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Abstract

Linear bandit algorithms have been extensively
studied and have shown successful in sequential
decision tasks despite their simplicity. Many algo-
rithms however work under the assumption that the
reward is the sum of linear function of observed
contexts and a sub-Gaussian error. In practical ap-
plications, errors can be heavy-tailed, especially
in financial data. In such reward environments, al-
gorithms designed for sub-Gaussian error may un-
derexplore, resulting in suboptimal regret. In this
paper, we relax the reward assumption and pro-
pose a novel linear bandit algorithm which works
well under heavy-tailed errors as well. The pro-
posed algorithm utilizes Huber regression. When
contexts are stochastic with positive definite co-
variance matrix and the (1 + δ)-th moment of
the error is bounded by a constant, we show that
the high-probability upper bound of the regret is
O(

√
dT

1
1+δ (log dT )

δ
1+δ ), where d is the dimen-

sion of context variables, T is the time horizon,
and δ ∈ (0, 1]. This bound improves on the state-
of-the-art regret bound of the Median of Means
and Truncation algorithm by a factor of

√
log T

and
√
d for the case where the time horizon T is

unknown. We also remark that when δ = 1, the
order is the same as the regret bound of linear ban-
dit algorithms designed for sub-Gaussian errors.
We support our theoretical findings with synthetic
experiments.

1 INTRODUCTION

Bandit algorithms are widely used in sequential decision-
making problems such as mobile health [Lei et al., 2017],
clinical trial [Villar et al., 2015] where the goal of the learn-
ing agent is to select good actions successively out of many

available actions at each time point. Linear bandits make
use of contextual information when choosing the actions, or
arms. Upon choosing an arm, a random reward is revealed
to the agent. The agent then learns the reward model using
rewards observed so far under assumption that the expected
value of the reward is a linear function of context variables.
Using the updated model and various exploration strategies,
the agent chooses the next arm.

Most bandit research is studied under the assumption that
error distribution is sub-Gaussian. However, the tails of data
distribution might not decay as fast as that of sub-Gaussian
in practical applications including financial markets and in-
surance[Rachev, 2003, Stehlík et al., 2010, Ibragimov et al.,
2015]. Our work relaxes the sub-Gaussian assumption and
proposes a new algorithm that is robust to heavy-tailed er-
rors. We assume the noise of the reward, ϵ, has finite (1+δ)-
th moment, i.e., E[|ϵ|1+δ] ≤ νδ < ∞ for some δ ∈ (0, 1].
This assumption is common in the bandit literature which
consider heavy-tailed errors [Bubeck et al., 2013, Medina
and Yang, 2016, Shao et al., 2018, Xue et al., 2020]. We
propose to use the Huber estimator [Huber, 1964] to esti-
mate the reward model parameters. The Huber loss works
as a square loss when the input variable is small and works
as an absolute loss otherwise. It suppresses the loss value
when an observation deviated significantly from the mean,
so that it does not dominates on other observations. Sun et al.
[2020] proposed an adaptive Huber estimator with robustifi-
cation parameter adapted to dimension of covariates, size of
sample and moment bound on the error. The upper bound
of L2-norm of the estimation error is tight but is inversely
proportional to the minimum eigenvalue of the Gram matrix
of the covariates. When the covariates are independently and
identically distributed (i.i.d.) and are sampled from a dis-
tribution with positive definite covariance matrix, it can be
shown that the minimum eigenvalue of their Gram matrix is
strictly bigger than a positive constant with high probability
for sufficiently large samples. However, data accumulated
by bandit agents are not i.i.d. since the arm selection de-
pends on the arms chosen before. Hence, the Gram matrix
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formed by contexts has no guarantee to have strictly positive
minimum eigenvalue, and the estimation error can be higher.
In this work, we propose to use the forced-sampling method
of Goldenshluger and Zeevi [2013] and Bastani and Bayati
[2020] to guarantee the minimum eigenvalue bound in the
non-i.i.d. bandit setting.

In Section 2, we explain our problem settings. Then in Sec-
tion 3, previous works on the linear bandit with heavy-tailed
errors are reviewed. We introduce previous results needed
for our theoretical analysis of estimator and the formal def-
inition of the Huber regression in Section 4. In Section 5,
a description of the proposed algorithm and its theoretical
analysis are presented. Section 6 is devoted to the simula-
tion study of the proposed algorithm compared with three
existing algorithms.

2 PROBLEM FORMULATION

In linear bandits, we assume that the expected value of the
reward is linear in the contexts. The bandit agent aims to
learn the unknown linear parameter through consecutive arm
pulls. We denote d-dimensional context vector at time t by
Xt ∈ Rd. In each time step, Xt is sampled from unknown
distribution PX independently. We denote the number of
arms as K. When the learning agent pulls the i-th arm at
time t, the arm reveals a stochastic reward

yi,t = XT
t βi + ϵi,t, (1)

where βi ∈ Rd is an arm-specific fixed parame-
ter and each ϵi,t is a heavy-tailed noise. We denote
the index of the arm pulled by the bandit agent at
time t as a(t). Hence at each time t, the agent ob-
served one reward, yt := ya(t),t. We also assume
E[ϵi,t | Ft−1] = 0 and E

[
|ϵi,t|1+δ | Ft−1

]
≤ νδ < ∞,

for νδ > 0 and for some δ ∈ (0, 1], where
Ft = σ(X1, ..., Xt+1, a(1), a(2), ..., a(t), y1, ..., yt)
denotes the σ-algebra generated by observations
{X1, ..., Xt+1, a(1), a(2), ..., a(t), y1, ..., yt}. Note
that sub-Gaussian errors satisfy this assumption with δ = 1.
The regret at time t is defined by

rt := XT
t βa∗(t) −XT

t βa(t).

where a∗(t) = argmaxj∈[K]X
T
t βj is the optimal arm.

