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Abstract

Sparse Autoencoders (SAEs) are widely used to steer large language models1

(LLMs), based on the assumption that their interpretable features naturally enable2

effective model behavior steering. Yet, a fundamental question remains unan-3

swered: does higher interpretability indeed imply better steering utility? To an-4

swer this question, we train 90 SAEs across three LLMs (Gemma-2-2B, Qwen-5

2.5-3B, Gemma-2-9B), spanning five architectures and six sparsity levels, and6

evaluate their interpretability and steering utility based on SAEBENCH [Karvonen7

et al., 2025] and AXBENCH [Wu et al., 2025] respectively, and perform a rank-8

agreement analysis via Kendall’s rank coefficients τb. Based on the framework,9

Our analysis reveals only a relatively weak positive association (τb ≈ 0.298), in-10

dicating that interpretability is an insufficient proxy for steering performance. We11

conjecture the interpretability-utility gap may stem from the selection of SAE fea-12

tures as not all of them are equally effective for steering. To further find features13

that truly steer the behavior of LLMs, we propose a novel selection criterion: ∆14

Token Confidence, which measures how much amplifying a feature changes the15

next token distribution. We show that our method improves the steering perfor-16

mance of three LLMs by 52.52% compared to the current best output score-based17

criterion [Arad et al., 2025]. Strikingly, after selecting features with high ∆ Token18

Confidence, the correlation between interpretability and utility vanishes (τb ≈ 0),19

and can even become negative. This further highlights the divergence between20

interpretability and utility for the most effective steering features.21

1 Introduction22

As Large Language Models (LLMs) become more widely used in real-world applications, ensur-23

ing the safety of their outputs is increasingly important [Kumar et al., 2024, Ji et al., 2023, Inan24

et al., 2023]. Reliable and controllable behavior is essential for deploying these LLMs in more25

situations [Chen et al., 2024]. Fine-tuning is the standard way to improve controllability, but it re-26

quires labeled data, significant training time, and compute resources [Hu et al., 2022, Wang et al.,27

2025a]. This has spawned a series of representation-based interventions, i.e., steering, that guide28

LLM inference by manipulating internal representations, aiming for faster and more lightweight29

output control [Turner et al., 2023, Turner et al., 2024, Wang et al., 2025b, Stolfo et al., 2025].30

However, activation-level edits are often coarse: they mix multiple semantics, a phenomenon called31

polysemanticity [Bricken et al., 2023]. Recently, Sparse Autoencoders (SAEs) have become a valu-32

able tool in the interpretability field. They are trained to actively decompose the hidden states of33

the LLM into sparse and human readable features [Templeton et al., 2024, Mudide et al., 2025].34

Their interpretable nature has subsequently spurred research into leveraging SAE features for more35

precise, concept-level control over model behavior [Ferrando et al., 2025, Chalnev et al., 2024].36
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Figure 1: Overview of our goal: building a bridge for SAE interpretability and utility. In-
terpretability (left): an SAE attached to the LLM decomposes hidden states into sparse, human-
describable features. An LLM judge yields an interpretability score for the SAE [Paulo et al., 2025].
Utility (right): at inference, we activate a target SAE feature (e.g., ‘cake’) to steer generation. An
LLM judge yields steering utility score [Wu et al., 2025].

Despite this progress, a critical question remains unanswered: does higher interpretability truly37

imply better utility? Since SAEs are trained to balance reconstruction and sparsity to yield human-38

readable features [Cunningham et al., 2023, Makelov, 2024, O’Brien et al.], their utility for down-39

stream tasks is not a primary objective. Understanding and characterizing this gap is critical to40

enabling more interpretable and effective steering over the LLM. To this end, we conduct a system-41

atic study to build a bridge between SAE interpretability and steering utility (see Figure 1).42

To perform a comprehensive association analysis, we train 90 SAEs across three LLMs (Gemma-2-43

2B [Team et al., 2024], Qwen-2.5-3B [Yang et al., 2024], and Gemma-2-9B) spanning diverse archi-44

tectures and sparsity levels. We compute interpretability using SAEBENCH [Karvonen et al., 2025]45

and steering utility using AXBENCH [Wu et al., 2025]. Then, we leverage a pairwise-controlled46

framework to evaluate whether interpretability predicts steering performance across the pool of47

trained SAEs. To quantify this relationship, we follow the idea of prior works [Jiang et al., 2020, Hu48

et al., 2024] and measure rank agreement between interpretability and utility using Kendall’s rank49

coefficient τb. We control confounders with an axis-conditioned analysis, isolating each design axis50

(architecture, sparsity, model) by varying one at a time and aggregating per-axis metrics.51

Furthermore, as identified in Arad et al. [2025], Wu et al. [2025], not all interpretable features in52

SAE are equally effective for steering. This motivates our next objective to identify the specific53

features critical for behavior control and steering utility analysis. Motivated by the recent progress54

on the entropy mechanism in LLM reasoning [Fu et al., 2025, Wang et al., 2025c], we propose an55

innovative selection criterion for SAE features: ∆ Token Confidence, which measures the degree to56

which amplifying a single feature shifts the model’s next-token distribution. Features that induce57

the most substantial change in model confidence are identified as high-utility candidates features for58

steering, as they exert a measurable and targeted influence on model behavior. Finally, we leverage59

these critical features to conduct a refined analysis of the interpretability-utility gap.60

The primary contributions and insights of this paper are summarized as follows:61

1. (§3.4) Interpretability shows a relatively weak positive association with utility. Across 9062

SAEs that are trained across three model sizes, five architectures, and six sparsity levels, we63

find that a higher interpretability score tends to shows a relatively weak positive association with64

steering performance (the Kendall’s rank coefficient τb ≈ 0.298)). This identifies a notable65

interpretability-utility gap of the existing SAEs.66

2. (§4.2) ∆ Token Confidence effectively selects features with strong steering performance. To67

identify the SAE features that are critical for steering, we introduce ∆ Token Confidence, an68
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innovative metric that identifies steering-critical SAE features by measuring their impact on the69

model’s next-token distribution. When benchmarked against the best existing output score-based70

method [Arad et al., 2025], our approach yields a substantial 52.52% average improvement in71

steering score. This result validates the superiority of our method and underscores the critical72

role of feature selection in characterizing and enhancing the steering utility of SAEs.73

3. (§4.3) The interpretability-utility gap widens among high-utility features. By reapplying74

our association analysis exclusively to SAE features with strong steering utility, we uncover a75

counterintuitive finding: the interpretability-utility correlation vanishes or even becomes negative76

(Kendall’s rank coefficient τb ≈ 0). This indicates that for the most effective steering features,77

interpretability is at best irrelevant and potentially detrimental, further emphasizing the critical78

nature of the interpretability-utility gap.79

Our results demonstrate a significant divergence between SAE’s interpretability and steering utility,80

suggesting that prioritizing interpretability does not enable improved steering performance. This gap81

highlights a crucial research direction: mitigating it will likely necessitate advanced post-training82

feature selection protocols or fundamentally new, utility-oriented SAE training paradigms.83

