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ABSTRACT

The objective of Vertical Federated Learning (VFL) is to collectively train a model
using features available on different devices while sharing the same users. This pa-
per focuses on the saddle point reformulation of the VFL problem via the classical
Lagrangian function. We first demonstrate how this formulation can be solved us-
ing deterministic methods. More importantly, we explore various stochastic mod-
ifications to adapt to practical scenarios, such as employing compression tech-
niques for efficient information transmission, enabling partial participation for
asynchronous communication, and utilizing coordinate selection for faster local
computation. We show that the saddle point reformulation plays a key role and
opens up possibilities to use mentioned extension that seem to be impossible in the
standard minimization formulation. Convergence estimates are provided for each
algorithm, demonstrating their effectiveness in addressing the VFL problem. Ad-
ditionally, alternative reformulations are investigated, and numerical experiments
are conducted to validate performance and effectiveness of the proposed approach.

1 INTRODUCTION

Federated Learning is an emergent paradigm that involves training a model on private data from
several devices. It can be divided into two types: horizontal (HFL)(Konecny et al.,[2016; |[McMahan
et al.,|2017), where data samples are distributed across clients, and vertical (VFL) (Liu et al.| 2022;
Yang et al.} 2023} |Wei et al., [2022; Khan et al.| 2023)) with orthogonal data partitioning. In contrast
to HFL, VFL divides the features of the same samples across clients. In this paper, we focus on
the VFL problem, which appears in various fields from scoring problems (Chen et al., [2021a) to
healthcare (Dankar et al.||2019) and smart manufacturing (Ge et al.| [2021).

Since we deal with a distributed environment in both horizontal and vertical data partitioning, the
organization of the communication process plays a crucial role in developing learning algorithms.
Due to the difference in the formulations, unique characteristics and issues can arise. The HFL
problem statement is very similar to the classical distributed cluster learning (Verbraeken et al.,
2020), therefore, the study of various kinds of specialized HFL algorithms that take into account
different aspects ranging from communication efficiency to personalization is quite extensive and
comprehensive (Kairouz et al., [2021). It is a natural idea to transfer most of the techniques and
useful stories from the horizontal scenario to the vertical one. And there are such results — see e.g.
(Liu et al., |2022| Table 3), but not many at the moment. This can be due to the fact that the VFL
problem is more ambiguous and complex from a formal optimization point of view, then it is not
easy to use the theory from HFL.

Formally, VFL can be viewed as a classical minimization problem, with specifics in calculating the
loss function, its gradient, or possibly higher-order derivatives. But there is another way to look at.
In particular, the VFL problem can be rewritten as an augmented Lagrangian (Boyd et al., 2011}
Section 8), which can be solved using the ADMM method (Glowinski & Marroco, (1975} |Gabay &
Mercier, [1976). Recent works argue that such a view of VFL is more private (Hu et al., 2019; | Xie
et al., [2022b)). The augmented Lagrangian reformulation combined with the ADMM algorithm is a
powerful tool for solving many practical optimization problems (not just VFL) (Bioucas-Dias &
Figueiredol, [2010; [Forero et al., 2010; Wahlberg et al., 2012; |Wang & Banerjee, |2013} [Sedghi et al.}
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2014; |Li et al.| |2014). It provides privacy and an efficient solution for various scenarios, offering
superior performance compared to other methods, making it a viable choice.

In spite of this, the already mentioned modifications from (Liu et al., [2022] Table 3) focus on the
basic minimization formulation. Notably, many of these results are often empirical and lack a theo-
retical foundation for convergence. Moreover, current results around the Lagrangian statement have
also shortcomings and are weakly studied. In particular, the widely-used approach to VFL based
on ADMM is costly, as two additional minimization subproblems must be solved on each iteration.
Thus, we propose to expand the theory around saddle point reformulations in this paper since the
augmented Lagrangian reformulation is a good alternative to the classical minimization formulation.
In particular, we address three research questions:

1. Is there any other way to rewrite the VFL problem which can provide advantages to the
standard minimization formulation?

2. What basic method should be used to solve the new VFL problem reformulation?

3. Is it possible to modify the basic method for practical use?

1.1 OUR CONTRIBUTION

o New look at VFL. We first consider the VFL reformulation via classical Lagrangian and show that
if the original VFL problem is convex, then the reformulation is convex-concave Saddle Point Prob-
lem (SPP), hence methods for SPP, such as ExtraGradient (Korpelevich, |1977; [Nemirovskil
2004)), can be applied to it.

o New basic method for VFL. The classical Lagrangian is a convex-concave SPP that can be solved
using optimal methods. We introduce the basic deterministic algorithm and its efficient stochastic
modifications for VFL and prove that they significantly outperform existing techniques, e.g., ADMM,
in terms of iteration cost (Table[T]in Appendix[A].

o Family of practical modifications. We present various modifications of the basic version of
the algorithm to address practical needs and to make the basic algorithm more robust, including 1)
introducing compression operators to reduce the amount of transmitted information and solve the
communication bottleneck (Alistarh et al., 2017; |2018); ii) allowing partial participation for asyn-
chronous device communication (Ribero & Vikalol [2020); iii) a coordinate modification to reduce
the cost of local computing (Nesterov, 2012). Moreover, we show that the saddle reformulation
allows to fully reveal the possibilities of these modifications.

o More VFL reformulations. We consider additional saddle point reformulations of the VFL prob-
lem, which have advantages, such as easier stepsize estimation, but require extra memory or exis-
tence of dual function of the loss.

o Extension to non-convex problems. We show how our approach can be generalized to handle
non-convex learning problems. It is worth noting that all modifications are easily transferable.

e Numerical experiments. We show empirically that our approach can outperform existing VFL
solutions in the standard minimization formulation and the saddle problem reformulation.

1.2 TECHNICAL PRELIMINARIES

We use (a,b) = Z?Zl[a]i[b]i to denote the standard inner product of a,b € R% where [a]; cor-
responds to the i-th component of a in the standard basis in R?. It induces ¢5-norm in R? in the
following way ||z||2 = /(z,z). To denote maximal eigenvalue of positive semidefinite matrix

M € R™? we use Amax(M). Operator E- denotes mathematical expectation, and operator E¢|-]
express conditional mathematical expectation w.r.t. all randomness coming from random variable €.

We also need two classical definitions for the function f.

Definition 1.1. The function f : R? — R, is L-smooth, if there exists a constant L > 0 such that
Vz,y € R ||V f(z) = Vi)l < Lllz —yl.

Deﬁnitiodn 1.2. The function f : R? — R, is convex, if f(z) > f(y) + (Vf(y),z — y) for all
z,y € R
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2  SADDLE POINT REFORMULATION AND EXTRAGRADIENT

Reformulation. The most common problem in machine learning, known as empirical risk mini-
mization (Shalev-Shwartz & Ben-David, [2014), can be formulated as follows:

mingepa  [f(2) := €(Az,b) +r(z)], (1)

where x is a vector of model parameters, A € Rs*d is a data matrix, b € R* is a vector of labels,
¢ : R® x R® — Ris a loss function,  : R — R is a separable regularizer, s is a number of
data samples and d is a size of the model. This paper considers a VFL setting where data is stored
across n different devices. Here, the matrix A is divided by columns, and each device gets different
features of each of the s data points (for simplicity, we assume that the matrix A contains no missing
data). Thus, we can rewrite (II]) in the form of the VFL problem (Liu et al.| 2024):

mingepa [£ (307 Aiwi, b) + 301 ri(@i)], 2)

where A; € R**% is alocal data matrix on the i-th device, x; is a part of the parameters correspond-
ing to the features of ¢-th device. It is natural to assume that x; lies on ith device. We additionally
assume that labels b contain private information and are stored in the first device. Problem (2)) can
be rewritten as a constrained problem with additional variable z € R?:

minmeRd min,cgs [f (Z, b) + Z?:l rl(a:l)] , S.t. Z?:l Az, = 2. 3)

In turn, the problem with constraints can be rewritten as a saddle point problem, where the target
function is the Lagrangian function

ming, .)epa+s Maxyers [L(x, 2,y) = 0 (2,b)+ 30, ri(w) +y" (T, Aiwi —2) ] @)

Formulation (4)) is the focus of our paper. Meanwhile, as we mentioned earlier, approaches to
VFL based on ADMM also consider the Lagrangian functions with a regularizer (p/2)|| >, A;z; —
z||? (we consider this case in Appendix . For both reformulations, we propose a method that
guarantees its convergence.