In related literature on bandits for linear payoffs, the formu-
lation is sometimes presented as follows, where instead of
arm-specific parameters and single context, we have a single
parameter β ∈ Rd and arm-specific contexts, Xi,t ∈ Rd for
each arm i.

yi,t = XT
i,tβ + ϵi,t. (2)

However, we note that an algorithm designed for one setting
can always be applied to the other setting. For example,
when the algorithm designed for (1) needs to be applied on

(2), we simply let Xt = {XT
1,t · · · XT

K,t}T ∈ RKd and
βi = {0T · · · 0T βT 0T · · · 0T }T ∈ RKd, where 0 is
a d-dimensional zero vector and all the elements up to the
d×(i−1)-th element and after the d×i-th element are all 0 in
βi. On the other hand, when we apply an algorithm designed
for (2) on setting (1), we simply let β = {βT

1 · · · βT
K}T ∈

RKd and Xi,t = {0T · · · 0T XT 0T · · · 0T }T ∈ RKd.

Notations For any vector v ∈ Rd and positive semi-
definite matrix A ∈ Rd×d, we let ||v||A :=

√
vTAv. We

let [N ] = {1, 2, · · · , N} for any natural number N . We
let λmin(A) and λmax(A) be the minimum and maximum
eigenvalues of matrixA respectively. For any vector v ∈ Rd,
v = (v1, ..., vd)

T , L2-norm is ||v||2 = (
∑d

i=1 |vi|2)
1
2 and

max norm is ||v||∞ = max1≤i≤d |vi|. For any matrices
A,B ∈ Rd×d, let A ≽ B if B −A is positive semi definite.
For any setA, let 1A(·) denote indicator function of a subset
A of some set W . For a, b ∈ R, a ∨ b := max{a, b}. The
set N denotes the set of natural numbers. When Z ⊂ N, we
denote the Gram matrix as Σ̂(Z) := 1

|Z|
∑

r∈Z XrX
T
r .

3 RELATED WORK

When errors are sub-Gaussian and the time horizon is
unknown, LinOFUL[Abbasi-Yadkori et al., 2011] is the
state-of-the-art algorithm, achieving a tight regret bound
of order Õ(d

√
T ) for setting (2), where Õ(·) ignores log-

arithmic terms. The strategy of LinOFUL is to construct
a tight confidence region of the true parameter β at each
time step and pull the arm according to the Optimism in
the Face of Uncertainty (OFU) principle. The confidence
region at time t is an ellipsoid of the form Ct = {β̃ :

||β̃ − β̂t||Vt
≤ αt}, in which the center β̂t is the Ridge

estimator of β using the contexts and rewards of the chosen
arms up to time t as covariate and outcome respectively and
Vt is the Gram matrix of the covariates. The Mahalanobis
norm ||β − β̂t||Vt ≈ ||

∑t
r=1Xa(r),rϵa(r),r||V −1

t
is a self-

normalized martingale, where
∑t

r=1Xa(r),rϵa(r),r forms
a martingale and Vt ≈

∑t
r=1Xa(r),rX

T
a(r),r is the normal-

ization term. Abbasi-Yadkori et al. [2011] proved that when
ϵ is sub-Gaussian, Ct contains the true parameter with high
probability for small enough positive value of αt. The main
challenge in the proof is that the self-normalized martin-
gale is not a martingale when arms are chosen adaptively.
Hence, standard Azuma-Hoeffding inequalities cannot ap-
ply. Abbasi-Yadkori et al. [2011] applied the inequality for
self-normalized martingales [de la Pena et al., 2004, Peña
et al., 2009] instead.

When errors ϵi,t are not sub-Gaussian but have only finite
(1 + δ)-th moments, the self-normalized inequality does not
hold anymore. Therefore, we do not have a guarantee that
the Ridge estimator of β converges to the true value fast
enough to allow a tight confidence region and optimal re-



Table 1: Regret order of linear bandit designed for heavy-tailed reward

Algorithm Regret Order Fixed Context Space

MoM[Medina and Yang, 2016] O(
√
dT

1+2δ
1+3δ (log T )

3δ+1
2(1+δ) ) Yes

Truncation[Medina and Yang, 2016] O(dT
2+δ

2(1+δ) log T ) No

MENU[ Shao et al., 2018] O(d
3+δ

2(1+δ)T
1

1+δ (log T )
3δ+1

2(1+δ) ) Yes

TOFU[Shao et al., 2018] O(dT
1

1+δ (log T )
3δ+1

2(1+δ) ) No
SupLinBMM[Xue et al., 2020] O(

√
d(log T )

3
2T

1
1+δ ) Yes

SupLinBTC[Xue et al., 2020] O(
√
d(log T )2T

1
1+δ ) No

Huber Bandit(ours) O(
√
dT

1
1+δ (log dT )

δ
1+δ ) No

gret. Hence, other estimators than the naive Ridge estimators
should be considered. Recently, novel estimators [Medina
and Yang, 2016, Shao et al., 2018, Xue et al., 2020] have
been proposed motivated from the Median of Means (MoM)
method and truncation method of Bubeck et al. [2013] for
multi-armed bandits without contexts. All these works fol-
low Abbasi-Yadkori et al. [2011] in that they first construct
a confidence region of β and then choose the arm according
to the OFU principle.

