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Abstract

Sparse Autoencoders (SAEs) are widely used to steer large language models
(LLMs), based on the assumption that their interpretable features naturally enable
effective model behavior steering. Yet, a fundamental question remains unan-
swered: does higher interpretability indeed imply better steering utility? To an-
swer this question, we train 90 SAEs across three LLMs (Gemma-2-2B, Qwen-
2.5-3B, Gemma-2-9B), spanning five architectures and six sparsity levels, and
evaluate their interpretability and steering utility based on SAEBENCH [Karvonen
et al., [2025] and AXBENCH [Wu et al., |[2025] respectively, and perform a rank-
agreement analysis via Kendall’s rank coefficients 7,. Based on the framework,
Our analysis reveals only a relatively weak positive association (7 ~= 0.298), in-
dicating that interpretability is an insufficient proxy for steering performance. We
conjecture the interpretability-utility gap may stem from the selection of SAE fea-
tures as not all of them are equally effective for steering. To further find features
that truly steer the behavior of LLMs, we propose a novel selection criterion: A
Token Confidence, which measures how much amplifying a feature changes the
next token distribution. We show that our method improves the steering perfor-
mance of three LLMs by 52.52% compared to the current best output score-based
criterion [[Arad et all[2025]]. Strikingly, after selecting features with high A Token
Confidence, the correlation between interpretability and utility vanishes (7, ~ 0),
and can even become negative. This further highlights the divergence between
interpretability and utility for the most effective steering features.

1 Introduction

As Large Language Models (LLMs) become more widely used in real-world applications, ensur-
ing the safety of their outputs is increasingly important [Kumar et al., 2024} [Ji et al. 2023} Inan
et al., [2023]. Reliable and controllable behavior is essential for deploying these LLMs in more
situations [Chen et al.| [2024]]. Fine-tuning is the standard way to improve controllability, but it re-
quires labeled data, significant training time, and compute resources [Hu et al., |2022} |Wang et al.,
2025a]. This has spawned a series of representation-based interventions, i.e., steering, that guide
LLM inference by manipulating internal representations, aiming for faster and more lightweight
output control [Turner et al., 2023} Turner et al.,|2024, [Wang et al., 2025bl |Stolfo et al., 2025].

However, activation-level edits are often coarse: they mix multiple semantics, a phenomenon called
polysemanticity [Bricken et al.,|2023|]. Recently, Sparse Autoencoders (SAEs) have become a valu-
able tool in the interpretability field. They are trained to actively decompose the hidden states of
the LLM into sparse and human readable features [Templeton et al., 2024} Mudide et al.| [2025].
Their interpretable nature has subsequently spurred research into leveraging SAE features for more
precise, concept-level control over model behavior [Ferrando et al., 2025 |Chalnev et al., 2024]].
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Figure 1: Overview of our goal: building a bridge for SAE interpretability and utility. In-
terpretability (left): an SAE attached to the LLM decomposes hidden states into sparse, human-
describable features. An LLM judge yields an interpretability score for the SAE [Paulo et al.,[2025].
Utility (right): at inference, we activate a target SAE feature (e.g., ‘cake’) to steer generation. An
LLM judge yields steering utility score [Wu et al.,|2025].

Despite this progress, a critical question remains unanswered: does higher interpretability truly
imply better utility? Since SAEs are trained to balance reconstruction and sparsity to yield human-
readable features [[Cunningham et al.| 2023 Makelov, 2024} |O’Brien et al.], their utility for down-
stream tasks is not a primary objective. Understanding and characterizing this gap is critical to
enabling more interpretable and effective steering over the LLM. To this end, we conduct a system-
atic study to build a bridge between SAE interpretability and steering utility (see Figure|[I)).

To perform a comprehensive association analysis, we train 90 SAEs across three LLMs (Gemma-2-
2B [Team et al.;, 2024, Qwen-2.5-3B [[Yang et al., 2024, and Gemma-2-9B) spanning diverse archi-
tectures and sparsity levels. We compute interpretability using SAEBENCH [Karvonen et al.| 2025]]
and steering utility using AXBENCH [Wu et al.| [2025]]. Then, we leverage a pairwise-controlled
framework to evaluate whether interpretability predicts steering performance across the pool of
trained SAEs. To quantify this relationship, we follow the idea of prior works [Jiang et al.,[2020} Hu
et al.| [2024]] and measure rank agreement between interpretability and utility using Kendall’s rank
coefficient 7,. We control confounders with an axis-conditioned analysis, isolating each design axis
(architecture, sparsity, model) by varying one at a time and aggregating per-axis metrics.

Furthermore, as identified in |Arad et al.| [2025]], Wu et al.[[2025]], not all interpretable features in
SAE are equally effective for steering. This motivates our next objective to identify the specific
features critical for behavior control and steering utility analysis. Motivated by the recent progress
on the entropy mechanism in LLM reasoning [Fu et al., 2025, [Wang et al.| 2025c]||, we propose an
innovative selection criterion for SAE features: A Token Confidence, which measures the degree to
which amplifying a single feature shifts the model’s next-token distribution. Features that induce
the most substantial change in model confidence are identified as high-utility candidates features for
steering, as they exert a measurable and targeted influence on model behavior. Finally, we leverage
these critical features to conduct a refined analysis of the interpretability-utility gap.

The primary contributions and insights of this paper are summarized as follows:

1. (§3.4) Interpretability shows a relatively weak positive association with utility. Across 90
SAEs that are trained across three model sizes, five architectures, and six sparsity levels, we
find that a higher interpretability score tends to shows a relatively weak positive association with
steering performance (the Kendall’s rank coefficient 7, ~ 0.298)). This identifies a notable
interpretability-utility gap of the existing SAEs.

2. (§4.2) A Token Confidence effectively selects features with strong steering performance. To
identify the SAE features that are critical for steering, we introduce A Token Confidence, an
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innovative metric that identifies steering-critical SAE features by measuring their impact on the
model’s next-token distribution. When benchmarked against the best existing output score-based
method [Arad et al., |2025]], our approach yields a substantial 52.52% average improvement in
steering score. This result validates the superiority of our method and underscores the critical
role of feature selection in characterizing and enhancing the steering utility of SAEs.

3. (§4.3) The interpretability-utility gap widens among high-utility features. By reapplying
our association analysis exclusively to SAE features with strong steering utility, we uncover a
counterintuitive finding: the interpretability-utility correlation vanishes or even becomes negative
(Kendall’s rank coefficient 7, ~ 0). This indicates that for the most effective steering features,
interpretability is at best irrelevant and potentially detrimental, further emphasizing the critical
nature of the interpretability-utility gap.

Our results demonstrate a significant divergence between SAE’s interpretability and steering utility,
suggesting that prioritizing interpretability does not enable improved steering performance. This gap
highlights a crucial research direction: mitigating it will likely necessitate advanced post-training
feature selection protocols or fundamentally new, utility-oriented SAE training paradigms.