2 Preliminary84

2.1 Sparse Autoencoders85

Sparse Autoencoders (SAEs) decompose internal model activations x into sparse, higher-86

dimensional features h that can be linearly decoded back to the original space [Cunningham et al.,87

2023, Leask et al., 2025]. A standard SAE with column-normalized decoder weights [Bricken et al.,88

2023, Karvonen et al., 2024] is defined by the following forward map and optimization objective:89

L = ∥x− x̂∥22 + λ∥h∥1, where h = ReLU(WEx+ bE), x̂ =WDh+ bD,

whereWE , bE are encoder parameters, WD, bD are decoder parameters, x̂ is the reconstruction, and90

λ controls sparsity. This training balances reconstruction accuracy with sparse representations.91

2.2 Interpretability: Automated Interpretability Score92

SAEBENCH [Karvonen et al., 2025] uses an LLM-as-judge [Paulo et al., 2025] to assess each latent:93

the judge drafts the description from examples and then predicts, on a held-out set, which sequences94

activate it. The Automated Interpretability Score is the average precision of the judge’s prediction.95

AutoInterp Score =
1

M

M∑
m=1

1[ŷm = ym] ,

where ym ∈ {0, 1} indicates whether the latent activates in the sequence m and ŷm is the judge’s96

prediction. We use this score as our interpretability metric. For the complete details, see Appendix B.97

2.3 Utility: Steering Score98

SAE steering injects the SAE decoder atom vf (the f -th column of the column-normalized decoder99

Wdec[f ]) into the residual stream at a target layer to push the hidden state x along a chosen feature100

direction [Durmus et al., 2024]. Given a feature index f , a steering factor α, and a per-sample scale101

mf (e.g., the feature’s maximum activation), the intervention is102

xsteer = x + (αmf ) · vf . (1)

Through the above formula (1), we can use SAE features for steering to achieve the output of control-103

ling LLM. AXBENCH [Wu et al., 2025] measures causal control by steering internal representations104

during generation and asking an LLM judge to rate three aspects, each on a discrete scale {0, 1, 2}:105

Concept (C), Instruction (I), and Fluency (F ). The overall Steering Score is the harmonic mean:106

Steering Score = HM(C, I, F ) =
3

1
C + 1

I + 1
F

∈ [0, 2].
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Figure 2: Overview of our pairwise-controlled workflow linking SAE interpretability with
steering utility. (S1) Compute interpretability score and steering score for each SAE. (S2) Pair-
wise analysis across SAEs and get an insight (the top-right green box), revealing an interpretabil-
ity–utility gap. The red box (lower right) is our further inference based on the above green box and
previous studies [Wu et al., 2025]. (S3) Use ∆ Token Confidence to select higher-utility features.
(S4) Compute steering gains after selection per SAE, then do the pairwise analysis between steering
gains and interpretability. The green box in the middle left is our final conclusion.

Following AXBENCH, for each concept we sample instructions (e.g., 10 from Alpaca-Eval [Dubois107

et al., 2023]), generate continuations under different steering factors, pick the best factor on one108

split, and evaluate the held-out split with the judge to obtain the final utility score averaged across109

prompts [Gu et al., 2025]. The complete scoring procedure is detailed in Appendix C.110

3 Can SAE Interpretability Indicate Steering Performance?111

3.1 Experimental Setup112

Dataset. For each trained SAE, we score 1,000 latents with LLM-as-judge [Paulo et al., 2025] and113

randomly sample 100 to form that SAE’s CONCEPT100 (see Appendix F). For steering, we sample114

10 Alpaca-Eval instructions, allow up to 128 generated tokens, and test 6 steering factors; the 10115

instructions are split 5/5 for factor selection vs. held-out evaluation.116

Model. We evaluate three open LLMs: Gemma-2-2B [Team et al., 2024], Qwen-2.5-3B [Yang117

et al., 2024], and Gemma-2-9B [Team et al., 2024]. SAEs are trained on residual-stream activations118

at a fixed mid-layer for each model: Layer 12 for Gemma-2-2B, Layer 17 for Qwen-2.5-3B, and119

Layer 20 for Gemma-2-9B—and steering is applied to the corresponding layer.120

SAE with different architectures We train 90 SAEs covering a range of architectures and spar-121

sity. All SAEs use a latent dictionary width of 16k. We instantiate five variants: BatchTopK [Buss-122

mann et al., 2024], Gated [Rajamanoharan et al., 2024a], JumpReLU [Rajamanoharan et al., 2024b],123

ReLU [Team, 2024], TopK [Gao et al., 2024] and sweep six target sparsity levels with approximate124

per-token activations L0 ≈ 50, 80, 160, 320, 520, 820. Further details are provided in Appendix A.125

3.2 Pairwise Rank Consistency between Interpretability and Utility126

We test whether higher interpretability of SAE is predictive of higher steering performance across127

a set of trained SAEs attached to a fixed LM. For each SAE θ in a pool Θ, we record a pair128

(µ(θ), g(θ)) ∈ R2, where µ is the SAE-level Interpretability Score and g is an aggregated Steering129

Score over a standardized evaluation suite.130

Given two SAEs θi, θj ∈ Θ, define the concordance indicator131

vij = sign
(
µ(θi)− µ(θj)

)
· sign

(
g(θi)− g(θj)

)
∈ {−1, 0,+1}. (2)
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Kendall’s tie-corrected rank coefficient τb [KENDALL, 1938] summarizes agreement over un-132

ordered pairs and reduces to average concordance when there are no ties:133

τb =
1(|Θ|
2

) ∑
i<j

vij ∈ [−1, 1]. (3)

In this study, we instantiate µ with the Interpretability Score and g with the Steering Score, then134

compute τ for three model–layer settings (Gemma-2-2B, Qwen-2.5-3B, Gemma-2-9B). Each setting135

includes 30 SAEs spanning architectures and sparsity to ensure sufficient pair coverage.136

3.3 Granulated Kendall’s Coefficient to Control Confounders137

Global rank agreement can be confounded by hyperparameters that jointly influence interpretability138

and utility. To obtain an axis-controlled assessment, we factor the SAE design space into orthogonal139

axes and evaluate rank consistency while varying one axis at a time and holding the others fixed.140

We define three conditioning axes: (A) Architecture — fix architecture (and layer), vary sparsity;141

(B) Sparsity — compare architectures at matched sparsity ranks; (C) Model — fix the base model,142

compare all SAEs within it. For axis i, partition Θ into groups Gi that are matched on all axes except143

i. Within each group G ∈ Gi, compute Kendall’s coefficient in {(µ(θ), g(θ)) : θ ∈ G}, and average144

between groups to obtain the statistic at the axis level:145

ψi =
1

|Gi|
∑
G∈Gi

τ({(µ(θ), g(θ)) : θ ∈ G}) . (4)

Aggregate the axis-level outcomes by146

Ψ =
1

n

n∑
i=1

ψi, (5)

where n is the number of axes. Eachψi captures rank consistency conditioned on axis i (varying only147

that axis while matching the others), and Ψ aggregates these into a single axis-controlled measure.148