Why saddle point? Let us try to motivate the use of the saddle point reformulation (4) instead of
the classical minimization problem (1)) with the following example.

If we consider the classical formulation (H]) which is valid for both vertical and horizontal cases, the
main difference between these two types of data partitioning is the nature of the gradient computa-
tion, in particular concerning the communication process. In the horizontal case of , all workers
have the same parameter vectors but different training samples: ¢(Axz,b) = Y7, {(A;z,b;), where
A; € R4 b € RS, To compute the gradient, we simply accumulate Vmé(fljxk, l;j) from all
the workers: Vf(x) = 2?21 Vo l( A", i)j) In the vertical case, to calculate the gradient for
the parameters x; stored on the ith device, it is necessary to obtain A;z; from all the devices:
Va, f(x) = ATV L(2,b) with 2 = 37| Aja;.

In modern applications, various kinds of stochasticity arise in communication: compression to speed
up information transfer or random noise for privacy (Abadi et al.,|2016). Let us consider the simplest
model in which the stochasticity of communication is additive to the package on which it acts:
package + noise £. As we discussed, we send different things in the horizontal and vertical cases.
More specifically, the randomness we introduce has the following effect on the true gradients:

Vf(z) — Z?zl[vié(fljxk, bj) + &) = > i1 Vo l(Aj, b;) + i £, in the horizontal case,
Va f(x) = ATV L(2,b), where z=3" | Ajz;+§;, in the vertical one.

A key detail can be seen here: the simplest additive stochasticity in the horizontal case remains
additive, but in the vertical case, the influence of randomness dips much more firmly into the gradient
structure. Let us look at how this kind of stochasticity affects the saddle point reformulation ().
One can note that it is also necessary to collect A;z; during gradient computing. In more details,
VyL(z,z,y) = Z?:l Ajz; — z. With communication stochasticity this transfers to 27:1 [Ajz; +
&)=z =311 Ajz;+3°7_ §j—=. Theimpact of randomness is additive. Because the saddle point
reformulation “’separates” the loss function ¢ and the data matrix A, the influence of stochasticity
becomes more straightforward compared to (T).
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Before moving to stochastic methods, we must learn a deterministic algorithm as a base for con-
structing.

Basic method. The most straightforward idea is to solve the saddle problem using the gradient
descent-ascent method: z*+1 = 2% — yV, L(2*, y*), y**1 = y* + 4V, L(z*,y*). Gradient
descent-ascent is not the best solution (). Indeed, it gives relatively poor convergence guaran-
tees for strongly convex — strongly concave problems (Browder, |1966f Rockafellar, [1969; Sibony,
1970), and may diverge for convex-concave problems altogether (Goodfellow, 2016} Sections 7.2
and 8.2). Therefore, it is suggested to take the Ext raGradient/Mirror Prox method (Ko-
rpelevich, [1977; Nemirovski, 2004). The essence of this method is the use of an additional ex-
trapolation step: 2*+1/2 = 2% — 4V, L(zF y*), 2*+t1 = 2% — 4V, L(xFT1/2 4#+1/2) (the same
for y). It can be explained by the simplest example of a two-dimensional saddle point problem
ming e maxyer 9(,y) = ry.

For the first-order optimality con-
dition, it has the unique saddle
point with (z*,3*) = (0,0). In 1: Input: starting point (z°,2°,4°) € R4+25 stepsize v >
any point (2 y*), the step di- 0, number of steps K
rection of gradient descent-ascent 2: fork=0to K —1do
(=ViL(z*, y*), V,L(z* y*)) is 3: Istdevice sendsy to other devices
orthogonal to (z* —z*, y* —y*); thus  4: All send A;zk to 1st device
the iteration of gradient descent- 5. All update: xk“/ 2 gk _7( AiTyk_eri(xf))

6

7

8

9

Algorithm 1 EGVFL for (@)

—_

ascent enlarges the distance to the 1st updates: Zk:+1/2 _ Zlk — (VEL(2F,b) — y*)
saddle point. However, if we make ’

C k4172 _ ok n kK

the step of Ext raGradient, the It upd.ates. v i1 2y +7(ZZ:1_ Aiwy = 27)

.. E41/2  k41/2 Ist device sends y*+ /2 to other devices
direction (—V,L(zF+1/2, yF+1/2), . k+1/2 .
VUL(xk“/Q, yF+1/2)) attracts to : All devices send A;x; to 1st device
the saddle point.  Furthermore, 10: Allupdate: ot = af ATy 2 4 V(@ f“ﬂ))
ExtraGradient is optimal for 11: Istupdates: zF+1 = == —’y(Vf( kH1/2 by — yk+1/2)
convex-concave saddle point prob- 12: 1st updates: y*+! = y* + (X7, Az} kH/Q ZF /2y
lems (Zhang et al., 2021). Iteration 13: end for
of the ExtraGradient method
for our problem (4) is given in Algorithm|l} and convergence is proved in Theorem The proof

is postponed to Appendix

Assumption 2.1. The function ¢ : R® — R, is L,-smooth and convex. Each function r; : R% — R,
is L,.-smooth and convex.

Theorem 2.2. Let Assumption 22 hold. Let problem (@) be solved by Algorithm[I| Then for v =

. (1+\/>\max(ATA)+L +L,)D?
%~m1n{1'ﬁ, L, A it holds that gap (25, 25 55) = O( ¢ ),
where 5 — Zk Lagkt1/2 gK %Zf:ol A2 gK %Z - yk+1/2 and D2 —

Maxy ; yeX,z,y [||$ — x| + [|2° — 2]12 + [lg° — yll?].

In Theorem [2.2] we use the convergence criterion for convex-concave saddle point problems
gap(z, z,y):= maxgey L(z, 2, §) — ming zex z L(Z, Z, ). ®)

It is important that in the formulation of Theoremand in the definition @), we use some bounded
sets X, Z, ) although the original problem (IJ) is unbounded. Such an assumption is standard for
the analysis of methods for convex-concave problems. Criterion (3] can also be used for uncon-
strained/unbounded problems. To do this, one can use the trick from (Nesterov, |2007) and introduce
bounded sets X, Z, ) artificially as compact subsets of Rd, R?,R®. This trick is valid if some
solution z*, y*, 2* lies in X, Z, ). Moreover, following (Beck, 2017, Theorems 3.59, 3.60), one
can show that in Theorem [2.2| we can use the criterion: ¢(z¥,b) — £(2*,b) + || Az% — zK|, in-
stead of . It is more natural and means that Az% — zK and ¢(z2%,b) — ¢(Az*,b), which is
what is required in the original problem (I)) (see Section for more details). One can find a
simplified version of gap (Xu, [2017). If we assume the existence of some solution (x*, z* y*),
it can be used as follows: gap*(z,z,y) = L(z,z,y*) — L(z*,z*,y). Theorem can be
rewritten with gap*(z, z,y): there is no maximum in the right-hand side of the estimate, simply
|2° — || + |2 — 2*||% + ||y° — y*||>. But still, the use of (3] is preferable, e.g., for the already
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mentioned problem mingecr maxyer g(x,y) = xy with the solution (0, 0), but then gap*(z, z, y) is
always exactly 0. The following corollary can be easily derived from Theorem

Corollary 2.3. Under the conditions of Theorem [2.2) to achieve e-solution we need

(9( (14++v/Amax (AT A)+ Lo+ L,.) D? )
1>

iterations.

An intriguing feature of the saddle point reformulation is that the expression ¢( Az, b) can be equiv-
alently rewritten as ¢(Ax,b) with ¢(y,b) = £(y/B,b) and A = BA. We can select 8 such that in

Theorem we have \/Amax(ATA) = L;. Tt becomes evident that the appropriate choice for
((1+ 3 )\max(ATA)-Lg+LT)D2)

B = L)*/AMS. (AT A). Then in Corollary [2.3 we can achieve O -
iteration complexity (further details can be found in Section [D.I2). One can not Gradient

Descent (GD)and Accelerated Gradient Descent (AGD) - classical deterministic meth-
( Omax (AT A)-Ly+L,) D? )
€

ods for H have the following convergence estimates (Nesterov, 2003): O
VAmax (AT A)-Ly+L,.D . . .

and O( ( \/E) s ) respectively. It can be seen that the obtained result is better than

Gradient Descent, and better than Accelerated Gradient Descent in terms of

Amax (AT A) viewpoint (but worse in €). As we mentioned in Section there are approaches

for the saddle point reformulation, e.g., ADMM (Xie et al., 2022a). We compare the results in Table E]

(Appendix [A).