2 Preliminary

2.1 Sparse Autoencoders

Sparse Autoencoders (SAEs) decompose internal model activations x into sparse, higher-
dimensional features h that can be linearly decoded back to the original space [Cunningham et al.,
2023, |Leask et al.,|2025]. A standard SAE with column-normalized decoder weights [Bricken et al.
2023| [Karvonen et al.}[2024] is defined by the following forward map and optimization objective:

L = ||z — 2|3 + Mh|l1, where h = ReLU(Wga + bg), & = Wph + bp,

where Wg, by are encoder parameters, Wp, bp are decoder parameters,  is the reconstruction, and
A controls sparsity. This training balances reconstruction accuracy with sparse representations.

2.2 Interpretability: Automated Interpretability Score

SAEBENCH [Karvonen et al.,|2025]] uses an LLM-as-judge [Paulo et al.,2025]] to assess each latent:
the judge drafts the description from examples and then predicts, on a held-out set, which sequences
activate it. The Automated Interpretability Score is the average precision of the judge’s prediction.

M
1
AtIt S = =5 1Am:m7
utolnterp Score MmE:1 [§ Ym)

where y,, € {0, 1} indicates whether the latent activates in the sequence m and §,, is the judge’s
prediction. We use this score as our interpretability metric. For the complete details, see Appendix [B}

2.3 Utility: Steering Score

SAE steering injects the SAE decoder atom v¢ (the f-th column of the column-normalized decoder
Waec|f]) into the residual stream at a target layer to push the hidden state « along a chosen feature
direction [Durmus et al.,2024]. Given a feature index f, a steering factor «, and a per-sample scale
my (e.g., the feature’s maximum activation), the intervention is

psteer — + (Osz)"l)f- (1)

Through the above formula (IJ), we can use SAE features for steering to achieve the output of control-

ling LLM. AXBENCH [Wu et al.,[2025] measures causal control by steering internal representations

during generation and asking an LLM judge to rate three aspects, each on a discrete scale {0, 1, 2}:
Concept (C), Instruction (I), and Fluency (F). The overall Steering Score is the harmonic mean:

Steering Score = HM(C,I,F) = € [0,2].

+1+

~i=| o

Ql=
=
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Figure 2: Overview of our pairwise-controlled workflow linking SAE interpretability with
steering utility. (S1) Compute interpretability score and steering score for each SAE. (S2) Pair-
wise analysis across SAEs and get an insight (the top-right green box), revealing an interpretabil-
ity—utility gap. The red box (lower right) is our further inference based on the above green box and
previous studies [Wu et al., 2025]. (S3) Use A Token Confidence to select higher-utility features.
(S4) Compute steering gains after selection per SAE, then do the pairwise analysis between steering
gains and interpretability. The green box in the middle left is our final conclusion.

Following AXBENCH, for each concept we sample instructions (e.g., 10 from Alpaca-Eval [[Dubois
et al. 2023]]), generate continuations under different steering factors, pick the best factor on one
split, and evaluate the held-out split with the judge to obtain the final utility score averaged across
prompts [[Gu et al.,[2025]. The complete scoring procedure is detailed in Appendix [C|

3 Can SAE Interpretability Indicate Steering Performance?

3.1 Experimental Setup

Dataset. For each trained SAE, we score 1,000 latents with LLM-as-judge [Paulo et al., [2025]] and
randomly sample 100 to form that SAE’s CONCEPT100 (see Appendix [F)). For steering, we sample
10 Alpaca-Eval instructions, allow up to 128 generated tokens, and test 6 steering factors; the 10
instructions are split 5/5 for factor selection vs. held-out evaluation.

Model. We evaluate three open LLMs: Gemma-2-2B [Team et al., 2024], Qwen-2.5-3B [Yang
et al.,[2024], and Gemma-2-9B [Team et al., 2024]]. SAEs are trained on residual-stream activations
at a fixed mid-layer for each model: Layer 12 for Gemma-2-2B, Layer 17 for Qwen-2.5-3B, and
Layer 20 for Gemma-2-9B—and steering is applied to the corresponding layer.

SAE with different architectures We train 90 SAEs covering a range of architectures and spar-
sity. All SAEs use a latent dictionary width of 16k. We instantiate five variants: BatchTopK [Buss-
mann et al.||2024], Gated [Rajamanoharan et al.|[2024a]], JumpReL U [Rajamanoharan et al., 2024b],
ReLU [Team, [2024], TopK [Gao et al.,[2024]] and sweep six target sparsity levels with approximate
per-token activations Lo ~ 50, 80, 160, 320, 520, 820. Further details are provided in Appendix [A]

3.2 Pairwise Rank Consistency between Interpretability and Utility

We test whether higher interpretability of SAE is predictive of higher steering performance across
a set of trained SAEs attached to a fixed LM. For each SAE 6 in a pool O, we record a pair
(u(0), g(0)) € R2, where p is the SAE-level Interpretability Score and g is an aggregated Steering
Score over a standardized evaluation suite.

Given two SAEs 0;, 0, € ©, define the concordance indicator

vy = sign(,u(@i) — M(Hj)) -sign(g(&i) — g(Hj)) e {-1,0,+1}. 2)
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Kendall’s tie-corrected rank coefficient 7, [KENDALLL [1938|] summarizes agreement over un-
ordered pairs and reduces to average concordance when there are no ties:

1
Ty — @Z’U” S [—171] (3)
2

1<j

In this study, we instantiate p with the Interpretability Score and g with the Steering Score, then
compute 7 for three model-layer settings (Gemma-2-2B, Qwen-2.5-3B, Gemma-2-9B). Each setting
includes 30 SAEs spanning architectures and sparsity to ensure sufficient pair coverage.

3.3 Granulated Kendall’s Coefficient to Control Confounders

Global rank agreement can be confounded by hyperparameters that jointly influence interpretability
and utility. To obtain an axis-controlled assessment, we factor the SAE design space into orthogonal
axes and evaluate rank consistency while varying one axis at a time and holding the others fixed.

We define three conditioning axes: (A) Architecture — fix architecture (and layer), vary sparsity;
(B) Sparsity — compare architectures at matched sparsity ranks; (C) Model — fix the base model,
compare all SAEs within it. For axis 4, partition © into groups G, that are matched on all axes except
1. Within each group G € G;, compute Kendall’s coefficient in {(u(6), g(8)) : 8 € G}, and average
between groups to obtain the statistic at the axis level:

1
Yi = = Y T({(u(0),9(0)): 0 € G}). &)
|g2| Geg;
Aggregate the axis-level outcomes by
1 n

where n is the number of axes. Each v); captures rank consistency conditioned on axis ¢ (varying only
that axis while matching the others), and ¥ aggregates these into a single axis-controlled measure.
This construction mitigates cross-axis trends—e.g., architecture, sparsity, or model-driven shifts that
can obscure local relationships between interpretability and utility.