This construction mitigates cross-axis trends—e.g., architecture, sparsity, or model-driven shifts that149

can obscure local relationships between interpretability and utility.150

We report the per-axis statistics ψi together with the aggregate Ψ for the same model settings as in151

section 3.2, providing both axis-specific and aggregated assessments.152

3.4 Pairwise Analysis Results153

In this section, we assess whether higher SAE interpretability predicts stronger steering by com-154

puting Kendall’s τb between the Interpretability Score µ(θ) and the aggregated Steering Score g(θ)155

over a pooled set of SAEs attached to a fixed LLM.156

To control confounders and localize effects, we apply the axis-conditioned procedure defined in157

section 3.3. For each axis, we form matched groups, compute within-group τb, average to obtain a158

per-axis summary, and aggregate these summaries into an overall axis-controlled coefficient.159

Table 1 shows that across SAEs, higher interpretability tends to be modestly associated with160

better steering on average, pointing to a consistent but limited impact. The pooled Kendall’s161

τb ≈ 0.30 is positive, and the axis-controlled aggregate remains positive (Ψ ≈ 0.25), indicating that162

more interpretable features generally translate into better steering utility across designs and models.163

The strength of the link between interpretability and utility depends on SAE architecture,164

sparsity, and the base model. By architecture, the association is positive on average (ΨA ≈ 0.26),165

with ReLU-like variants reinforcing the trend and Gated weakening it. By sparsity, alignment is166

strongest when the SAE is more sparse and weakens—sometimes reversing—as the number of active167

features increases. By model, the underlying LM shapes the effect, with the signal clearest in Qwen-168

2.5-3B and weaker in Gemma-2-2B, while the model-wise summary remains positive (ΨC ≈ 0.33).169

Key Observation 1: Interpretability shows a relatively weak positive correlation with steering
performance, highlighting a notable gap between interpretability and utility across SAEs.

170
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Table 1: Pairwise Analysis Between Interpretability Score µ(θ) and Steering Score g(θ). We report
Kendall’s τb overall and by axis-controlled measures ΨA (Architecture), ΨB (Matched Sparsity), and ΨC

(Model). n = number of SAEs; Pairs = number of pairwise comparisons; p = permutation p-value; 95% CI =
confidence interval (overall uses BCa bootstrap; subgroups use permutation-based CIs).

Axis SAEs n Pairs τb p 95% CI
Overall All SAEs 90 4005 0.2979 — [0.1590, 0.4191]

ΨA = 0.2575 (SE ≈ 0.1163, 95% boot CI [0.0222, 0.3961])

ΨA: Architecture

BatchTopK 18 153 0.3203 0.0712 [−0.3464, 0.3464]
Gated 18 153 -0.2026 0.2577 [−0.3464, 0.3333]
JumpReLU 18 153 0.4248 0.0160 [−0.3333, 0.3333]
ReLU 18 153 0.3595 0.0392 [−0.3333, 0.3333]
TopK 18 153 0.3856 0.0272 [−0.3333, 0.3333]

ΨB = 0.1651 (SE ≈ 0.1112, 95% boot CI [−0.0286, 0.3587])

ΨB: Sparsity

L0 ≈ 50 15 105 0.5429 0.0034 [−0.3714, 0.3714]
L0 ≈ 80 15 105 0.3524 0.0740 [−0.3714, 0.3714]
L0 ≈ 160 15 105 0.1810 0.3821 [−0.3905, 0.3714]
L0 ≈ 320 15 105 0.1810 0.3673 [−0.3714, 0.3714]
L0 ≈ 520 15 105 -0.2190 0.2837 [−0.3905, 0.3714]
L0 ≈ 820 15 105 -0.0476 0.8484 [−0.3905, 0.3714]

ΨC = 0.3272 (SE ≈ 0.0698, 95% boot CI [0.2184, 0.4575])

ΨC: Model
Gemma-2-2B 30 435 0.2184 0.0980 [−0.2598, 0.2552]
Qwen-2.5-3B 30 435 0.4575 0.0008 [−0.2506, 0.2506]
Gemma-2-9B 30 435 0.3057 0.0166 [−0.2506, 0.2461]

Ψ =
(
ΨA +ΨB +ΨC

)
/3 = 0.2499

4 From Interpretability to Utility: Which SAE Features Actually Steer?171

In Sec. 3.4, We find that SAE interpretability is a relatively weak prior for steering utility. Prior172

work [Arad et al., 2025] shows many features lack steerability and we speculate that this factor may173

render the previous conclusion inaccurate. Therefore, we introduce a metric to identify steering-174

effective features. Metrics derived from a model’s internal token distributions can assess reasoning175

quality [Kang et al., 2025]. In particular, token entropy offers a unified view: high entropy highlights176

critical decision points [Fu et al., 2025, Wang et al., 2025c]. We apply this idea to SAE steering.177

4.1 Feature Selection via ∆ Token Confidence178

We start from the model’s next-token distribution. Given logits z ∈ RV and p = softmax(z) over a179

vocabulary of size V , the token entropy is180

H(p) = −
V∑

j=1

pj log pj , (6)

Entropy summarizes dispersion over the vocabulary: smaller values reflect a sharper, more concen-181

trated prediction, while larger values indicate greater uncertainty at a given position.182

To focus on the head of the distribution that matters most for sampling, we use token confidence.183

Let Ik(p) ⊆ {1, . . . , V } denote the indices of the k largest probabilities in p. The top-k token184

confidence is the negative average log-probability over these entries:185

Ck(p) = −1

k

∑
j∈Ik(p)

log pj . (7)

Lower Ck implies higher confidence, while higher Ck implies a flatter top-k distribution. Unlike186

entropy, Ck directly captures the sharpness of the outcomes that drive next-token behavior.187

We turn confidence into a feature-level selector via a single-feature SAE intervention. Consider188

an SAE feature f at layer ℓ. We amplify only the coefficient of f by a factor α > 0 in the SAE189

reconstruction, leaving the base model and all other features unchanged. Denote the baseline next-190
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Figure 3: Distribution of per-feature ∆ Token Confidence across all SAEs. Panels show his-
tograms for Gemma-2-2B, Qwen-2.5-3B, and Gemma-2-9B; the x-axis is ∆Ck (negative values
indicate increased confidence, positive values decreased confidence) and the y-axis is the number of
SAE features. The shaded area marks the high-magnitude tails from which candidate steering fea-
tures are selected, while the central mass near 0 indicates features with little distributional impact.

token distribution by pbase and the intervened distribution by pintf,ℓ,α. ∆ Token Confidence is191

∆Ck(f ; ℓ, α) = Ck

(
pintf,ℓ,α

)
− Ck

(
pbase

)
. (8)

Negative values ∆Ck < 0 mean that amplifying f sharpens the top-k distribution, while positive192

values indicate greater dispersion. We compute this using one baseline and one intervened forward193

pass via an SAE hook. Implementation details and hyperparameters are provided in Appendix D.194

We select features with the largest absolute change in token confidence under single-feature SAE195

interventions, i.e., maximal |∆Ck| (see Figure 3). For each feature, we compute ∆Ck, rank by196

|∆Ck|, form tiers, evaluate subsets for steering, and keep the best per SAE.197

4.2 Steering Performance Results After Feature Selection198

Arad et al. [2025] has shown that SAE steering works well if features are chosen by their causal199

impact on model outputs, introducing the output score as a metric to identify output-aligned features.200

Following this insight, we evaluate our ∆ token confidence selection on three base LLMs (Gemma-201

2-2B, Qwen-2.5-3B, Gemma-2-9B) using the CONCEPT100 (see details in 3.1). The experiments202

on steering performance improvement of each SAE can be referred to Appendix E.203

Table 2: Steering score after feature selection com-
pared with SAE-based steering. Columns report
scores (higher is better) for Gemma-2-2B, Qwen-2.5-
3B, and Gemma-2-9B. Rows: ‘SAE-based’ uses all
SAE features without selection [Wu et al., 2025];
‘+Output’ selects features using Sout [Arad et al.,
2025]; “+∆Ck (Ours)” selects by the ∆ Token Con-
fidence. Boldface indicates the best method per model.