Medina and Yang [2016] was the first to extend the MoM
method to the estimation of the linear regression parameter,
β. They proposed an algorithm which conducts in batches,
where during each batch, the agent pulls the same arm with
the same context variable repeatedly. At the end of each
batch, the algorithm computes the MoM of the rewards
which share the same context variable. Then the algorithm
updates the Ridge estimator of β using the context and
MoM of rewards as new covariate-outcome pair. The caveat
of the method is that while the errors of the individual re-
wards are heavy-tailed, the error of the MoM can be shown
to be sub-Gaussian with high-probability. Therefore, the
self-normalized inequality applies straightforwardly and a
tight confidence region can be constructed. The paper de-
rived a high-probability upper bound of the regret of order
O(

√
dT

1+2δ
1+3δ (log T )

3δ+1
2(1+δ) ). We remark that when δ = 1,

the order reduces to Õ(dT
3
4 ) which is suboptimal when ap-

plied to sub-Gaussian rewards which have finite second mo-
ments. The MoM method does not recover the tight O(

√
T )

regret bound despite the sub-Gaussianity of MoMs because
we need multiple samples, up to O(T

1+δ
1+3δ ) samples, to con-

struct a single MoM.

Shao et al. [2018] refined the MoM method of Medina
and Yang [2016] and proposed a novel algorithm called
MENU which enjoys a tighter regret upper bound. MENU
also executes in batches and requires to pull the same arm
with the same context repeatedly in each batch. Instead
of computing the MoM of rewards however, MENU up-
dates multiple estimates of β where each estimate is up-
dated using only one context-reward pair. Among the dif-
ferent estimates β̂1, β̂2, · · · , β̂k, where k is the size of the
batch, MENU then selects the estimate which has the me-

dian value of ||β̂j − β||Vt where β is the true parameter.
While β̂1, β̂2, · · · , β̂k have not all a tight estimation error
bound, it can be shown that β̂j which has the median Ma-
halanobis distance with β achieves a tight estimation error
bound. This refined estimator requires less samples k in
each batch to achieve the same estimation error bound as
in the MoM method. Consequently, the regret of MENU
is O(d

3+δ
2(1+δ)T

1
1+δ (log T )

3δ+1
2(1+δ) ). Now we observe that the

bound is optimal with respect to T when δ = 1. The MENU
algorithm is easy to employ and runs fast. However, the
restriction that the same context variable should be observed
during the same batch can be restrictive. In practice, context
variables are often stochastic. Even for the same arm, the
context information may change. In this case, we cannot run
MENU.

Medina and Yang [2016] proposed an alternative estima-
tor which does not require to pull the same arm with the
same context variable in a row. The algorithm computes
a Ridge estimator using truncated reward ŷt = yt1|yt|≤bt ,
where the value of bt increases with time t. The quantity
ŷt is bounded but biased. Hence, the error ŷt − XT

a(t),tβ
can be decomposed into a sub-Gaussian variable plus a bias
term. The authors carefully choose the value of bt to trade
off the self-normalized bound for the sub-Gaussian vari-
ables and the bound on the cumulative bias. Consequently,
their algorithm achieves a high probability regret bound of
O(dT

2+δ
2(1+δ) log T ). This bound also does not recover the

O(
√
T ) bound when δ = 1.

Shao et al. [2018] refined the truncation estimator of Med-
ina and Yang [2016]. Instead of truncating the reward yt,
they truncated each element of V −1/2

t Xa(r),ryr for every
r = 1, 2, · · · , t by a time increasing threshold bt. Hence,
the truncation depends not only on the reward but also on
the contexts of the chosen arms so far. Also, at each time t,
the truncation is re-operated on all observations up to time
t. This increases the time complexity of the algorithm but
makes the estimator more accurate to obtain the tight regret
upper bound of O(dT

1
1+δ (log T )

3δ+1
2(1+δ) ) which reproduces

the optimal regret bound with respect to T when δ = 1.
The analysis however relies on Bernstein’s inequalities for



martingales, which can be applied to self-normalized mar-
tingales under restrictive conditions only. We note that a
self-normalized martingale becomes a martingale only when
the contexts of chosen arms constitute a fixed design, i.e.,
when the covariates used in the estimator are fixed prior to
observing the outcomes(rewards). In adaptively collected
data, we usually do not have a fixed design since the co-
variate at time t is chosen based on the rewards up to time
t− 1.