We report the per-axis statistics 1; together with the aggregate W for the same model settings as in
section [3.2] providing both axis-specific and aggregated assessments.

3.4 Pairwise Analysis Results

In this section, we assess whether higher SAE interpretability predicts stronger steering by com-
puting Kendall’s 7, between the Interpretability Score 11(0) and the aggregated Steering Score g(0)
over a pooled set of SAEs attached to a fixed LLM.

To control confounders and localize effects, we apply the axis-conditioned procedure defined in
section [3.3] For each axis, we form matched groups, compute within-group 7, average to obtain a
per-axis summary, and aggregate these summaries into an overall axis-controlled coefficient.

Table [I] shows that across SAEs, higher interpretability tends to be modestly associated with
better steering on average, pointing to a consistent but limited impact. The pooled Kendall’s
7, ~ 0.30 is positive, and the axis-controlled aggregate remains positive (¥ =~ (0.25), indicating that
more interpretable features generally translate into better steering utility across designs and models.

The strength of the link between interpretability and utility depends on SAE architecture,
sparsity, and the base model. By architecture, the association is positive on average (V4 ~ 0.26),
with ReLU-like variants reinforcing the trend and Gated weakening it. By sparsity, alignment is
strongest when the SAE is more sparse and weakens—sometimes reversing—as the number of active
features increases. By model, the underlying LM shapes the effect, with the signal clearest in Qwen-
2.5-3B and weaker in Gemma-2-2B, while the model-wise summary remains positive (V¢ =~ 0.33).

Key Observation 1: Interpretability shows a relatively weak positive correlation with steering
performance, highlighting a notable gap between interpretability and utility across SAEs.
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Table 1: Pairwise Analysis Between Interpretability Score 11(0) and Steering Score g(6). We report
Kendall’s 7, overall and by axis-controlled measures W4 (Architecture), g (Matched Sparsity), and U
(Model). n = number of SAEs; Pairs = number of pairwise comparisons; p = permutation p-value; 95% CI =
confidence interval (overall uses BCa bootstrap; subgroups use permutation-based CIs).

Axis SAEs n Pairs Tp P 95% CI
Overall All SAEs 90 4005 0.2979 — [0.1590, 0.4191]
W, = 0.2575 (SE ~ 0.1163, 95% boot CI [0.0222, 0.3961])
BatchTopK 18 153 0.3203 0.0712 [—0.3464, 0.3464]
Gated 18 153 -0.2026 0.2577 [—0.3464, 0.3333]
W4: Architecture JumpReLU 18 153 0.42438 0.0160 [—0.3333, 0.3333]
ReLU 18 153 0.3595 0.0392 [—0.3333, 0.3333]
TopK 18 153 0.3856 0.0272 [—0.3333, 0.3333]
Wg = 0.1651 (SE ~ 0.1112, 95% boot CI [—0.0286, 0.3587])
Lo =~ 50 15 105 0.5429 0.0034 [—0.3714, 0.3714]
Lo ~ 80 15 105 0.3524 0.0740 [—0.3714, 0.3714]
Wy: Sparsity Lo ~ 160 15 105 0.1810 0.3821 [—0.3905, 0.3714]
Lo ~ 320 15 105 0.1810 0.3673 [—0.3714, 0.3714]
Lo ~ 520 15 105 -0.2190 0.2837 [—0.3905, 0.3714]
Lo ~ 820 15 105 -0.0476 0.8484 [—0.3905, 0.3714]
We = 0.3272 (SE =~ 0.0698, 95% boot CI [0.2184, 0.4575])
Gemma-2-2B 30 435 0.2184 0.0980 [—0.2598, 0.2552]
U¢: Model Qwen-2.5-3B 30 435 0.4575 0.0008 [—0.2506, 0.2506]
Gemma-2-9B 30 435 0.3057 0.0166 [—0.2506, 0.2461]

U= (Va+ Vs + ¥c)/3 = 0.2499

4 From Interpretability to Utility: Which SAE Features Actually Steer?

In Sec. We find that SAE interpretability is a relatively weak prior for steering utility. Prior
work [Arad et al.,[2025] shows many features lack steerability and we speculate that this factor may
render the previous conclusion inaccurate. Therefore, we introduce a metric to identify steering-
effective features. Metrics derived from a model’s internal token distributions can assess reasoning
quality [Kang et al.,|2025]). In particular, token entropy offers a unified view: high entropy highlights
critical decision points [Fu et al.l 2025 Wang et al.,[2025c]. We apply this idea to SAE steering.

4.1 Feature Selection via A Token Confidence

We start from the model’s next-token distribution. Given logits z € RY and p = softmax(z) over a
vocabulary of size V, the foken entropy is

|4
H(p) = =) p; logp;, 6)
J=1

Entropy summarizes dispersion over the vocabulary: smaller values reflect a sharper, more concen-
trated prediction, while larger values indicate greater uncertainty at a given position.

To focus on the head of the distribution that matters most for sampling, we use foken confidence.
Let Zx(p) C {1,...,V} denote the indices of the k largest probabilities in p. The top-k token
confidence is the negative average log-probability over these entries:

1
Cr(p) = % > logp;. (7
JELk(p)

Lower C}, implies higher confidence, while higher C}, implies a flatter top-k distribution. Unlike
entropy, Cj; directly captures the sharpness of the outcomes that drive next-token behavior.

We turn confidence into a feature-level selector via a single-feature SAE intervention. Consider
an SAE feature f at layer /. We amplify only the coefficient of f by a factor &« > 0 in the SAE
reconstruction, leaving the base model and all other features unchanged. Denote the baseline next-
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Figure 3: Distribution of per-feature A Token Confidence across all SAEs. Panels show his-
tograms for Gemma-2-2B, Qwen-2.5-3B, and Gemma-2-9B; the x-axis is AC} (negative values
indicate increased confidence, positive values decreased confidence) and the y-axis is the number of
SAE features. The shaded area marks the high-magnitude tails from which candidate steering fea-
tures are selected, while the central mass near 0 indicates features with little distributional impact.

token distribution by p®**° and the intervened distribution by plf“fga A Token Confidence is

ACK(fit,a) = Cy(pift ) — Cu(p"™). ®)

Negative values AC}, < 0 mean that amplifying f sharpens the top-k distribution, while positive
values indicate greater dispersion. We compute this using one baseline and one intervened forward
pass via an SAE hook. Implementation details and hyperparameters are provided in Appendix D}

We select features with the largest absolute change in foken confidence under single-feature SAE
interventions, i.e., maximal |AC}| (see Figure . For each feature, we compute AC}, rank by
|ACY|, form tiers, evaluate subsets for steering, and keep the best per SAE.