Method Gemma-2-2B Qwen-2.5-3B Gemma-2-9B

SAE-based 0.133 0.171 0.142
+Output 0.233 0.292 0.255
+∆Ck(Ours) 0.328 0.399 0.289

Table 2 shows that our selection yields204

consistent gains across all models, out-205

performing the vanilla SAE baseline by206

large margins, and also improving over an207

output-score–based selector. These gains208

indicate that ranking and filtering by the209

magnitude of distributional change cap-210

tured by ∆Ck reliably isolates features211

with the strongest steering utility.212

Furthermore, we conducted a comparative213

analysis of SAEs of different architectures214

on three models. For fair comparison,215

the two feature selection methods use the216

same subset size. Figure 4 compares steer-217

ing scores across SAE architectures and218

selection methods. In all three models, selecting features by ∆ Token Confidence consistently out-219

performs both the no-selection SAE baseline and the output-score selector across architectures.220
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Figure 4: Comparison of different SAE steering methods with five SAE architecture across
three LLMs. Panels correspond to Gemma-2-2B, Qwen-2.5-3B, and Gemma-2-9B. The horizontal
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On average, our method improves steering performance by 52.52% over the strongest competing221

baseline. The BatchTopK architecture is the one that has the most stable and significant improvement222

in steering capabilities on models of different sizes among the five SAE architectures.223

Key Observation 2: ∆ Token Confidence reliably selects high-utility SAE features across mod-
els. Among SAE architectures, BatchTopK achieves the most stable and sizable steering gains.

224

4.3 Pairwise Analysis Between Interpretability and Steering Gain225

Building on the above steering gains, we further examine whether SAE interpretability can serve226

as a prior for steering gain, the extent to which a trained SAE benefits from feature selection. We227

quantify this relationship by computing Kendall’s τb between the Interpretability Score µ(θ) of228

SAEs and the Steering Gain L(θ), defined as the percentage lift of the selected-steering score over229

the same SAE’s base. As in section 3.4, we report both pooled coefficients and axis-conditioned230

summaries that control for design and model factors (architecture, sparsity and model).231

Overall, table 3 indicates that interpretability is not a reliable prior for steering gain after selec-232

tion: the pooled association is small and slightly negative (τb ≈ −0.069) , and the axis-controlled233

aggregate is likewise near zero and negative (Ψ ≈ −0.057). Estimates cluster near zero across234

design axes, being slightly negative within architecture, sparsity, and model, and effectively null at235

matched-sparsity slots, indicating no consistent link between higher interpretability and larger gains.236

Key Observation 3: Surprisingly, the interpretability–utility gap widens when we focus on
SAE features that deliver substantial steering gains.

237

5 Related Work238

5.1 Representation-Based Steering239

Activation-based steering arose as a lightweight alternative to fine-tuning, enabling on-the-fly con-240

trol of LLM behavior without retraining [Giulianelli et al., 2018, Vig et al., 2020, Geiger et al.,241

2021, 2025]. The core idea is to inject carefully chosen directions into hidden states, typically in the242

residual stream, scaling interventions by a gain and selecting layers for maximal effect [Zou et al.,243

2025, Rimsky et al., 2024, van der Weij et al., 2024]. It has been applied to safety and moderation,244
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Table 3: Pairwise Analysis Between Interpretability µ(θ) and Steering Gain L(θ). We report Kendall’s
τb overall and under axis-controlled summaries ΨA (Architecture), ΨB (Matched Sparsity), and ΨC (Model).
Columns: n = number of SAEs; Pairs = number of pairwise comparisons; p = permutation p-value; 95% CI
= confidence interval (overall uses BCa bootstrap; subgroups use permutation-based CIs).

Axis SAEs n Pairs τb p 95% CI
Overall All SAEs 90 4005 -0.0692 — [−0.2019, 0.0666]

ΨA = -0.0719 (SE ≈ 0.0781, 95% boot CI [−0.2078, 0.0614])

ΨA: Architecture

BatchTopK 18 153 -0.2288 0.2004 [−0.3333, 0.3464]
Gated 18 153 0.0327 0.8792 [−0.3464, 0.3333]
JumpReLU 18 153 -0.0065 1.0000 [−0.3464, 0.3203]
ReLU 18 153 -0.2810 0.1096 [−0.3333, 0.3464]
TopK 18 153 0.1242 0.4985 [−0.3464, 0.3337]

ΨB = 0.0127 (SE ≈ 0.0457, 95% boot CI [−0.0762, 0.0889])

ΨB: Sparsity

L0 ≈ 50 15 105 0.0476 0.8466 [−0.3714, 0.3714]
L0 ≈ 80 15 105 0.1619 0.4437 [−0.3905, 0.3714]
L0 ≈ 160 15 105 0.0095 1.0000 [−0.3714, 0.3714]
L0 ≈ 320 15 105 0.0476 0.8452 [−0.3714, 0.3714]
L0 ≈ 520 15 105 -0.1810 0.3797 [−0.3714, 0.3714]
L0 ≈ 820 15 105 -0.0095 1.0000 [−0.3714, 0.3905]

ΨC = -0.1111 (SE ≈ 0.0314, 95% boot CI [−0.1448, −0.0483])

ΨC: Model
Gemma-2-2B 30 435 -0.1402 0.2911 [−0.2552, 0.2598]
Qwen-2.5-3B 30 435 -0.1448 0.2781 [−0.2507, 0.2460]
Gemma-2-9B 30 435 -0.0483 0.7157 [−0.2506, 0.2552]

Ψ =
(
ΨA +ΨB +ΨC

)
/3 = -0.0568

persona and sentiment control, and instruction adherence, promising low-latency deployment-time245

adjustment but facing polysemantic entanglement and brittleness that motivate standardized evalua-246

tion [Chen et al., 2025, Liu et al., 2024]. However, this approach injects polysemantic activations at247

intervention time, yielding coarse-grained effects for output control [Bricken et al., 2023]. Our work248

is related to activation-level interventions, but differs by grounding directions in sparse, interpretable249

SAE features and applying utility-oriented feature selection to mitigate these failure modes.250

5.2 SAE-Based Steering251

Sparse Autoencoders (SAEs) decompose activations into sparse, human-readable features to mit-252

igate polysemanticity and expose concept-level structure [Bricken et al., 2023, Templeton et al.,253