Xue et al. [2020] blended the median of means and trun-
cation method with the SupLinUCB algorithm [Chu et al.,
2011] and achieved the regret bounds O(

√
d(log T )

3
2T

1
1+δ )

and O(
√
d(log T )2T

1
1+δ ), respectively. They refined the es-

timators of Medina and Yang [2016] and Shao et al. [2018]
so that the contexts at the current time point are also consid-
ered when taking median of means and truncation. However,
the derivation of the confidence interval for β based on their
estimators is valid under fixed design only. Therefore, the
authors adopted the phased structure of SupLinUCB[Chu
et al., 2011] which ensures that the contexts of arms chosen
at time points in the same phase constitute a fixed design
[Auer, 2002]. Therefore, the arms that are chosen at time
points in the same phase are only correlated with rewards
from precedent phases and not correlated with rewards in
the same phase. Hence, when an estimator β̂ based on MoM
or truncation is computed from observations in the same
phase, the Hoeffding’s inequality can be applied to the self-
normalized martingales. The bounds of Xue et al. [2020]
are state-of-the-art, shaving off

√
d factor from the bounds

of Shao et al. [2018]. However, their algorithm requires to
know the time horizon T prior to running the algorithm
to determine the optimal number of phases. In this paper,
we propose a novel algorithm which does not require the
knowledge of T .

We present the regret bounds of the aforementioned algo-
rithms in terms of d and T in Table 1.

In recent works in multi-armed bandits without contexts,
there are algorithms which do not require the prior knowl-
edge of νδ [Lee et al., 2020] and even δ as well [Huang
et al., 2022]. Removing these constraints in linear bandit
would be promising.

4 PRELIMINARIES

In this paper, we propose to estimate the parameter βi in (1)
with Huber regression. Huber loss function [Huber, 1964]
is defined by

lτ (x) =

{
x2/2, if |x| ≤ τ,

τ |x| − τ2/2, if |x| > τ,

for some robustification parameter τ > 0. When Z is a
set of time steps, the Huber estimator of β fitted on data

observed at time steps in Z is defined as

β̂(Z) = arg min
β̃∈Rd

Lτ (β̃, Z)

where
Lτ (β̃, Z) =

1

|Z|
∑
r∈Z

lτ (yr −XT
r β̃).

The Huber loss works as a square loss when the difference
|yr −XT

r β̃| is smaller than τ and works as an absolute loss
otherwise. Sun et al. [2020] analyzed the estimation error
bound of Huber estimator in the fixed-design setting. They
derived the value of τ which minimizes the estimation error
bound in the following theorem.

Theorem 1 (Theorem1 of Sun et al. [2020]). For any α >
0, τ0 ≥ νδ, the estimator β̂([t]) with τ = τ0(t/α)

1/(1+δ)

satisfies the bound

||β̂([t])− β||2 ≤ 4c−1
l Lτ0d

1/2
(α
t

) δ
1+δ

with probability at least 1− (2d+ 1)e−α, provided that

t ≥ max{8M4c−1
l α, 24+δM2c−1

l α, 16
√
2c−1

l LMd1/2α}.

Here, cl ≤ λmin(Σ̂([t])), Σ̂([t]) =
1
t

∑
r∈[t]XrX

T
r , M =

max1≤r≤t ||Xr||2, L = max1≤r≤t ||Xr||∞.

In Theorem 1, we observe that the estimation error bound is
proportional to the inverse of cl, the minimum eigenvalue of
the Gram matrix Σ̂([t]). The following theorem shows that
when Xr’s are sampled independently and identically from
a distribution with positive-definite covariance matrix, then
λmin(Σ̂([t])) is larger than a positive constant with high
probability for sufficiently large t.

Theorem 2 (Theorem 1.1 of Tropp [2012]). Consider a
finite sequence {Bk} of independent, random, self-adjoint
matrix with dimension d. Assume Bk ≽ 0 and λmax(Bk) ≤
M a.s. Then

P(λmin(
∑
k

Bk) ≤ αµmin) ≤ d exp

(
− (1− α)2µmin

2M

)
,

where α ∈ [0, 1], µmin := λmin(E[
∑

k Bk]).

In bandits however, the problem is that we do not have i.i.d.
data due to adaptivity in the choice of arms. In (1), even
if Xt’s are sampled i.i.d. from PX , we can only use a sub-
set of Xt’s for the estimation of βi for each arm i. Due
to adaptivity in the choice of arms, the subset is not a ran-
dom sample from the full set of Xt’s. We propose to use
the forced-sampling strategy of Goldenshluger and Zeevi
[2013] to tackle this problem. The main idea behind the
strategy is to maintain two estimators for each βi, one using



a small number of observations forcibly sampled in an i.i.d.
fashion and another estimator which uses all observations,
both forcibly sampled and adaptively sampled. The forced-
sample estimator is then used to discard the suboptimal arms
and concentrate the arm choices to optimal arms. Conse-
quently, a constant portion of the adaptively sampled data
is guaranteed to follow an i.i.d. distribution over a specific
region in X . Hereby, the all-sample estimator which uses
both forcibly and adaptively sampled data enjoys a tight
estimation error bound.

Goldenshluger and Zeevi [2013] first proposed the forced
sampling strategy for a contextual bandit setting. Bastani
and Bayati [2020] extended this strategy to the multiple-
arm setting and used it to prove a tight estimation error
bound of the Lasso estimator in bandit settings which also
requires a similar minimum eigenvalue bound as the one
Huber estimator requires.

Before proceeding, we state few assumptions here.