This is possible because the loss function ¢ and the data matrix A are “separated”. As mentioned
before, “separation” can be also good the stochastic algorithms, we explore them in the next section,
but now let us note that Algorithm [T| presents several drawbacks. One notable limitation is its de-
terministic nature. In the subsequent section, we underscore the disadvantages of this characteristic
and suggest alterations to enhance the foundational version of our general approach. Another signif-
icant drawback of Algorithm is its reliance on the knowledge of )\max(ATA). Given that parts of
matrix A are dispersed across different devices, determining )\max(ATA is challenging. However,
an estimation can be made using )\max(Aeri), as illustrated in Lemma Alternatively, we can
contemplate a reformulation that negates the need for A\ax (AT A) entirely, as discussed in Section
Furthermore, incorporating augmentation, as outlined in (Boyd et al., [2011}), can be beneficial
and straightforward for implementation. It is crucial to highlight that any variations derived from
Section ] and Appendix [C| as well as any adaptations of Algorithm [I]from Section 3] can be seam-
lessly integrated. Another limitation is that Algorithm [T] assumes we can calculate the gradient of
the function ¢ and the function . But not all functions even allow this. For example, one can choose
the ¢; regularizer as the function r. Or if we want to solve the constrained version of , we can
take r as an indicator function of some set X. We consider the case where ¢ and r are generally
non-smooth but simple in Appendix [B.1]

3 FAMILY OF MODIFICATIONS

This section presents the different modifications of Algorithm [T} These stochastic modifications
are one of the main reasons for using saddle point reformulation. In any distributed optimization,
including federated learning, both in its vertical and horizontal setting, the issue of communication
organization is crucial. In particular, a lot of research is related to the efficiency to spend less time
on communications (Konecny et al., 20165 |[Smith et al., 2018; |Ghosh et al., [2020; |(Gorbunov et al.,
2021)), since they are from some point of view a waste of time (Kairouz et al., 2021).

3.1 MODIFICATION WITH QUANTIZATION FOR EFFECTIVE COMMUNICATIONS

Let us take a look at one of one of the main techniques in the fight for communication efficiency
— compression (Seide et al., 2014} |Alistarh et al., 2017). The following definition can formally
describe the compression of communicated vectors.

Definition 3.1. Operator Q : R? — R is called unbiased compressor/quantization if there exists a
constant w > 1 such that for all x € R? it holds E[Q(z)] = =, E[||Q(z)|?] < wl|=|?.

Operator () can be e.g., random coordinate choice or randomized rounding (Beznosikov et al.,[2020).

Methods with compression in horizontal distributed learning are studied for quite a long time (Seide
et al.} 2014;|Alistarh et al.,2017). Variance reduction methods provide a breakthrough here, initially
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proposed to solve non-distributed stochastic finite-sum problems (Schmidt et al., 2017} Defazio
et al., 2014; Johnson & Zhang, 2013 [Nguyen et al.l 2017). Several papers have shown that the
variance reduction technique can be transferred to the distributed case, where stochasticity appears
not from the random choice of the batch number but from the compression (Mishchenko et al.,
2019; |Gorbunov et al., 2021 |Qian et al., |2020). For our algorithm with unbiased compression
(Algorithm [2)), we ta.ke the variance reduction method for saddle p01nt problems from (Alacaoglu
& Mahtsky, 2021). We introduce an additional sequence of points w¥ (reference points for z¥) and
u” (reference points for 3*). In contrast to the classical variance reductlon technique, we do not
introduce reference points for the z variables since we do not communicate them. To update all
wY and u* synchronously, we need to generate b, € {0, 1}, one can set the same random seed for
generating b* on all devices to avoid additional communication. Next, we have to send full vectors
Aw? and u* to the first device and all the others, respectively. The key is that the reference points are
updated rarely, namely with low probability p, only when by, = 1 (see lines —. When w¥ and

u* are not updated, we only send compressed vectors Q(y"+1/2 — u¥) and Q(A;zt /% — A;wk)

(lines [6] [7). Sending compressed information, rarely forwarding full packages, is the main point of
Algorithm 2] Theorem [3.2] gives the convergence; its proof can be found in Appendix [D.3]

Theorem 3.2. Let Assum ition- 2 1| hold. Let problem (E) be solved by Algorithm 2| with operator Q

that satisfies Definition Then for v = % min {1, I3 Lé \/NA :*( AATY \/W\ :?ZAT) }
T = 1 — p it holds that

]Eg(lp( K K K + \/> max AAT)) + L@ + LT}%)a

where T, 2K, g5, D? are defined in Theorem

In Algorithm one mandatory Algorithm 2 EGVFL with unbiased compression for (4)
communication round with com- . ) 0 0 o ey 0 o
pression occurs and possibly one I’ Ir:ip+ut: initial point (%,27,9%) € R, (w',u?) €
more (without compression) with RT?, stepsize y > 0, number of steps K

probability p. If Q compress a pack- 2 for k =0to K ft }Qdo

age by a factor of §, then each it- 3: Allupdate: z; Tl 4+ (1 - 1)wf

eration requires O (87! + p) data v (ATuk + Vr(ah))
transfers on average. If p is close  4: 1stupdates: zF+1/2 = 2k — fy(vg(zk7 b) —y*)

to 1, Theorem gives faster con- 5. gt updates: yk+1/2 _ Tyk +(1- T)uk

vergence, but more data transfer is +’Y(ZT‘L—1 Aywk — 2F)
needed. If p tends to 0, the transmit- 6 lstsends Q(y"+1/2 =
ted information complexity per iter- ' k12
ation decreases but the iterative con- /- All send Q(Az; — Awf) to 1st

vergence rate drops. The optimal ~ 8: All update: a?kﬂ =7k + (1 - 7)wf

choice of pis 3~'. For Theorem[3.2] —(AT[Q(y Y uF) 4+ ub] + V(@ k+1/2))
;)ne can obtain an analogue of Corol_— 9: Istupdate: zF*1 = 2k — 4(Ve(z k+1/2’ b) — yk+1/2)
ary [2.3] which states that if p = .
(371, then the iterative complexity of
Algorlthm is v/wp times higher
than for Algorithm [Tl But the esti-
mated amount of information trans-

u*) to other devices

Ist update: 51 = 79/% 4+ (1 — 7)uF
"”7(2?:1[@(141‘37?“/2 AgwF) + AwkF] — 2FH1/2)
11:  Flip a coin by, € {0, 1} where ]P’{bk = 1} p
12:  if by = 1 then

ferred for Algorithm[2]is /3 times less 13: All update: w%cjll = a:i;

than the iterative complexity. For !4 Istupdates: u*™" = y*

Algorithm [T} the complexity of the 15 All send uncompressed A; wk+1 to 1st
transmitted information matches the 16: Ist sends uncompressed u k41 to other devices
iterative one. Moreover, for most 17: else

practical operators 3 > w. Hence, 18: All update: w? ™! = wk

in the view of full information trans-  19: Ist updates: w1 = uF

ferred, Algorithm [2] may be better 20: end if

than Algorithm [T 21: end for

The use of compression was investigated for the VFL problem, but not in the saddle point formu-
lation. The papers (Chen et al., 2021b}; | Xu et al., 2021} |Cai et al.l 2022} [Sun et al., [2023) do not
provide theoretical guarantees at all. The work (Castiglia et al., |2023) investigates only special
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cases of compression operators. Only the authors of paper |Stanko et al.|(2024)) give guarantees only

2 /\mx(AA ) D?

for the quadratic loss £: O(w (AAT) K2 ). This is much worse than our guarantee estimates.

m in

3.2 MODIFICATION WITH BIASED COMPRESSION FOR MORE EFFECTIVE COMMUNICATIONS

Using unbiased compression operators is more straightforward in theory, but the most popular com-
pression operators in practice are biased (deterministic rounding (Horvath et al, [2019), greedy co-
ordinate selection (Alistarh et all 2018)), vector decomposition (Vogels et al., [2019)) and can be
described as follows.

