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Abstract

Concept shift is a prevailing problem in natural
tasks like medical image segmentation where sam-
ples usually come from different subpopulations
with variant correlations between features and la-
bels. One common type of concept shift in medi-
cal image segmentation is the “information imbal-
ance” between label-sparse samples with few (if
any) segmentation labels and label-dense samples
with plentiful labeled pixels. Existing distribution-
ally robust algorithms have focused on adaptively
truncating/down-weighting the “less informative”
(i.e., label-sparse in our context) samples. To ex-
ploit data features of label-sparse samples more
efficiently, we propose an adaptively weighted
online optimization algorithm — AdaWAC— to
incorporate data augmentation consistency reg-
ularization in sample reweighting. Our method
introduces a set of trainable weights to balance the
supervised loss and unsupervised consistency reg-
ularization of each sample separately. At the sad-
dle point of the underlying objective, the weights
assign label-dense samples to the supervised loss
and label-sparse samples to the unsupervised con-
sistency regularization. We provide a convergence
guarantee by recasting the optimization as online
mirror descent on a saddle point problem. Our em-
pirical results demonstrate that AdaWAC not only
enhances the segmentation performance and sam-
ple efficiency but also improves the robustness to
concept shift on various medical image segmenta-
tion tasks with different UNet-style backbones.
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1 Introduction
Modern machine learning is revolutionizing the field of med-
ical imaging, especially in computer-aided diagnosis with
computed tomography (CT) and magnetic resonance imag-
ing (MRI) scans. However, classical learning objectives like
empirical risk minimization (ERM) generally assume that
training samples are independently and identically (i.i.d.)
distributed, whereas real-world medical image data rarely
satisfy this assumption. Figure 1 instantiates a common
observation in medical image segmentation where the seg-
mentation labels corresponding to different cross-sections of
the human body tend to have distinct proportions of labeled
(i.e., non-background) pixels, which is accurately reflected
by the evaluation of supervised cross-entropy loss during
training. We refer to this as the “information imbalance”
among samples, as opposed to the well-studied “class im-
balance” (Wong et al., 2018; Taghanaki et al., 2019; Yeung
et al., 2022) among the numbers of segmentation labels
in different classes. Such information imbalance induces
distinct difficulty/paces of learning with the cross-entropy
loss for different samples (Wang et al., 2021b; Tullis &
Benjamin, 2011; Tang et al., 2018; Hacohen & Weinshall,
2019). Specifically, we say a sample is label-sparse when it
contains very few (if any) segmentation labels; in contrast,
a sample is label-dense when its segmentation labels are
prolific. Motivated by the information imbalance among
samples, we explore the following questions:

What is the effect of separation between sparse and dense
labels on segmentation?

Can we leverage such information imbalance to improve
the segmentation accuracy?

We formulate the mixture of label-sparse and label-dense
samples as a concept shift — a type of distribution shift in
the conditional distribution of labels given features P (y|x).
Coping with concept shifts, prior works have focused on
adaptively truncating (hard-thresholding) the empirical loss
associated with label-sparse samples. These include the
Trimmed Loss Estimator (Shen & Sanghavi, 2019), MKL-
SGD (Shah et al., 2020), Ordered SGD (Kawaguchi & Lu,
2020), and the quantile-based Kacmarz algorithm (Haddock
et al., 2022). Alternatively, another line of works (Wang
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et al., 2018; Sagawa et al., 2020) proposes to relax the
hard-thresholding operation to soft-thresholding by down-
weighting instead of truncating the less informative samples.
However, diminishing sample weights reduces the impor-
tance of both the features and the labels simultaneously,
which is still not ideal as the potentially valuable informa-
tion in the features of the label-sparse samples may not be
fully used.

Figure 1: Evolution of cross-entropy losses versus con-
sistency regularization terms for slices at different cross-
sections of the human body in the Synapse dataset (de-
scribed in Section 5) during training.

For further exploitation of the feature of training samples,
we propose the incorporation of data augmentation consis-
tency regularization on label-sparse samples. As a prevalent
strategy for utilizing unlabeled data, consistency regulariza-
tion (Bachman et al., 2014; Laine & Aila, 2016; Sohn et al.,
2020) encourages data augmentations of the same samples
to lie in the vicinity of each other on a proper manifold. For
medical imaging segmentation, consistency regularization
has been extensively studied in the semi-supervised learning
setting (Bortsova et al., 2019; Zhao et al., 2019; Li et al.,
2020; Wang et al., 2021a; Zhang et al., 2021; Zhou et al.,
2021; Basak et al., 2022) as a strategy for overcoming label
scarcity. Nevertheless, unlike general vision tasks, for medi-
cal image segmentation, the scantiness of unlabeled image
data can also be a problem due to regulations and privacy
considerations (Karimi et al., 2020), which makes it worth-
while to reminisce the more classical supervised learning
setting. In contrast to the aforementioned semi-supervised
strategies, we explore the potency of consistency regular-
ization in the supervised learning setting by leveraging the
information in the features of label-sparse samples via data
augmentation consistency regularization.

To naturally distinguish the label-sparse and label-dense
samples, we make a key observation that the unsupervised
consistency regularization on encoder layer outputs (of a
UNet-style architecture) is much more uniform across dif-
ferent subpopulations than the supervised cross-entropy loss
(as exemplified in Figure 1). Since the consistency regu-

larization is characterized by the marginal distribution of
features P (x) but not labels, and therefore is less affected by
the concept shift in P (y|x), it serves as a natural reference
for separating the label-sparse and label-dense samples. In
light of this observation, we present the weighted data aug-
mentation consistency (WAC) regularization — a minimax
formulation that reweights the cross-entropy loss versus
the consistency regularization associated with each sam-
ple via a set of trainable weights. At the saddle point of
this minimax formulation, the WAC regularization automat-
ically separates samples from different subpopulations by
assigning all weights to the consistency regularization for
label-sparse samples, and all weights to the cross-entropy
terms for label-dense samples.

We further introduce an adaptively weighted online opti-
mization algorithm — AdaWAC— for solving the minimax
problem posed by the WAC regularization, which is inspired
by a mirror-descent-based algorithm for distributionally ro-
bust optimization (Sagawa et al., 2020). By adaptively learn-
ing the weights between the cross-entropy loss and consis-
tency regularization of different samples, AdaWAC comes
with both a convergence guarantee and empirical success.

The main contributions are summarized as follows:

• We introduce the WAC regularization that leverages the
consistency regularization on the encoder layer outputs
(of a UNet-style architecture) as a natural reference to
distinguish the label-sparse and label-dense samples (Sec-
tion 3).

• We propose an adaptively weighted online optimization
algorithm — AdaWAC— for solving the WAC regulariza-
tion problem with a convergence guarantee (Section 4).

• Through extensive experiments on different medical im-
age segmentation tasks with different UNet-style back-
bone architectures, we demonstrate the effectiveness of
AdaWAC not only for enhancing the segmentation perfor-
mance and sample efficiency but also for improving the
robustness to concept shift (Section 5).

1.1 Related Work

Sample reweighting. Sample reweighting is a popular
strategy for dealing with distribution/subpopulation shifts
in training data where different weights are assigned to
samples from different subpopulations. In particular, the
distributionally-robust optimization (DRO) framework (Ben-
Tal et al., 2013; Duchi et al., 2021; Duchi & Namkoong,
2021; Sagawa et al., 2020) considers a collection of train-
ing sample groups from different distributions. With the
explicit grouping of samples, the goal is to minimize the
worst-case loss over the groups. Without prior knowledge
of sample grouping, importance sampling (Needell et al.,
2014; Zhao & Zhang, 2015; Alain et al., 2015; Loshchilov
& Hutter, 2015; Gopal, 2016; Katharopoulos & Fleuret,
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2018), iterative trimming (Kawaguchi & Lu, 2020; Shen &
Sanghavi, 2019), and empirical-loss-based reweighting (Wu
et al., 2022) are commonly incorporated in the stochastic op-
timization process for adaptive reweighting and separation
of samples from different subpopulations.

Data augmentation consistency regularization. As a
popular way of exploiting data augmentations, consis-
tency regularization encourages models to learn the vicinity
among augmentations of the same sample based on the as-
sumption that data augmentations generally preserve the
semantic information in data and therefore lie closely on
proper manifolds. Beyond being a powerful building block
in semi-supervised (Bachman et al., 2014; Sajjadi et al.,
2016; Laine & Aila, 2016; Sohn et al., 2020; Berthelot et al.,
2019) and self-supervised (Wu et al., 2018; He et al., 2020;
Chen et al., 2020; Grill et al., 2020) learning, the incorpo-
ration of data augmentation and consistency regularization
also provably improves generalization and feature learning
even in the supervised learning setting (Yang et al., 2023;
Shen et al., 2022).

For medical imaging, data augmentation consistency regular-
ization is generally leveraged as a semi-supervised learning
tool (Bortsova et al., 2019; Zhao et al., 2019; Li et al., 2020;
Wang et al., 2021a; Zhang et al., 2021; Zhou et al., 2021;
Basak et al., 2022). In efforts to incorporate consistency
regularization in segmentation tasks with augmentation-
sensitive labels, (Li et al., 2020) encourages transforma-
tion consistency between predictions with augmentations
applied to the image inputs and the segmentation outputs.
(Basak et al., 2022) penalizes inconsistent segmentation out-
puts between teacher-student models, with MixUp (Zhang
et al., 2017) applied to image inputs of the teacher model
and segmentation outputs of the student model. Instead
of enforcing consistency in the segmentation output space
as above, we leverage the insensitivity of sparse labels to
augmentations and encourage consistent encodings (in the
latent space of encoder outputs) on label-sparse samples.