Assumption 1. At each time t, a context variable Xt ∈
X ⊂ Rd is sampled i.i.d. from PX . When arm i is pulled,
the arm returns a stochastic reward yt as in equation (1).

Assumption 2. Without loss of generality, we assume

||Xt||2 ≤ 1, ||βi||2 ≤ 1, ∀t ∈ [T ], i ∈ [K].

Assumption 3. [Arm optimality, Assumption 3 of Bastani
and Bayati [2020]] The arm set is partitioned into two sets,
optimal arms and sub optimal arms.

[K] = Kopt ∪Ksub where Kopt ∩Ksub = ∅.

i ∈ Ksub satisfies for h > 0,

XTβi < max
j ̸=i

XTβj − h, ∀X ∈ X .

For i ∈ Kopt, ∃ non-empty set

Ui =

{
x ∈ X |XTβi > max

j ̸=i
XTβj + h

}
such that PX (X ∈ Ui) ≥ p > 0.

Assumption 4. For all i ∈ Kopt defined in Assumption 3,
λmin

(
E[XXT |X ∈ Ui]

)
≥ γ, for γ > 0, where expecta-

tion is taken with respect to the distribution PX .

Assumption 4 states that the expected Gram matrix of con-
texts in Ui is positive definite, for each i ∈ Kopt. Assump-
tions 3 and 4 also guarantee a positive minimum eigenvalue
for E[XXT ] via the following lemma.

Lemma 1. Let U be a set with P(X ∈ U) ≥ p. If
λmin

(
E[XXT |X ∈ U ]

)
≥ γ for γ > 0, then

λmin

(
E[XXT ]

)
≥ γp.

5 PROPOSED ESTIMATOR AND
ALGORITHM

Let the set Ti := {(2n − 1)Kq + j|n ∈ N ∪ {0}, j ∈
{q(i − 1) + 1, q(i − 1) + 2, ..., qi}, q ∈ N} be the set of
predetermined forced sampling time steps for arm i and
Ti,t = Ti ∩ [t] be the set of forced sampling time steps until
time t. Since |Ti,t| = O(logT ), the regret at forced sam-
pling steps is O(KlogT ) at maximum. Let the set of time
steps where arm i is pulled, either forcedly or adaptively,
until time t be Si,t = {r|a(r) = i, r ≤ t} and we call it
all-sample set of the arm i. We have Ti,t ⊂ Si,t.

Algorithm 1 Huber bandit

1: Input: h, νδ, α
2: β̂(Ti,0) = β̂(Si,0) = 0d

3: for t ∈ [T ] do
4: Observe Xt ∼ PX
5: if t ∈ Ti then
6: a(t) = i
7: else
8: D = {i ∈ [K]|maxj∈[K]X

T
t β̂(Tj,t−1) −

XT
t β̂(Ti,t−1) ≤ h

2 }.
9: a(t) = argmaxi∈DX

T
t β̂(Si,t−1)

10: end if
11: Update Sa(t),t = Sa(t),t−1 ∪ {t}
12: Observe reward yt = XT

t βa(t) + ϵa(t),t
13: if t ∈ Ti then
14: τ(Ti,t) = νδ(|Ti,t|/ log(t2(2d+ 1)/α))1/(1+δ)

15: β̂(Ti,t) = argminβ∈Rd
1

|Ti,t|
∑

r∈Ti,t
lτ (yr −

XT
r β)

16: else
17: τ(Si,t) = νδ(|Si,t|/ log(t2(2d+1)/α))1/(1+δ)

18: β̂(Si,t) = argminβ∈Rd
1

|Si,t|
∑

r∈Si,t
lτ (yr −

XT
r β)

19: end if
20: end for

The proposed algorithm (Algorithm 1) works as follows. At
each time t ≥ 1, we observe context Xt. If t ∈ Ti,t, we pull
the arm i. If t /∈ Ti,t, we choose the arm using a two step
procedure. First, we eliminate arms that are supposed to be
suboptimal using the forced-sampling estimator β̂(Ti,t−1).
Afterward, we choose the arm i which has maximum value
of XT

t β̂(Si,t) among the arms that survived the first step.

The following theorem shows that the proposed algorithm
has regret upper bound of order O(

√
dT

1
1+δ (log dT )

δ
1+δ ).



Theorem 3. Suppose Assumptions 1-4 hold. When

q ≥ 6

(
32(τ0 ∨ 1)d1/2

hγp

) 1+δ
δ

, t ≥ (Kq)2

ϕ
,

C1 = (1 + δ)
64τ0
γp

(
4

p

)δ/(1+δ)

and τo ≥ νδ, the cumulative regret R(T ) is bounded by

R(T ) ≤ C1T
1

1+δ
(
log(T 2(2d+ 1)10K/ϕ)

)δ/(1+δ) √
d

+ 4Kq log T +
2(Kq)2

ϕ

with probability at least 1− ϕ.

Proof We first need to adapt Theorem 1, which is origi-
nally proved for independent data, to work for adaptively
collected data. In the original version of the theorem, the
i.i.d. assumption is exploited in two parts, (i)bounding the
norm of the gradient of the loss function which can be writ-
ten as the sum of nonlinear function of i.i.d. errors and
(ii)guaranteeing the minimum eigenvalue of the Gram ma-
trix to be bounded below by a positive constant. For (i),
since the errors are no more i.i.d., we derive a novel proof
using martingale inequalities in Lemma 2. As for (ii), we
borrow idea of forced sampling strategy used in existing
works which we see later.