4.2 Steering Performance Results After Feature Selection

Arad et al|[2025] has shown that SAE steering works well if features are chosen by their causal
impact on model outputs, introducing the output score as a metric to identify output-aligned features.
Following this insight, we evaluate our A foken confidence selection on three base LLMs (Gemma-
2-2B, Qwen-2.5-3B, Gemma-2-9B) using the CONCEPT 100 (see details in . The experiments
on steering performance improvement of each SAE can be referred to Appendix [E]

Table [2] shows that our selection yields Table 2: Steering score after feature selection com-
consistent gains across all models, out- pared with SAE-based steering. Columns report
performing the vanilla SAE baseline by scores (higher is better) for Gemma-2-2B, Qwen-2.5-
large margins, and also improving over an 3B, and Gemma-2-9B. Rows: ‘SAE-based’ uses all
output-score-based selector. These gains SAE features without selection [Wu et al. 2023];
indicate that ranking and filtering by the ‘+Output’ selects features using S, [[Arad et al]
magnitude of distributional change cap- [2025]]; “+AC} (Ours)” selects by the A Token Con-
tured by AC} reliably isolates features fidence. Boldface indicates the best method per model.
with the strongest steering utility.

Furthermore, we conducted a comparative Method Gemma-2-2B Qwen-2.5-3B Gemma-2-9B

analysis of SAEs of different architectures SAE-based 0.133 0.171 0.142
on three models. For fair comparison, +Output 0.233 0.292 0.255
the two feature selection methods use the +ACK(Ours) 0.328 0.399 0.289

same subset size. Figure[d]compares steer-
ing scores across SAE architectures and
selection methods. In all three models, selecting features by A Token Confidence consistently out-
performs both the no-selection SAE baseline and the output-score selector across architectures.
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Figure 4: Comparison of different SAE steering methods with five SAE architecture across
three LLMs. Panels correspond to Gemma-2-2B, Qwen-2.5-3B, and Gemma-2-9B. The horizontal
axis groups SAE architectures (BatchTopK, Gated, JumpReLU, ReLU, TopK), and the vertical axis
reports the steering score. Bars show three conditions: SAE Base (no feature selection), Output
Score Selection, and A Token Confidence Selection (ours). Panel annotations summarize the average
lift of each selection method relative to the SAE-based steering.

On average, our method improves steering performance by 52.52% over the strongest competing
baseline. The BatchTopK architecture is the one that has the most stable and significant improvement
in steering capabilities on models of different sizes among the five SAE architectures.

Key Observation 2: A Token Confidence reliably selects high-utility SAE features across mod-
els. Among SAE architectures, BatchTopK achieves the most stable and sizable steering gains.

4.3 Pairwise Analysis Between Interpretability and Steering Gain

Building on the above steering gains, we further examine whether SAE interpretability can serve
as a prior for steering gain, the extent to which a trained SAE benefits from feature selection. We
quantify this relationship by computing Kendall’s 7, between the Interpretability Score p(6) of
SAEs and the Steering Gain L(#), defined as the percentage lift of the selected-steering score over
the same SAE’s base. As in section [3.:4] we report both pooled coefficients and axis-conditioned
summaries that control for design and model factors (architecture, sparsity and model).

Overall, table [3] indicates that interpretability is not a reliable prior for steering gain after selec-
tion: the pooled association is small and slightly negative (7, ~ —0.069) , and the axis-controlled
aggregate is likewise near zero and negative (¥ ~ —0.057). Estimates cluster near zero across
design axes, being slightly negative within architecture, sparsity, and model, and effectively null at
matched-sparsity slots, indicating no consistent link between higher interpretability and larger gains.

Key Observation 3: Surprisingly, the interpretability—utility gap widens when we focus on
SAE features that deliver substantial steering gains.

5 Related Work

5.1 Representation-Based Steering

Activation-based steering arose as a lightweight alternative to fine-tuning, enabling on-the-fly con-
trol of LLM behavior without retraining [Giulianelli et al.| 2018] [Vig et al, 2020] [Geiger et al.}
[2025]]. The core idea is to inject carefully chosen directions into hidden states, typically in the
residual stream, scaling interventions by a gain and selecting layers for maximal effect
2025 Rimsky et al.} [2024] [van der Weij et al.|, 2024]]. It has been applied to safety and moderation,
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Table 3: Pairwise Analysis Between Interpretability (1(0) and Steering Gain L(0). We report Kendall’s
7, overall and under axis-controlled summaries ¥ o (Architecture), U (Matched Sparsity), and ¥ (Model).
Columns: n = number of SAEs; Pairs = number of pairwise comparisons; p = permutation p-value; 95% CI
= confidence interval (overall uses BCa bootstrap; subgroups use permutation-based CIs).

Axis SAEs n Pairs Th D 95% CI
Overall All SAEs 90 4005 -0.0692 — [—0.2019, 0.0666]
WA =-0.0719 (SE = 0.0781, 95% boot CI [—0.2078, 0.0614])
BatchTopK 18 153 -0.2288 0.2004 [—0.3333, 0.3464]
Gated 18 153 0.0327 0.8792 [—0.3464, 0.3333]
W4: Architecture JumpReLU 18 153 -0.0065 1.0000 [—0.3464, 0.3203]
ReLU 18 153 -0.2810 0.1096 [—0.3333, 0.3464]
TopK 18 153 0.1242 0.4985 [—0.3464, 0.3337]
Wy = 0.0127 (SE = 0.0457, 95% boot CI [—0.0762, 0.0889])
Lo =~ 50 15 105 0.0476 0.8466 [—0.3714, 0.3714
Lo~ 80 15 105 0.1619 0.4437 —0.3905, 0.3714

]
[ ]
Wy: Sparsity Lo ~ 160 15 105 0.0095 1.0000 [—0.3714, 0.3714]
Lo =~ 320 15 105 0.0476 0.8452 [—0.3714, 0.3714]
Lo ~ 520 15 105 -0.1810 0.3797 [—0.3714, 0.3714]
Lo =~ 820 15 105 -0.0095 1.0000 [—0.3714, 0.3905]
Ue = -0.1111 (SE =~ 0.0314, 95% boot CI [—0.1448, —0.0483])
Gemma-2-2B 30 435 -0.1402 0.2911 [—0.2552, 0.2598]
Wc: Model Qwen-2.5-3B 30 435 -0.1448 0.2781 [—0.2507, 0.2460]
Gemma-2-9B 30 435 -0.0483 0.7157 [—0.2506, 0.2552]

U= (Vat Vs + Vc)/3 = -0.0568

persona and sentiment control, and instruction adherence, promising low-latency deployment-time
adjustment but facing polysemantic entanglement and brittleness that motivate standardized evalua-
tion [Chen et al., 2025, |Liu et al.| 2024]]. However, this approach injects polysemantic activations at
intervention time, yielding coarse-grained effects for output control [Bricken et al.||[2023]]. Our work
is related to activation-level interventions, but differs by grounding directions in sparse, interpretable
SAE features and applying utility-oriented feature selection to mitigate these failure modes.