Definition 3.3. Operator C' : R? — R? (possibly randomized) is called a biased compressor if there
exists a constant > 1 such that for all # € R? it holds E[|C(z) — z[* < (1 — }) |||/

Using biased compressors is a complex issue. It can cause divergence even for quadratic problems
(Beznosikov et al., 2020). To fix this, an error compensation technique (Stich et al.| 2018}; Karim-
ireddy et al.l [2019; [Stich & Karimireddy} 2019) can be applied. This approach accumulates non-
transmitted information ({ey }, {eF}) and adds it to a new package at the next iteration of Algorithm

2
6: 1st sends C(y*+1/2 — u¥ + €*) to other devices
Ist updates: eFT1 = yFT1/2 —yb 4 ek — O(yFH1/2 — yk 4 eF)
7: All send C(Ai:cfH/Q — A;wF + ek) to 1st device
All update: €' = A28 2 = Ak 4 eF — C(A2l T2 - Aiwf +eb)
8: Allupdate: z¥* = 72F + (1 — 7)wF — y(AT[C(yF+1/2 — uF + eF) + uF] + Viry(x k+1/2))
10: 1st update: y**! = 7% + (1 — 7)u” + 'y(ZZ.L:l[C’(A,a:kH/Q Agwf 4 eF) + Aywh] — 2FH1/2)

The full version of the algorithm is given in Appendix Theorem gives the convergence,
and proof can be found in Appendix Note that the proof techniques of Theorems [3.2] and
Theorem [3.4]differ considerably, just as the proofs of convergence of distributed GD with unbiased
and biased compression (Mishchenko et al.,|2019; |Stich & Karimireddy, |[2019).

Theorem 3.4. Let Assumption 2.1 holds.  Let problem be solved by Algorithm [3| (Ap-
pendix [A) with operators and C, which satisfy Definition Then for r = 1 — p and

1—7 . 1—7 . .
v = gmin{l; 7-; 73 \/62[Amax(AAT)-i-n‘maxi{)\max(AiAf)}]’ \/wAmax(AAT)  }, it holds that

Egap(zX, K,yK)—(’)([\%( Amax(AAT)+n - ,nax {\/ max(AiAT)Y) + Lo + L] )

where T, 2K, g%, D? are defined in Theorem

The choice of optimal p is the same as Algorithm [2| It is enough to take p = B3~!, where f3 is the
compression power of C'. The estimate from Theorem shows the central theoretical problem
with biased compressors. If  ~ w, the results in Theorem are worse than in Theorem
Unfortunately, this kind of problem is inherent in all work around biased compressions — one cannot
fully theoretically justify that biased compressors perform better (Gorbunov et al., 2021} [Stich &
Karimireddyl [2019; Richtarik et al.||2021). The only thing we can fight for is more or less acceptable
convergence. Meanwhile, intuition and practical results show that biased operators are superior to
unbiased ones (Beznosikov et al., [2020; Richtarik et al., [2021).

3.3 PARTIAL PARTICIPATION FOR ASYNCHRONOUS CLIENT CONNECTION

Algorithm [I] requires that at each
iteration all devices communicate o Ft1/2 k
(send and receive messages). It is 7: Random device iy sends A, — A;, w; to Ist
possible that some devices may drop ~ 8: All update: 27! = 72 + (1 — 7)w}

out of the learning process. In this T, k+1/2 o k+1/2
subsection, we cgnzider a modifi- _,j (A y / k+ Vn(xi )

. . 10: 1st update: y*+! = 7y* + (1 — 7)u

cation of Algorithm [I] where only k12 /o
1 randomly selected device commu- +y(n [Alk‘rzk — Al ]+ 300 Ajwf — 2R
nicates at each iteration (Ribero &
Vikalo, 2020; (Chen et al., 2020; (Cho et al., 2020; |La1 et al., 2021). We take Algorithm [2| as a

6: st sends y*T1/2 to other devices
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base, but instead of compression, we use random client selection and only send information from
this client to the first device (see Algorithm []for full description).

Even though the first device sends yk+1/ 2 to all devices, this does not mean that all devices need
to receive the message at the exact same moment. They can get a set of several messages with y at
once when they contact the first device. In that case they just do several sequential updates of z;.

Theorem 3.5. Let Assumption@] holds. Let problem () be solved by Algorithm [ (Appendix [A].
ThenforT =1 —pand’y - mln{L T, ; le \/)\ (AAT) — A-AT)}}’ it holds that

+n-max; { Amax (Ai

Egap(z*, 2, %)= O ([ﬁ( Amax(AAT) 41+ max { Amax(AiA7)}) + Le +LT]%2> ’

where 25, 2K, 5K, D? are defined in Theorem

Using the same reasonings as after Theorem [3.2] one can find the optimal choice of p. In Algorithm
[ one mandatory communication round with only 1 client occurs and possibly one more (with all
clients) with probability p. Then each iteration requires O (n + p) data transfers on average. The

optimal choice of pis 871.

3.4 COORDINATE MODIFICATION FOR LOW-COST LOCAL COMPUTING

The last modification is related to cheapening the cost of local computatlon in Algorithm[I] The
most expensive local operations are matrix vector multiplications: A;z% and ATy*. To make them
cheaper, we can apply to the idea of coordinate descent (Nesterov, 2012 Nesterov & Stichl [2017;
Richtarik & Takac, 2013 |Qu & Richtarik, 2016) and compute not all coordinates for the resulting
vectors A;z% and A; y" but only 1, then instead of multiplying matrix by vector, we just compute
the scalar product of two vectors. This is implemented in the following modification of Algorithm[2]
The full version of algorithm (Algorithm [5) is given in Appendix [A] Theorem [3.6| gives the conver-
gence, proof can be found in Appendix [D.6|

6: 1st sends y**1/2 to other devices

7: All choice coordinate(s) cF, computes <Ai(xf+1/ R

), €cr)€cr and send to st
8: All choice coordinate(s) j; k and update: -

Pt = 1ok 4 (1 — m)wF — ~(d; - (AT (yF /2 — Uk)76Jk>6 x + ATuk + Vr(z k+1/2))
10: st update:

Y = Tyt 4 (L= ) (0 s - (Al T —wh) e s + Agwl] — 2EH12)

7

Theorem 3.6. Let Assumption@] holds. Let problem () be solved by Algorithm 3| (Appendix [A].
Then for v = 7 mm{l, .’ L,{ \/ ,\m: (,ZTA)’ \/dma,x{Al_T(ATA_)}}andT = 1 —p, it holds that

S d
Egap(fK, ZKv gK) = O([ﬁ /\max(ATA) =+ ﬁ : 1=Hll,axn{ Amax(AiAzT)} + Lf + LT]%)v
where T, 2K, g%, D? are defined in Theorem

Using the same reasonings as after Theorem [3.2] one can find the optimal choice of p. In Algo-
rithm 5] two mandatory computing of scalar products (instead of matrix vector multiplication) take
places and possibly two matrix vector multiplications with probability p. Then each iteration re-
quires O (n + s + p - ns) local computations on average. The optimal choice of p is (n + s)/(ns).

4 FAMILY OF REFORMULATIONS

Let us discuss other reformulations beyond (EII), e.g., a reformulation with additional variables. In
formulation , instead of Ax = z, we can introduce constraints in a different way with variables
z; € R® fori € {1,2,...,n} as follows

ming cga mingers [0 (O, 2i,0) + >ory ri(xi)], st. Ay =z for i=1,...,n.

The expression in the form of a Lagrangian function is
min(, .)eRrd+sn MaXyeRsn [i(x, 2,y) = E(Zz 1% b)+ 22;1 ri(Ti) + Z?:l Z/ZT(AN% —zi)]. (6)
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This saddle can be also solved using Ext raGradient (see Algorithm[6]in Appendix [A).
Theorem 4.1. Let Assumption 2.1 holds. Let problem (6) be solved by Algorithm 6] (Appendix [A).

Then for v = % - min {1; 7 o 1 A )}; LL; %Lz , it holds that
maX;Amax(A4; Aq T

K =K - (1+y/maxi=1,...,n {Amax (AT Ai) }4+nLe+ L) D
gapy (&%, 75, 57 )= O( UV mimtcn D (A7 A} L )

where gap,(x,y) := max; .y f/(x, z,§)—ming ., > f/(i, Z,y) and zXK, 25, y&, D? are defined
in Theorem[2.2l

An important detail to note it is that the step -y in Theorem depends on Apax (A; AT). Previous
algorithms assumed knowledge of the estimate for Ay,.x(AA*) which can be disadvantageous be-
cause we cannot collect A on a single device, and estimating \pax (AAT) through Apax (4; A7) can
give deplorable results.

Other reformulations are presented in Appendix [C} Although this paper focuses primarily on the
classical Lagrangian, we also consider the augmented version, present an algorithm for it, and prove
convergence estimates. The convergence estimates of the method for the augmented Lagrangian are
no better (or even worse if the augmentation parameter is high) than those of the method for the clas-
sical Lagrangian. That is why we focus on the non-augmented formulation and put the augmented
one in Appendix It is important to emphasize that for all reformulations, all modifications from
Section 3 can be made.