Lemma 2 (All sample estimator bound). Let τ =
τ0(|Si,t|/ log(t2(2d + 1)/α))1/(1+δ), τ0 ≥ νδ. If t ≥
(Kq)2 and cl ≤ λmin(Σ̂(Si,t)), we have with probability at
least 1− α

t2 ,

||β̂(Si,t)− βi||2

≤
(

4

pt
log(t2(2d+ 1)/α)

)δ/(1+δ)

4τ0d
1/2c−1

l

for i ∈ [K].

Proof. We mainly provide the part we solve differently from
the proof of Sun et al. [2020]. If we know the minimum
eigenvalue bound of the Gram matrix, we can obtain L2-
norm bound

||β̂(Si,t)− βi||2 ≤ 2|Si,t|−1c−1
l ||

∑
r∈Si,t

ψτ (ϵr)Xr||2

ψτ (ϵr) := l ′τ (ϵr) is the derivative of the Huber loss. The
detailed explanation can be found in Section C.3 of Sun
et al. [2020]. The L2-norm is bounded by max-norm.wwwwww
∑

r∈Si,t

ψτ (ϵr)Xr

wwwwww
2

≤ d1/2

∥∥∥∥∥∥
∑

r∈Si,t

ψτ (ϵr)Xr

∥∥∥∥∥∥
∞

= d1/2τ max
1≤j≤d

∣∣∣∣∣∣
∑

r∈Si,t

(Xrj/τ)ψτ (ϵr)

∣∣∣∣∣∣ ,
(3)

where we use maxr∈Si,t ||Xr||∞ ≤ 1 and Xrj is j-th ele-
ment of the context Xr. We observe that in bandit settings,
the right-hand side of (3) is the sum of adapted data. To
bound this quantity, we invoke a bound on supermartingales.
We can first construct a supermartingale as follows. Let

Mt := exp

(
t∑

r=1

[
(Xrj/τ)ψτ (ϵr)−

νδ
τ1+δ

])
.

Then

E[Mt|Ft−1]

=Mt−1E [exp ((Xtj/τ)ψτ (ϵt)) |Ft−1] /exp
( νδ
τ1+δ

)
≤Mt−1E[1 +Xtj(ϵt/τ) + |ϵt/τ |1+δ|Ft−1]/exp

( νδ
τ1+δ

)
≤Mt−1

[
1 +

νδ
τ1+δ

]
/exp

( νδ
τ1+δ

)
≤Mt−1exp

( νδ
τ1+δ

)
/exp

( νδ
τ1+δ

)
=Mt−1

shows that Mt is a supermartingale with M0 := 1, where
the second inequality is derived from

− log(1− u+ |u|1+δ) ≤ 1

τ
ψτ (τu) ≤ log(1+ u+ |u|1+δ)

∀u ∈ R and

exp((Xrj/τ)ψτ (ϵr))

≤ (1 + ϵr/τ + |ϵr/τ |1+δ)Xrj1Xrj>0

· (1− ϵr/τ + |ϵr/τ |1+δ)−Xrj1Xrj<0

≤ 1 +Xrj(ϵr/τ) + |ϵr/τ |1+δ.

Iteratively applying the law of total expectation on Mt gives
E[Mt] ≤ 1 and hence,

E

exp
 ∑

r∈Si,t

(Xrj/τ)ψτ (ϵr)

 ≤ exp(|Si,t|νδτ−1−δ).

Markov’s inequality gives

P

 ∑
r∈Si,t

(Xrj/τ)ψτ (ϵr) > νδ|Si,t|z


≤ exp(−νδ|Si,t|z)E

exp
 ∑

r∈Si,t

(Xrj/τ)ψτ (ϵr)


≤ exp(νδ|Si,t|(τ−1−δ − z))

for some z > 0. Then when τ ≥ (2/z)1/(1+δ) and z =
2ν−1

δ |Si,t|−1 log(t2(2d + 1)/α), with probability at least
1− α/t2, the same bound as in Theorem 1 can be obtained.



We note that in Lemma 2, one does not need to invoke a
bound for self-normalized supermartingales if the minimum
eigenvalue of the Gram matrix is lower bounded by a pos-
itive constant. However in bandit settings, guaranteeing a
positive constant lower bound for the minimum eigenvalue
of Gram matrices is challenging. As mentioned earlier, we
utilize the forced-sampling strategy to address this chal-
lenge. We prove below through a sequence of lemmas that
by means of forced-sampling, the Gram matrix Σ̂(Si,t) of
the all-sample estimator of any arm i ∈ Kopt has a mini-
mum eigenvalue greater than a positive constant.

Lemma 3 (Lemma EC.23 of Bastani and Bayati [2020]).
Let A be a set of random variables. Consider a subset A′ ⊂
A of i.i.d. random variables. If λmin(Σ̂(A

′)) ≥ γ for some
γ > 0, then

λmin(Σ̂(A)) ≥
|A′|
|A|

γ.

Lemma 3 states that we can get the minimum eigenvalue
bound of the Gram matrix for a possibly non i.i.d. set A, if
we know the bound for an i.i.d. subset of the set A. We will
construct the i.i.d. subset of the set Si,t and show that the
size of the subset is proportional to |Si,t| in terms of t.

