to be active for all inputs, and since the maximum
output should be 1 at the peak location a ∈ (0, 1), neuron
t1 will have an outgoing weight of 1/a. x = a is where
the slope should change, so neuron t2 will be biased by
−a to suppress it for x < a. Since both neurons are active
for x > a, neuron t2 will need to be weighted by −(1/a+
1/(1− a)) = −1/(a− a2); this weight will both suppress
neuron t1 and also ensure the second leg of the triangle
function reaches 0 at x = 1. This is now the first network
shown in Figure 2.

To compose the triangle waves Wi(x), copies of this net-
work can be stacked together depth-wise, lining up the “in”
and “out” neurons of successive networks. This will have
a non-uniform width (1 → 2 → 1 → 2 → 1...), but since
the input weights of the hidden t1 and t2 neurons are both 1,
it can be simplified into the form shown on the top right of
Figure 2. The weights 1/a and−1/(a−a2) give the correct

sum

t1

t2

bias

sum

t1

t2

bias

Si/ai

-Si/(ai-ai
2)

-S i(a i+1
)

Si

1

t1

t2

in out

bias

-a -1/a -
 1/(1

-a)

1/a

Pretraining Hidden Layer
Triangle Function

1

1

sum

t1

t2

bias

sum

t1

t2

bias

sum

t1

t2

bias

sum

t1

t2

in out

*Identical Line Coloring 
Indicates Shared Weight

Multilayer Pretraining Restrictions

Figure 2. On the top left is a network representation of a triangle
function. The top right shows that triangle function as a hidden
layer of a network. The one-dimensional input and output of a tri-
angle function is converted into shared weights. A full pretraining
network is assembled on the bottom.

way to combine the t1 and t2 neurons in order to obtain a
triangle function, so every hidden neuron will combine the
previous t1 and t2 neuron in this proportion. Using identical
weights makes each layer act as if it is composing functions
in one dimension, rather than in a dimension equal to the
number of neurons.

The goal of the network is not to output triangle waves;
instead, the function we seek to approximate is F (x), de-
fined earlier to be a weighted sum of the triangle waves
from each layer. We add an extra neuron to each layer, la-
beled “sum” in Figure 2, to compute this. These are ordinary
neurons, but thanks to their specific weights, they will act
similarly to a residual connection (He et al., 2016), allowing
the hidden features in the network to be used in the output.
Each sum neuron adds the previous layer’s triangle wave
to the previous sum neuron, thereby iteratively updating an
approximation to F (x).

According to Theorem 3.1, each triangle wave added to the
sum must have an amplitude exponentially smaller than the
last. Exponentially small weights would pose conditioning
issues in optimization, so rather than giving the sum neuron
an exponentially small weight, we use the ratio of successive
scaling coefficients Si = si/si−1 to iteratively decay the
amplitude of the t1 and t2 neurons. But because t2 now has
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Figure 3. Each colored line shows the output signal of a neuron
with respect to the input to the network. Colors match the corre-
sponding neurons in Figure 2.

an exponentially small amplitude, its bias must be exponen-
tially small to function properly. Rather than implementing
an exponentially small bias, we make the bias into a neuron.
This is rather unconventional, but by using the connection
to the previous bias neuron, the bias can decay iteratively,
and t2 neurons can use their weight to the bias neuron to
implement their bias. In matrix form, our hidden layers are:


1 ±[Si/ai −Si/(ai − a2i )] 0
0 Si/ai −Si/(ai − a2i ) 0
0 Si/ai −Si/(ai − a2i ) −Siai+1

0 0 0 Si

×


sum
t1
t2

bias

 .

Here, rows correspond to neurons, and the sum neuron
can either add or subtract the triangle waves depending on
whether the target function is convex or concave.

3.1. Pretraining and Overall Algorithm

We imagine the process of optimizing neural network pa-
rameters as three phases: (1) reparameterization and ini-
tialization, where a network’s weights are initially set; (2)
pretraining, where the network is trained under that reparam-
eterization; and (3) training, where the network is trained
using the network’s weights directly. Our pretraining al-
gorithm acts as a preconditioner for or guide to the loss
landscape, and when an optimizer is close to a minimum,
the exponential expressivity of the network may no longer
need to be guaranteed to ensure efficient neuron usage.

Our pretraining algorithm is thus to simply use an optimizer
like gradient descent to train the network under the reparam-
eterization described above. Explicit formulas for updating
the reparameterized weights, and pseudocode for our whole
algorithm, are listed in Appendix A.1.

3.2. Differentiable Model Output

Given the rapid oscillations of the triangle waves formed
at each layer, the network will output a fractal with many
choices of scaling parameters. This would be poorly pre-
dictive of unseen data points generated by a smooth curve.
Rather than turning to a general regularizer like batch norm
(Ioffe & Szegedy, 2015) or layer norm (Lei Ba et al., 2016),
we use a regularization scheme that arises from the form
of our functions. When we require that the network output
approach a differentiable function in the infinite depth limit,
an elegant relationship arises where the peak locations of
the triangle waves uniquely determine the scales with which
to sum them.
Theorem 3.1. F ′(x) =

∑∞
i=0 siW

′
i (x) and is continuous

on [0, 1] only if the scaling coefficients si are selected based
on the triangle peaks ai according to:

si+1 = si(1− ai+1)ai+2. (3)

Mathematical analysis and sufficient conditions for differ-
entiability in the limit are in Appendix A.3. In Section 4,
we will see that following this regularization allows the
pretraining phase to produce better initial solutions.

4. One-Dimensional Experiments
Since our network construction applies directly to one-
dimensional convex functions, we focus on such functions in
this section (we cover more difficult functions in Sections 5–
6 and Appendices B.2–B.3). The aim of these experiments
is twofold: (1) we would like to determine the most effective
function representations possible from such a small network,
and (2) to explore how the utilization of an increased num-
ber of linear regions can affect a network’s ability to capture
underlying nonlinearity in its training data. To demonstrate
that our networks can learn function representations that bet-
ter utilize depth, we benchmark against PyTorch’s (Paszke
et al., 2019) default settings (nn.linear() uses Kaiming
initialization), as well as the RAAI distribution (Singh &
Sreejith, 2021), and produce errors that are orders of mag-
nitude lower than both. We also train several permutations
of our reparameterized networks, which validate that our
pretraining and our differentibility constraints indeed facili-
tate smoother navigation of the loss landscape. Lastly, we
conduct a second round of tests to determine if pretrained
networks display an enhanced predictive capacity on unseen
data points, as might be expected if they can leverage greater
nonlinearity in their outputs.