5.2 SAE-Based Steering

Sparse Autoencoders (SAEs) decompose activations into sparse, human-readable features to mit-
igate polysemanticity and expose concept-level structure [Bricken et al.| 2023| Templeton et al.,
2024, |Gao et al.l [2024]. For steering, practitioners use decoder atoms as directions and add scaled
injections at chosen layers, with architecture and sparsity choices trading reconstruction for feature
granularity [Zhao et al.| 2025} |Wang et al., |2025d| |[Ferrando et al., 2025]. SAE-based steering en-
ables targeted safety control, style modulation, and instruction emphasis, yet the utility of individual
features varies widely [Chalnev et al.l 2024, [Mayne et al., 2024]]. While the connection between
SAE interpretability and steering utility remains unclear, and our goal is to build a principled bridge
between them. To this end, we conduct a large-scale experiments across multiple model sizes and
SAE architectures, demonstrating the critical nature of the interpretability-utility gap.

6 Conclusion and Discussion

In summary, SAE interpretability shows relatively weak positive association with steering utility
across 90 SAEs (7, ~ 0.298), revealing a clear interpretability—utility gap. Selecting features with
A Token Confidence yields substantial gains (average +52.52% over the strongest existing baseline).
Surprisingly, when analyzing steering gains after selection, the correlation with interpretability col-
lapses toward zero and can even turn negative for the highest-utility features, further underscoring
this gap. This gap points to a key direction: develop task-general utility indicators that reliably
predict steerability across models, or design training objectives that directly optimize controllability
under sparsity so features are utility-calibrated without heavy post-hoc selection. Our work provides
valuable insight for the further development of SAEs as interpretable tools.
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Reproducibility Statement

We aim to facilitate full reproduction of our results. All model code, training and evaluation scripts,
configuration files, and experiment logs are released at an anonymous repository as part of the sup-
plementary materials: https://anonymous.4open.science/r/SAE4Steer. Training architectures, hy-
perparameters, sparsity schedules, and optimization details are specified in the main text and Ap-
pendix [A.2] (see also the per-family settings in Appendix [A). The datasets used are openly licensed:
all SAEs are trained on The Common Pile v0.1 [Kandpal et al.,[2025] as described in Appendix
our evaluation concepts (CONCEPT100) and their automatic generation pipeline are documented
in Appendix [B| and Appendix [F| The complete procedures for automated interpretability scoring
(SAEBENCH) and steering utility (AXBENCH), including sampling, judging protocols, and scoring
functions, are detailed in Appendix[B]and Appendix[C| with the A Token Confidence selector defined
in Appendix [D] and the post-selection results summarized in Appendix [E| Hardware, runtime, and
memory footprints for both SAEBENCH and AXBENCH are reported in Appendices and[C.2]
Together, these materials, along with seed-controlled configuration files and exact command-line
invocations provided in the anonymous repository, are intended to enable independent researchers
to replicate and extend our findings.
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LLM Usage

In preparing this paper, large language models (LLMs) were used as an assistive tool for minor
language polishing and stylistic improvements. All technical contributions, results, and conclusions
are solely the work of the authors.

A SAE Architectures and Training Details

We train 90 SAEs (30 per base model) across five architectures and six target sparsity levels. Unless
stated otherwise, the dictionary width is 16K codes (F'=16,384), SAEs are attached to the residual
stream at the layer described in the main text, and decoder columns are {s—normalized. All models
are trained on The Common Pile v0.1 [Kandpal et al.|, [2025]].

A.1 Architectures and Parameterization

We list the five SAE families with their named parameters (as implemented) and the correspond-
ing shapes. The last column records architecture-specific thresholding/gating fields when present.
Shapes assume residual dimension d=2304 and dictionary width F'=16,384.

Architectures Wepe Denc Wiee bdec Threshold /
Extras
ReLU encoder.weight: encoder.bias:  decoder.weight: bias: shape —
shape (16,384, shape (16,384) shape (2,304, (2,304)
2,304) 16,384)
Gated encoder.weight: gate_bias: decoder.weight: decoder_bias:  r_mag: shape
shape (16,384, shape (16,384) shape (2,304, shape (2,304) (16,384);
2,304) 16,384) mag_bias:
shape (16,384)
TopK encoder.weight: encoder.bias:  decoder.weight: b_dec: shape  k
shape (16,384, shape (16,384) shape (2,304, (2,304)
2,304) 16,384)
BatchTopK encoder.weight: encoder.bias:  decoder.weight: b_dec: shape  k
shape (16,384, shape (16,384) shape (2,304, (2,304)
2,304) 16,384)
JumpReLU W_enc: shape b_enc: shape = W_dec: shape b_dec: shape  threshold:
(2,304, (16,384) (16,384, (2,304) shape (16,384)
16,384) 2,304)

A.2 Training, Sparsity, and Compute Setup

Optimization and schedule. Adam with learning rate 3x10~%; LR warmup 1000 steps; sparsity
warmup 5000 steps; LR decay starting at 80% of total steps. Precision: bf1loat16. LM batch size
= 4, context length = 2048, SAE batch size = 2048. Each run trains on ~ 5x 108 tokens.

Sparsity controls. We sweep six target activity levels
Ly ~ {50, 80, 160, 320, 520, 820}.

For TopK/BatchTopK we set k equal to the chosen L (aux-k coefficient 1/32; moving-threshold
momentum 0.999; threshold tracking begins at step 1000). JumpReLU uses the same set via
target_10. For L;—penalized families, we search the following penalty grids:

Family L, penalty values (used to span sparsity

levels)

Standard / Standard-New
Gated SAE

0.012, 0.015, 0.020, 0.030, 0.040, 0.060
0.012, 0.018, 0.024, 0.040, 0.060, 0.080
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Training details. All training uses two NVIDIA RTX A800 GPUs. The table below reports the
aggregated artifacts and training time (hours) for 30 SAEs per model (total 90), together with the
runtime configuration. Times and sizes are approximate.