2 Problem Setup
Notation. For any K ∈ N, we denote [K] = {1, . . . ,K}.
We represent the elements and subtensors of an arbitrary
tensor by adapting the syntax for Python slicing on the sub-
script (except counting from 1). For example, x[i,j] denotes
the (i, j)-entry of the two-dimensional tensor x, and x[i,:]

denotes the i-th row. Let I be a function onto {0, 1} such
that, for any event e, I {e} = 1 if e is true and 0 otherwise.
For any k ∈ N, let ∆k ≜

{
q ∈ [0, 1]k

∣∣ ∥q∥1 = 1
}

be the
k-dimensional probability simplex. For any distribution P
and n ∈ N, we let Pn denote the joint distribution of n
samples drawn i.i.d. from P . Finally, we say that an event
happens with high probability (w.h.p.) if the event takes
place with probability 1− Ω (poly (n))

−1.

2.1 Pixel-wise Classification with Sparse and Dense
Labels

We consider medical image segmentation as a pixel-wise
multi-class classification problem where we aim to learn a
pixel-wise classifier h : X → [K]d that serves as a good
approximation to the ground truth h∗ : X → [K]d.

Recall the separation of cross-entropy losses between sam-
ples with different proportions of background pixels from
Figure 1. We refer to a sample (x,y) ∈ X × [K]d as label-
sparse if most pixels in y are labeled as background; for
these samples, the cross-entropy loss on (x,y) converges
rapidly in the early stage of training. Otherwise, we say that
(x,y) is label-dense. Formally, we describe such variation
as a concept shift in the data distribution.

Definition 2.1 (Mixture of label-sparse and label-dense sub-
populations). We assume that label-sparse and label-dense
samples are drawn from P0 and P1 with distinct conditional
distributions P0 (y|x) and P1 (y|x) but common marginal
distribution P (x) such that Pi (x,y) = Pi (y|x)P (x)
(i = 0, 1). For ξ ∈ [0, 1], we define Pξ as a data distri-
bution where (x,y) ∼ Pξ is drawn either from P1 with
probability ξ or from P0 with probability 1− ξ.

We aim to learn a pixel-wise classifier from a function class
H ∋ hθ = argmaxk∈[K] fθ (x)[j,:] for all j ∈ [d] where
the underlying function fθ ∈ F , parameterized by some
θ ∈ Fθ, admits an encoder-decoder structure:{

fθ = ϕθ ◦ ψθ

∣∣ ϕθ : X → Z, ψθ : Z → [0, 1]d×K
}
.
(1)

Here ϕθ, ψθ correspond to the encoder and decoder func-
tions, respectively. The parameter space Fθ is equipped
with the norm ∥·∥F and its dual norm ∥·∥F,∗

1. (Z, ϱ) is a
latent metric space.

To learn from segmentation labels, we consider the averaged
cross-entropy loss:

ℓCE (θ; (x,y)) =−
1

d

d∑
j=1

K∑
k=1

I
{
y[j] = k

}
· log

(
fθ (x)[j,k]

)

=− 1

d

d∑
j=1

log
(
fθ (x)[j,y[j]]

)
.

(2)

We assume the proper learning setting: there exists θ∗ ∈⋂
ξ∈[0,1] argminθ∈Fθ

E(x,y)∼Pξ
[ℓCE (θ; (x,y))], which is

invariant with respect to ξ.2

1For AdaWAC (Proposition 4.1 in Section 4), Fθ is simply a
subspace in the Euclidean space with dimension equal to the total
number of parameters for each θ ∈ Fθ , with ∥·∥F and ∥·∥F,∗ both
being the ℓ2-norm.

2We assume proper learning only to (i) highlight the invariance
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2.2 Augmentation Consistency Regularization

Despite the invariance of fθ∗ to Pξ on the population loss,
with a finite number of training samples in practice, the
predominance of label-sparse samples would be problem-
atic. As an extreme scenario for the pixel-wise classifier
with encoder-decoder structure (Equation (1)), when the
label-sparse samples are predominant (ξ ≪ 1), a decoder
function ψθ that predicts every pixel as background can
achieve near-optimal cross-entropy loss, regardless of the
encoder function ϕθ, considerably compromising the test
performance (cf. Table 1). To encourage legit encoding
even in the absence of sufficient dense labels, we leverage
the unsupervised consistency regularization on the encoder
function ϕθ based on data augmentations.

Let A be a distribution over transformations on X where
for any x ∈ X , each A ∼ A (A : X → X ) induces an
augmentationA (x) of x that perturbs low-level information
in x. We aim to learn an encoder function ϕθ : X → Z that
is capable of filtering out low-level information from x and
therefore provides similar encodings for augmentations of
the same sample. Recalling the metric ϱ (e.g., the Euclidean
distance) on Z , for a given scaling hyperparameter λAC > 0,
we measure the similarity between augmentations with a
consistency regularization term on ϕθ (·): for any A1, A2 ∼
A2,

ℓAC (θ;x, A1, A2) ≜ λAC · ϱ
(
ϕθ (A1(x)) , ϕθ (A2(x))

)
.

(3)

For the n training samples {(xi,yi)}i∈[n] ∼ Pn
ξ , we

consider n pairs of data augmentation transformations
{(Ai,1, Ai,2)}i∈[n] ∼ A

2n. In the basic version, we en-
courage the similar encoding ϕθ (·) of the augmentation
pairs (Ai,1 (xi), Ai,2 (xi)) for all i ∈ [n] via consistency
regularization:

min
θ∈Fθ∗ (γ)

1

n

n∑
i=1

ℓCE (θ; (xi,yi)) + ℓAC (θ;xi, Ai,1, Ai,2) .

(4)

We enforce consistency on ϕθ (·) in light of the encoder-
decoder architecture: the encoder is generally designed to
abstract essential information and filters out low-level non-
semantic perturbations (e.g., those introduced by augmenta-
tions), while the decoder recovers the low-level information

of the desired ground truth to ξ that can be challenging to learn
with finite samples in practice and (ii) provide a natural pivot for
the convex and compact neighborhood Fθ∗ (γ) of ground truth θ∗

in Assumption 3.2 granted by the pretrained initialization, where
θ∗ can also be replaced with the pretrained initialization weights
θ0 ∈ Fθ∗ (γ). In particular, neither our theory nor the AdaWAC
algorithm requires the function class F to be expressive enough to
truly contain such θ∗.

for the pixel-wise classification. Therefore, with different
A1, A2 ∼ A, the encoder output ϕθ (·) tends to be more
consistent than the other intermediate layers, especially for
label-dense samples.

3 Weighted Augmentation Consistency
(WAC) Regularization

As the motivation, we begin with a key observation about
the averaged cross-entropy:
Remark 3.1 (Separation of averaged cross-entropy loss on
P0 and P1). As demonstrated in Figure 1, the sparse labels
from P0 tend to be much easier to learn than the dense ones
from P1, leading to considerable separation of averaged
cross-entropy losses on the sparse and dense labels after
a sufficient number of training epochs. In other words,
ℓCE (θ; (x,y))≪ ℓCE (θ; (x

′,y′)) for label-sparse samples
(x,y) ∼ P0 and label-dense samples (x′,y′) ∼ P1 with
high probability.

Although Equation (4) with consistency regularization alone
can boost the segmentation accuracy during testing (cf. Ta-
ble 4), it does not take the separation between label-sparse
and label-dense samples into account. In Section 5, we will
empirically demonstrate that proper exploitation of such
separation, like the formulation introduced below, can lead
to improved classification performance.

We formalize the notion of separation between P0 and P1

with the consistency regularization (Equation (3)) as a refer-
ence in the following assumption 3.

Assumption 3.2 (n-separation between P0 and P1).
Given a sufficiently small γ > 0, let Fθ∗ (γ) =
{θ ∈ Fθ | ∥θ − θ∗∥F ≤ γ} be a compact and convex neigh-
borhood of well-trained pixel-wise classifiers4. We say
that P0 and P1 are n-separated over Fθ∗ (γ) if there exists
ω > 0 such that with probability 1 − Ω

(
n1+ω

)−1
over

((x,y) , (A1, A2)) ∼ Pξ ×A2, the following hold:

(i) ℓCE (θ; (x,y)) < ℓAC (θ;x, A1, A2) for all θ ∈
Fθ∗ (γ) given (x,y) ∼ P0;

(ii) ℓCE (θ; (x,y)) > ℓAC (θ;x, A1, A2) for all θ ∈
Fθ∗ (γ) given (x,y) ∼ P1.

This assumption is motivated by the empirical observation
that the perturbation in ϕθ (·) induced byA is more uniform
across P0 and P1 than the averaged cross-entropy losses, as
instantiated in Figure 3.

3Although Assumption 3.2 may seem to be rather strong, it
is only required for the separation guarantee of label-sparse and
label-dense samples with high probability in Proposition 3.3, but
not for the adaptive weighting algorithm introduced in Section 4
or in practice for the experiments.

4With pretrained initialization, we assume that the optimization
algorithm is always probing in Fθ∗ (γ).
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Under Assumption 3.2, up to a proper scaling hyperpa-
rameter λAC, the consistency regularization (Equation (3))
can separate the averaged cross-entropy loss (Equation (2))
on n label-sparse and label-dense samples with probability
1−Ω (nω)

−1 (as explained formally in Appendix A). In par-
ticular, the larger n corresponds to the stronger separation
between P0 and P1.