4.1. Experimental Setup

All models are trained using Adam (Kingma & Ba, 2017) as
the optimizer with a learning rate of 0.001 for 1,000 epochs
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to ensure convergence (see Appendix B.1 for a brief analysis
of different learning rates). Each network is four neurons
wide with five hidden layers, along with a one-dimensional
input and output. The loss function used is the mean squared
error, and the average and minimum loss are recorded for
30 models of each type. To compare how well each setup
navigates the loss landscape, the networks using triangle-
based parameterizations share a common set of starting
locations where the triangle peaks and scaling parameters
are chosen according to Theorem 3.1. The “unregularized”
network has extra degrees of freedom to choose the scaling
coefficients after initialization (so that differentiability of
the output is not enforced during pretraining). “pretraining
skipped” is a network that initializes with our method, but
only trains in the standard parameterization. The four curves
we approximate are x3, x11, tanh(3x), and a quarter period
of a sine wave. To approximate the sine and the hyperbolic
tangent, the triangle waves are added to the line y = x, while
for x3 and x11 the waves are subtracted. When the waves
are subtracted, the first scaling factor has to be changed to
a0 ∗ a1 instead of (1− a0) ∗ a1. The first set of data is 500
evenly spaced points on the interval [0, 1] for each of the
curves. This is chosen to be very dense deliberately, to try to
evoke the most accurate function interpolations from each
network. We determine from these tests that pretraining
with differentiability enforced produces the best results, so
we compare it to standard networks in our second set of
experiments. We use a second set of data consisting of only
10 points, with a test set of 10 points spaced in between so
as to be as far away from learned data as possible. This
set of experiments evaluates the predictive capacities of the
networks on unseen data.

4.2. Numerical Results

Our first set of results are shown in Tables 1 and 2, wherein
we observe several important trends. First, the worst per-
forming networks are the “default networks” that rely on
randomized (Kaiming) initialization (see also Figure 5).
Even the networks that forgo pretraining benefit from ini-
tializing with many activation regions. When pretraining
constraints are used, they are able to steer gradient descent
to the best solutions, resulting in reductions in minimum
error of three orders of magnitude over default networks.
Pretraining with differentiability enforced also closes the
gap between the minimum and mean errors compared to
other setups. This indicates that these loss landscapes are
indeed the most reliable to traverse. Enforcing differentia-
bility during pretraining can impart a bias towards smoother
solutions during subsequent unassisted gradient descent.

The last trend to observe is the poor average performance
of default networks. In a typical run of these experiments,
around half of the default networks collapse from the dying
ReLU phenomenon. RAAI is able to eliminate most, but

not all of the dying ReLU instances due to its probabilistic
nature, so it, too, has high mean error. This is why we have
focused on presenting the minimum error over all the trials.

Figure 4. Standard Kaiming initialization/gradient descent vs. pre-
training with differentiablity enforced. Using more linear regions
allows the curve to better predict the test points.

Our second set of results is shown in Table 3 and in Figure
4. Here the most important impact of utilizing exponentially
many linear regions is demonstrated. Not only can more
accurate representations of training data be learned, but
maintaining more linear regions allows the network to better
capture underlying nonlinearity to enhance its predictive
power in regression tasks. This result is especially signifi-
cant because it indicates that even in cases where there are
fewer data points than linear regions, having the additional
regions can still provide performance advantages.

5. Extension to Non-Convex Functions and
Higher Dimensions

The results presented so far are limited to one-dimensional
convex functions, but our method can easily be extended.
Since our constructed networks are one-dimensional, they
can be used as the activation functions of a larger network
(see Figure 9 in the Appendix for a schematic). Our experi-
mental results show that even using just two copies of our
network in this manner can go a long way towards increas-
ing the expressive ability of the technique. For example, two
of our networks could be used to build a two-dimensional
convex function. This can be done by using one network to
build a convex function oriented in the x direction, and the
other in the y direction. A positive linear combination of
their outputs then yields a two-dimensional convex function.
Similarly, a non-convex function can be realized by taking a
difference of the outputs of two of our networks. Of course,
this pattern can be generalized to an arbitrary-width layer
using n of our networks.

Figures 6 and 7 show learning the non-convex function
y = x3−x and the two-dimensional convex function z = r3

on [−1, 1], each by using two of our constructed networks
with 5 hidden layers. For both x3 − x and r3, we sub-
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Table 1. Minimum and mean (30 samples) MSE error approximating y = x3 and x11.
Training Type Min x3 Min x11 Mean x3 Mean x11

Default Network (Kaiming) 2.11× 10−5 2.19× 10−5 7.20× 10−2 2.82× 10−2

RAAI Distribution 2.14× 10−5 4.40× 10−5 3.97× 10−2 4.12× 10−2

Pretraining Skipped 7.63× 10−7 1.86× 10−5 3.89× 10−5 3.56× 10−4

Pretraining (Unregularized) 1.64× 10−7 3.20× 10−6 1.02× 10−5 3.73× 10−5

Pretraining (with Thm. 3.1) 7.86× 10−8 8.86× 10−7 5.27× 10−7 7.87× 10−6

Table 2. Minimum and mean (30 samples) MSE error approximating y = sin(x) and y = tanh(3x).
Training Type Min sin(x) Min tanh(3x) Mean sin(x) Mean tanh(3x)

Default Network (Kaiming) 4.50× 10−5 5.75× 10−5 1.15× 10−1 1.96× 10−1

RAAI Distribution 3.59× 10−5 1.09× 10−5 3.63× 10−2 2.31× 10−2

Pretraining Skipped 1.96× 10−7 1.07× 10−6 1.93× 10−5 8.38× 10−5

Pretraining (Unregularized) 4.41× 10−8 1.49× 10−7 1.47× 10−5 3.81× 10−4

Pretraining (with Thm. 3.1) 5.06× 10−8 6.82× 10−8 2.21× 10−7 8.42× 10−7

stantially outperform standard initialization and training
procedures. Especially striking is the increased number of
linear regions in Figure 7. Like the previous experiments,
these networks were trained using Adam for 1000 epochs at
a learning rate of 0.001, and the minimum over 30 trainings
was taken. The parameterization switch was made halfway
through training. These experiments use a slightly improved
pretraining construction (see Appendix A.1): the input do-
main is modified to be [−1, 1], and the network is adjusted
so that the t1 and t2 neurons compose “v” shapes rather
than triangles, which allows the network to extrapolate bet-
ter outside [−1, 1]. With multiple copies of the network, we
implement the calculation of the d-th hidden layer as one
large combined matrix. Since the hidden neurons of each
subnetwork do not connect, the combined matrix takes on a
sparse block diagonal structure with a block size of 4. When
we switch parameterizations, we release the block diagonal
constraint and allow gradient descent to fill in the zeroed
weights.

We make a few notes on our preliminary extended technique.
First, the class of non-convex functions that can be repre-
sented as a difference of convex functions is broad. Zhang
et al. (2018) gives an iterative process to decompose an ar-
bitrary ReLU network into a difference of piecewise linear
convex functions. Additionally, all functions with bounded
second derivatives (or bounded eigenvalues of their Hessian
matrix) can be expressed as a difference of two convex func-
tions. Finally, we note that these types of decompositions
are not necessarily unique; for example, while x3−x can be
expressed as (x3 − x+3x2)− 3x2, 3x2 is merely the mini-
mal parabola needed to make the second derivative positive
on (−1, 1), and larger coefficients could also be used.