Model #SAEs Disk Traing LM Context SAE Peak

(GB) Time (H) Batch Batch Mem
(GB)

Gemma- 30 8.7 17 4 2048 2048 20

2-2B

Gemma- 30 13.2 60 4 2048 2048 70

2-9B

Qwen- 30 7.7 37 4 2048 2048 30

2.5-3B

B SAEBENCH Details, Results and Our Costs

B.1 Automated Interpretability Score Process

SAEBENCH [Karvonen et al., [2025] follow an LLM-as-judge pipeline to assign an automated in-
terpretability score to each SAE latent. First, we collect layer activations by running the base LM
with caching and encoding the residual stream through the SAE to obtain h € RV *E*F We define
a token window of length 21 (buffer = 10) around any center (4,¢) and, unless stated otherwise,
mask BOS/PAD/EOS positions. For a latent ¢, we sample three window types: (i) Top (n = 12
non-overlapping peaks of A[:,:, £]), (i) Importance-Weighted (n = 7, sampled proportional to ac-
tivation after removing values at least as large as the smallest Top peak), and (iii) Random (n = 10,
uniform over valid centers). Let v« be the maximum activation seen in any Top window position
and set a global threshold 7, = 0.01 vy ax-

We split the sampled windows into a generation set (10 Top + 5 IW) and a scoring set (2 Top + 2
IW + 10 Random, shuffled). In generation, tokens with activation > 7, are bracketed to highlight
evidence; the judge LLM receives these 15 windows and returns a short English description of when
the latent fires. In scoring, the judge sees the description and the 14 held-out windows without
highlights and outputs a comma-separated list of indices it predicts as activations (or None).

Ground truth for a window W is ¥[max, ey h[u, £] > To]. The per-latent score is the accuracy
over the M = 14 scoring windows, i.e.,

L XM
S l) = — 1 Am =Ym|,
core({) i mZ:1 [y Y]
where §,, € {0, 1} is the judge prediction and y,, is the label defined above. For each SAE 6, we
evaluate 1,000 latents and report the mean over a random CONCEPT100 subset:

1
w(f) = 100 Z Score(¥).
£€CONCEPT100

B.2 Performance of SAEs on three models on SAEbench

Across the three backbones, the six SAEBENCH metrics (for information about these indicators, see
SAEBENCH [Karvonen et al.l [2025]))jointly reveal how sparsity mechanisms balance interpretabil-
ity, faithfulness, and causal structure. Automated Interpretability is strongest when encoders enforce
compact latent usage (e.g., TopK/BatchTopK and ReLU at lower L), and it gradually softens as ca-
pacity expands. The Absorption metric (considered via its complement in the plots) indicates that de-
signs concentrating signal into a small set of latents are less prone to feature stealing, whereas higher
effective capacity encourages redundancy and competition across latents. Meanwhile, Core/Loss-
Recovered remains uniformly high, showing that even sparse codes closely preserve original model
behavior; increasing L pushes faithfulness toward a ceiling without overturning the core trade-offs
visible in the other metrics.
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Gemma-2-2B. As shown in Fig.[5} Gemma-2-2B exhibits a balanced profile: interpretability stays
robust for TopK/BatchTopK and ReLU at modest sparsity; absorption is contained when the code
remains compact; and Core is near-saturated across the range. Improvements in SCR @20 are steady
but measured, suggesting targeted debiasing with small k. Sparse Probing indicates that relatively
few latents already carry much of the predictive signal, while RAVEL strengthens with moderate
capacity, reflecting cleaner separation of attributes without undermining compactness.
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Figure 5: SAEbench results for Gemma-2-2B: interpretability remains strong at lower L, absorp-
tion stays low for compact codes, Core is near ceiling, and structure (SCR/RAVEL) improves with
moderate capacity.

Qwen-2.5-3B. For Qwen-2.5-3B (Fig. [f)), interpretability at low—to—moderate L is competi-
tive—especially for TopK and JumpReLU—yet the model is more sensitive to absorption as ca-
pacity grows, implying greater latent competition and signal spread. Core remains excellent, so
reconstructions are faithful; however, SCR gains can flatten at high Ly where residual spurious cues
reappear. Sparse Probing is solid but a touch behind the strongest Gemma configurations, consis-
tent with its flatter RAVEL patterns: causal structure is present but less crisply disentangled when
attributes begin to diffuse across latents.

Gemma-2-9B. Gemma-2-9B (Fig.|7) pushes the upper envelope on structure: interpretability re-
mains solid for compact encoders; absorption is low at moderate L that avoids unnecessary latent
proliferation; and Core is near its ceiling. SCR@20 is the most decisive among the three, pointing
to cleaner isolation of spurious factors with small, targeted ablations. Sparse Probing is strong and,
together with higher RAVEL, indicates that only a handful of latents capture both predictive signal
and causally specific attributes with minimal collateral interference.

B.3 SAEBench Runtime Cost

The computational requirements for running SAEBench evaluations were measured on two NVIDIA
RTX A800 GPUs using 16K-width SAEs trained on the Gemma-2-2B [Team et al., |2024], Qwen-
2.5-3B [Yang et al., [2024] and Gemma-2-9B. Table E| summarizes the per-SAE runtime for each
evaluation type. Several evaluations include a one-time setup phase (e.g., precomputing activations
or training probes) that can be reused across multiple SAEs; after this setup, each evaluation has its
own runtime per SAE. We therefore report amortized per-SAE minutes.
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Figure 6: SAEbench results for Qwen-2.5-3B: strong interpretability at lower L, rising absorption
with capacity, consistently high Core, and more fragile SCR/RAVEL at the highest capacities.

Table 4: Approximate SAEBench runtime per SAE (minutes). Values are per-SAE and represent
amortized minutes after any one-time setup; each minute figure is an approximation and may vary
with hardware and I/O.

Model Core Interpretability Absorption Sparse Probing Ravel SCR
Gemma-2-2B 4 8 12 2 18 10
Qwen-2.5-3B 7 9 15 8 17 16
Gemma-2-9B 11 12 17 30 40 28

C AXBENCH Details and Our Costs

C.1 Steering Score Process

For each SAE feature (concept) we evaluate steering utility with an AXBENCH-style judge [Wu
et al., 2025]]. Given the concept description from SAEBench and the intervention rule in Eq. equa-
tion |1} we sample 10 instructions (Alpaca-Eval style) and split them 5/5 into a development set
for factor selection and a held-out set for evaluation. We generate continuations (up to 128 tokens)
for a grid of steering factors o € A by injecting the feature direction at the target layer. For each
generated continuation, an LLM judge assigns three subscores on the discrete scale {0, 1,2} (floats
allowed but clamped to [0, 2]): Concept (C’; does the output express the concept?), Instruction (I;
is it on-topic for the instruction?), and Fluency (F; is it well-formed?). We aggregate with the
harmonic mean

0, if C<0 or I<0 or F'<0,
HM(C, I F) = otherwise €(0.2]

3
1, 1o
I F

1
rolnn
On the development split we pick a* = arg maxqe 4 % > HM, then evaluate the held-out split with

«* to obtain the per-concept Steering Score (mean HM over the 5 held-out prompts). SAE-level
utility g(#) is the average of per-concept scores over the evaluation set for that SAE.
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Figure 7: SAEbench results for Gemma-2-9B: robust interpretability with compact codes, low ab-
sorption at moderate L, near-ceiling Core, and the clearest gains in SCR/RAVEL among the three
backbones.