With Assumption 3.2, we introduce a minimax formula-
tion that incentivizes the separation of label-sparse and
label-dense samples automatically by introducing a flex-
ible weight β[i] ∈ [0, 1] that balances ℓCE (θ; (xi,yi)) and
ℓAC (θ;xi, Ai,1, Ai,2) for each of the n samples.

θ̂WAC, β̂ ∈ argmin
θ∈Fθ∗ (γ)

argmax
β∈[0,1]n

L̂WAC (θ,β)

L̂WAC (θ,β) ≜
1

n

n∑
i=1

β[i] · ℓCE (θ; (xi,yi))

+ (1− β[i]) · ℓAC (θ;xi, Ai,1, Ai,2) .

(5)

With convex and continuous loss and regularization terms
(formally in Proposition 3.3), Equation (5) admits a saddle
point corresponding to β̂ which separates the label-sparse
and label-dense samples under Assumption 3.2.
Proposition 3.3 (Formal proof in Appendix A). Assume
that ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex and
continuous in θ for all (x,y) ∈ X×[K]d andA1, A2 ∼ A2;
Fθ∗ (γ) ⊂ Fθ is compact and convex. If P0 and P1 are n-
separated (Assumption 3.2), then there exists β̂ ∈ {0, 1}n

and θ̂WAC ∈ argminθ∈Fθ∗ (γ)
L̂WAC

(
θ, β̂

)
such that

min
θ∈Fθ∗ (γ)

L̂WAC
(
θ, β̂

)
=L̂WAC

(
θ̂WAC, β̂

)
= max

β∈[0,1]n
L̂WAC

(
θ̂WAC,β

)
.

(6)

Further, β̂ separates the label-sparse and label-dense
samples—β̂[i] = I {(xi,yi) ∼ P1}—w.h.p..

That is, for n samples drawn from a mixture of n-separated
P0 and P1, the saddle point of LWAC

i (θ,β) in Equation (5)
corresponds to β[i] = 0 on label-sparse samples (i.e., learn-
ing from the unsupervised consistency regularization), and
β[i] = 1 on label-dense samples (i.e., learning from the
supervised averaged cross-entropy loss).
Remark 3.4 (Connection to hard-thresholding algorithms).
The saddle point of Equation (5) is closely related to hard-
thresholding algorithms like Ordered SGD (Kawaguchi &
Lu, 2020) and iterative trimmed loss (Shen & Sanghavi,
2019). In each iteration, these algorithms update the model
only on a proper subset of training samples based on the
(ranking of) current empirical risks. Compared to hard-
thresholding algorithms, (i) Equation (5) additionally lever-
ages the unused samples (e.g., label-sparse samples) for

unsupervised consistency regularization on data augmenta-
tions; (ii) meanwhile, it does not require prior knowledge of
the sample subpopulations (e.g., ξ for Pξ) which is essential
for hard-thresholding algorithms.

Equation (5) further facilitates the more flexible optimiza-
tion process. As we will empirically show in Table 2, de-
spite the close relation between Equation (5) and the hard-
thresholding algorithms (Remark 3.4), such updating strate-
gies may be suboptimal for solving Equation (5).

4 Adaptively Weighted Augmentation
Consistency (AdaWAC)

Inspired by the breakthrough made by (Sagawa et al., 2020)
in the distributionally-robust optimization (DRO) setting
where gradient updating on weights is shown to enjoy better
convergence guarantees than hard thresholding, we intro-
duce an adaptively weighted online optimization algorithm
(Algorithm 1) for solving Equation (5) based on online mir-
ror descent.

In contrast to the commonly used stochastic gradient descent
(SGD), the flexibility of online mirror descent in choosing
the associated norm space not only allows gradient updates
on sample weights but also grants distinct learning dynamics
to sample weights βt and model parameters θt, which leads
to the following convergence guarantee.
Proposition 4.1 (Formally in Proposition B.1, proof in Ap-
pendix B, assumptions instantiated in Example 1). Assume
that ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex and
continuous in θ for all (x,y) ∈ X×[K]d andA1, A2 ∼ A2.
Assume moreover that Fθ∗ (γ) ⊂ Fθ is convex and compact.
If there exist 5 Cθ,∗ > 0 and Cβ,∗ > 0 such that

1

n

n∑
i=1

∥∥∥∇θL̂
WAC
i (θ,β)

∥∥∥2
F,∗
≤ C2

θ,∗

1

n

n∑
i=1

max {ℓCE (θ; (xi,yi)) , ℓAC (θ;xi, Ai,1, Ai,2)}2 ≤ C2
β,∗

for all θ ∈ Fθ∗ (γ), β ∈ [0, 1]n, then with ηθ = ηβ =
2√

5T(γ2C2
θ,∗+2nC2

β,∗)
, Algorithm 1 provides

E
[

max
β∈[0,1]n

L̂WAC (
θT ,β

)
− min

θ∈Fθ∗ (γ)
L̂WAC (

θ,βT

)]
≤ 2

√
5
(
γ2C2

θ,∗ + 2nC2
β,∗

)/
T

where θT = 1
T

∑T
t=1 θt and βT = 1

T

∑T
t=1 βt.

5Following the convention, we use ∗ in subscription to denote
the dual spaces. For instance, recalling the parameter space Fθ

characterized by the norm ∥·∥F from Section 2.1, we use ∥·∥F,∗
to denote its dual norm; while Cθ,∗, Cβ,∗ upper bound the dual
norms of the gradients with respect to θ and β.
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Algorithm 1 Adaptively Weighted Augmentation Consis-
tency (AdaWAC)

Input: Training samples {(xi,yi)}i∈[n] ∼ Pn
ξ , augmen-

tations {(Ai,1, Ai,2)}i∈[n] ∼ A
2n, maximum number of

iterations T ∈ N, learning rates ηθ, ηβ > 0, pretrained
initialization for the pixel-wise classifier θ0 ∈ Fθ∗ (γ).
Initialize the sample weights β0 = 1/2 ∈ [0, 1]n.
for t = 1, . . . , T do

Sample it ∼ [n] uniformly
b←

[
(βt−1)[it], 1− (βt−1)[it]

]
b[1] ← b[1] · exp (ηβ · ℓCE (θt−1; (xit ,yit)))
b[2] ← b[2] · exp (ηβ · ℓAC (θt−1;xit , Ait,1, Ait,2))
βt ← βt−1, (βt)[it] ← b[1]/ ∥b∥1
θt ← θt−1 − ηθ ·

(
(βt)[it] · ∇θℓCE (θt−1; (xit ,yit))

+
(
1− (βt)[it]

)
· ∇θℓAC (θt−1;xit , Ait,1, Ait,2)

)
end for

In addition to the convergence guarantee, Algorithm 1 also
demonstrates superior performance over hard-thresholding
algorithms for segmentation problems in practice (Table 2).
An intuitive explanation is that instead of filtering out all
the label-sparse samples via hard thresholding, the adaptive
weighting allows the model to learn from some sparse labels
at the early epochs, while smoothly down-weighting ℓCE of
these samples since learning sparse labels tends to be easier
(Remark 3.1). With the learned model tested on a mixture of
label-sparse and label-dense samples, learning sparse labels
at the early stage is crucial for accurate segmentation.

5 Experiments
In this section, we investigate the proposed AdaWAC algo-
rithm (Algorithm 1) on different medical image segmen-
tation tasks with different UNet-style architectures. We
first demonstrate the performance improvements brought
by AdaWAC in terms of sample efficiency and robustness
to concept shift (Table 1). Then, we verify the empiri-
cal advantage of AdaWAC compared to the closely related
hard-thresholding algorithms as discussed in Remark 3.4
(Table 2). Our ablation study (Table 4) further illustrates the
indispensability of both sample reweighting and consistency
regularization, the deliberate combination of which leads to
the superior performance of AdaWAC6.

Experiment setup. We conduct experiments on two med-
ical image segmentation tasks: abdominal CT segmentation
for Synapse multi-organ dataset (Synapse)7 and cine-MRI
segmentation for Automated cardiac diagnosis challenge

6We release our code at https://github.com/gail-yxie/adawac.
7https://www.synapse.org/#!Synapse:syn3193805/wiki/217789

dataset (ACDC)8, with two UNet-like architectures: Tran-
sUNet (Chen et al., 2021) and UNet (Ronneberger et al.,
2015) (deferred to Appendix E.2). For the main experiments
with TransUNet in Section 5, we follow the official imple-
mentation in (Chen et al., 2021) and use ERM+SGD as
the baseline. We evaluate segmentations with two standard
metrics—the average Dice-similarity coefficient (DSC) and
the average 95-percentile of Hausdorff distance (HD95).
Dataset and implementation details are deferred to Ap-
pendix D. Given the sensitivity of medical image semantics
to perturbations, our experiments only involve simple aug-
mentations (i.e., rotation and mirroring) adapted from (Chen
et al., 2021).

It is worth highlighting that, in addition to the information
imbalance among samples caused by the concept shift dis-
cussed in this work, the pixel-wise class imbalance (e.g.,
the predominance of background pixels) is another well-
investigated challenge for medical image segmentation,
where coupling the dice loss (Wong et al., 2018; Taghanaki
et al., 2019; Yeung et al., 2022) in the objective is a common
remedy used in many state-of-the-art methods (Chen et al.,
2021; Cao et al., 2023). The implementation of AdaWAC
also leverages the dice loss to alleviate pixel-wise class
imbalance. We defer the detailed discussion to Appendix C.