We first establish the estimation error bound of the forced
sampling estimator, which plays a crucial role in construct-
ing a sufficiently big i.i.d. subset of Si,t for every i ∈ Kopt.

Lemma 4 (Forced-sampling estimator bound). Define an
event at time t as

At :=

{
||β̂(Ti,t)− βi||2 ≤ h

4
, ∀i ∈ [K]

}
.

For α ∈ (0, 1), we have P (At) ≥ 1 − 2Kα/t2, provided
that t ≥ (Kq)2.

Proof. The lemma is direct application of Theorem 1. The
proof follows the lines in Proposition 2 of Bastani and Bay-
ati [2020]. Since the forced sampling set Ti,t is set determin-
isitcally prior to running the algorithm, the samples in Ti,t
are i.i.d.. Therefore, the minimum eigenvalue bound of the
Gram matrix can be derived from Lemma 1 and Theorem
2.

Using Lemma 4, we can prove the following lemma 5 which
states that under the high-probability event At, the set D
of arms after discarding the suboptimal arms using β̂(Ti,t)
contains arms from Kopt only. Therefore under this high-
probability event, the algorithm makes action choices using
the estimates β̂(Si,t)’s of arms i ∈ Kopt only. Hence, we
need to guarantee sufficiently large i.i.d. subset of contexts
for arms in Kopt only.

Lemma 5 (Lemma EC.18 of Bastani and Bayati [2020]). If
At−1 holds, then D = {i ∈ [K]|maxj∈[K]X

T
t β̂(Tj,t−1)−

XT
t β̂(Ti,t−1) ≤ h

2 } contains the optimal arm a∗(t) and no
arms from Ksub.

Now we derive i.i.d. subset of the set Si,t for any arm
i ∈ Kopt. We first define the following subset of [t] which
describes the time steps where contexts are sampled from
the optimal regions Ui’s and where the most recently up-
dated forced sampling estimators have low estimation error
bound.

Ai,t := {r ∈ [t]|Ar−1 holds, Xr ∈ Ui and r /∈ ∪j∈[K]Tj,t}.

Observe that the random variables {xr|r ∈ Ai,t} are i.i.d.
in Ui. This is because the event {xr ∈ Ui} is independent of
the event Ar−1 while the event {r /∈ Tj,t} is deterministic.
Therefore, we can prove λmin(Σ̂(Ai,t)) is strictly positive
with high probability via Assumption 4 and Theorem 2.

Lemma 6 states that Ai,t is a subset of Si,t and Lemma
7 states that the size of Ai,t is large enough. Particularly,
Lemma 7 guarantees that the size of Ai,t is at least propor-
tional to t.

Lemma 6 (All sample set, Lemma EC.11 of Bastani and
Bayati [2020]). For i ∈ Kopt, if t ∈ Ai,t, then a(t) = i.

Lemma 7 (All sample set, Lemma EC.14 of Bastani and
Bayati [2020]). If t ≥ (Kq)2, for i ∈ Kopt,

P(|Ai,t| ≥ tp/4) ≥ 1− α

t2
.

Substituting Si,t into A and Ai,t into A′ in Lemma 3, we
get the minimum eigenvalue bound of Σ̂(Si,t). Since |Ai,t|
is proportional to t and |Si,t| ≤ t, the ratio |A′|/|A| is of
constant order. Theorem 2 states that

P
(
λmin

(
Σ̂(Ai,t)

)
≤ γ

2

)
≤ d exp

(
−|Ai,t|γ

8

)
,

for γ in Assumption 4. The size of the set Ai,t is guaranteed
by Lemma 7. When t ≥ d

α and q ≥ 192
γp , with probability at

least 1− α
t2 ,

|Ai,t| >
tp

4
≥ |Ti,t|p

4
≥ 8

γ
(log(d/α) + log t2),

and hence
λmin

(
Σ̂(Ai,t)

)
≥ γ

2
.

Therefore, together with Lemma 3, with probability at least
1− 2α

t2 ,

λmin

(
Σ̂(Si,t)

)
>
γ|Ai,t|
2|Si,t|

>
γ|Ai,t|
2t

>
pγ

8
. (4)

Finally, we are ready to prove the Theorem 3.

proof of theorem 3. We consider two cases; (a) when t <
(Kq)2/ϕ or t ∈ ∪i∈[K]Ti,t, (b) when t ≥ (Kq)2/ϕ and t /∈
∪i∈[K]Ti,t. For (a), we know that |∪i∈[K]Ti,t| ≤ 2Kq log T
by definition of Ti,t. Hence, the time occupied by the event



(a) is at most 2Kq log T +(Kq)2/ϕ. We roughly bound the
regret at this time steps using Assumption 2. For (b), due to
Lemma 4, with probability at least 1− 2αK/t2, At holds.
When At holds, due to lemma 5, we choose an arm from
Kopt only. Then we can obtain minimum eigenvalue bound
in (4) ∀i ∈ D with probability at least 1 − 2αK/t2. The
regret at time t is

rt = XT
t βa∗(t) −XT

t βa(t)

= XT
t βa∗(t) −XT

t β̂(Sa(t),t) +XT
t β̂(Sa(t),t)−XT

t βa(t)

≤ XT
t βa∗(t) −Xtβ̂(Sa∗(t),t) +XT

t β̂(Sa(t),t)−XT
t βa(t)

≤ ||Xt||2||βa∗(t) − β̂(Sa∗(t),t)||2
+ ||Xt||2||βa(t) − β̂(Sa(t),t)||2.