Even though our original technique is not naturally designed
for multivariate functions and has to be extended by incor-
porating it as an activation function in a larger network,
we note that doing so has some theoretical backing. The
multiplication gate and polynomial interpolation network
discussed in the related work (Section 2.1) rely on linear
combinations of squared terms. Since our networks can
produce x2, an arbitrary width and depth arrangement of
our networks would retain the ability to perform polynomial
interpolation. Secondly, the Kolmogorov-Arnold represen-
tation theorem (Kolmogorov, 1957; Arnold, 1957; 1959)
gives a guarantee that every continuous multivariate func-
tion can be represented by a neural network-like structure
that is built using only addition and arbitrary continuous
one-dimensional activation functions. Essentially, it states
that a technique that only works for univariate functions
can still be sufficient for representing multivariate functions
when deployed in a larger network. The recently popu-
larized Kolmogorov-Arnold Networks (KAN) (Liu et al.,
2024) take their inspiration from this theorem, extending
their networks to arbitrary width and depth, but restrict-
ing the activations to splines. Even though this does not
strictly follow the theorem, they still find empirical success.
Similarly, in the case of this work, the functions that the
triangular parameterization can directly represent are not
dense, as they require a certain degree of self-similarity.
Nonetheless, when assembled into a larger network, this
may not pose a serious problem.

6. Preliminary Image Classification Results
Since our extended technique can be used to replace any
dense layers in arbitrary architectures, we can use it in con-
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Table 3. Minimum errors on unseen points from training on sparse data.
Training Type Min x3 Min x11 Min sin(x) Min tanh(3x)

Default Network (Kaiming) 2.41× 10−4 2.14× 10−3 2.27× 10−5 1.60× 10−4

Pretraining (with Thm. 3.1) 5.65× 10−6 6.53× 10−4 7.92× 10−7 5.09× 10−6

Figure 5. Neuron outputs of a default (Kaiming-initialized) network (left) versus a pretrained variant of our network (right). Notice that
the first two layers of the default network introduce no linear regions - none of the lines cross zero. Any infinitesimal adjustment to the
slopes or biases of the lines would not make such an intersection occur. Therefore, the number of linear regions generated by the network
cannot be a local property, and we can expect gradient-based optimization to struggle at maximizing the linear region count. Our method
uses this non-locality to our advantage. The pretraining phase finds a low-loss solution where 2d linear regions are generated, which
guarantees a neighborhood of parameter space where 2d regions can be maintained while training in the standard parameterization.

Figure 6. Approximation of y = x3−x by difference of pretrained
components, achieving a loss of 5.52× 10−7. A standard 8× 5
network yielded a larger loss of 8× 10−6.

Figure 7. Approximations of z =
√

x2 + y2
3

using an 8×5 regu-
lar network (left) and a union of two of our pretrained components
(right). Losses are 1.5×10−4 and 3.5×10−6, respectively, demon-
strating a nearly two orders of magnitude improvement using our
techniques.
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texts beyond regression. In our final experiment, we replace
the densely connected classifier of VGG-16 (Simonyan &
Zisserman, 2014), and then retrain the network on ImageNet
(Deng et al., 2009). We initialize with PyTorch’s pretrained
convolutional weights both to speed up training and to better
isolate the effects of modification to the dense layers. Since
VGG-16’s dense layers have a width of 4096, we decided
to leave the matrices corresponding to our subnetworks in
block diagonal format, rather than allowing them to be-
come dense. This way, our technique only adds a negligible
amount of extra operations (roughly 0.5%) and does not
leave the majority of weights to be filled in by unassisted
gradient descent.

Figure 8. Retraining the classifier of a VGG-16 model on Ima-
geNet. The ordinary network uses a learning rate of 1 × 10−4,
and our experimental network uses 1× 10−5. At epoch 10, both
learning rates decay by a factor of 10, and we switch the parameter-
ization in the experimental network. Both networks retrain slightly
higher than PyTorch’s original reported accuracy of 73.3%.

Figure 8 shows that our network has an advantage early in
training, but the fully trained networks achieve comparable
accuracy. This is perhaps unsurprising: ordinarily initial-
ized and trained networks are already extremely good at
classification problems despite the pathological properties
of random initialization. This result suggests that highly
precise representations of decision boundaries may not be
critical to performance for such classification problems. In
support of this, we noticed that it did not seem to matter
if we switched parameterizations with our technique, even
though doing so was critical to our performance on the 1D
regression problems. A practical-scale regression task may
be needed for our method to display a significant advantage;
we plan such examples as future work.

7. Concluding Remarks
This paper focused on exploiting the potential computational
complexity advantages neural networks offer for the prob-
lem of efficiently learning nonlinear functions; in particular,
compelling ReLU networks to approximate functions with
exponential accuracy as network depth is linearly increased.
Our results showed improvements of one to several orders
of magnitude in using our initialization and pretraining strat-
egy to train ReLU networks to learn various nonlinear func-
tions, including non-convex and multi-dimensional func-
tions. This finding is particularly powerful since random
initialization and gradient descent are not likely to produce
an efficient solution on their own, even if it can be proven
to exist in the set of sufficiently sized ReLU networks.

We anticipate the continued development of theoretical im-
provements to this work. Of particular importance, we think,
is either finding a dense set of one-dimensional functions
we can represent efficiently with deep networks, or finding
a method that more naturally represents multidimensional
functions. While works like the KAN show it is possible
to perform well without those things, we believe them to
be important. The fact that our current technique is limited
to creating sparse block diagonal matrices is indicative of a
need to determine how to use all the weights of dense layers.
Another interesting avenue for increasing the technique’s ex-
pressiveness could be to consider the generation of fractals.
We disallow such behavior by using Theorem 3.1 to enforce
differentiability in the hopes of regularization, but there may
be more sophisticated approaches to function modeling that
can generate fractals in a controlled manner. Given that
the technique in its current form is flexible enough to go
into any architecture, it is also important to explore possi-
ble use cases. We have shown that it will likely not lead
to significant improvements on classification tasks, but the
technique may shine when given an appropriate utility-scale
regression task. Overall, we are hopeful that future works by
our group and others will help illuminate a complete theory
for harnessing the potential exponential power of depth in
ReLU and other classes of neural networks.

Impact Statement
This paper presents work whose goal is to enable more
efficient neural networks. Future advances along this line
could enable the use of much smaller networks in practical
applications, which could substantially mitigate the rapidly
growing issue of energy usage in large learning systems.
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A. Algorithm and Theory
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Figure 9. Extending our results into a larger network. ReLU should not be used in the layers between the blocks. Colors correspond to
Figure 2.

A.1. Initialization and Pretraining Algorithm

The initialization step of our algorithm is to generate a vector A = [a0, a1, ...an]
T , where each ai is randomized in (0, 1).