2024, Gao et al., 2024]. For steering, practitioners use decoder atoms as directions and add scaled254

injections at chosen layers, with architecture and sparsity choices trading reconstruction for feature255

granularity [Zhao et al., 2025, Wang et al., 2025d, Ferrando et al., 2025]. SAE-based steering en-256

ables targeted safety control, style modulation, and instruction emphasis, yet the utility of individual257

features varies widely [Chalnev et al., 2024, Mayne et al., 2024]. While the connection between258

SAE interpretability and steering utility remains unclear, and our goal is to build a principled bridge259

between them. To this end, we conduct a large-scale experiments across multiple model sizes and260

SAE architectures, demonstrating the critical nature of the interpretability-utility gap.261

6 Conclusion and Discussion262

In summary, SAE interpretability shows relatively weak positive association with steering utility263

across 90 SAEs (τb ≈ 0.298), revealing a clear interpretability–utility gap. Selecting features with264

∆ Token Confidence yields substantial gains (average +52.52% over the strongest existing baseline).265

Surprisingly, when analyzing steering gains after selection, the correlation with interpretability col-266

lapses toward zero and can even turn negative for the highest-utility features, further underscoring267

this gap. This gap points to a key direction: develop task-general utility indicators that reliably268

predict steerability across models, or design training objectives that directly optimize controllability269

under sparsity so features are utility-calibrated without heavy post-hoc selection. Our work provides270

valuable insight for the further development of SAEs as interpretable tools.271
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Reproducibility Statement272

We aim to facilitate full reproduction of our results. All model code, training and evaluation scripts,273

configuration files, and experiment logs are released at an anonymous repository as part of the sup-274

plementary materials: https://anonymous.4open.science/r/SAE4Steer. Training architectures, hy-275

perparameters, sparsity schedules, and optimization details are specified in the main text and Ap-276

pendix A.2 (see also the per-family settings in Appendix A). The datasets used are openly licensed:277

all SAEs are trained on The Common Pile v0.1 [Kandpal et al., 2025] as described in Appendix F;278

our evaluation concepts (CONCEPT100) and their automatic generation pipeline are documented279

in Appendix B and Appendix F. The complete procedures for automated interpretability scoring280

(SAEBENCH) and steering utility (AXBENCH), including sampling, judging protocols, and scoring281

functions, are detailed in Appendix B and Appendix C, with the ∆ Token Confidence selector defined282

in Appendix D and the post-selection results summarized in Appendix E. Hardware, runtime, and283

memory footprints for both SAEBENCH and AXBENCH are reported in Appendices B.3 and C.2.284

Together, these materials, along with seed-controlled configuration files and exact command-line285

invocations provided in the anonymous repository, are intended to enable independent researchers286

to replicate and extend our findings.287
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ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-374

line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,375

Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,376

Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-377

son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,378

Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,379

Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-380
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Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-397

strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee398

Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei399

Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan400

Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli401

Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-402

gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-403

bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,404

Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical405

size, 2024. URL https://arxiv.org/abs/2408.00118.406

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan407

Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,408

Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,409

Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji410

Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao411

Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and412

Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. URL https://api.413

semanticscholar.org/CorpusID:274859421.414

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantas-415

tic generalization measures and where to find them. In International Conference on Learning416

Representations, 2020. URL https://openreview.net/forum?id=SJgIPJBFvH.417

Yunzhe Hu, Difan Zou, and Dong Xu. An in-depth investigation of sparse rate reduction in418

transformer-like models. Advances in Neural Information Processing Systems, 37:116815–419

116837, 2024.420

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence, 2025.421

URL https://arxiv.org/abs/2508.15260.422

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,423

Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen424

Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive425

effective reinforcement learning for llm reasoning, 2025c. URL https://arxiv.org/abs/426

2506.01939.427

12

https://arxiv.org/abs/2408.00118
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421
https://openreview.net/forum?id=SJgIPJBFvH
https://arxiv.org/abs/2508.15260
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939


Patrick Leask, Bart Bussmann, Michael T Pearce, Joseph Isaac Bloom, Curt Tigges, Noura Al428

Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of429

analysis. In The Thirteenth International Conference on Learning Representations, 2025. URL430

https://openreview.net/forum?id=9ca9eHNrdH.431

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Smith,432

Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictio-433

nary learning for language model interpretability with board game models. In A. Globerson,434

L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in435

Neural Information Processing Systems, volume 37, pages 83091–83118. Curran Associates,436

Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/437

9736acf007760cc2b47948ae3cf06274-Paper-Conference.pdf.438

Esin Durmus, Alex Tamkin, Jack Clark, Jerry Wei, Jonathan Marcus, Joshua Batson, Kunal439

Handa, Liane Lovitt, Meg Tong, Miles McCain, Oliver Rausch, Saffron Huang, Sam Bow-440

man, Stuart Ritchie, Tom Henighan, and Deep Ganguli. Evaluating feature steering: A441

case study in mitigating social biases, 2024. URL https://anthropic.com/research/442

evaluating-feature-steering.443

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos444

Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpacafarm: a simulation framework for445

methods that learn from human feedback. In Proceedings of the 37th International Conference446

on Neural Information Processing Systems, pages 30039–30069, 2023.447

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan448

Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel449

Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/2411.450

15594.451

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk: A simple improvement for topksaes.452

In AI Alignment Forum, page 17, 2024.453

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János454

Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-455

coders, 2024a. URL https://arxiv.org/abs/2404.16014.456

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János457

Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse458

autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.459

Anthropic Interpretability Team. Training sparse autoencoders. https://460

transformer-circuits.pub/2024/april-update/index.html#training-saes, 2024.461

Accessed: 2025-01-20.462
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LLM Usage528

In preparing this paper, large language models (LLMs) were used as an assistive tool for minor529

language polishing and stylistic improvements. All technical contributions, results, and conclusions530

are solely the work of the authors.531

A SAE Architectures and Training Details532

We train 90 SAEs (30 per base model) across five architectures and six target sparsity levels. Unless533

stated otherwise, the dictionary width is 16K codes (F=16,384), SAEs are attached to the residual534

stream at the layer described in the main text, and decoder columns are ℓ2–normalized. All models535

are trained on The Common Pile v0.1 [Kandpal et al., 2025].536

A.1 Architectures and Parameterization537

We list the five SAE families with their named parameters (as implemented) and the correspond-538

ing shapes. The last column records architecture-specific thresholding/gating fields when present.539

Shapes assume residual dimension d=2304 and dictionary width F=16,384.540

Architectures Wenc benc Wdec bdec Threshold /
Extras

ReLU encoder.weight:
shape (16,384,
2,304)

encoder.bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

bias: shape
(2,304)

—

Gated encoder.weight:
shape (16,384,
2,304)

gate bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

decoder bias:
shape (2,304)

r mag: shape
(16,384);
mag bias:
shape (16,384)

TopK encoder.weight:
shape (16,384,
2,304)

encoder.bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

b dec: shape
(2,304)

k

BatchTopK encoder.weight:
shape (16,384,
2,304)

encoder.bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

b dec: shape
(2,304)

k

JumpReLU W enc: shape
(2,304,
16,384)

b enc: shape
(16,384)

W dec: shape
(16,384,
2,304)

b dec: shape
(2,304)

threshold:
shape (16,384)

541

A.2 Training, Sparsity, and Compute Setup542

Optimization and schedule. Adam with learning rate 3×10−4; LR warmup 1000 steps; sparsity543

warmup 5000 steps; LR decay starting at 80% of total steps. Precision: bfloat16. LM batch size544

= 4, context length = 2048, SAE batch size = 2048. Each run trains on ∼ 5×108 tokens.545

Sparsity controls. We sweep six target activity levels546

L0 ≈ {50, 80, 160, 320, 520, 820}.