5.1 Segmentation Performance of AdaWAC with
TransUNet

Segmentation on Synapse. Figure 2 visualizes the seg-
mentation predictions on 6 Synapse test slices given by
models trained via AdaWAC (ours) and via the baseline
(ERM+SGD) with TransUNet (Chen et al., 2021). We ob-
serve that AdaWAC provides more accurate predictions on
the segmentation boundaries and captures small organs bet-
ter than the baseline.

Figure 2: Visualization of segmentation predictions with
TransUNet (Chen et al., 2021) on Synapse. Top to bottom:
ground truth, ours (AdaWAC), baseline.

8https://www.creatis.insa-lyon.fr/Challenge/acdc/

6

https://github.com/gail-yxie/adawac
https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
https://www.creatis.insa-lyon.fr/Challenge/acdc/


Adaptively Weighted Data Augmentation Consistency Regularization for Robust Optimization under Concept Shift

Visualization of AdaWAC. As shown in Figure 3, with
ℓCE (θt; (xi,yi)) (Equation (2)) of label-sparse versus label-
dense slices weakly separated in the early epochs, the
model further learns to distinguish ℓCE (θt; (xi,yi)) of
label-sparse/label-dense slices during training. By contrast,
ℓAC (θt;xi, Ai,1, Ai,2) (Equation (3)) remains mixed for all
slices throughout the entire training process. As a result,
the CE weights of label-sparse slices are much smaller than
those of label-dense ones, pushing AdaWAC to learn more
image representations but fewer pixel classifications for
slices with sparse labels and learn more pixel classifications
for slices with dense labels.

Figure 3: ℓCE (θt; (xi,yi)) (top), CE weights βt (middle),
and ℓAC (θt;xi, Ai,1, Ai,2) (bottom) of the entire Synapse
training process. The x-axis indexes slices 0–2211. The
y-axis enumerates epochs 0–150. Individual cases (patients)
are partitioned by black lines, while purple lines separate
slices with/without non-background pixels.

Sample efficiency and robustness. We first demonstrate
the sample efficiency of AdaWAC in comparison to the base-
line (ERM+SGD) when training only on different subsets
of the full Synapse training set (“full” in Table 1). Specif-
ically, (i) half-slice contains slices with even indices only
in each case (patient)9; (ii) half-vol consists of 9 cases
uniformly sampled from the total 18 cases in full where
different cases tend to have distinct ξs (i.e., ratios of label–
dense samples); (iii) half-sparse takes the first half slices
in each case, most of which tend to be label-sparse (i.e.,
ξs are made to be small). As shown in Table 1, the model
trained with AdaWAC on half-slice generalizes as well as a
baseline model trained on full, if not better. Moreover, the
half-vol and half-sparse experiments illustrate the robust-
ness of AdaWAC to concept shift. Furthermore, such sample
efficiency and distributional robustness of AdaWAC extend
to the more widely used UNet architecture. We defer the
detailed results and discussions on UNet to Appendix E.2.

9Such sampling is equivalent to doubling the time interval
between two consecutive scans or halving the scanning frequency
in practice, resulting in the halving of sample size.

Comparison with hard-thresholding algorithms. Ta-
ble 2 illustrates the empirical advantage of AdaWAC over the
hard-thresholding algorithms, as suggested in Remark 3.4.
In particular, we consider the following hard-thresholding al-
gorithms: (i) trim-train learns only from slices with at least
one non-background pixel and trims the rest in each itera-
tion on the fly; (ii) trim-ratio ranks the cross-entropy loss
ℓCE (θt; (xi,yi)) in each iteration (mini-batch) and trims
samples with the lowest cross-entropy losses at a fixed ra-
tio – the ratio of all-background slices in the full train-
ing set (1 − 1280

2211 ≈ 0.42); (iii) ACR further incorporates
the data augmentation consistency regularization directly
via the addition of ℓAC (θt;xi, Ai,1, Ai,2) without reweight-
ing; (iv) pseudo-AdaWAC simulates the sample weights
β at the saddle point and learns via ℓCE (θt; (xi,yi)) on
slices with at least one non-background pixel while via
ℓAC (θt;xi, Ai,1, Ai,2) otherwise. We see that naive incor-
poration of ACR brings less observable boosts to the hard-
thresholding methods. Therefore, the deliberate combina-
tion via reweighting in AdaWAC is essential for performance
improvement.

Segmentation on ACDC. Performance improvements
granted by AdaWAC are also observed on the ACDC dataset
(Table 3). We defer detailed visualization of ACDC segmen-
tation to Appendix E.

5.2 Ablation Study

On the influence of consistency regularization. To il-
lustrate the role of consistency regularization in AdaWAC,
we consider the reweight-only scenario with λAC = 0 and
β ∈ ∆n (cf. β ∈ [0, 1]n in Equation (5)) such that Equa-
tion (5) is reduced to a standard DRO formulation. As an al-
ternative pure sample reweighting strategy, we also examine
the loss percentile minimization algorithm (reweight-EM)
proposed in (Fidon et al., 2021), which can be interpreted as
reweight-only with an additional entropy maximization reg-
ularization term (refer to Appendix E.1). We observe that,
with zero consistency regularization in AdaWAC, reweight-
ing alone brings little improvement (Table 4).

On the influence of sample reweighting. We then in-
vestigate the effect of sample reweighting under differ-
ent reweighting learning rates ηβ (recall Algorithm 1):
(i) ACR-only for ηβ = 0 (equivalent to the naive ad-
dition of ℓAC (θt;xi, Ai,1, Ai,2)), (ii) AdaWAC-0.01 for
ηβ = 0.01, and (iii) AdaWAC-1.0 for ηβ = 1.0. As Ta-
ble 4 implies, when removing reweighting from AdaWAC,
augmentation consistency regularization alone improves
DSC slightly from 76.28 (baseline) to 77.89 (ACR-only),
whereas AdaWAC boosts DSC to 79.12 (AdaWAC-1.0) with
a proper choice of ηβ.
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Table 1: AdaWAC with TransUNet trained on the full Synapse and its subsets.

Training Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

full baseline 76.66 ± 0.88 29.23 ± 1.90 87.06 55.90 81.95 75.58 94.29 56.30 86.05 76.17
AdaWAC 79.04 ± 0.21 27.39 ± 1.91 87.53 56.57 83.23 81.12 94.04 62.05 89.51 78.32

half-slice baseline 74.62 ± 0.78 31.62 ± 8.37 86.14 44.23 79.09 78.46 93.50 55.78 84.54 75.24
AdaWAC 77.37 ± 0.40 29.56 ± 1.09 86.89 55.96 82.15 78.63 94.34 57.36 86.60 77.05

half-vol baseline 71.08 ± 0.90 46.83 ± 2.91 84.38 46.71 78.19 74.55 92.02 48.03 76.28 68.47
AdaWAC 73.81 ± 0.94 35.33 ± 0.92 84.37 48.14 80.32 77.39 93.23 52.78 83.50 70.79

half-sparse baseline 31.74 ± 2.78 69.72 ± 1.37 65.71 8.33 59.46 51.59 51.18 10.72 6.92 0.00
AdaWAC 41.03 ± 2.12 59.04 ± 12.32 71.27 8.33 69.14 63.09 64.29 17.74 30.77 3.57

Table 2: AdaWAC versus hard-thresholding algorithms with TransUNet on Synapse.

Method baseline trim-train trim-ratio pseudo-AdaWAC AdaWAC+ACR +ACR

DSC ↑ 76.66 ± 0.88 76.80 ± 1.13 78.42 ± 0.17 76.49 ± 0.16 77.71 ± 0.56 77.72 ± 0.65 79.04 ± 0.21
HD95 ↓ 29.23 ± 1.90 32.05 ± 2.34 27.84 ± 1.16 31.96 ± 2.60 28.51 ± 2.66 28.45 ± 1.18 27.39 ± 1.91

Table 3: AdaWAC with TransUNet trained on ACDC.

Method DSC ↑ HD95 ↓ RV Myo LV

TransUNet 89.40 ± 0.22 2.55 ± 0.37 89.17 83.24 95.78
AdaWAC (ours) 90.67 ± 0.27 1.45 ± 0.55 90.00 85.94 96.06

Table 4: Ablation study of AdaWAC with TransUNet trained on Synapse.

Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

baseline 76.66 ± 0.88 29.23 ± 1.90 87.06 55.90 81.95 75.58 94.29 56.30 86.05 76.17
reweight-only 76.27 ± 0.42 32.66 ± 3.48 87.30 52.56 81.21 75.77 94.13 58.96 84.69 75.52
reweight-EM 76.83 ± 0.62 31.95 ± 2.64 87.33 54.16 82.20 76.00 93.84 58.59 86.35 76.16
ACR-only 78.01 ± 0.62 27.78 ± 2.80 87.51 58.79 83.39 79.26 94.70 58.99 86.02 75.43
AdaWAC-0.01 77.75 ± 0.23 28.02 ± 3.50 87.33 56.68 83.35 78.53 94.45 57.02 87.72 76.94
AdaWAC-1.0 79.04 ± 0.21 27.39 ± 1.91 87.53 56.57 83.23 81.12 94.04 62.05 89.51 78.32

6 Discussion
In this paper, we explore the information imbalance com-
monly observed in medical image segmentation and ex-
ploit the information in features of label-sparse samples
via AdaWAC, an adaptively weighted online optimization
algorithm. AdaWAC can be viewed as a careful combina-
tion of adaptive sample reweighting and data augmentation
consistency regularization. By casting the information im-
balance among samples as a concept shift in the data dis-
tribution, we leverage the unsupervised data augmentation
consistency regularization on the encoder layer outputs (of
UNet-style architectures) as a natural reference for distin-
guishing the label-sparse and label-dense samples via the
comparisons against the supervised average cross-entropy
loss. We formulate such comparisons as a weighted aug-
mentation consistency (WAC) regularization problem and
propose AdaWAC for iterative and smooth separation of
samples from different subpopulations with a convergence
guarantee. Our experiments on various medical image seg-

mentation tasks with different UNet-style architectures em-
pirically demonstrate the effectiveness of AdaWAC not only
in improving the segmentation performance and sample ef-
ficiency but also in enhancing the distributional robustness
to concept shifts.