Given this A, the pretraining step of our algorithm (in the experiments in Section 4) sets the weights of the input (I), hidden
(Hi, 1 ≤ i ≤ n− 1), and output (O) layers of the network as follows:

I(x) =


x
x
x
0

+


0
0
−a0
1



Hi(x) =


1 ±[Si/ai −Si/(ai − a2i )] 0
0 Si/ai −Si/(ai − a2i ) 0
0 Si/ai −Si/(ai − a2i ) −Siai+1

0 0 0 Si

×ReLU(Hi−1(x))

O(x) =
[
1 Sn/an −Sn/(an − a2n) 0

]
×ReLU(Hn−1(x)),

where Si can either be chosen independently or chosen based on A. In the latter case, Equation 3.1 gives Si = si/si−1 =
(1− ai)ai+1. For this version, one must decide whether to add or subtract triangle waves from the sum neuron based on
whether the target function is convex or concave, respectively. The version of the algorithm used in Section 5 onward does
not have this stipulation and always follows Equation 3.1. Additionally, it expands the input domain to [−1, 1] and flips the
triangles upside down to compose “v”-shaped functions instead:

I(x) =


0

−0.5
a0
0.5

1−a0

0

x+


1

1− 0.5
a0

1− 0.5
1−a0

1
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Hi(x) =


1 1 1 −1
0 ai+1 − 1 ai+1 − 1 ai(1− ai+1)

0 ai(1−ai+1)
1−ai

ai(1−ai+1)
1−ai

−a2
i (1−ai+1)
1−ai

0 0 0 ai(1− ai+1)

×ReLU(Hi−1(x))

O(x) =
[
1 1 1 −1

]
×ReLU(Hn−1(x)).

This assignment of I , H , and O is used in each iteration of the pretraining algorithm to set the weights of each layer before
the forward pass. The backward pass can then propagate the gradients back through this weight setting procedure to update
the vector A containing the triangle peaks.

After pretraining, the weights can then be initialized once more based on the learned vector A, and then updated directly
using regular gradient descent in a second round of optimization. Full pseudocode is listed in Algorithm 1.

Algorithm 1 Initialization and Pretraining
A← Random((0, 1)n)
while Epochs > 0 do

Network← Set Weights(A) {Set weights as above each iteration}
Loss← (Network(x)− y)2

Network-Gradient← Derivative(Loss, Network) {Regular Backpropagation}
A-Gradient← Derivative(Network, A) {Backpropagate through weight setting}
Gradient← Network-Gradient× A-Gradient
A← A− ϵ× Gradient {Update A, Not the network}

end while

A.2. Terminology

Before presenting further formal mathematical details of our method, we first briefly review a few pieces of basic ReLU
network terminology used in the paper. The reader is referred to Chmielewski-Anders (2020) for an excellent alternative
presentation of these terms.

An activation pattern is a boolean mask that tracks which neurons in a network have their output zeroed by ReLU activations.
The activation regions of a ReLU network are connected (and can be shown to be convex) sets of inputs on which the
activation pattern is constant. Since the action of the ReLU activation function is constant, the network output over an
activation region is equivalent to the case where there is no activation function and the associated zeroed neurons are absent;
therefore, the network output behaves linearly over the inputs in the activation region. Relatedly, a linear region is a set
of inputs on which the network output behaves linearly with respect to its inputs. It may consist of multiple neighboring
activation regions. Another important concept is the boundary of a neuron, as described in Rolnick & Kording (2020): the
set of inputs for which the neuron outputs 0, independently of ReLU. The boundary of a neuron is precisely the boundary of
the activation regions it adds to the network. Chen & Ge (2024) refers to this set as the characteristic activation boundary
since these are the boundaries of the activation regions.

We note that although works like ours are theoretical papers that leverage these concepts, studying these ideas can lead to
interesting applied learning research. For instance, Rolnick & Kording (2020) leverages theoretical works like those cited
in our related work discussion for an exciting privacy application: it is proven that a ReLU network’s output can often be
provably used to reverse engineer the architecture of a ReLU network, up to isomorphism.

A.3. Necessary Conditions for Differentiability

For convenience, we first restate the functions defined in the main body of the paper.

Ti(x) =

{
x
ai

0 ≤ x ≤ ai

1− x−ai

1−ai
ai ≤ x ≤ 1

14
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T ′
i (x) =

{
1
ai

0 < x < ai
1

1−ai
ai < x < 1

Wi(x) =⃝i
j=0Tj(x) = Ti(Ti−1(...T0(x)))

F (x) =

∞∑
i=0

siWi(x).

The goal of this section is to show how to select the si based on ai in a manner where the derivative F ′(x) is defined and
continuous on all of [0, 1]. We begin by assuming that

F ′(x) =

∞∑
i=0

siW
′
i (x).

We will see that the resulting choice of si ensures uniform convergence of the derivative terms, so that the derivative of the
infinite sum is indeed infinite sum of the derivatives. Fortunately, the left and right derivatives F ′

+(x) and F ′
−(x) already

exist everywhere, since each bend in each Wi (where the full derivative of F is undefined) is assigned the slope of the line
segment to its left or right, respectively. The si scaling values will have to be chosen appropriately so that F ′

+(x) and F ′
−(x)

are equal for all bend points.

1

T1(x)

a1

W1(x) = T1(T0(x)) 

T0(x)

a0

Figure 10. Triangle functions T0 and T1, and the triangle wave result-
ing from their composition. Note how T1 is reflected in W1.

Notationally, we will denote the sorted x-locations of
the peaks and valleys of Wi(x) by the lists Pi = {x :
Wi(x) = 1} and Vi = {x : Wi(x) = 0}. We will use the
list Bi to reference the locations of all non-differentiable
points, which we refer to as bends. Bi := Pi ∪ Vi.
fi(x) =

∑i−1
n=0 snWn(x) will denote finite depth approx-

imations up to but not including layer i. The error function
Ei(x) =

∑∞
n=i snWn(x) = F (x)− fi(x) will represent

the error between the finite approximation and the infinite
depth network. This odd split around layer i makes the
proofs cleaner.

Figure 10 highlights some important properties about
composing triangle functions. Peaks alternate with val-
leys. Peak locations in one layer become valleys in the
next. Valleys in one layer remain valleys in all future
layers since 0 is a fixed point of each Ti. To produce Wi,
each line segment of Wi−1 becomes a dilated copy of Ti.
Each triangle function has two distinct slopes, 1/ai and
−1/(1− ai), which are dilated by the chain rule during
the composition. On negative slopes of Wi−1, the input
to layer i is reversed, so those copies of Ti are reflected.
Due to the reflection, the slopes of Wi on each side of a
peak or valley are proportional. Alternatively, one could
consider that on each side of a peak in Wi−1, there is
a neighborhood of points that are greater than ai, and are composed with the same line segment of Ti that has slope
−1/(1 − ai). Either way, it is important to note that the slopes on each side of a bend scale identically during each
composition.

Before we begin reasoning about F ′(x), it can simplify the analysis to only consider the derivative of the error function
E′(x).

Lemma A.1. for x ∈ Pi, F ′(x) is defined if and only if E′
i(x) is defined.
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Proof. All of Wn(x) for n < i are differentiable at x ∈ Pi since x will lie in the interior of a linear region of Wn. Therefore,
f ′
i(x) =

∑i−1
n=0 snW

′
n(x) exists at these points. Since E′

i + f ′
i = F ′, F ′(x) is defined if and only if E′

i(x) is defined.