5 EXTENSION TO NON-CONVEX MODELS

Let us consider a more general formulation where we can use arbitrary functions/models g; (A;, w;) :
Réw; — R*% with weights/tuning variables w; € R instead of fixed data matrices A; :
n

ming, ,)era+dw [€ (D iy 9i(As, wi)xi, b) + 37 ri(x;)], Here, the analogue of the Lagrangian
function (4) can be written as follows:

min(x7w7z)eﬂgd+dql,+s maxyeRs 14 (Z, b)+ Z,Zl:l rz(:vz) + yT( Z?:l g; (Az, wz):cl — Z)i| . (7)

This SPP is generally not ~ 4: All send g;(A;, wF)xF to 1st device

convex-concave, but can 5. All update: zF™/% = z¥ — (g7 (As, wl)y" + Vri(2h))

be solved by the modi- Al update: w! "% = wh —((4") " Voi(4i wh)at)
ed version of Algorithm C 12 ok no A kN kK

The complete list- 7: 1t updates: y ;gJJ/Zzl :11(/22:1:1 gl(A“?UZ Jai =)

ing of the algorithm can  9: Allsend g;(A;, w; )z, to 1st device

be found in Algorithm 10: Allupdate: 54! = 2% — 4 (g7 (As, w T2y 12 4 Vi (2 1/?))

(Appendix[A). All update: wf™ = wf — y((y*/?) Vi (A, w2l 2

12: 1stupdates: y*** = y* + (320, g9i(As, wf+l/2)mf+1/2 — R

6 EXPERIMENTS

Regression. We conduct experiments on the linear regression problem:

min,ega f(z) = 3[|Az — b||? + A||z]|3. Here, the smoothness constant of gradients is

L = Amax(AAT) + X with A = Apax(AAT)/10%. Other smoothness constants, which we
use in theory for our method, are L, = 1, L, = A\. We take mushrooms, a9a, w8a and MNIST
datasets from LibSVM library (Chang & Lin, [2011). We vertically (by features) uniformly divide
the dataset between 5 devices.

This experiment uses different formulations to compare deterministic methods for solving the VFL
problem. Here, we’re not focusing on the distributed nature of the problems; instead, we aim to
show that the saddle point reformulation using the classical Lagrangian function has merit (we in-
vestigate modifications in Appendix [E) and methods for solving it can compete effectively with
other approaches.

Since there are two formulations of VFL, classical minimization and saddle point, we choose several
methods for each formulation. For the minimization formulation, we take GD as the most popular
method, and AGD (Nesterov, 2003) as the theoretically unimprovable first-order method for smooth
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convex problems. For the saddle point formulation, we consider ADMM and Algorithm [T, The
methods are tuned according to the corresponding theory. For GD we choose step as % (Polyakl,

1 VL—VA
2020), for Nesterov — step as 7 and momentum as NI (Nesterov, [2003), for ADMM we take

regularizer parameter equal to \/ﬁ (Lu & Yang| 2023)). Algorithm|l{is tuned according to

Theorem [2.2] with and without S-trick (see disscusion after Corollary 2.3). The application of the
[B-trick can also be considered for other methods. However, in the case of GD and Nesterov, it
does not alter the method since the data matrix A and the loss function £ are not split. All methods
start from zero.

MUSHROOMS (THEORY) A9A (THEORY)

—— G

—— The results, illustrated in Figure
<wwo | [T} show that Algorithm [I] with
o] the choice B convergence dra-
matically faster, the basic version
Algorithm [T]initially lags behind
GD and Nesterov, but in terms
of steady-state convergence Al-

o g oo 7o o e B ™ ™ gorithm [[] converges faster and
(a) mushrooms (b) a9a eventually surpasses both GD and
A HYISTAHEORD sometimes Nesterov. Further-

3 ey o | more, as previously discussed in
T lemsme | Section [T} the saddle reformula-
tion offers advantages in terms

of privacy. Significantly, we sur-
pass our competitor in solving
1000 2000 3000 4000 5000 6000 7000 8000 "~ 1000 2000 3000 4000 5000 6000 7000 8000 SPP N ADMM’ Wlth ADMM alSO
Iteration, No. Iteration, No. exhibiting notably costlier itera-

(c) w8a (d) MNTST tions. The same experiments but
Figure 1: Comparison of methods for solving the VFL problem in dif- with grid-search tuning of pa-
ferent formulations: minimization (GD, Nesterov) and saddle point rameters for all methods is pre-
(ADMM, ExtraGradient/Algorithm[I). The comparison is made on  gented in Appendix@ In this set-
LibSVM datasets mushrooms, a9a, w8a and MNIST. ting, Algorithm |I| is even more

EG B-TRICK 107
—4 NESTEROV

—— ADMM B-TRICK

[AXN) = fix )] 7 1Ax0) = fix™)|

|fxN) = fx )| 1 |F(x®) = f(x )|

~de= ADMM
—— ADMM B-TRICK

|FxN) = fx )| / 1fx®) = fix )|
[fxN) = fx )| 1 |f(x®) = f(x )|

faster than competitors.

CIFAR-10

Fine-tuning of neural network. We consider the pre-trained
ResNet18 model on the ImageNet dataset. Our goal is to fine
tune it on the CIFAR-10 dataset. As in the previous experiments,
we take 5 clients, each client gets all the images, but only parts of
them (about 1/5 of the whole image for each client). Then, each
client passes its image portions through the pre-trained ResNet

5

=k EG
EG B-TRICK
—& NESTEROV

H
2

e~ ADMM B-TRICK

= =
2 2

|fxN) = fx )| 1 |F(x®) = f(x )|
H

without the last linear layer, adjusting for the square size. As a

result, each client receives embeddings corresponding to its sliced PO fieration, No. < T "
images. A new linear layer with the cross-entropy loss is trained
on the embeddings of all clients, which means that the partition-
ing of the data is also vertical in this case. As in the previous . = A, ;

. in different formulations: min-
paragraph, we use GD, AGD, ADMM and Algorithm [I] as methods imization  (GD Nesterov)
for comparison. The methods are tuned as in the corresponding .4 saddle ,point (ADMM,
theory, since for this problem we can also estimate L. In the case  gxt raGradient/Algorithm
of the |I|and ADMM algorithms, we also use the ﬁ—tl‘iCk. m) The comparison is made on
CIFAR-10 dataset.

Figure 2: Comparison of methods
for solving the VFL problem

The results reflected in Figure [2] show the superiority of Algo-
rithm [1] over competitors. When the -trick is used, Ext raGradient significantly outperforms
other methods, but even without the S-trick Algorithm [I] converges slightly worse than AGD, but
later overtakes it as well.
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Appendix

A MISSING ALGORITHMS AND TABLE

Algorithm 3 EGVFL with biased compression for (@)

1: Input: starting point (20, 20, y%) € R¥+25 (0% u®) € R4+, stepsize v > 0, number of steps

K

2: fork=0to K —1do

3 All devices in parallel update: $§+1/2 =72l + (1 — 7)wF — v (AT + Vri(ah))
4 First device updates: 2¥+1/2 = 2F — v(V{(2*,b) — )
5 (1
6
7

First device updates: y*+1/2 = 7y% + (1 — 7)uF + v (31| Ajwk — 2F)
First device compresses C'(y/*t1/2 — u* 4 ¢*) and sends to other devices
First device updates: e#1 = y#1/2 —yF 4 ek — O(yF+1/2 — 4% + eF) and sends to other
devices i1/
All devices in parallel compress C'(A;z " 2 _ A;w¥ + ef) and send to first device
9: All devices in parallel update: ef ™! = Aizfﬂm — Ajwk + ek — C’(Aiz:iﬁl/2 —A;wl +eb)
10: All devices update: =it = 72 + (1 — 7)wf — y(AT[C(yFH1/2 — uF + €F) + uF] +
k41/2
V(e )
11:  First device update: 251 = 28 — (VL(2FF1/2 b) — yF+1/2)
12:  First device update: y** = 7% + (1 — 1)u* + (>, [C(A;x
Agwh] — 2F+1/2)
13: Flip a coin b, € {0,1} where P{b;, = 1} = p
14: if b, = 1 then

o0

k+1/2
i

— Ayl + ef) +

15: All devices in parallel update: wf“ = b

16: First device updates: u**1 = 7"