For TopK/BatchTopK we set k equal to the chosen L0 (aux-k coefficient 1/32; moving-threshold547

momentum 0.999; threshold tracking begins at step 1000). JumpReLU uses the same set via548

target l0. For L1–penalized families, we search the following penalty grids:549

Family L1 penalty values (used to span sparsity
levels)

Standard / Standard-New 0.012, 0.015, 0.020, 0.030, 0.040, 0.060
Gated SAE 0.012, 0.018, 0.024, 0.040, 0.060, 0.080

550
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Training details. All training uses two NVIDIA RTX A800 GPUs. The table below reports the551

aggregated artifacts and training time (hours) for 30 SAEs per model (total 90), together with the552

runtime configuration. Times and sizes are approximate.553

Model #SAEs Disk
(GB)

Traing
Time (H)

LM
Batch

Context SAE
Batch

Peak
Mem
(GB)

Gemma-
2-2B

30 8.7 17 4 2048 2048 20

Gemma-
2-9B

30 13.2 60 4 2048 2048 70

Qwen-
2.5-3B

30 7.7 37 4 2048 2048 30

554

B SAEBENCH Details, Results and Our Costs555

B.1 Automated Interpretability Score Process556

SAEBENCH [Karvonen et al., 2025] follow an LLM-as-judge pipeline to assign an automated in-557

terpretability score to each SAE latent. First, we collect layer activations by running the base LM558

with caching and encoding the residual stream through the SAE to obtain h ∈ RN×L×F . We define559

a token window of length 21 (buffer = 10) around any center (i, t) and, unless stated otherwise,560

mask BOS/PAD/EOS positions. For a latent ℓ, we sample three window types: (i) Top (n = 12561

non-overlapping peaks of h[:, :, ℓ]), (ii) Importance-Weighted (n = 7, sampled proportional to ac-562

tivation after removing values at least as large as the smallest Top peak), and (iii) Random (n = 10,563

uniform over valid centers). Let vmax be the maximum activation seen in any Top window position564

and set a global threshold τact = 0.01 vmax.565

We split the sampled windows into a generation set (10 Top + 5 IW) and a scoring set (2 Top + 2566

IW + 10 Random, shuffled). In generation, tokens with activation > τact are bracketed to highlight567

evidence; the judge LLM receives these 15 windows and returns a short English description of when568

the latent fires. In scoring, the judge sees the description and the 14 held-out windows without569

highlights and outputs a comma-separated list of indices it predicts as activations (or None).570

Ground truth for a window W is ⊮[maxu∈W h[u, ℓ] > τact]. The per-latent score is the accuracy571

over the M = 14 scoring windows, i.e.,572

Score(ℓ) =
1

M

M∑
m=1

1
[
ŷm = ym

]
,

where ŷm ∈ {0, 1} is the judge prediction and ym is the label defined above. For each SAE θ, we573

evaluate 1,000 latents and report the mean over a random CONCEPT100 subset:574

µ(θ) =
1

100

∑
ℓ∈CONCEPT100

Score(ℓ).

B.2 Performance of SAEs on three models on SAEbench575

Across the three backbones, the six SAEBENCH metrics (for information about these indicators, see576

SAEBENCH [Karvonen et al., 2025])jointly reveal how sparsity mechanisms balance interpretabil-577

ity, faithfulness, and causal structure. Automated Interpretability is strongest when encoders enforce578

compact latent usage (e.g., TopK/BatchTopK and ReLU at lower L0), and it gradually softens as ca-579

pacity expands. The Absorption metric (considered via its complement in the plots) indicates that de-580

signs concentrating signal into a small set of latents are less prone to feature stealing, whereas higher581

effective capacity encourages redundancy and competition across latents. Meanwhile, Core/Loss-582

Recovered remains uniformly high, showing that even sparse codes closely preserve original model583

behavior; increasing L0 pushes faithfulness toward a ceiling without overturning the core trade-offs584

visible in the other metrics.585
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Gemma-2-2B. As shown in Fig. 5, Gemma-2-2B exhibits a balanced profile: interpretability stays586

robust for TopK/BatchTopK and ReLU at modest sparsity; absorption is contained when the code587

remains compact; and Core is near-saturated across the range. Improvements in SCR@20 are steady588

but measured, suggesting targeted debiasing with small k. Sparse Probing indicates that relatively589

few latents already carry much of the predictive signal, while RAVEL strengthens with moderate590

capacity, reflecting cleaner separation of attributes without undermining compactness.591
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Figure 5: SAEbench results for Gemma-2-2B: interpretability remains strong at lower L0, absorp-
tion stays low for compact codes, Core is near ceiling, and structure (SCR/RAVEL) improves with
moderate capacity.

Qwen-2.5-3B. For Qwen-2.5-3B (Fig. 6), interpretability at low–to–moderate L0 is competi-592

tive—especially for TopK and JumpReLU—yet the model is more sensitive to absorption as ca-593

pacity grows, implying greater latent competition and signal spread. Core remains excellent, so594

reconstructions are faithful; however, SCR gains can flatten at high L0 where residual spurious cues595

reappear. Sparse Probing is solid but a touch behind the strongest Gemma configurations, consis-596

tent with its flatter RAVEL patterns: causal structure is present but less crisply disentangled when597

attributes begin to diffuse across latents.598

Gemma-2-9B. Gemma-2-9B (Fig. 7) pushes the upper envelope on structure: interpretability re-599

mains solid for compact encoders; absorption is low at moderate L0 that avoids unnecessary latent600

proliferation; and Core is near its ceiling. SCR@20 is the most decisive among the three, pointing601

to cleaner isolation of spurious factors with small, targeted ablations. Sparse Probing is strong and,602

together with higher RAVEL, indicates that only a handful of latents capture both predictive signal603

and causally specific attributes with minimal collateral interference.604

B.3 SAEBench Runtime Cost605

The computational requirements for running SAEBench evaluations were measured on two NVIDIA606

RTX A800 GPUs using 16K-width SAEs trained on the Gemma-2-2B [Team et al., 2024], Qwen-607

2.5-3B [Yang et al., 2024] and Gemma-2-9B. Table 4 summarizes the per-SAE runtime for each608

evaluation type. Several evaluations include a one-time setup phase (e.g., precomputing activations609

or training probes) that can be reused across multiple SAEs; after this setup, each evaluation has its610

own runtime per SAE. We therefore report amortized per-SAE minutes.611
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Figure 6: SAEbench results for Qwen-2.5-3B: strong interpretability at lower L0, rising absorption
with capacity, consistently high Core, and more fragile SCR/RAVEL at the highest capacities.