CONCEPT_TEMPLATE

[System]

Please act as an impartial judge and evaluate whether the specified concept is presented in the sentence
fragment provided below. Focus solely on whether the concept is clearly incorporated, without regard for
grammar or logical coherence.

Begin your evaluation by providing a short explanation of whether the concept is clearly incorporated.
Point out references to the concept in the fragment, noting any minimal or awkward incorporations. After
providing your explanation, rate the concept’s relevance on a scale from 0 to 2, where 0 indicates the
concept is not present at all, 1 indicates the concept is somewhat present but minimally or awkwardly
incorporated, and 2 indicates the concept is more fully and effectively incorporated, with stronger and
more natural integration. Provide your rating using this exact format: “Rating: [[score]]”.

[Concept Start] {concept} [Concept End]
[Sentence Fragment Start] {sentence} [Sentence Fragment End]

INSTRUCT_TEMPLATE

[System]

Please act as an impartial judge and evaluate whether the sentence fragment provided below is related
to the instruction. Focus solely on the degree of relatedness in terms of topic, regardless of grammar,
coherence, or informativeness.

Begin your evaluation by providing a brief explanation of whether the sentence is related to the instruction,
and point out references related to the instruction. After providing your explanation, rate the instruction
relevance on a scale from O to 2, where O indicates the sentence is unrelated to the instruction, 1 indicates
it is somewhat related but only minimally or indirectly relevant in terms of topic, and 2 indicates it is
more clearly and directly related to the instruction. Provide your rating using this exact format: “Rating:
[[score]]”.

[Instruction Start] {instruction} [Instruction End]

[Sentence Fragment Start] {sentence} [Sentence Fragment End]
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FLUENCY_TEMPLATE

[System]

Please act as an impartial judge and evaluate the fluency of the sentence fragment provided below. Focus
solely on fluency, disregarding its completeness, relevance, coherence with any broader context, or infor-
mativeness.

Begin your evaluation by briefly describing the fluency of the sentence, noting any unnatural phrasing,
awkward transitions, grammatical errors, or repetitive structures that may hinder readability. After provid-
ing your explanation, rate the sentence’s fluency on a scale from 0 to 2, where 0 indicates the sentence is
not fluent and highly unnatural (e.g., incomprehensible or repetitive), 1 indicates it is somewhat fluent but
contains noticeable errors or awkward phrasing, and 2 indicates the sentence is fluent and almost perfect.
Provide your rating using this exact format: “Rating: [[score]]”.

[Sentence Fragment Start] {sentence} [Sentence Fragment End]

C.2 AxBench Steering Evaluation Cost

All steering-score evaluations were run on two NVIDIA RTX A800 GPUs. The LLM-as-judge
backend was gpt-4o-mini. Evaluating one SAE on CONCEPT100 costs approximately $5 in judge
API fees; with 90 SAEs total (=~ 30 per model), the per-model API cost is about $150. Tablelists
approximate per-SAE runtime and peak VRAM for each model.

Table 5: AxBench steering evaluation cost per SAE. Runtimes are per-SAE (hours) and approx-
imate; VRAM is peak memory (GB). Judge fees assume gpt-4o-mini: ~ $5 per SAE on CON-
CEPT100; Per-Model Cost assumes ~ 30 SAEs/model (=~ $150).

Model Runtime / SAE (h) Peak VRAM (GB) Per-Model Cost (USD)
Gemma-2-2B 15 10 150
Qwen-2.5-3B 16 12 150
Gemma-2-9B 23 36 150

D Implementation of A Token Confidence

For a fixed, neutral prefix s (we use “From my experience,”, following the previous work[Arad et al.,
2025]) we compare the next-token distribution of the base model with that of an intervened model in
which a single SAE feature is amplified at layer L by a factor o. The intervention is applied via the
same SAE hook point used during training (on the residual stream of block L). We then compute
the change in a confidence surrogate built from the top-% probabilities.

Token confidence. [Fu et al., 2025|] For a distribution p over the vocabulary, let p(1) > - - - > p(,)
be the top-k probabilities.

k
1
Crlp) = =3 D_logp-
i=1

Delta token confidence. With py,s. from a standard forward pass and p;,, from a pass with the
SAE feature intervention,

Aok(f;aaL) = Ck’(pint) - Ok(pbase)-

Each feature f is evaluated with two single-step forwards on the same prefix s: (i) a baseline pass;
(ii) an intervened pass where we scale the code for f by a before decoding it into the residual at
layer L while keeping all other codes at zero. Hooks are removed immediately after the intervened
pass to prevent accumulation across evaluations. In this work, we choose « = 10 and k = 1.

Feature selection from AC}. For each SAE we rank its features by ACY} in two directions: UP
(largest positive AC}) and DOWN (most negative AC}). We form selection sets using either (i) top-
K by magnitude with K € {1,2,3,4,5} per direction, or (ii) upper/lower-tail quantiles (e.g., ¢ €
{0.99,0.95,0.90, 0.80} mirrored for the lower tail). These sets are then carried into AXBENCH [Wu
et al.| 2025]] to measure utility lift.
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E Steering Results of SAE Architectures After Feature Selection

We quantify steering with the AXBENCH judge after selecting features using A Token Confidence
(Appendix D). Unless otherwise noted, lifts are reported as the percentage change of a given SAE’s
steering score relative to its own baseline (no selection). Results are organized at three levels:
aggregate across SAEs per base model, per-SAE rankings, and distribution by architecture.

All SAEs — base vs. after selection

Gemma-2-2B Qwen-2.5-3B Gemma-2-9B
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Figure 8: Overall steering score before and after feature selection. For each base model, the panel
shows two bars: the average baseline steering score across its SAEs and the average after applying
A Token Confidence-based selection. Bars are annotated with the corresponding values; axes share
the same scale across panels.

The aggregate view in Figure [§] summarizes how selection affects the mean steering score across
all SAEs of a base model. Using A Token Confidence for feature selection markedly improves the
steering score across all three models in the figure. For Gemma-2-2B, the score rises from 0.133
to 0.328, which is a 146.6% relative improvement. Qwen-2.5-3B increases from 0.171 to 0.399, a
133.3% improvement, and achieves the highest post-selection score overall. Gemma-2-9B moves
from 0.142 to 0.289, a 103.5% improvement.

Conclusions: (i) feature selection via A Token Confidence consistently boosts steering for all mod-
els; (ii) relative gains are largest for the smallest model (Gemma-2-2B) and smallest for the largest
model (Gemma-2-9B), suggesting diminishing relative returns with scale; and (iii) in absolute terms,
Qwen-2.5-3B reaches the strongest final steering score after selection.