17: All devices send uncompressed Aﬂuf“ to first device
18: First device sends uncompressed u 1 to other devices
19: else

20: All devices in parallel update: wf“ = wk

21: First device updates: u**! = *

22: end if

23: end for
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Algorithm 4 EGVFL with partial participation for ()

1: Input: starting point (20, 20,9%) € R¥+25, (w®, u®) € R9*+*, stepsize v > 0, number of steps
K

2: fork=0to K —1do

3:  All devices in parallel update: ka/Q + (1 — — v (AT uF + Vr(ah))

4:  First device updates: 2¥t1/2 = 2F — ~(V ( k ) )

5. First device updates: y*+1/2 = 7¢% + (1 — ) (Zi:l Agwk — 2F)

6 First device sends y*11/2 to other devices

7 Random device i, sends (A;, :UZH/ 2 A wk ') to first device

8 All devices update: 5 = 72k + (1 — 7)wh — y(ATy*+1/2 4 Vr (2 T1/%))

9:  First device update: zF 1 = 2k — 4(V/(z k+1/27 b) — yFt1/2)

10:  Firstdevice update: y*+! = 7¢y* + (1 —7)uF +~(n- [Aikxﬁjlﬂ A wl 14370 A

kH1/2)
11:  Flipacoin b € {0,1} where P{b, =1} =p
12: if b, = 1 then

13: All devices in parallel update: wr™! = z¥

14: First device updates: u**1 = ¢/*

15: All devices send uncompressed A; wl’”l to first device
16: First device sends uncompressed u* +1 to other devices
17: else

18: All devices in parallel update: wF** = wk

19: First device updates: u**1 = uF

20: end if

21: end for

Algorithm 5 EGVFL with coordinate choice for

1: Input: starting point (20, 20, ) € R¥+25, (w? u®) € R+, stepsize v > 0, number of steps
K

2: fork=0to K —1do

3: All devices in parallel update: xk+1/2 Taf + (1 — 7)wF — v (AT Wb + Vry(2h))

4 First device updates: 2¥+1/2 = 2k — 4(V{(2*,b) — y¥)

5 First device updates: y*+1/2 = 7y% + (1 — 7)u* + (301, Ajwk — 2F)

6 First device sends 3*11/2 sends to other devices

7

All devices in parallel choice coordinate(s) c¥, computes <A7;(ch+1/ - wk), eqr)e . and
send to first device
8: All devices choice coordinate(s) jF and update: 2zt = 7aF + (1 — )wh — ~(d; -

(AT (y*+1/2 —ub), e )epn + ATu + Vi (2 77))

9:  First device update: K gk Y (VE(FH1/2 ) — yk+1/2)

10:  First device update: y* 1 = 7yk + (1 — 7)u* + v(31, [s - (Ag (2 T2y, ek )eck +
Aiwf] — zk+1/2)

11: Flip a coin b, € {0,1} where P{b, =1} =p

12: if b, = 1 then

13: All devices in parallel update: wf“ =¥

14: First device updates: u**! = y/*

15: All devices send uncompressed A; wk'"1 to first device
16: First device sends uncompressed u’€+1 to other devices
17: else

18: All devices in parallel update: w*** = w

19: First device updates: u**! = uF

20: end if

21: end for
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Algorithm 6 EGVFL for (6)

1: Input: starting point (20, 20, 4°) € R¥*25, stepsize v > 0, number of steps K
2: fork=0to K —1do
3: First device sends y¥ to other devices

First device sends ylk /2 {0 other devices

4: All devices in parallel send A;z¥ to first device

5: All devices in parallel update: 7"/ = 2% — y(ATyk 4+ Vr;(2F))
6:  First device updates: 27 T1/% = zF — (VO 2F,b) — yF)

7: First device updates: y* /% = y¥ 4+ y(A;ak — 2F)

8:

9:

All devices in parallel send Aixfﬂ/ ? to first device

10: Al devices in parallel update: 25! = z% — y(ATyF /2 4 vp (2 T1/%))

K]
11: First device updates: zF 1 = 2F — (V(3 1, sz/Q, b) — ny/Q)
12: First device updates: yF ™' = y¥ + v(Ai:erp — zf+1/2)

13: end for

Algorithm 7 EGVFL for

1: Input: starting point (2, w®, 20,9°) € R4T4w+2s stepsize v > 0, number of steps K
2: fork=0to K —1do
3: First device sends y* to other devices

All devices in parallel send g;(A;, w¥)z¥ to first device

4
5: All devices in parallel update: xf+1/2 =aF — (¢ (Ai, wF)y* + Vri(ah))
6: All devices in parallel update: wa/Q =wl — v (") Vgi(Ai, wF)al)

7 First device updates: z¥+1/2 = 2 — 4(V{(2*,b) — y¥)

8 First device updates: y*+1/2 = y* + 4 (307, g;(A;, wh)zl — 2F)

9 First device sends y*11/2 to other devices

k+1/2)xf+1/2 to first device

10: All devices in parallel send g;(A;, w;
11:  All devices in parallel update: 25! = zF — (giT(Ai, w2y k)2 Vri(mfﬂp))
12: All devices in parallel update: w1 = wF — ((y"'“/z)TVgi(Ai, wfﬂ/z)xfﬂm)
13:  First device updates: zF+1 = 2F — y(VE(2FH1/2 b) — y*+1/2)

14:  First device updates: y*+1 = ¢* 4 v (Z?:l gi( Ay, w2tz zk+1/2)

15: end for
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B MISSING MODIFICATIONS

B.1 PROXIMAL MODIFICATION FOR COMPUTATIONAL FRIENDLY LOSSES/REGULARIZERS
AND CONSTRAINED SETTING

Here we consider the case of non-smooth, but computing-friendly ¢ and . One can modify lines 5]

el in Algorithm [T]as follows.

Algorithm 8 EGVFL for () with proximal friendly functions

1: Input: starting point (20, 20,4%) € R4*25, stepsize v > 0, number of steps K
2: fork=0to K —1do
3: First device sends 4/* to other devices

All devices in parallel send A;z¥ to first device

All devices in parallel update: 2 '/% = prox.,,. (z§ — yA]y¥)

First device updates: z**1/2 = prox., (2" 4+ vy*)

First device updates: y*+1/2 = y* + (3°0 | v A;2F — 42F)

First device sends y**'/2 to other devices

All devices send wAia;fH/ ? to first device

10:  All devices in parallel update: ;™" = prox_, (zF — yATy*+1/2)
k+1 _ prox,yz(zk + ,Yyk+1/2)

12:  Firstdevice: y* ™1 =y* + (30, N At THE oy pkt1/2)

13: end for

Y XeRx;Un

11: First device: z

Here prox., ; is a proximal operator (Parikh et al., 2014): prox_ () = arg min,cga (7f(y) + e —
y||?). In the general case, solving an additional minimization problem to calculate such an operator
is necessary. But, in the case of simple, proximal-friendly functions ¢ and r, the proximal operator
has a closed-form solution and can be computed exactly and sometimes for free. Theorem [B.1] gives
the convergence, and proof can be found in Appendix

Theorem B.1. Let ¢ and r be proximal-friendly and convex functions. Let problem (@) be
solved by Algorithm |8 (Appendix EI) Then for v = -5 min{1; —\/m}, it holds that

2
gap(zX, 25 %) = O( Lty '\"‘“}(ATA))D ), where zX, 2K, g%, D? are defined in Theorem

C FAMILY OF REFORMULATIONS

C.1 REFORMULATION WITH AUGMENTATION

Let us consider the augmented version of ({@):

i max [Lavg(2, 2,y) = £(2,0) + 301 milw) +y (201, Avws — 2) + 51 00, Ay — =[]
8)

where p > 0. The statement @ is classical and is considered in (Boyd et al.| [2011). The saddle
point problem (8) can also be solved using the Ext raGradient technique.