Table 4: Approximate SAEBench runtime per SAE (minutes). Values are per-SAE and represent
amortized minutes after any one-time setup; each minute figure is an approximation and may vary
with hardware and I/O.

Model Core Interpretability Absorption Sparse Probing Ravel SCR

Gemma-2-2B 4 8 12 2 18 10
Qwen-2.5-3B 7 9 15 8 17 16
Gemma-2-9B 11 12 17 30 40 28

C AXBENCH Details and Our Costs612

C.1 Steering Score Process613

For each SAE feature (concept) we evaluate steering utility with an AXBENCH-style judge [Wu614

et al., 2025]. Given the concept description from SAEBench and the intervention rule in Eq. equa-615

tion 1, we sample 10 instructions (Alpaca-Eval style) and split them 5/5 into a development set616

for factor selection and a held-out set for evaluation. We generate continuations (up to 128 tokens)617

for a grid of steering factors α ∈ A by injecting the feature direction at the target layer. For each618

generated continuation, an LLM judge assigns three subscores on the discrete scale {0, 1, 2} (floats619

allowed but clamped to [0, 2]): Concept (C; does the output express the concept?), Instruction (I;620

is it on-topic for the instruction?), and Fluency (F ; is it well-formed?). We aggregate with the621

harmonic mean622

HM(C, I, F ) =


0, if C≤0 or I≤0 or F≤0,

3
1
C + 1

I + 1
F

, otherwise,
∈ [0, 2].

On the development split we pick α⋆ = argmaxα∈A
1
5

∑
HM, then evaluate the held-out split with623

α⋆ to obtain the per-concept Steering Score (mean HM over the 5 held-out prompts). SAE-level624

utility g(θ) is the average of per-concept scores over the evaluation set for that SAE.625
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Figure 7: SAEbench results for Gemma-2-9B: robust interpretability with compact codes, low ab-
sorption at moderate L0, near-ceiling Core, and the clearest gains in SCR/RAVEL among the three
backbones.

CONCEPT TEMPLATE
[System]
Please act as an impartial judge and evaluate whether the specified concept is presented in the sentence
fragment provided below. Focus solely on whether the concept is clearly incorporated, without regard for
grammar or logical coherence.
Begin your evaluation by providing a short explanation of whether the concept is clearly incorporated.
Point out references to the concept in the fragment, noting any minimal or awkward incorporations. After
providing your explanation, rate the concept’s relevance on a scale from 0 to 2, where 0 indicates the
concept is not present at all, 1 indicates the concept is somewhat present but minimally or awkwardly
incorporated, and 2 indicates the concept is more fully and effectively incorporated, with stronger and
more natural integration. Provide your rating using this exact format: “Rating: [[score]]”.
[Concept Start] {concept} [Concept End]
[Sentence Fragment Start] {sentence} [Sentence Fragment End]

626

INSTRUCT TEMPLATE
[System]
Please act as an impartial judge and evaluate whether the sentence fragment provided below is related
to the instruction. Focus solely on the degree of relatedness in terms of topic, regardless of grammar,
coherence, or informativeness.
Begin your evaluation by providing a brief explanation of whether the sentence is related to the instruction,
and point out references related to the instruction. After providing your explanation, rate the instruction
relevance on a scale from 0 to 2, where 0 indicates the sentence is unrelated to the instruction, 1 indicates
it is somewhat related but only minimally or indirectly relevant in terms of topic, and 2 indicates it is
more clearly and directly related to the instruction. Provide your rating using this exact format: “Rating:
[[score]]”.
[Instruction Start] {instruction} [Instruction End]
[Sentence Fragment Start] {sentence} [Sentence Fragment End]

627
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FLUENCY TEMPLATE
[System]
Please act as an impartial judge and evaluate the fluency of the sentence fragment provided below. Focus
solely on fluency, disregarding its completeness, relevance, coherence with any broader context, or infor-
mativeness.
Begin your evaluation by briefly describing the fluency of the sentence, noting any unnatural phrasing,
awkward transitions, grammatical errors, or repetitive structures that may hinder readability. After provid-
ing your explanation, rate the sentence’s fluency on a scale from 0 to 2, where 0 indicates the sentence is
not fluent and highly unnatural (e.g., incomprehensible or repetitive), 1 indicates it is somewhat fluent but
contains noticeable errors or awkward phrasing, and 2 indicates the sentence is fluent and almost perfect.
Provide your rating using this exact format: “Rating: [[score]]”.
[Sentence Fragment Start] {sentence} [Sentence Fragment End]

628

C.2 AxBench Steering Evaluation Cost629

All steering-score evaluations were run on two NVIDIA RTX A800 GPUs. The LLM-as-judge630

backend was gpt-4o-mini. Evaluating one SAE on CONCEPT100 costs approximately $5 in judge631

API fees; with 90 SAEs total (≈ 30 per model), the per-model API cost is about $150. Table 5 lists632

approximate per-SAE runtime and peak VRAM for each model.633

Table 5: AxBench steering evaluation cost per SAE. Runtimes are per-SAE (hours) and approx-
imate; VRAM is peak memory (GB). Judge fees assume gpt-4o-mini: ∼ $5 per SAE on CON-
CEPT100; Per-Model Cost assumes ∼ 30 SAEs/model (≈ $150).

Model Runtime / SAE (h) Peak VRAM (GB) Per-Model Cost (USD)

Gemma-2-2B 15 10 150
Qwen-2.5-3B 16 12 150
Gemma-2-9B 23 36 150

D Implementation of ∆ Token Confidence634

For a fixed, neutral prefix s (we use “From my experience,”, following the previous work[Arad et al.,635

2025]) we compare the next-token distribution of the base model with that of an intervened model in636

which a single SAE feature is amplified at layer L by a factor α. The intervention is applied via the637

same SAE hook point used during training (on the residual stream of block L). We then compute638

the change in a confidence surrogate built from the top-k probabilities.639

Token confidence. [Fu et al., 2025] For a distribution p over the vocabulary, let p(1)≥· · ·≥p(k)
be the top-k probabilities.

Ck(p) = −1

k

k∑
i=1

log p(i).

Delta token confidence. With pbase from a standard forward pass and pint from a pass with the
SAE feature intervention,

∆Ck(f ;α,L) = Ck

(
pint

)
− Ck

(
pbase

)
.

640

Each feature f is evaluated with two single-step forwards on the same prefix s: (i) a baseline pass;641

(ii) an intervened pass where we scale the code for f by α before decoding it into the residual at642

layer L while keeping all other codes at zero. Hooks are removed immediately after the intervened643

pass to prevent accumulation across evaluations. In this work, we choose α = 10 and k = 1.644

Feature selection from ∆Ck. For each SAE we rank its features by ∆Ck in two directions: UP645

(largest positive ∆Ck) and DOWN (most negative ∆Ck). We form selection sets using either (i) top-646

K by magnitude with K ∈ {1, 2, 3, 4, 5} per direction, or (ii) upper/lower-tail quantiles (e.g., q ∈647

{0.99, 0.95, 0.90, 0.80} mirrored for the lower tail). These sets are then carried into AXBENCH [Wu648

et al., 2025] to measure utility lift.649
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E Steering Results of SAE Architectures After Feature Selection650

We quantify steering with the AXBENCH judge after selecting features using ∆ Token Confidence651

(Appendix D). Unless otherwise noted, lifts are reported as the percentage change of a given SAE’s652

steering score relative to its own baseline (no selection). Results are organized at three levels:653

aggregate across SAEs per base model, per-SAE rankings, and distribution by architecture.654
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Figure 8: Overall steering score before and after feature selection. For each base model, the panel
shows two bars: the average baseline steering score across its SAEs and the average after applying
∆ Token Confidence–based selection. Bars are annotated with the corresponding values; axes share
the same scale across panels.