Figure [0 ranks SAEs within each model by their relative lift. Architecturally, no single SAE train-
ing approach dominates; however, the top-ranked lifts are frequently occupied by BatchTopK and
Gated variants, with ReLU/JumpReLU also contributing strongly and TopK showing more mixed
outcomes. Overall, A Token Confidence yields consistent per-SAE gains, with variance decreas-
ing and stability increasing as model size grows, while architectural diversity remains valuable for
capturing the largest lifts.

Figure [I0] groups lifts by architecture to visualize differences in central tendency and dispersion
under the same selection and evaluation protocol. Read together with the per-SAE ranking, this
distributional view helps disentangle architecture effects from model-specific variation and indi-
cates which families tend to produce more stable or more variable outcomes after feature selection.
BatchTopK and Gated generally occupy the highest central tendency with wide—but mostly posi-
tive—spread, especially on Gemma-2-2B and Qwen-2.5-3B. BatchTopK achieves the most stable
and sizable steering gains. Variance is largest for the smallest model (Gemma-2-2B), indicating
architecture-sensitive wins at small scale.

F Dataset

Training corpus for SAEs. We train all SAEs on The Common Pile v0.1 [Kandpal et al.| [2023],
an openly licensed ~8TB text collection built for LLM pretraining from ~30 sources spanning
research papers, code, books, encyclopedias, educational materials, and speech transcripts. The
corpus was curated as a principled alternative to unlicensed web text and has been validated by
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Per-SAE lifts after A Token Confidence feature selection (ranked)
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Figure 9: Per-SAE percentage lift after A Token Confidence selection. Each panel corresponds
to a base model. Horizontal bars report the percent lift of the SAE-level steering score relative to its
own baseline, sorted from largest to smallest within the panel. Bar colors indicate the SAE training
architecture (legend shared across panels).

Lift distribution by architecture
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Figure 10: Lift distributions by SAE architecture. For each base model, box-and-whisker plots
(with individual points overlaid) summarize the distribution of percentage lifts grouped by training
architecture. Dashed horizontal lines denote the mean within each group, and whiskers follow the
conventional interquartile rule.

training competitive 7B models on 1-2T tokens. We use it as the sole pretraining dataset for all SAE
runs. More training details provided in Appendix [A22]

CONCEPT100 for steering utility. To evaluate steering, we construct CONCEPT100: a
compact benchmark of 700 human-readable concept descriptions per evaluation set, pro-
duced automatically by our interpretability pipeline (Appendix [B). Each entry is a pair
(layer_feature_id,description) that summarizes a latent’s activation pattern in plain language
(e.g., mathematical symbols, scientific terms, pronouns, or domain phrases). These descriptions are
supplied to the AXBENCH judge when computing steering score. The examples below illustrate the
style and domain coverage.
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Gemma-2-9B, BatchTopK, Ly =~ 80. Ten examples:

1.

20_14429: concepts related to optical communication systems and their performance
characteristics

. 20_5795: specific technical terms and chemical compounds often related to scientific

contexts

20_7908: terms related to gravitational lensing and its effects in cosmology

4. 20_3042: pronouns and verbs indicating relationships or contributions in various con-

texts

. 20.11897: scientific measurements and units related to energy, concentration, or bio-

logical data
20_.12944: terms related to cell types and apoptosis mechanisms in scientific contexts

20_8796: references to specific authors and statistical concepts in mathematical con-
texts

20_6430: the phrase “action” in mathematical and theoretical contexts

9. 20-2220: chemical elements and compounds, particularly including metals and metal-

10.

related terms
20_585: various forms of the word “energy” and related concepts in scientific contexts

Qwen-2.5-3B, Gated, Ly ~ 72. Ten examples:

1.

17_.15113: terms related to mathematical concepts and various scientific names or
terms

17_11476: the phrase “as a function of” in contexts of measurement and analysis

. 17_162: mathematical symbols and concepts related to coordinates, magnitudes, and

parameters in equations

17_2552: dataset identifiers and technical terms common in research and academic
documents

17_16377: mathematical notation and technical terms commonly found in formal doc-
uments

. 17_3195: demographic, clinical, and biological characteristics in study populations

and related comparisons

. 17_9186: specific technical terms and concepts related to networking and program-
ming
17_-11487: mathematical notation and variables related to functions and equations

9. 17_.14657: mathematical notations and structures involving angle brackets and prop-

10.

erties of functions

17_1256: terms related to errors and error correction in coding theory and quantum
operations

Gemma-2-2B, JumpReLU, Lj ~ 81. Ten examples:

1.

20.11531: terms related to sports, programming, or specific keywords from various
contexts

20_10460: terms related to fractional differential equations and numerical methods for
solving them

. 20.4882: terms related to asymptotic theory, robustness, and statistical estimation

methods

4. 20_4425: first-person plural pronouns and expressions of intention or conjecture

20_372: technical terms related to measurement and structure in scientific contexts

. 20.9999: the word “from” and contexts implying deviation or distance from something
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7. 20_9703: the word “based” in various contexts of theoretical foundations and method-
ologies
8. 20_-15509: technical or numerical concepts in a variety of contexts

9. 20.8218: phrases indicating conditions or assumptions that must be met in theoretical
contexts

10. 20_4614: time intervals and durations mentioned in the context of studies or observa-
tions

We currently maintain 90 SAEs (30 per base model). Beyond the CONCEPT100 sets evaluated in
this paper, we have constructed the CONCEPT 1000 and CONCEPT16K suites that scale the number
of human-readable concepts up to 16K. We will extend training and evaluation to these larger suites
in forthcoming releases to further substantiate the reliability and generality of this work.

24



	Introduction
	Preliminary
	Sparse Autoencoders
	Interpretability: Automated Interpretability Score
	Utility: Steering Score

	Can SAE Interpretability Indicate Steering Performance?
	Experimental Setup
	Pairwise Rank Consistency between Interpretability and Utility
	Granulated Kendall’s Coefficient to Control Confounders
	Pairwise Analysis Results

	From Interpretability to Utility: Which SAE Features Actually Steer?
	Feature Selection via Delta Token Confidence
	Steering Performance Results After Feature Selection
	Pairwise Analysis Between Interpretability and Steering Gain

	Related Work
	Representation-Based Steering
	SAE-Based Steering

	Conclusion and Discussion
	SAE Architectures and Training Details
	Architectures and Parameterization
	Training, Sparsity, and Compute Setup

	SAEBench Details, Results and Our Costs
	Automated Interpretability Score Process
	Performance of SAEs on three models on SAEbench
	SAEBench Runtime Cost

	AxBench Details and Our Costs
	Steering Score Process
	AxBench Steering Evaluation Cost

	Implementation of Delta Token Confidence
	Steering Results of SAE Architectures After Feature Selection
	Dataset