Theorem C.1. Let Assumption[2.1|holds. Let problem (8)) be solved by Algorithm|[9) Then for

1 e 1 1 1 1 1 1
— 1 mind1:L: . . 1.1
7= 1 { 727\ Amax(ATA) \/pAmax(ATA) PAmax(ATA)? Ly Le } ’

it holds that

8P, (TX, 25, g5) = O <(

)

1+p+\/(1+p>Amax(ATA)+pAmx(ATA)+Le+Lr)02>
K
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Algorithm 9 EGVFL for

1: Input: starting point (20, 2°,4°) € R4+23, stepsize v > 0, regularizer p, number of steps K
2: fork=0to K —1do

3: All devices in parallel send A;z¥ to first device

First device sends y* and 37" | A;z¥ — 2" to other devices

All devices in parallel update:

oy % = af =y (AT + Iri(al) + pAT (T, Awef = 2H))

First device updates. ZRHV2 = 2k (VE(2F,0) — g + p(2F — 37, Aixh))
First device updates: y*1/2 = y% + ~(3°7" | A;ak — 2F)

All devices send Aimfﬂ/ ? to first device

First device sends y*+1/2 and S| A;2F /% — 2k+1/2 0 other devices

All devices in parallel update:

= b =y (ATY 2 4 V(TP 4 pAT (1L Ak — 24))

11:  Firstdevice: 2FH1 = 28 — y(VL(2F+1/2 b)) — yF /2 4 p(zk — S0 | A;zk))
12:  Firstdevice: " = y* + (301, Azt ghr1/2y

ook

@Y ® 3D

13: end for

where gapaug(x z,y) = maxgey Laug(®,2,§) — ming zex z Lag(Z,2,y) and 7K =
_ _ K—1

sz . 1 k+1/2 3K %Zk_o A2 gK = LYy ETlyerl2 gy p2ooo

maxy zyex,zy (20 — o[ + [12° = 2* + [ly° — yll*].

The proof is postponed to Appendix The results of Theorem are no better than Theorem
[2.2] and in the case of large p are even worse. Based on these guarantees (and they seem reasonable
to us) the use of augmentation with Ext raGradeint in the theory does not give bonuses.

C.2 REFORMULATION WITH DUAL LOSS

The definition of the dual function gives £*(y,b) = max,er:{(z,y) — £(z,b)}. With small refor-
mulation and z = Az, we get that £(Ax, b) = max,ecrs{(y, Az) — £*(y,b)}. Then, one can rewrite
(1) as follows,

n
n
min max L(z,y) = | 1" (y,b) + 2 i) +y (Eing Aia) |- ©)
The statement @I) is simpler than (E[), since it does not contain additional variables z, but it requires
the existence of a dual function for £. The saddle point problem () can also be solved using the
ExtraGradient technique.

Algorithm 10 EGVFL for ()

1: Input: starting point (2°,4°) € R¥+*, stepsize v > 0, number of steps K
2: fork=0to K —1do

3: First device sends ¥ to other devices

All devices in parallel send A;z¥ to first device

All devices in parallel update: ka/Q ok — y(ATy* + Vr;(2F))
First device updates: y*+1/2 = yk — ~(Ve*(y*,b) — S0 | A;ak)

First device sends y*11/2 to other devices
k+1/2

® Rk

All devices in parallel send A;x; to first device
9: All devices in parallel update: xk“ 2k — (AT y*+1/2 4 V(2 k+1/2))

10:  First device updates: y*+1 =y~ — 7(V€*( B2 b) — ST Ay T2
11: end for
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Theorem C.2. Let I* be Ly~-smooth and convex, r be L,.-smooth and convex. Let problem @) be
solved by Algorithm[I0} Then for

1 A

1 . 1.1
Y=3 mln{l, —Amax(ATA)’Lr’L@*}’

it holds that
e 144/ Amax (AT A)+ L« + L. ) D?
gapz(wK,yK)ZO(( K ) )
where gap,(z,y) = maxzey L(x,§) — mingex L(,y) and 5 = + 25;01 ht1/2, K =

K—1 2
& 2k Y% and D? = maxs yex,y [0 — =) + [ly° — y[?].

The proof is postponed to Appendix [D-9]

C.3 REFORMULATION WITH DUAL LOSS AND REGULARIZER

If we introduce dual functions for both ¢ and r, then equation E| can be rewritten as follows

maxyers [~ >0, i (—ATy) — € (y,0)] . (10)
To prove it, we start from (E[)

. /¢ b T Axr —
o, i, 2 £(2,0) (@) +y (Av =)

| min, () + €0) + (o) + ()]

= -  (e10) — £(2,0) — s (A7) ()|

Definitions of dual functions: ¢*(y,b) = max,ers{(z,y) — £(2,0)} and r*(—ATy) =
max,ers {(— ATy, 2) — r(x)}, give

max [~£(y,b) = r*(=ATy)] .

Due to the separability of 7, its conjugate is also separable. Hence, we have (10).

In fact (I0) is the maximization of a concave function, which is very close to the original formulation
(I). This problem can be solved by distributed variants of GD and not only.
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D MISSING PROOFS

D.1 PROOF OF THEOREM[2.2]

Theorem D.1 (Theorem 2.2). Let Assumption [2.1) holds. Let problem equation 4| be solved by
Algorithm[l) Then for

1 . 1 .11
7—2 mln{l, /—)\max(ATA)’LT’LZ}7

it holds that
(1+V/ Amax (AT A)+ Lo+ L) D?
gap(z", 2", g%) = < F ) :
where 7K = ZkK:_Ol ght1/2 2K = L ZkK:_Ol 12 g o= L ZkK:_Ol y*t1/2 and D? =

maX, . yex,z,y [|2° — =2+ [12° — 2|1 + lly° — ylI?].

To prove the convergence it is sufficient to show that the problem is convex—concave (Lemma[D.TT)),
to estimate the Lipschitz constant of gradients and use the general results from (Nemirovskil [2004).
But since proofs of the other algorithms is somewhat similar to proof of the basic algorithm, we
provide the proof of Theorem [2.2] to complete the picture and to move from basic proofs to more
complex ones.

Proof. We start the proof with the following equations on the variables xf“, a:fﬂ/ 2 o¥ and any

xr; € R

a1 = a2 = flof =l + 2+ — ok, 2 — ) -

a2 — Y2 = ok — )2 (e TR x’“ 0 Tl FARRYAd L)

Rt}

o = 12,

Summing up two previous inequalities and making small rearrangements, we get

k k+1/2 k+1/2 k
bt — |2 =k — |2 — (|2 — b — (|2 - a2
+2<zf+1 :z:k xk"'l x;) + 2(x; kt1/2 xf,mfﬂ/gfxf*'l).
Using that 2 — 2 = —y(ATy*+1/2 4 Uy (2FT/2)) and 2512 — 2k = —y(ATyF + Vi (ah))

(see lines 5] and [I0] of Algorlthm [T), we obtain

ottt - e B AR

il|? =llaf — wl|* — [l
k+1/2
92 (AT k+1/2+V7’-( i+1/ ), @ k+17

— 29(ATyF 4 Vs (ah), ackH/Q f“)
k+1 2 k+1/2
R e [

=2y — wil* - |l
_ 2,Y<AiTyk+1/2 + Vr-(:c’."ﬂ/g), ly+1/2 — )

— 2 (AT M2 =)+ (e = Onied), o -2
||x‘?“/2 — ab|? — 2 — 2

=z} — x| - i

— 2y (A (TP — ), g2 = 2 (O (), T )
— 2 (At =)y
— 29(Vri (e TP = (), 2l 2R, (11)

Summing over all 7 from 1 to n, we deduce

n n n "
k ; k+1/2 ki1/2 ok
S labtt =l =3 ek = a2 = S T w2 = Y el b2
=1 i=1 i=1 i=1
n

=29 Al =), Y2 — 2y S (TR, 2T )
i=1 i=1
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- 27<Z Ay (bt = g T2 2k

=29 Y (Vrie ) = V() o - o),

i=1
With notation of A = [Ay,...,A4;,...,A,] and notation of x = [T, ... 2T ... 2T from equa-
tion and equation one can obtain that Y " | A;x; = Auz:

||1,k+1 ||xk+1/2 _ Ik”Z _ ” k+1/2 k+1||2

— | =[la* - 2* -

(AR = ), P — 2y S V)
i=1

_ 2’7<A($k+1 _ $k+1/2),yk+1/2 _ yk>

_2,)/Z<vri(wi_€+1/2) VTZ( ) k+1 f+1/2>
i=1

:HLEk _ xHZ _ ||xk+1/2 _ k||2 _ ” k+1/2 k+1||2

_ 27<A(xk+1/2 —2),y k+1/2 272 ) k+1/2 ;?+1/2 — )
= 29(AT (P12 —yb) 2t - xk+1/2>
2y 3T ) - D), a2t
i=1
By Cauchy Schwartz inequality: 2{a,b) < nllal|* + l||bH2 with a = AT (y*+1/2 — yk), b =

xk+1/271, U*Z'Yandaiv’rl( k+1/2) V'I"»L( ) b— k+1/2 k-‘rl 7]727’ Weget
2" — 2]|* <l — a|® — 2T = 2P PR k2