Thanks to the previous lemma, we only need to work with Ei. Here we compute the right derivative (Ei)
′
+(x) of the error

function at a point x. The left derivative will only be different by a constant factor.

Lemma A.2. For all x ∈ Pi, E′
+(x) and E′

−(x) are proportional to

si −
1

1− ai+1

(
si+1 +

∞∑
n=i+2

sn

n∏
k=i+2

1

ak

)
. (4)

Proof. Let xk be some point in Pi, and let k be its index in any list it appears in. To calculate the value of E′
+(xk) =∑∞

n=i sn(Wn)
′
+(xk), we will have to find the slope of the linear intervals to the immediate right of xk for all Wi. We will

use Rx to represent W ′
i+(xk). The first term in the sum will be Rxsi. Since the derivatives of composed functions will

multiply from the chain rule, so the value of the next term is W ′
i+1(xk) = T ′

i+1(Wi(xk))Rx. Ti+1 has two linear segments,
giving two slope possibilities to multiply by. The correct one to choose is −1/(1− ai+1) because it is “active” around xk

(xk is a peak of Wi, so Wi(xk) > ai+1 for x ∈ (Bi+1[k − 1], Bi+1[k + 1])). This gives W ′
i+1(xk) = −Rx

si+1

(1−ai+1)
. Note

that the second term has the opposite sign as the first.

For all remaining terms, since xk was in Pi, it is in Vj for j > i. For x ∈ (Bj+1[k − 1], Bj+1[k + 1]), Wj(x) < aj+1 and
the chain rule applies the slope 1/aj+1. Since this slope is positive, every remaining term continues to have the opposite
sign as the first term. Summing up all the terms with the coefficients si, and factoring out Rx will yield the desired formula.
Note that this same derivation applies to the left sided derivatives as well because the “active” slopes of Ti+1(Wi) are all the
same whether a bend in Wi is approached from the left or the right. The initial slope constant Lx will just be different.

Lemma A.3. If E′
+(x) = E′

−(x), E
′(x) must be equal to 0.

Proof. Let S represent Equation 4, and R and L be the constants of proportionality for the directional derivatives. If
E′

+ = E′
−, then RxS = LxS for all x ∈ Pi. Since Wi is comprised of alternating positive and negatively sloped line

segments, Rx and Lx have opposite signs. The only way to satisfy the equation then is if S = 0. Consequently, E′(x) = 0
for all x ∈ Pi.

The following lemma shows that to calculate the derivative at of F (x) for any bend point x, one needs only to compute the
derivative of the finite approximation fi (which excludes Wi). This will be useful later for proving other results.

Lemma A.4. For all x ∈ Pi:

F ′(x) = f ′
i(x) =

i−1∑
j=0

sjW
′
j(x). (5)

Proof. From the previous lemma we have E′(x) = 0 whenever the directional derivatives are equal. F (x) =∑i−1
j=0 sjWj(x) + E(x). The first i − 1 terms are differentiable at the points Pi since those points lie between the

discontinuities in Bi−1. Therefore F ′(x) is defined and can be calculated using the finite sum. A visualization of this lemma
is provided in Figure 11.

We now prove our main theorem, which shows that there is a way to sum the triangular waveforms Wi so that the resulting
approximation converges to a continuously differentiable function. The idea of the proof is that much of the formula for
E′(x) will be shared between two successive generations of peaks. Once they are both valleys, they will be treated the same
by the remaining compositions, so the sizes of their remaining discontinuities will need to be proportional.

Theorem 3.1. F ′(x) is continuous on [0, 1] only if the scaling coefficients are selected based on ai according to:

si+1 = si(1− ai+1)ai+2.
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Proof. Rewriting Equation 4 (which is equal to 0) for layers i and i+ 1 in the following way:

si(1− ai+1) = si+1 +
1

ai+2

(
si+2 +

∞∑
n=i+3

sn

n∏
k=i+3

1

ak

)

si+1(1− ai+2) = si+2 +

∞∑
n=i+3

sn

n∏
k=i+3

1

ak

allows for a substitution to eliminate the infinite sum

si(1− ai+1) = si+1 +
1− ai+2

ai+2
si+1.

Collecting all the terms gives

si+1 =
si(1− ai+1)

1 + 1−ai+2

ai+2

,

which simplifies to the desired result.

Figure 11. The derivatives of the first few stages of approximation. Notice that each time a constant segment “splits,” the two neighboring
segments adjacent to the split monotonically converge back to the original value (marked with a colored point corresponding to the step it
originates from).

A.4. Sufficiency for differentiability

This form of the scaling equation derived in the previous section is rather interesting. Since the ratio of two successive
scaling terms is (1− ai+1)ai+2, factors of both ai and 1− ai are present in si. This has a few implications. Firstly, if any
ai is 0 or 1, subsequent scales will all be 0, essentially freezing the corresponding neural network at a finite depth. Secondly,
having both ai and 1− ai will cancel whichever slope multiplier Ti contributes to Wi at each point x, leaving behind the
other term, which is less than 1.

If we ensure each ai is bounded away from 0 or 1 by being drawn from the an interval such that c < ai < 1 − c for
some 0 < c < 0.5, then the maximum value of W ′

i is always upper bounded by (1− c)i, which is sufficient for uniform
convergence. This condition also means that the bends points (and thus the activation regions of the corresponding neural
network) will become dense in [0, 1], as each region is partitioned (at worst) in a c : 1− c ratio.

Lastly, we can show that bounds on ai and our choice of scaling values are sufficient for the existence of F ′ on the bend
points, in addition to being necessary for the existence of the derivative on the bend points, our choice of scaling is sufficient
when ai are bounded away from 0 or 1.

Theorem A.6. On bend points x, F ′(x) exists if we can find c > 0 such that c ≤ ai ≤ 1 − c for all i and choose all si
according to Equation 3.1.
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Proof. We begin by considering Equation 4 for layer i (it equals 0 by Theorem A.3).:

si =
1

1− ai+1

(
si+1 +

∞∑
n=i+2

sn

n∏
k=i+2

1

ak

)
.