With probability at least 1 − αK/t2, ∀i ∈ D, L2-norm
bound in Lemma 2 holds. Then with probability at least
1− 10αK,

T∑
t=1

rt

≤2

T∑
t=1

(
4

pt
log(t2(2d+ 1)/α)

)δ/(1+δ)
32τ0d

1/2

γp

≤
T∑

t=1

(
4

pt
log(T 2(2d+ 1)/α)

)δ/(1+δ)
64τ0d

1/2

γp

≤(T
1

1+δ − 1)(1 + δ)

(
4

p
log(T 2(2d+ 1)/α)

)δ/(1+δ)

·

64τ0d
1/2

γp
.

Then together with (a), let ϕ = 10αK gives the desired
result.

We provide additional Theorem 4 which shows that if we
add additional Assumption 5 of marginal condition, we can
get Õ(log T ) expected regret.

Assumption 5 (Assumption 2 of Bastani and Bayati [2020]).
∃C0 ∈ R+ such that ∀i, j ∈ [K] where i ̸= j,

P(0 < |XT (βi − βj)| ≤ κ) ≤ C0κ ∀κ ∈ R+.

Theorem 4. Suppose Assumptions 1-5 hold. When

q ≥ 6

(
32(τ0 ∨ 1)d1/2

hγp

) 1+δ
δ

, t ≥ (Kq)2

ϕ
,

C2 = 214
τ20C0

γ2p3
, C3 = 212+

4δ
1+δ

(
1 + δ

1− δ

)
τ20C0

γ2p
2+4δ
1+δ

and τo ≥ νδ, the expected regret is

T∑
t=1

E[rt]

=

T∑
t

E[XTβa∗(t) −XTβa(t)]

≤ C2(log T )(log T + 1)dK + (log T + 1)12K(2d+ 1)

when δ = 1 and

T∑
t=1

E[rt]

≤ C3T
1−δ
1+δ (log T )

2δ
1+δ dK + (log T + 1)12K(2d+ 1)

when 0 < δ < 1.

The full proof of Theorem 4 is deferred to the Supplemen-
tary Material.

6 EXPERIMENTS

We compare the Huber bandit algorithm with OLS bandit
[Bastani and Bayati, 2020], TOFU [Shao et al., 2018] and
SupLinBTC [Xue et al., 2020]. OLS bandit has the same
structure of the forced-sampling as the Huber bandit but the
Ordinary Least Squares(OLS) estimator substitutes the Hu-
ber estimator. TOFU and SupLinBTC are designed for the
single parameter β ∈ Rd and arm-specific contexts, Xi,t ∈
Rd, i ∈ [K] setting. To bring the algorithms to our setting,
we reshape arm parameters βi ∈ Rd, i ∈ [K] into one pa-
rameter β ∈ RdK and context Xt into Xi,t ∈ RdK , i ∈ [K]
such that XT

i,tβ = XT
t βi. We randomly generate context

Xt ∈ Rd and arm parameters βi ∈ Rd, i ∈ [K] from a
uniform distribution in [−1, 1] and normalize them to sat-
isfy the assumption 2. Due to the random generations of the
samples, the assumption 3 might not be satisfied. Instead,
we arbitrarily set h to 0.2. Nevertheless, the Huber bandit
shows a good performance. The error term ϵt is generated
from the student’s t-distribution with a degree of freedom(df)
{1.1, 1.5, 2} and multiplied by 0.1 to balance with the norm
condition of βi and Xt. If df > n, finite n-th moment of the
student’s t-distribution exists. In the experiment, we assume
1 + δ = df − 0.05 moments exist. We take the context
dimension d = 5, the number of arms K = 10, the time
horizon T = 1000. The TOFU algorithm has one hyper-
parameter conf which controls the size of the confidence
interval of the regression parameter. Our algorithm and OLS
bandit both have the hyperparameter q which controls the
number of forced sampling steps. We run the algorithms
with conf = 0.5, 1, 1.5, 2 and q = 2, 3, 4 and report the
results of the values that resulted in the lowest average re-
gret. We run 100 iterations each with a new data set. The



Figure 1: Cumulative regret of Huber bandit, OLS bandit,
TOFU.

results of cumulative regret of Huber, OLS, TOFU and Su-
pLinBTC averaged over 100 iterations are shown in figure
1. The shade of the graph shows the standard deviation of
100 iterations. We use α = 0.01 for all algorithms.

7 CONCLUSION

In this paper, we proposed the Huber bandit algorithm ro-
bust to heavy-tailed error. The theoretical analysis shows
that when contexts are stochastic with positive definite co-
variance matrix, the algorithm achieves the regret bound
of O(

√
dT

1
1+δ (log dT )

δ
1+δ ) which matches the state-of-the-

art regret upper bound for linear bandits with sub-Gaussian
errors in terms of the time horizon T when δ = 1. The
practical performance was proved by comparing it with
OLS bandit and two existing bandit algorithms designed for
heavy-tailed data.
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