Limitations and future directions. From an algorithmic
perspective, a limitation of this work is the utilization of
the encoder layer outputs ϕθ (·) for data augmentation con-
sistency regularization, which resulted in AdaWAC being
tailored to encoder-decoder architectures at the current stage.
However, our method can be generalized to other architec-
tures in principle by selecting a representation extractor in
the network that (i) well characterizes the marginal distribu-
tion of features P (x) (ii) while being robust to the concept
shift in P (y|x). For other (non-segmentation) applications
where encoder-decoder architectures do not apply, further
investigation into such generalizations is a promising avenue
for future research.
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Meanwhile, noticing the prevalence of concept shifts in natu-
ral data, especially for dense prediction tasks like segmenta-
tion and detection, we hope to extend the application/idea of
AdaWAC beyond medical image segmentation as a potential
future direction.
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A Separation of Label-sparse and Label-dense Samples
Proof of Proposition 3.3. We first observe that, since ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex and continuous in θ
for all (x,y) ∈ X × Y and A1, A2 ∼ A2, for all i ∈ [n], L̂WAC

i (θ,β) is continuous, convex in θ, and affine (thus concave)
in β; and therefore so is L̂WAC (θ,β). Then with the compact and convex domains θ ∈ Fθ∗ (γ) and β ∈ [0, 1]n, Sion’s
minimax theorem (Sion, 1958) suggests the minimax equality,

min
θ∈Fθ∗ (γ)

max
β∈[0,1]n

L̂WAC (θ,β) = max
β∈[0,1]n

min
θ∈Fθ∗ (γ)

L̂WAC (θ,β) , (7)

where inf, sup can be replaced by min,max respectively due to compactness of the domains.

Further, by the continuity and convexity-concavity of L̂WAC (θ,β), the pointwise maximum maxβ∈[0,1]n L̂
WAC (θ,β) is

lower semi-continuous and convex in θ while the pointwise minimum minθ∈Fθ∗ (γ) L̂
WAC (θ,β) is upper semi-continuous

and concave in β. Then via Weierstrass’ theorem ((Bertsekas, 2009), Proposition 3.2.1), there exist θ̂WAC ∈ Fθ∗ (γ) and β̂ ∈
[0, 1]n that achieve the minimax optimal by minimizing maxβ∈[0,1]n L̂

WAC (θ,β) and maximizing minθ∈Fθ∗ (γ) L̂
WAC (θ,β).

Along with Equation (7), such
(
θ̂WAC, β̂

)
provides a saddle point for Equation (5) ((Bertsekas, 2009), Proposition 3.4.1).

Next, we show via contradiction that there exists a saddle point with β̂ attained on a vertex β̂ ∈ {0, 1}n. Suppose the
opposite, then for any saddle point

(
θ̂WAC, β̂

)
, there must be an i ∈ [n] with β̂[i] ∈ (0, 1), where we have the following

contradictions:

(i) If ℓCE

(
θ̂WAC; (xi,yi)

)
< ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
, decreasing β̂[i] > 0 to β̂′

[i] = 0 leads to L̂WAC
(
θ̂WAC, β̂′

)
>

L̂WAC
(
θ̂WAC, β̂

)
, contradicting Equation (6).

(ii) If ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
, increasing β̂[i] < 1 to β̂′

[i] = 1 again leads to

L̂WAC
(
θ̂WAC, β̂′

)
> L̂WAC

(
θ̂WAC, β̂

)
, contradicting Equation (6).

(iii) If ℓCE

(
θ̂WAC; (xi,yi)

)
= ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
, β̂[i] can be replaced with any value in [0, 1], including 0, 1.

Therefore, there must be a saddle point
(
θ̂WAC, β̂

)
with β̂ ∈ {0, 1}n such that

β[i] = I
{
ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)}
.

Finally, it remains to show that w.h.p. over {(xi,yi)}i∈[n] ∼ Pn
ξ and {(Ai,1, Ai,2)}i∈[n] ∼ A

2n,

(i) ℓCE

(
θ̂WAC; (xi,yi)

)
≤ ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
for all (xi,yi) ∼ P0; and

(ii) ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
for all (xi,yi) ∼ P1;

which leads to β[i] = I {(xi,yi) ∼ P1} w.h.p. as desired. To illustrate this, we begin by observing that when P0 and P1 are
n-separated (Assumption 3.2), since θ̂WAC ∈ Fθ∗ (γ), there exists some ω > 0 such that for each i ∈ [n],

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
< ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

) ∣∣∣ (xi,yi) ∼ P0

]
≥ 1− 1

Ω (n1+ω)
,

and

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

) ∣∣∣ (xi,yi) ∼ P1

]
≥ 1− 1

Ω (n1+ω)
.

Therefore by the union bound over the set of n samples {(xi,yi)}i∈[n] ∼ Pn
ξ ,

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
< ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
∀ (xi,yi) ∼ P0

]
≥ 1− 1

Ω (nω)
, (8)

12
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and

P
[
ℓCE

(
θ̂WAC; (xi,yi)

)
> ℓAC

(
θ̂WAC;xi, Ai,1, Ai,2

)
∀ (xi,yi) ∼ P1

]
≥ 1− 1

Ω (nω)
. (9)

Applying the union bound again on Equation (8) and Equation (9), we have the desired condition holds with probability
1− Ω (nω)

−1, i.e., w.h.p..

B Convergence of AdaWAC

Recall the underlying function class F ∋ fθ parameterized by some θ ∈ Fθ that we aim to learn for the pixel-wise classifier
hθ = argmaxk∈[K] fθ (x)[j,:], j ∈ [d]:

F =
{
fθ = ϕθ ◦ ψθ

∣∣ ϕθ : X → Z, ψθ : Z → [0, 1]d×K
}
, (10)

where ϕθ, ψθ correspond to the encoder and decoder functions. Formally, we consider an inner product space of parameters
(Fθ, ⟨·, ·⟩F ) with the induced norm ∥·∥F and dual norm ∥·∥F,∗.

For any d ∈ N, let ∆n
d ≜

{
[β1; . . . ;βn] ∈ [0, 1]n×d

∣∣ ∥βi∥1 = 1 ∀ i ∈ [n]
}

. Then Equation (5) can be reformulated as:

θ̂WAC, β̂ = argmin
θ∈Fθ∗ (γ)

argmax
B∈∆n

2

{
L̂WAC (θ,B) ≜

1

n

n∑
i=1

L̂WAC
i (θ,B)

}
, (11)

L̂WAC
i (θ,B) ≜ B[i,1] · ℓCE (θ; (xi,yi)) +B[i,2] · ℓAC (θ;xi, Ai,1, Ai,2) .

Proposition B.1 (Convergence (formal restatement of Proposition 4.1)). Assume that ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2)
are convex and continuous in θ for all (x,y) ∈ X ×Y and A1, A2 ∼ A2, and that Fθ∗ (γ) ⊂ Fθ is convex and compact. If
there exist

(i) Cθ,∗ > 0 such that 1
n

∑n
i=1

∥∥∥∇θL̂
WAC
i (θ,B)

∥∥∥2
F,∗
≤ C2

θ,∗ for all θ ∈ Fθ∗ (γ), B ∈ ∆n
2 and

(ii) CB,∗ > 0 such that 1
n

∑n
i=1 max {ℓCE (θ; (xi,yi)) , ℓAC (θ;xi, Ai,1, Ai,2)}2 ≤ C2

B,∗ for all θ ∈ Fθ∗ (γ),

then with ηθ = ηB = 2
/√

5T
(
γ2C2

θ,∗ + 2nC2
B,∗

)
, Algorithm 1 provides the convergence guarantee for the duality gap

E
(
θT ,BT

)
≜ maxB∈∆n

2
L̂WAC

(
θT ,B

)
−minθ∈Fθ∗ (γ) L̂

WAC
(
θ,BT

)
:

E
[
E
(
θT ,BT

)]
≤ 2

√√√√5
(
γ2C2

θ,∗ + 2nC2
B,∗

)
T

,

where θT = 1
T

∑T
t=1 θt and BT = 1

T

∑T
t=1 Bt.

Proof of Proposition B.1. The proof is an application of the standard convergence guarantee for the online mirror descent
on saddle point problems, as recapitulated in Lemma B.4.