We will prove our result by substituting Equation 3.1 into this formula, and then verifying that the resulting equation is valid.
First we would like to rewrite each occurrence of s in terms of si. Equation 3.1 gives a recurrence relation. Converting it to
an non-recursive representation, we have:

sn = si

 n∏
j=i+1

1− aj

( n+1∏
k=i+2

ak

)
. (6)

When we substitute this into Equation 4, three things happen: each term is divisible by si so si cancels out, every factor in
the product except the last cancels, and 1− ai+1 cancels. This leaves

1 = ai+2 + (1− ai+2)ai+3 + (1− ai+2)(1− ai+3)ai+4 + ... =

∞∑
n=i+2

an

n−1∏
m=i+2

(1− am). (7)

This equation has a meaningful interpretation that is important to the argument. 1 is the full size of the initial derivative
discontinuity at a point in Pi, and each term on the other side represents proportionally how much the discontinuity is closed
for each triangle wave that is added. Every time a wave is added, it subtracts the first term appearing on the right hand side.
The following argument shows that each term of the sum on the right accounts for a fraction (equal to ai) of the remaining
discontinuity, guaranteeing its disappearance in the limit. Inductively, we can show:

1−
j∑

n=i+2

an

n−1∏
m=i+2

(1− am) =

j∏
m=i+2

(1− am). (8)

In words, this means that as the first term appearing on the right in Equation 7 is repeatedly subtracted, that term is always
equal to an times the left side. As a base case, we have (1− ai+2) = (1− ai+2). Assuming the above equation holds for all
previous values of j,

1−
j+1∑

n=i+2

an

n−1∏
m=i+2

(1− am)) = 1−
j∑

n=i+2

an

n−1∏
m=i+2

(1− am))− aj+1

j∏
m=i+2

(1− am)),

using the inductive hypothesis to make the substitution

j∏
m=i+2

(1− am))− aj+1

j∏
m=i+2

(1− am)) =

j+1∏
m=i+2

(1− am)).

Since all c < ai < 1− c, the size of the discontinuity at the points Pi is upper bounded by the exponentially decaying series
(1− c)n, which approaches zero.

A.5. Error Decay

Lemma A.7. The ratio si+2/si is at most 0.25.

Proof. by applying Equation 3.1 twice, we have

si+2 = si(1− ai+1)(1− ai + 2)ai+2ai+3.

To maximize si+2, we choose ai+1 = 0 and ai+3 = 1. The quantity ai+2 − a2i+2 is a parabola with a maximum of 0.25 at
ai+2 = 0.5.

Since each Wi takes values between 0 and 1, its contribution to F is bounded by si. Since the si decay exponentially, one
could construct a geometric series to bound the error of the approximation and arrive at an exponential rate of decay.
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A.6. Second Derivatives

Here we show that any function represented by one of these networks that is not y = x2 does not have a continuous second
derivative, as it will not be defined at the bend locations. To show this we will sample a discrete series of ∆y/∆x values
from F ′(x) and show that the limits of these series on the right and left are not the same (unless all ai = 0.5), which implies
that F ′′(x) does not exist (see Figure 12 below). First we will produce the series of ∆x. Let x be the location of a peak of
Wi, and let ln and rn be its immediate neighbors in Bi+n.

Lemma A.8. If c < ai < 1− c for all i, we have limn→∞ rn = limn→∞ ln = x. Furthermore, rn, ln ̸= x for any finite i.

Proof. Let R and L denote the magnitude of W ′
i on the left and right of x. x is a peak location of Wi, so the right side slope

is negative and the left is positive. Solving for the location of Ti+1(Wi(x)) = 1 on each side gives l1 = x− (1− ai+1)/L
and r1 = x+ (1− ai+1)/R.

On each subsequent iteration i + n (n ≥ 2), x is a valley point and the ∆x intervals get multiplied by ai+n. Since x
is a valley point, the right slope is positive and the left is negative. The slope magnitudes are given by 1

x−ln
and 1

rn−x
since Wi+n ranges from 0 to 1 over these spans. Solving for the new peaks again gives ln+1 = x − ai+1(x − ln) and
rn+1 = x+ ai+1(rn − x). The resulting non-recursive formulas are:

x− ln =
1− ai+1

L

n∏
m=2

ai+m and rn − x =
1− ai+1

R

n∏
m=2

ai+m. (9)

The right hand sides will never be equal to zero with a finite number of terms since a parameters are bounded away from 0
and 1 by c.

(x , f '0(x)) (x , F '(x))

(r1 , f '1(r1))

(x , F '(x))

(r1, F '(r1))

(x , F '(x))

(r1, F '(r1))

(r2 , f '2(r2)) (r2, F '(r2))

(r3 , f '3(r3))

Figure 12. An illustration of attempting to calculate the second derivative. The points in the series approaching x from the right are
marked. We rely on the fact that at bend points, the first derivative converges back to the value it had at a finite point in the approximation.
a0 ̸= 0.5 and all other parameters are set to 0.5, which will cause the left and right sets of points to lie on lines with different slopes.

Next we derive the values of ∆y to complete the proof.

Theorem A.9. F (x) cannot be twice differentiable unless F (x) = x2.

Proof. The points ln and rn are all peak locations, Equation 5 gives their derivative values as f ′
i+n(rn). In our argument for

sufficiency, we reasoned about the sizes of the discontinuities in f ′ at x. Since ln and rn always lie on the linear intervals
surrounding x as n→∞, we can get the value of f ′

i(x)− f ′
i+n(rn) using Equation 8 with the initial discontinuity size set

to Rsi rather than 1. Focusing on the right hand side, we get:

f ′
i(x)− f ′

i+n(rn) = R ∗ si
n∏

m=2

(1− ai+m).

Taking ∆y/∆x gives a series:
R2si

(1− ai+1)

n∏
m=i+2

1− am
am

.
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The issue that arises is that the derivation on the left is identical, except for a replacement of R2 by L2. The only way for
these formulas to agree, then, is for R2 = L2, which implies ai = 1− ai = 0.5. Since this argument applies at any layer,
then all a parameters must be 0.5 (which approximates y = x2).

A.7. Monotonicity and Continuity of Derivatives

Each of the f ′
i are composed of constant value segments. We will show that those values are monotonically decreasing (this

can be seen in Figure11). This can extend into the limit to show that F ′ is monotone decreasing and that F is concave.

Lemma A.10. The function F (x) is concave when all si are chosen according to Equation 3.1.

Proof. To establish this, we will introduce the list Y ′
i = [F ′(Vi[0]), f

′
i(Vi[n]), F

′(Vi+1[2
i]] for 0 ≤ n ≤ 2i, which tracks

the values of F ′ at the ith set of valley points. All but the first and last points will have been peaks at some point in their
history, so Equation 5 gives the value of those derivatives as f ′

i .

We establish two inductive invariants. One is that the y-values in the list Yi remain sorted in descending order. The other is
that Y ′

i [n] ≥ f ′
i(x) ≥ Y ′

i [n+ 1] for Vi[n] < x < Vi[n+ 1], indicating that the constant value segments of fi lie in between
the limits in the list Yi. Together, these two facts imply that each iteration of the approximation fi is concave. This can then
be used to prove that their limit F is also concave.

As the base case, f0 is a line with derivative 0, and V0 contains its two endpoints. Y ′
0 is positive for the left endpoint (negative

for right) since on the far edges F ′ is a sum of a series of positive (or negative) slopes. Therefore, both the points in Y ′ are
in descending sorted order. The second part of the invariant is true since 0 is in between those values.

Consider an arbitrary interval (Vi[n], Vi[n+ 1]) of fi. This entire interval is between two valley points, so f ′
i (which has

not added Wi yet) is some constant value, which we know from the second inductive hypothesis is in between Y ′
i [n] and

Y ′
i [n + 1]. The point x ∈ Pi ∩ (Vi[n], Vi[n + 1]) will have F ′(x) = f ′

i(x), and it will become a member of Vi+1. This
means we will have Yi+1[2n] > Yi+1[2n+ 1] > Yi+1[2n+ 2], maintaining sorted order of Y ′.