The aggregate view in Figure 8 summarizes how selection affects the mean steering score across655

all SAEs of a base model. Using ∆ Token Confidence for feature selection markedly improves the656

steering score across all three models in the figure. For Gemma-2-2B, the score rises from 0.133657

to 0.328, which is a 146.6% relative improvement. Qwen-2.5-3B increases from 0.171 to 0.399, a658

133.3% improvement, and achieves the highest post-selection score overall. Gemma-2-9B moves659

from 0.142 to 0.289, a 103.5% improvement.660

Conclusions: (i) feature selection via ∆ Token Confidence consistently boosts steering for all mod-661

els; (ii) relative gains are largest for the smallest model (Gemma-2-2B) and smallest for the largest662

model (Gemma-2-9B), suggesting diminishing relative returns with scale; and (iii) in absolute terms,663

Qwen-2.5-3B reaches the strongest final steering score after selection.664

Figure 9 ranks SAEs within each model by their relative lift. Architecturally, no single SAE train-665

ing approach dominates; however, the top-ranked lifts are frequently occupied by BatchTopK and666

Gated variants, with ReLU/JumpReLU also contributing strongly and TopK showing more mixed667

outcomes. Overall, ∆ Token Confidence yields consistent per-SAE gains, with variance decreas-668

ing and stability increasing as model size grows, while architectural diversity remains valuable for669

capturing the largest lifts.670

Figure 10 groups lifts by architecture to visualize differences in central tendency and dispersion671

under the same selection and evaluation protocol. Read together with the per-SAE ranking, this672

distributional view helps disentangle architecture effects from model-specific variation and indi-673

cates which families tend to produce more stable or more variable outcomes after feature selection.674

BatchTopK and Gated generally occupy the highest central tendency with wide—but mostly posi-675

tive—spread, especially on Gemma-2-2B and Qwen-2.5-3B. BatchTopK achieves the most stable676

and sizable steering gains. Variance is largest for the smallest model (Gemma-2-2B), indicating677

architecture-sensitive wins at small scale.678

F Dataset679

Training corpus for SAEs. We train all SAEs on The Common Pile v0.1 [Kandpal et al., 2025],680

an openly licensed ∼8 TB text collection built for LLM pretraining from ∼30 sources spanning681

research papers, code, books, encyclopedias, educational materials, and speech transcripts. The682

corpus was curated as a principled alternative to unlicensed web text and has been validated by683
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Figure 9: Per-SAE percentage lift after ∆ Token Confidence selection. Each panel corresponds
to a base model. Horizontal bars report the percent lift of the SAE-level steering score relative to its
own baseline, sorted from largest to smallest within the panel. Bar colors indicate the SAE training
architecture (legend shared across panels).
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Figure 10: Lift distributions by SAE architecture. For each base model, box-and-whisker plots
(with individual points overlaid) summarize the distribution of percentage lifts grouped by training
architecture. Dashed horizontal lines denote the mean within each group, and whiskers follow the
conventional interquartile rule.

training competitive 7B models on 1–2T tokens. We use it as the sole pretraining dataset for all SAE684

runs. More training details provided in Appendix A.2.685

CONCEPT100 for steering utility. To evaluate steering, we construct CONCEPT100: a686

compact benchmark of 100 human-readable concept descriptions per evaluation set, pro-687

duced automatically by our interpretability pipeline (Appendix B). Each entry is a pair688

(layer feature id, description) that summarizes a latent’s activation pattern in plain language689

(e.g., mathematical symbols, scientific terms, pronouns, or domain phrases). These descriptions are690

supplied to the AXBENCH judge when computing steering score. The examples below illustrate the691

style and domain coverage.692
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Gemma-2-9B, BatchTopK, L0 ≈ 80. Ten examples:
1. 20 14429: concepts related to optical communication systems and their performance

characteristics
2. 20 5795: specific technical terms and chemical compounds often related to scientific

contexts
3. 20 7908: terms related to gravitational lensing and its effects in cosmology
4. 20 3042: pronouns and verbs indicating relationships or contributions in various con-

texts
5. 20 11897: scientific measurements and units related to energy, concentration, or bio-

logical data
6. 20 12944: terms related to cell types and apoptosis mechanisms in scientific contexts
7. 20 8796: references to specific authors and statistical concepts in mathematical con-

texts
8. 20 6430: the phrase “action” in mathematical and theoretical contexts
9. 20 2220: chemical elements and compounds, particularly including metals and metal-

related terms
10. 20 585: various forms of the word “energy” and related concepts in scientific contexts

693

Qwen-2.5-3B, Gated, L0 ≈ 72. Ten examples:
1. 17 15113: terms related to mathematical concepts and various scientific names or

terms
2. 17 11476: the phrase “as a function of” in contexts of measurement and analysis
3. 17 162: mathematical symbols and concepts related to coordinates, magnitudes, and

parameters in equations
4. 17 2552: dataset identifiers and technical terms common in research and academic

documents
5. 17 16377: mathematical notation and technical terms commonly found in formal doc-

uments
6. 17 3195: demographic, clinical, and biological characteristics in study populations

and related comparisons
7. 17 9186: specific technical terms and concepts related to networking and program-

ming
8. 17 11487: mathematical notation and variables related to functions and equations
9. 17 14657: mathematical notations and structures involving angle brackets and prop-

erties of functions
10. 17 1256: terms related to errors and error correction in coding theory and quantum

operations
694

Gemma-2-2B, JumpReLU, L0 ≈ 81. Ten examples:
1. 20 11531: terms related to sports, programming, or specific keywords from various

contexts
2. 20 10460: terms related to fractional differential equations and numerical methods for

solving them
3. 20 4882: terms related to asymptotic theory, robustness, and statistical estimation

methods
4. 20 4425: first-person plural pronouns and expressions of intention or conjecture
5. 20 372: technical terms related to measurement and structure in scientific contexts
6. 20 9999: the word “from” and contexts implying deviation or distance from something

695
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7. 20 9703: the word “based” in various contexts of theoretical foundations and method-
ologies

8. 20 15509: technical or numerical concepts in a variety of contexts
9. 20 8218: phrases indicating conditions or assumptions that must be met in theoretical

contexts
10. 20 4614: time intervals and durations mentioned in the context of studies or observa-

tions
696

We currently maintain 90 SAEs (30 per base model). Beyond the CONCEPT100 sets evaluated in697

this paper, we have constructed the CONCEPT1000 and CONCEPT16K suites that scale the number698

of human-readable concepts up to 16K. We will extend training and evaluation to these larger suites699

in forthcoming releases to further substantiate the reliability and generality of this work.700
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