Specifically, for B ∈ ∆n
2 , we use the norm ∥B∥1,2 ≜

√∑n
i=1

(∑2
j=1

∣∣B[i,j]

∣∣)2

with its dual norm

∥B∥1,2,∗ ≜
√∑n

i=1

(
maxj∈[2]

∣∣B[i,j]

∣∣)2. We consider a mirror map φB : [0, 1]n×2 → R such that φB (B) =∑n
i=1

∑2
j=1 B[i,j] logB[i,j]. We observe that, since B[i,:],B

′
[i,:] ∈ ∆2 for all i ∈ [n],

DφB
(B,B′) =

n∑
i=1

2∑
j=1

B[i,j] log
B[i,j]

B′
[i,j]
≥ 1

2

n∑
i=1

 2∑
j=1

∣∣B[i,j] −B′
[i,j]

∣∣2

=
1

2
∥B−B′∥21,2 ,

13
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and therefore φB is 1-strongly convex with respect to ∥·∥1,2. With such φB, we have the associated Fenchel dual

φ∗
B (G) =

∑n
i=1 log

(∑2
j=1 exp

(
G[i,j]

))
, along with the gradients

∇φB (B)[i,j] = 1 + logB[i,j], ∇φ∗
B (G)[i,j] =

exp
(
G[i,j]

)∑2
j=1 exp

(
G[i,j]

) ,
such that the mirror descent update on B is given by

(Bt+1)[i,j] =∇φ
∗
B

(
∇φB (Bt)− ηB · ∇BL̂

WAC
it (θt,Bt)

)

=

(Bt)[i,j] exp

(
ηB ·

(
∇BL̂

WAC
it

(θt,Bt)
)
[i,j]

)
∑2

j=1 (Bt)[i,j] exp

(
ηB ·

(
∇BL̂

WAC
it

(θt,Bt)
)
[i,j]

) .
For it ∼ [n] uniformly, the stochastic gradient with respect to B satisfies

Eit∼[n]

[∥∥∥∇BL̂
WAC
it (θt,Bt)

∥∥∥2
1,2,∗

]
=
1

n

n∑
it=1

max {ℓCE (θt; (xit ,yit)) , ℓAC (θt;xit , Ait,1, Ait,2)}
2 ≤ C2

B,∗.

Further, in the distance induced by φB, we have

R2
∆n

2
≜ max

B∈∆n
2

φB (B)− min
B∈∆n

2

φB (B) = 0−
n∑

i=1

2∑
j=1

1

2
log

1

2
= n.

Meanwhile, for θ ∈ Fθ∗ (γ), we consider the norm ∥θ∥F ≜
√
⟨θ, θ⟩F induced by the inner product that characterizes Fθ,

with the associated dual norm ∥·∥F,∗. We use a mirror map φθ : Fθ → R such that φθ (θ) =
1
2 ∥θ − θ

∗∥2F . By observing
that

Dφθ
(θ, θ′) =

1

2
∥θ − θ′∥2F ∀ θ, θ′ ∈ F .

we have φθ being 1-strongly convex with respect to ∥·∥F . With the gradient of φθ,∇φθ(θ) = θ− θ∗, and that of its Fenchel
dual∇φ∗

θ(g) = g + θ∗, at the (t+ 1)-th iteration, we have

θt+1 = ∇φ∗
θ

(
∇φθ (θt)− ηθ · ∇θL̂

WAC
it (θt,Bt+1)

)
= θt − ηθ · ∇θL̂

WAC
it (θt,Bt+1) .

For it ∼ [n] uniformly, the stochastic gradient with respect to f satisfies that

Eit∼[n]

[∥∥∥∇θL̂
WAC
it (θt,Bt+1)

∥∥∥2
F,∗

]
=

1

n

n∑
it=1

∥∥∥∇θL̂
WAC
it (θt,Bt+1)

∥∥∥2
F,∗
≤ C2

θ,∗.

Further, in light of the definition of Fθ∗ (γ), since θ∗ ∈ Fθ∗ (γ), with θ∗ = argminθ∈Fθ∗ (γ)
φθ(θ) and θ′ =

argmaxθ∈Fθ∗ (γ)
φθ(θ), we have

R2
Fθ∗ (γ)

≜ max
θ∈Fθ∗ (γ)

φθ (θ)− min
θ∈Fθ∗ (γ)

φθ (θ) =
1

2
∥θ′ − θ∗∥2F ≤

γ2

2
.

Finally, leveraging Lemma B.4 completes the proof.
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We recall the standard convergence guarantee for online mirror descent on saddle point problems. In general, we consider a
stochastic function F : U × V × I → R with the randomness of F (u, v; i) on i ∈ I. Overloading notation I both as the
distribution of i and as the support, we are interested in solving the saddle point problem on the expectation function

min
u∈U

max
v∈V

f (u, v) where f (u, v) ≜ Ei∼I [F (u, v; i)] . (12)

Assumption B.2. Assume that the stochastic objective satisfies the following:

(i) For every i ∈ I, F (·, v, i) is convex for all v ∈ V and F (u, ·, i) is concave for all u ∈ U .
(ii) The stochastic subgradients Gu (u, v; i) ∈ ∂uF (u, v; i) and Gv (u, v; i) ∈ ∂vF (u, v; i) with respect to u and v

evaluated at any (u, v) ∈ U × V provide unbiased estimators for some respective subgradients of the expectation
function: for any (u, v) ∈ U × V , there exist some gu (u, v) ≜ Ei∼I [Gu (u, v; i)] ∈ ∂uf (u, v) and gv (u, v) ≜
Ei∼I [Gv (u, v; i)] ∈ ∂vf (u, v).

(iii) Let ∥·∥U and ∥·∥V be arbitrary norms that are well-defined on U and V , while ∥·∥U,∗ and ∥·∥V,∗ be their respective
dual norms. There exist constants Cu,∗, Cv,∗ > 0 such that

Ei∼I

[
∥Gu (u, v; i)∥2U,∗

]
≤ C2

u,∗ and Ei∼I

[
∥Gv (u, v; i)∥2V,∗

]
≤ C2

v,∗ ∀ (u, v) ∈ U × V.

For online mirror descent, we further introduce two mirror maps that induce distances on U and V , respectively.

Assumption B.3. Let φu : Du → R and φv : Dv → R satisfy the following:

(i) U ⊆ Du ∪ ∂Du, U ∩ Du ̸= ∅ and V ⊆ Dv ∪ ∂Dv , V ∩ Dv ̸= ∅.
(ii) φu is ρu-strongly convex with respect to ∥·∥U ; φv is ρv-strongly convex with respect to ∥·∥V .

(iii) limu→∂Du
∥∇φu(u)∥U,∗ = limv→∂Dv

∥∇φv(v)∥V,∗ = +∞.

Given the learning rates ηu, ηv , in each iteration t = 1, . . . , T , the online mirror descent samples it ∼ I and updates

vt+1 = argmin
v∈V

−ηv ·Gv (ut, vt; it)
⊤
v +Dφv

(v, vt) ,

ut+1 = argmin
u∈U

ηu ·Gu (ut, vt+1; it)
⊤
u+Dφu

(u, ut) , (13)

where Dφ (w,w′) = φ(w)− φ(w′)−∇φ(w′)⊤(w − w′) denotes the Bregman divergence.

We measure the convergence of the saddle point problem in the duality gap:

E (uT , vT ) ≜ max
v∈V

f (uT , v)−min
u∈U

f (u, vT )

such that, with

RU ≜
√

max
u∈U∩Du

φu(u)− min
u∈U∩Du

φu(u) and RV ≜
√

max
v∈V∩Dv

φv(v)− min
v∈V∩Dv

φv(v),

the online mirror descent converges as follows.

Lemma B.4 ((Nemirovski et al., 2009) (3.11)). Under Assumption B.2 and Assumption B.3, when taking constant learning

rates ηu = ηv = 2
/√

5T
(

2R2
U

ρu
C2

u,∗ +
2R2

V
ρv

C2
v,∗

)
, with uT = 1

T

∑T
t=1 ut and vT = 1

T

∑T
t=1 vt,

E [E (uT , vT )] ≤ 2

√
10

(
ρvR2

UC
2
u,∗ + ρuR2

VC
2
v,∗

)
ρuρv · T

.

Example 1 (Binary linear pixel-wise classifiers with convex and continuous objectives). We consider a pixel-wise binary
classification problem with X = [0, 1]d, augmentations A : X → X for all A ∼ A, and a class of linear “UNets”,

F =

{
fθ : X → [0, 1]d

∣∣∣∣ fθ (x) = σ
(
θdθ

⊤
e x

)
= ψθ (ϕθ (x)) , ϕθ (x) =

1√
d
θ⊤
e x

}
,
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where the parameter space θ = (θe,θd) ∈ Fθ = Sd−1 × Sd−1 is equipped with the ℓ2 norm ∥θ∥F =
(
∥θe∥22 + ∥θd∥

2
2

)1/2

;

σ : Rd → [0, 1]d denotes entry-wise application of the sigmoid function σ(z) = (1 + e−z)−1; and the la-
tent space of encoder outputs (Z, ϱ) is simply the real line. Given the data distribution Pξ, we recall that θ∗ =
argminθ∈Fθ

E(x,y)∼Pξ
[ℓCE (θ; (x,y))] for all ξ ∈ [0, 1] and let Fθ∗ (γ) = {θ ∈ Fθ | ∥θ − θ∗∥F ≤ γ} for some

γ = O
(
1/
√
d
)

. We assume that
∣∣x⊤θ∗

e

∣∣ = O(1) for all x ∈ X . Then, ℓCE (θ; (x,y)) and ℓAC (θ;x, A1, A2) are convex and

continuous in θ for all (x,y) ∈ X × [K]d, A1, A2 ∼ A2; while Cθ,∗ ≤ max
(
2
√
2, 2λAC

)
and Cβ,∗ ≤ max (O(1), 2λAC).

Rationale for Example 1. Let yk = I {y = k} entry-wise for k = 0, 1. We would like to show that, for any given
(x,y) ∈ X × [K]d, A1, A2 ∼ A2,

ℓCE (θ) = −
1

d

(
y⊤
1 log σ

(
θdθ

⊤
e x

)
+ y⊤

0 log σ
(
−θdθ⊤

e x
))
,

ℓAC (θ) =
λAC√
d
· (A1(x)−A2(x))

⊤
θe

are convex and continuous in θ = (θe,θd).