Adding siWi takes fi to fi +1 splitting each constant valued interval in two about the points Pi, increasing the left side, and
decreasing the right side. Recalling from the derivation of Equation 4 all terms but the first in the sum have the same sign, so
the limiting values in Y ′

i are approached monotonically. Using the first inductive hypothesis, we have on the left interval
Y ′
i [n] = Y ′

i+1[2n] > f ′
i+1 > f ′

i = Y ′
i+1[2n + 1] and on the right we have f ′

i = Y ′
i+1[2n + 1] > fi+1 > Y ′

i [n + 1] =
Y ′
i [2n+ 2]. And so each constant interval fi+1 remains bounded by the limits in Y ′

i+1.

We will now show by contradiction that the limit F of the sequence of concave fi is also concave. Assume that F is
non-concave. Then there exist points a, b, and c such that F (b) lies strictly below the line connecting the points (a, F (a))
and (c, F (c)). Let us imagine it is below the line by an amount ϵ. Since at each point fi converges to F , we can find ia
such that fia(a)− F (a) < ϵ/2, etc..., we take i = max(ia, ib, ic). Since fi(a) and fi(c) are no more than ϵ/2 lower than
their limiting values, the entire line connecting (a, fi(a)) and (c, fi(c)) is no more than ϵ/2 lower than the line between
(a, F (a)) and (c, F (c)). fi(b) is also no more than ϵ/2 higher than F (b), thus fi(b) must still lie below the line between
(a, fi(a)) and (c, fi(c)), making fi non-concave and producing a contradiction.

Lastly, we briefly sketch out why F ′ is continuous. It relies on some of our earlier reasoning. Monotonicity of the derivative
makes continuity easy to show, because when x1 within δ of x2 has f(x1) within ϵ of f(x2), so do all intermediate values
of x. We can establish continuity of F ′ at bend points x easily by using Equation 8. We can pick an i so that the constant
value segments of f ′

i are within ϵ of F ′(x) and then use the next iteration of bend points (since the constant intervals split,
but the new segments near xn converge monotonically towards it) to find δ. In the case of continuity for non bend points
x, they sit inside a constant-valued interval of fi for each i. We can choose i such that

∑∞
n=i(1− c)n < ϵ/2 because this

series constrains how far derivative values can move in the limit, and then use the constant interval x is situated in to find δ.

A.8. Activation Region Counting and Zaslavsky’s Theorem

In the coming sections, we present the results of using our 4-neuron-wide construction as an activation function on more
complicated datasets. It will be useful to know the impact of this approach on the activation region count when assessing
how to best spend a network’s parameter budget. To build up to it, we will provide an informal introduction of Zaslavsky’s
theorem (Zaslavsky, 1975). The activation boundaries of ReLU neurons in a single hidden layer network form a hyperplane
arrangement. Counting the number of cells, which are convex connected components of space separated by the hyperplanes,
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is equivalent to determining the number of activation regions produced by the shallow ReLU network. A D-dimensional
hyperplane arrangement is said to be in general configuration when every set of D hyperplanes intersect in a unique point,
every set of D− 1 hyperplanes intersect in a unique line, etc. General configuration is essentially what you would expect on
average from setting the orientations and offsets of the hyperplanes randomly (and would thus be applicable to a single
hidden layer ReLU network). Zaslavsky’s theorem states that

Theorem A.11. When in general configuration, the number of cells (R
(
n
D

)
) created by a D-dimensional arrangement of n

hyperplanes is

R

(
n

D

)
=

D∑
d=0

(
n

d

)
.

To compute this sum, one would go down to the row of Pascal’s triangle corresponding to the number of planes n, and sum
the first D entries (see Figure 13 for a visual example). It is a known fact that the sequence of the dth entry for each row
grows to the dth power. So as the number of hyperplanes tends towards infinity, this sum is dominated by the Dth term,
which grows to the power D. In other words, the number of linear regions formed by a single hidden layer ReLU network
grows exponentially with respect to its input dimension. This property partly explains why neural networks are successful at
learning high-dimensional functions, even when other classical methods become intractable.

1

2

3
4

5

6

7

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Figure 13. 3 lines dividing 2-dimensional space creates 7 cells. This is calculated by going down to row 3 (for the number of lines)
and summing the numbers at indices 0, 1, and 2 (for the dimension). Also note that there is one 2D plane with 3 lines and 3 points of
intersection in this configuration, corresponding (in that order) to the highlighted entries in Pascal’s triangle.

Thanks to the general configuration of the hyperplanes, the number of lower dimensional objects (i.e., points, lines, planes,
etc.) are given by the entries in Pascal’s triangle. So a different way to phrase Zaslavsky’s theorem is that the number of
cells created by the arrangement is equal to the sum of all these lower-dimensional objects, or that each lower-dimensional
object could be “assigned” a cell. There is a striking similarity in the intuitions behind the recurrence that generates Pascal’s
triangle, and the calculation of the numbers of lower-dimensional objects created from a hyperplane arrangement. In the
case of Pascal’s triangle, if one wished to know how to choose 3 items from 6, one could reason that if item 6 is included,
2 items would be chosen from the remaining 5, and if item 6 is excluded, 3 would be chosen from the remaining 5, and
therefore

(
6
3

)
=
(
5
2

)
+
(
5
3

)
. Now consider the case of 3 planes partitioning 3-space, and the addition of a 4th plane. The total

number of lower-dimensional objects would be found by including those that are part of the original 3 planes (1 3-space, 3
planes, 3 lines, 1 point), and adding those that the 4th plane creates (1 plane, 3 lines, 3 points). One could also picture that
the new 4th plane “cuts” the existing 3-cells, and to find the number of new cells added, one could examine the projection
of the 3 existing planes onto the 4th (shown in Figure 13), and count the 2-cells that appear. Either reasoning leads to
R
(
n
D

)
= R

(
n−1
D

)
+R

(
n−1
D−1

)
. This similarity between the recurrences means that if the initial conditions can be lined up

suitably, Zaslavsky’s theorem can be proven by induction over Pascal’s triangle.

In the case of our architecture, using our 1-dimensional construction as an activation function will generate n generally
configured sets of m parallel hyperplanes. To account for this, a slight modification is made to the recurrence. Adding
an additional set of m hyperplanes would add m times as many regions, as each of the lower dimensional objects in the
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existing configuration would project onto each of the m additional hyperplanes. The effect that this has on the formula
is that R

(
n,m
D

)
= R

(
n−1,m

D

)
+m×R

(
n−1,m
D−1

)
. Inducting over Pascal’s triangle (with a base case of R

(
n,m
1

)
= 1 + nm)

would give the non-recursive formula of R
(
n,m
D

)
=
∑D

d=0 m
d
(
n
d

)
. This means that our architecture (with a single hidden

layer of depth 5 convex function blocks) would be generating 32D times as many regions as an ordinary single layer of
ReLU, which is a fantastic tradeoff once the layers are wide enough (both so that the largest exponent dominates the sum in
Zaslavsky’s theorem, and so that only a few neurons would be sacrificed to pay for the new parameters in the activations).
Of course, the effect on accuracy will all depend on how well these regions can be utilized.