First, we observe that ℓAC (θ) is linear (and therefore convex and continuous) in θ for all x ∈ X , A1, A2 ∼ A2, with

∇θeℓAC (θ) =
λAC√
d
· (A1(x)−A2(x)) , ∇θd

ℓAC (θ) = 0

such that ∥∇θℓAC (θ)∥F,∗ ≤ 2λAC.

Meanwhile, with z (θ) = θdθ
⊤
e x, we have ℓCE (θ) = − 1

d

(
y⊤
1 log σ (z (θ)) + y⊤

0 log σ (−z (θ))
)

being convex and contin-
uous in z (θ):

∇2
zℓCE (θ) =

1

d
diag (σ (z (θ))) diag (1− σ (z (θ))) ≽ 0.

Therefore, ℓCE (θ) is convex and continuous in θ for all (x,y) ∈ X × [K]d:

∇2
θℓCE (θ)︸ ︷︷ ︸
2d×2d

=

[
xθ⊤

d(
θ⊤
e x

)
Id

](
1

d
diag (σ (z (θ))) diag (1− σ (z (θ)))

)[
xθ⊤

d

(
θ⊤
e x

)
Id
]
≽ 0,

where Id denotes the d× d identity matrix. Further, from the derivation, we have

∇θe
ℓCE (θ) =

1

d
θ⊤
d

(
σ
(
θdθ

⊤
e x

)
− y

)
x, ∇θd

ℓCE (θ) =
θ⊤
e x

d

(
σ
(
θdθ

⊤
e x

)
− y

)
such that ∥∇θℓCE (θ)∥F,∗ =

√
∥∇θe

ℓCE (θ)∥22 + ∥∇θd
ℓCE (θ)∥22 ≤ 2

√
2.

Finally, knowing ∥∇θℓCE (θ)∥F,∗ ≤ 2
√
2 and ∥∇θℓAC (θ)∥F,∗ ≤ 2λAC, we have∥∥∥∇θL̂

WAC
i (θ,β)

∥∥∥
F,∗
≤ β[i] ∥∇θℓCE (θ)∥F,∗ + (1− β[i]) ∥∇θℓAC (θ)∥F,∗ ≤ max

(
2
√
2, 2λAC

)
for all i ∈ [n], and therefore,

Cθ,∗ ≤ max
(
2
√
2, 2λAC

)
.

Besides, with

ℓAC (θ) ≤ λAC√
d
∥A1(x)−A2(x)∥2 ∥θe∥2 ≤ 2λAC,
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and since (
θdθ

⊤
e x

)
[j]
≤
∣∣x⊤θe

∣∣ ≤ ∣∣x⊤ (θe − θ∗
e)
∣∣+ ∣∣x⊤θ∗

e

∣∣ ≤ ∥x∥2 ∥θe − θ∗
e∥2 +O(1)

≤γ
√
d+O(1) = O(1)

for all j ∈ [d], ℓCE (θ) ≤ log
(
1 + eO(1)

)
= O(1), we have

Cβ,∗ ≤ max (O(1), 2λAC) .

C Dice Loss for Pixel-wise Class Imbalance
With finite samples in practice, since the averaged cross-entropy loss (Equation (2)) weights each pixel in the image label
equally, the pixel-wise class imbalance can become a problem. For example, the background pixels can be dominant in most
of the segmentation labels, making the classifier prone to predict pixels as background.

It is worth highlighting that despite the similar terminology “imbalance”, the “class imbalance” (i.e., discrepancies among
numbers of labeled pixels in different classes) is a fundamentally different problem from the “information imbalance”
studied in this work that is caused by the concept shift in segmentation labels across different samples.

To cope with “class imbalance”, (Chen et al., 2021; Cao et al., 2023; Wong et al., 2018; Taghanaki et al., 2019; Yeung et al.,
2022) propose to combine the cross-entropy loss with the dice loss—a popular segmentation loss based on the overlap
between true labels and their corresponding predictions in each class:

ℓDICE (θ; (x,y)) = 1− 1

K

K∑
k=1

DSC
(
fθ (x)[:,k], I {y = k}

)
, (14)

where for any p ∈ [0, 1]d, q ∈ {0, 1}d, DSC (p,q) = 2p⊤q
∥p∥1+∥q∥1

∈ [0, 1] denotes the dice coefficient (Milletari et al., 2016;
Asgari Taghanaki et al., 2021). Notice that by measuring the bounded dice coefficient for each of the K classes individually,
the dice loss tends to be robust to class imbalance.

(Taghanaki et al., 2019) merges both dice and averaged cross-entropy losses via a convex combination. It is also a common
practice to add a smoothing term in both the nominator and denominator of the DSC (Russell & Norvig, 2016).

Combining the dice loss (Equation (14)) with the weighted augmentation consistency regularization formulation (Equa-
tion (5)), in practice, we solve

θ̂WAC, β̂ ∈ argmin
θ∈Fθ∗ (γ)

argmax
β∈[0,1]n

{
L̂WAC (θ,β) ≜

1

n

n∑
i=1

L̂WAC
i (θ,β)

}
(15)

L̂WAC
i (θ,β) ≜ ℓDICE (θ; (xi,yi)) + β[i] · ℓCE (θ; (xi,yi)) + (1− β[i]) · ℓAC (θ;xi, Ai,1, Ai,2)

with a slight modification in Algorithm 1 line 9:

θt ← θt−1 − ηθ ·
(
∇θℓDICE (θt−1; (xit ,yit)) + (βt)[it] · ∇θℓCE (θt−1; (xit ,yit))

+
(
1− (βt)[it]

)
· ∇θℓAC (θt−1;xit , Ait,1, Ait,2)

)
.

On the influence of incorporating dice loss in experiments. We note that, in the experiments, the dice loss ℓDICE is
treated independently of AdaWAC in Algorithm 1 via standard stochastic gradient descent. In particular for the comparison
with hard-thresholding algorithms in Table 2, we keep the updating on ℓDICE of the original untrimmed batch intact for both
trim-train and trim-ratio to exclude the potential effect of ℓDICE that is not involved in reweighting.
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D Implementation Details and Datasets

We follow the official implementation of TransUNet10 for model training. We use the same optimizer (SGD with learning
rate 0.01, momentum 0.9, and weight decay 1e-4). For the Synapse dataset, we train TransUNet for 150 epochs on the
training dataset and evaluate the last-iteration model on the test dataset. For the ACDC dataset, we train TransUNet for 360
epochs in total, while validating models on the ACDC validation dataset for every 10 epochs and testing on the best model
selected by the validation. The total number of training iterations (i.e., total number of batches) is set to be the same as that
in the vanilla TransUNet (Chen et al., 2021) experiments. In particular, the results in Table 1 are averages (and standard
deviations) over 3 arbitrary random seeds. The results in Table 2, Table 3, and Table 4 are given by the original random seed
used in the TransUNet experiments.

Synapse multi-organ segmentation dataset (Synapse). The Synapse dataset11 is multi-organ abdominal CT scans for
medical image segmentation in the MICCAI 2015 Multi-Atlas Abdomen Labelling Challenge (Chen et al., 2021). There are
30 cases of CT scans with variable sizes (512× 512× 85− 512× 512× 198), and slice thickness ranges from 2.5mm to
5.0mm. We use the pre-processed data provided by (Chen et al., 2021) and follow their train/test split to use 18 cases for
training and 12 cases for testing on 8 abdominal organs—aorta, gallbladder, left kidney (L), right kidney (R), liver, pancreas,
spleen, and stomach. The abdominal organs were labeled by experience undergraduates and verified by a radiologist using
MIPAV software according to the information from Synapse wiki page.

Automated cardiac diagnosis challenge dataset (ACDC). The ACDC dataset12 is cine-MRI scans in the MICCAI 2017
Automated Cardiac Diagnosis Challenge. There are 200 scans from 100 patients, and each patient has two frames with
slice thickness from 5mm to 8mm. We use the pre-processed data also provided by (Chen et al., 2021) and follow their
train/validate/test split to use 70 patients’ scans for training, 10 patients’ scans for validation, and 20 patients’ scans for
testing on three cardiac structures—left ventricle (LV), myocardium (MYO), and right ventricle (RV). The data were labeled
by one clinical expert according to the description on ACDC dataset website.

E Additional Experimental Details and Results

E.1 Pure Sample-reweighting Algorithms

Here, we provide a zoomed view of the connection and differences between the two pure sample-reweighting methods based
on DRO in the ablation study (Section 5.2) — “reweight-only” (standard DRO) and “reweight-EM” (DRO with entropy
maximization) — from both formulation and optimization perspectives.

In particular, the “reweight-only” (standard DRO) method takes the formulation

min
θ∈Fθ∗ (γ)

max
β∈∆n

1

n

n∑
i=1

β[i] · ℓCE (θ; (xi,yi)) ; (16)

while the “reweight-EM” (DRO with entropy maximization) formulation (Fidon et al., 2021) can be expressed as13

min
θ∈Fθ∗ (γ)

max
β∈∆n

1

n

n∑
i=1

β[i] · ℓCE (θ; (xi,yi))− λEM ·
n∑

i=1

β[i] log
(
β[i]

)
, (17)

where we follow the default hyper-parameter setting in (Fidon et al., 2021) and set λEM = 0.01.