B. Additional Experiments
B.1. Learning Rates

Figure 14. Learning y = x3 at various learning rates for 1000 epochs.
The figure shows the log losses of the best model of 30 for networks
trained according to the methods in this paper versus random initial-
ization and gradient descent (“Default Network”). For high learning
rates, neither learns because the steps are too large. For low learning
rates (below 10−5), the steps are too small, and our networks are
likely deriving an implicit advantage from being forcibly initialized
to a convex function. Both methods are able to converge for learning
rates in between 10−4 and 10−2; one could run for more epochs to
see a similar advantage of our method for smaller learning rates.

All results in the main body of the paper used a constant
learning rate of 10−3. In this appendix, we considered an
ablation study on the learning rate for the task of learning
y = x3. As seen in Figure 14, the learning rate we
selected was approximately optimal for both our method
as well as default network training. We note that for this
ablation study, a constant 1000 epochs were run, which
explains why both methods perform worse as the learning
rate becomes minuscule. At small learning rates, what is
really measured is how close of a guess the initialization is
to the target function. Our networks are preforming better
here simply because they are always outputting convex
functions. But this only accounts for losses on the order of
10−4, which indicates that in the more reasonable learning
rate ranges, our pretraining is performing a meaningful
function and enabling order-of-magnitude improvements
over default network training.

B.2. Real-World Data and Classification Problems

Here we present a few preliminary results on extending
our pretraining technique to classification problems and
real-world datasets. The classification problem we chose
is the classic two spirals dataset, and we selected the UCI
dataset “Concrete Compressive Strength” (Yeh, 1998)
for our real-world regression task. The concrete dataset
has 8 numerical features that can be used to predict the
compressive strength of a concrete sample.

The networks are set up as described before, with our
4-neuron-wide networks acting as 1D to 1D activation
functions inside randomly initialized standard linear lay-
ers. In these experiments, we use one “hidden layer” of
our networks (which we choose to have depth 5 in our tests). The geometric interpretation of this is that we are setting up
one-dimensional convex functions oriented in random directions on the input space, and then taking a linear combination of
them as the network output. In the case of classification, the loss function is simply swapped for cross entropy.

After our pretraining phase, there are two choices of how to conduct the second phase of training (training matrix entries
directly). All the parameters could be freed from constraints (“dense”), or the smaller 4-neuron subnetworks could be kept
isolated from each other (but otherwise have their parameters freed). In the case where the 4-neuron networks remain in
isolation, the weight matrices of the hidden layers will have a block diagonal structure (block size 4—the width of each
subnetwork). Thus, we consider two fair (same number of free parameters) comparisons in this subsection: (1) dense
versions of our and Kaiming-initialized networks, and (2) block diagonal versions of our and Kaiming-initialized networks.
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Figure 15. Train/test loss plots for Kaiming-initialized (“ordinary”) fully-connected networks and our method (“experimental”). Our
method has two steps: pretriaining on triangle peaks, followed by the optimization of the raw matrix weights. The switch-off is at epoch
500, hence the associated visible change in the loss curves. The block diagonal variants of the networks (right) are generally worse at the
task (test losses 30.1 (ours) and 40.8 (Kaiming)) than the dense variants (losses of 22.3 (ours) and 21.2 (Kaiming)). Our experimental
networks outperform by up to an order of magnitude in the block diagonal case. We used 32 of our convex blocks (i.e., all weight matrices
are size 128, including for standard comparison networks).

Figure 16. Class predictions of block diagonal networks on a standard two-spiral dataset; ours (left) and Kaiming-initialized (right). While
the cross-entropy losses are comparable for the dense-matrix variants of both networks, when a block diagonal structure is imposed,
Kaiming initialization fails to learn the spiral. Note that the colors of the network class predictions are inverted for visibility. Cross-entropy
losses are 0.0032 and 0.63 respectively. We used 16 of our convex blocks, so all weight matrices are 64 by 64.

As discussed below and in the figure captions, we find that while the dense variant of our method ties or is slightly worse
than a regular fully-connected network of the same dimensions, in the block diagonal case, our experimental networks
significantly outperform their Kaiming-initialized counterparts. This makes sense in light of the experiments from the main
body, where we can effectively shape the output of 4-neuron-wide networks better than random initializations, but where
ensembles of our networks (see approximation of x3 − x in Figure 6) get filled in with noise by gradient descent during the
second training stage. This again highlights the need for more mathematical developments to provide a better extension into
higher-dimensional nonconvex functions.

Nonetheless, while we believe there is much room for future work to improve higher-dimensional results, Figures 15
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and 16 already show impressive results using our current approach. In the case of the concrete problem (Figure 15), our
experimental network outperforms a standard Kaiming-initialized network when block diagonality is enforced. In the case
of the two-spiral classification task (Figure 16), our network is able to learn an accurate decision boundary (left subfigure),
whereas a standard network constrained to be block diagonal fails to learn (right subfigure). When dense weight matrices are
trained, our networks are almost able to tie with the standard initializations, although convergence can take longer. These
results suggest that our method might be quite powerful when its parameter budget is spent on greater width and depth of
convex function blocks (as in Figure 9) instead of filling in dense matrices.

Our two-step training approach adds some practical challenges, such as deciding when to switch parameterizations for
optimal convergence time. Additionally, since the optimization variables are different, the optimizer will have to restart any
momentum or adaptive learning rates when the switch is made, which can sometimes cause loss to temporarily spike. We
lowered the learning rate on the second step to avoid this. Further interesting optimizations of our approach (e.g., training
another network to inform our algorithm when to switch parameterizations) are imagined as future work.

B.3. Image Classification on CIFAR-10

Figure 17. Results for CIFAR-10 experiments. Our (“experimental”) training and validations are generally comparable to their Kaiming-
initialized (“ordinary”) counterparts. The small architectures are trained with Adam at a learning rate of 0.001, while the VGG experiments
are trained with SGD, following a learning rate schedule with a 10x drop at epochs 80 and 120. The ordinary network uses an initial
learning rate of 0.1, and the experimental network uses 0.01. No parameterization switches occur with our method.

A nice feature of our method is that it can be used anywhere dense layers appear in networks, which enables its use in
CNN architectures. Here we demonstrate its application for image classification on CIFAR-10 (Krizhevsky et al., 2009).
Our networks are inserted into the dense layers of VGG-16, as well as a small-scale CNN architecture of 3 convolutions
(channel depths of 3 → 32 → 64 → 128 with 3 × 3 kernels) followed by a single hidden layer dense classifier of 256
neurons, whose width was reduced slightly to 247 to pay for the extra parameters when our method was used. The results
we get are comparable between the two approaches (similar to the ImageNet experiments in Section 6). Again we notice that
our method requires a lower learning rate for stability, and that switching parameterizations does not significantly impact
accuracy.

C. Source Code Release
An implementation of our technique can be found at https://github.com/NREL/triangle_net.
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