Compared with the WAC regularization formulation in Equation (5), apart from the apparent difference in (missing) the
consistency regularization term, the key discrepancy between Equation (16), Equation (17) and Equation (5) lies in β. That
is, for the DRO-based formulations (Equation (16) and Equation (17)), β ∈ ∆n is a distribution over the n samples where
samples are reweighted solely based on their respective cross-entropy losses; whereas for Equation (5) with β ∈ [0, 1]n,
each

(
β[i], 1− β[i]

)
is a probability distribution that quantifies the relative importance of the cross-entropy loss versus the

consistency regularization for the i-th sample.

10https://github.com/Beckschen/TransUNet
11See detailed description at https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
12See detailed description at https://www.creatis.insa-lyon.fr/Challenge/acdc/
13The original formulation in (Fidon et al., 2021) uses the KL-divergence between β and the uniform distribution 1/n to describe the

entropy term: −DKL (β∥1/n) = − log(n)−
∑n

i=1 β[i] log
(
β[i]

)
.

18

https://github.com/Beckschen/TransUNet
https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
https://www.creatis.insa-lyon.fr/Challenge/acdc/


Adaptively Weighted Data Augmentation Consistency Regularization for Robust Optimization under Concept Shift

From the optimization perspective, with mirror descent via a mirror map φβ (β) =
∑n

i=1 β[i] log
(
β[i]

)
on β and standard

stochastic gradient descent on θ, the “reweight-only” (standard DRO) method (Sagawa et al., 2020) updates the sample
weights β via (cf. Algorithm 1)

β′ ← βt−1, β′
[it] ← β′

[it] · exp (ηβ · ℓCE (θt−1; (xit ,yit))) , βt ← β′/ ∥β′∥1 ;

while the “reweight-EM” (DRO with entropy maximization) method (Fidon et al., 2021) updates the sample weights β with
an additional tunable exponent on β, characterized by the hyper-parameter λEM:

β′ ← βt−1, β′
[it] ←

(
β′

[it]

)1−ηβλEM

· exp (ηβ · ℓCE (θt−1; (xit ,yit))) , βt ← β′/ ∥β′∥1 .

E.2 Sample Efficiency and Robustness of AdaWAC with UNet

In addition to the empirical evidence on TransUNet presented in Table 1, here, we demonstrate that the sample efficiency and
distributional robustness of AdaWAC extend to the more widely used UNet architecture. In Table 5, analogous to Table 1,
the experiments on the full and half-slice datasets provide evidence for the sample efficiency of AdaWAC compared to the
baseline (ERM+SGD) on UNet. Meanwhile, the distributional robustness of AdaWAC with UNet is well illustrated by the
half-vol and half-sparse experiments.

Table 5: AdaWAC with UNet trained on the full Synapse and its subsets

Training Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

full baseline 74.04 ± 1.52 36.65 ± 0.33 84.93 55.59 77.59 70.92 92.21 55.01 82.87 73.21
AdaWAC 76.71 ± 0.62 30.67 ± 2.85 85.68 55.19 80.15 75.45 94.11 56.19 87.54 81.39

half-slice baseline 73.09 ± 0.10 40.05 ± 4.99 83.23 53.18 74.69 71.51 92.74 52.81 83.85 72.71
AdaWAC 75.12 ± 0.78 29.26 ± 2.16 85.15 55.77 79.29 72.47 93.71 54.93 86.09 73.53

half-vol baseline 63.21 ± 2.53 64.20 ± 4.46 79.46 45.79 55.79 54.91 88.65 41.61 71.68 67.77
AdaWAC 71.09 ± 1.14 39.95 ± 7.76 83.15 49.14 75.74 70.33 90.47 44.81 82.34 72.75

half-sparse baseline 37.30 ± 1.32 69.67 ± 2.89 61.57 8.33 57.45 50.44 60.28 23.51 17.83 18.99
AdaWAC 44.85 ± 1.03 62.40 ± 5.17 71.56 8.40 65.42 62.73 74.02 24.16 36.65 15.88

Implementation details of UNet experiments. For the backbone architecture of experiments in Table 5, we use a UNet
with a ResNet-34 encoder initialized with ImageNet pre-trained weights. We leverage the implementation of UNet and
load the pre-trained model via the PyTorch API for segmentation models (Iakubovskii, 2019). For training, we use the
same optimizer (SGD with learning rate 0.01, momentum 0.9, and weight decay 1e-4) and the total number of epochs (150
epochs on Synapse training set) as the TransUNet experiments, evaluating the last-iteration model on the test dataset. As
before, the results in Table 5 are averages (and standard deviations) over 3 arbitrary random seeds.

E.3 Visualization of Segmentation on ACDC dataset

As shown in Figure 4, the model trained by AdaWAC segments cardiac structures with more accurate shapes (column 1),
identifies organs missed by baseline TransUNet (column 2-3) and circumvents the false-positive pixel classifications (i.e.,
fake predictions of background pixels as organs) suffered by the TransUNet baseline (column 4-6).

E.4 Visualization of Segmentation on Synapse with Distributional Shift

Figure 5 visualizes the segmentation predictions on 6 Synapse test slices made by models trained via AdaWAC (ours) and
via the baseline (ERM+SGD) with TransUNet (Chen et al., 2021) on the half-sparse subset of the Synapse training set. We
observe that, although the segmentation performances of both the baseline and AdaWAC are compromised by the extreme
scarcity of label-dense samples and the severe distributional shift, AdaWAC provides more accurate predictions on the
relative positions of organs, as well as less misclassification of organs (e.g., the baseline tends to misclassify other organs
and the background as the left kidney). Nevertheless, due to the scarcity of labels, both the model trained with AdaWAC and
that trained with the baseline fail to make good predictions on the segmentation boundaries.
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Figure 4: Visualization of segmentation results on ACDC dataset. From top to bottom: ground truth, ours, and baseline
method.

E.5 Experimental Results on Previous Metrics

In this section, we include the results of experiments on Synapse14 dataset with metrics defined in TransUNet (Chen et al.,
2021) for reference. In TransUNet (Chen et al., 2021), DSC is 1 when the sum of ground truth labels is zero (i.e., gt.sum()
== 0) while the sum of predicted labels is nonzero (i.e., pred.sum() > 0). However, according to the definition of dice
scores, DSC = 2|A ∩B|/(|A|+ |B|),∀A,B, the DSC for the above case should be 0 since the intersection is 0 and the
denominator is non-zero. In our evaluation, we change the special condition for DSC as 1 to pred.sum == 0 and gt.sum() ==
0 instead, in which case the denominator is 0.

Table 6: AdaWAC with TransUNet trained on the full Synapse and its subsets, measured by metrics in TransUNet (Chen
et al., 2021).

Training Method DSC ↑ HD95 ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

full baseline 77.32 29.23 87.46 63.54 82.06 77.76 94.10 54.06 85.07 74.54
AdaWAC 80.16 25.79 87.23 63.27 84.58 81.69 94.62 58.29 90.63 81.01

half-slice baseline 76.24 24.66 86.26 57.61 79.32 76.55 94.34 54.04 86.20 75.57
AdaWAC 78.14 29.75 86.66 62.28 81.36 78.84 94.60 57.95 85.38 78.01

half-vol baseline 72.65 35.86 83.29 43.70 78.25 77.25 92.92 51.32 83.80 70.66
AdaWAC 75.93 34.95 84.45 60.40 79.59 76.06 93.19 54.46 84.91 74.37

half-sparse baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AdaWAC 39.68 80.93 76.59 0.00 66.53 62.11 49.69 31.09 12.30 19.11

14Note that the numbers of correct metrics and metrics in TransUNet (Chen et al., 2021) on ACDC dataset are the same.
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Figure 5: Visualization of segmentation predictions made by models trained via AdaWAC (ours) and via the baseline
(ERM+SGD) with TransUNet (Chen et al., 2021) on the half-sparse subset of the Synapse training set. Top to bottom:
ground truth, ours (AdaWAC), baseline.

Table 7: AdaWAC versus hard-thresholding algorithms with TransUNet on Synapse, measured by metrics in Tran-
sUNet (Chen et al., 2021).

Method DSC ↑ HD95↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

baseline 77.32 29.23 87.46 63.54 82.06 77.76 94.10 54.06 85.07 74.54
trim-train 77.05 26.94 86.70 60.65 80.02 76.64 94.25 54.20 86.44 77.49
trim-ratio 75.30 28.59 87.35 57.29 78.70 72.22 94.18 52.32 86.31 74.03

trim-train+ACR 76.70 35.06 87.11 62.22 74.19 75.25 92.19 57.16 88.21 77.30
trim-ratio+ACR 79.02 33.59 86.82 61.67 83.52 81.22 94.07 59.06 88.08 77.71
AdaWAC (ours) 80.16 25.79 87.23 63.27 84.58 81.69 94.62 58.29 90.63 81.01

Table 8: Ablation study of AdaWAC with TransUNet trained on Synapse, measured by metrics in TransUNet (Chen et al.,
2021).

Method DSC ↑ HD95↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

baseline 77.32 29.23 87.46 63.54 82.06 77.76 94.10 54.06 85.07 74.54
reweight-only 77.72 29.24 86.15 62.31 82.96 80.28 93.42 55.86 85.29 75.49
ACR-only 78.93 31.65 87.96 62.67 81.79 80.21 94.52 60.41 88.07 75.83
AdaWAC-0.01 78.98 27.81 87.58 61.09 82.29 80.22 94.90 55.92 91.63 78.23
AdaWAC-1.0 80.16 25.79 87.23 63.27 84.58 81.69 94.62 58.29 90.63 81.01
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