— 29 A2 — ) ) - 2y ST (Vi (o TY?), 2TV - )

i=1

1
+ 22 AT (2 — g 4 inx‘”l — gk

k+12 k+12
+2722||v / )2 + Zn BHL g2

=|la* — x||2 = [l k)

— 2y(A(" T2 — ),y ) — 2y N (TR, TP )
=1

+ 292 )| AT (yR 2 — H?+2722\|v @2 —nEh)2 a2)

Using the same steps, one can obtain for z € R?,
2541 — 22 <J|a — 2|2 — [ - k2
+ 27<yk+1/27zk+1/2 - 27(V€(zk+1/2,b),zk“/2 ~ )
+ 297y Y2 — PP+ 297 VUM b) — VLR b)) (13)
and for all y € R®,
gl <llyt -yl -l -

lly yF |2

k
— 2 (Y2 U2 gy oS Al Y2 2y
=1
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n 2

> A2 — oy

+ 272”216—&-1/2 _ Zk||2 + 2,)/2

=1
=llg* —ylI* = lg*/% = y*)?
— 2y (T2 yE T2 ) 2y (AghTI/2 T2 )
4 2R M L 2R AR - o) (13

Here we also use notation of A and . Summing up (12)), (T3) and (T4), we obtain
2" — 2|2 4 2 = 2P 4 [l — )P

<lla® = 2] + 12 = 2 + ly* — ylI?

. ||:L,k:+1/2 _ ka2 _ szJrl/Q _ Zk||2 g k12 ka2

ly
_ 27<A(xk+1/2 _ m),yk+1/2> + 27<yk+1/2,zk+1/2 _ Z>
(2 Y2 g oy ( A2, 2

— 2y Z(V?“i(xf+1/2)’xf+1/2 —x) - 27<v€(2k+1/2’ b), ShH1/2 2)

i=1

+ 292 AT (Y2 — )12 4+ 292 3 ([ V(@ TYE) = (k)2
=1

+ 292y — R 4 292 V(Y2 b) — V(2R ) )2
+ 292 )| F 2 R |2 292 A2 — )12

Using convexity and L,-smoothness of the function 7; with convexity and L,-smoothness of the
function ¢ (Assumption 2.1)), we have

a4t — 22 4 24— 2|2 g+ — g

<Jla® = af® + 12" = 2 + ly" -yl

—||xk+1/2—xk|\2— H2k+1/2_zk”2_ k+1/2_ka2

ly
— 2y (A2 - ), U)oy (U2, R
— 2y (P2 T2 gy oy (Agh T2 R L2 gy

_ 272”: (U(If+1/2) _ T¢($¢)> — 2%y (g(zkﬂ/z’ b) — (=, b))

n
k+1/2
T2 [T = ) 2L Y (e b
i=1
P2 P 4 2P L2 - 2
PP - M2 4 27 A2 )
Using the definition of A« () as a maximum eigenvalue, we get
"t —]? 2 = 2 [y -y
<[la® — 2| + |27 — 2] + ly* — ylI?
_ ||33k+1/2 _ ka2 k+1/2 Zk||2

S ARl s
_ 2’}/<A(.’L‘k+1/2 _ x),yk+1/2> + 27<yk+1/2,2k+1/2 _ Z>

— 27<zk+1/2,yk+1/2 — )+ 27<Axk+1/2, yk+1/2 —y)
=293 (el ) = i) ) = 2y (62 0) - 6z, 0)
i=1

+ 29" Amax (AAT)[y* T2 — ¥+ 292 L7212 — k|2

— =
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P22 - P 2y L2
+ 2,}/2”2k+1/2 _ ZkH2 + 2,)/2/\max(ATA)”xk+1/2 _ xk||2

With the choice of 7 < - min {1; I — ;le}, we get

rmax (AT )" L
257t = 2| [ = 2 [y =y
<fla® —af® + 12" =2 + ly" -yl
_ 2’Y<A($k+1/2 _ :c),ka/Q) + 2’Y<yk+1/272k+1/2 _ Z>
. 2’y<zk+1/2,yk+1/2 . y> + 27<A1’k+1/2,yk+1/2 _ y>

_ 27273 (ri(xfﬂ/?) N Ti(xi)) oy (g(zk+1/2’b) N E(;b))
i=1

=[la* —z[” + [|2" — 2> + |ly* — yI?
+ 2")/<A$ o Z,yk+1/2> o 2’y<AIk+1/2 o Zk+1/2,y>

- 27273 (@Y%) = riwa)) = 29 (6GFF72,0) = £(2,0))
=1

After small rearrangements, we obtain

(72,0 — =) + > (o) = ra(a))

i=1
+ <A$k+1/2 _ zk+1/2,y> _ <A£L' _ z,yk+1/2)

1
< o= (lle® = all? + 112% = 20 + ly* - yIP

2y
R 2 = R ) R - y)?).

Then we sum all over k£ from 0 to K — 1, divide by K, and have

K-1 n K—1
1 K+1/2 3y 1 Ve N
e 2 (E(z ,b) f(z,b)) +i:ZI e kZ:o (rl(mi ) n(xl))
K—-1 K—-1 K—1
R R1j2 A k12 Ap— o L k41/2
RVTES SFUTIES SRS SRR
k=0 k=0 k=0

< g (e =l + 12 = 4 — ol

% = = 125 = 2] - Iy - y)?)
< gl =l 41120 = =1 + 1 ~ 1)

With Jensen inequality for convex functions ¢ and r;, one can note that
= =
— k+1/2 il k+1/2

1 K=l | K-l
1 k+1/2 1 o kF1/2
;i (K Z x; > < e ri(z; ).

k=0 k=0
P T U RV P e A R T S
Then, with notation Z* = 4 kz x; JER =% kZ P2 g = L kz y*+1/2 we have
=0 =0 =0

n

0(250) = £(z,0) + Y (ra(@f) = rila) + (42K = 25,y) — (Az — 2,55)
i=1
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< g le® =l +112° = 2+ Is° — o).

Following the definition equation [5] we only need to take the maximum in the variable y € ) and
the minimum inz € X and z € Z.

gap(z", 2, 5)
_ L =K o L
= max (@, 25, y) L oin (z,2,5")
= 05 0) + ) (@) + (AzK - 2K,
my[< )+ (el + 4" - 7,)
B :E,,?Gl%)r(l’z [6(27 b) + Z;Ti(xi) + <ACC - ngK>]
o - K _ =K K
=max max, lﬁ(z b) — £(z,b) +; ) —ri(x;)) + (Az™ — 25 y) — (Az — 2,7 >]
1
< 5 (e — a4 ma 2 — 2+ mae |3~y
5)
To complete the proof in the cases equation , it remains to put y = % .

. . 1 R
mm{l’ﬁmx(ATA)’ .5 Le}' O
D.2 PROOF OF THEOREM [B.]]

Theorem D.2 (Theorem [B.1). Let ¢ and r be proximal-friendly and convex functions. Let problem
() be solved by Algorithm|8|(Appendix|[A). Then for

= =g g 1
,y a ﬁ mln {17 ~/ )\max(ATA) } ’

it holds that
1+y/Amax (AT A)) D?
gap(z", 2", ") = 0<( T )
e N o= % kK:_Ol ght1/2 zK = %ZkK:_ol P12 K = KE y*+1/2 apd D? =

maxy . yex,z,y [[2° — 2l* +112° — 212 + [ly° — y[I?].
Before we start proving Theorem [B.T] we need a small lemma concerning the proximal operator.

Lemma D.3. Let h be convex and 2" = prox.,;,(z) with some v > 0. Then for all z € R the
following inequality holds

(zt =z, — 2T) > v (h(z") — h(z)).

Proof of Lemma([D.3] We use convexity of the function vh and get for any h/(z) € dh(z™")
v(h(z) — h(z")) = (W (zT),z —2T) > 0.

With definition of the proximal operator and the optimality condition, one can note that z — z+ €

vOh(z"). The only thing left to do is to take v2/(21) = z — 2T and finish the proof. O
Proof of Theorem By Lemma D for convex function h = r;, zt = zf“, z = zF —
Y ATy +1/2 (see hne 10| of Algonth 8) and 2 = z; € R%, we get

<xf+1 — ! +WAiTyk+1/279€i . xf+1> > (Ti(xfﬂ) . rz(xz)) 7
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and for zt = fo/Q, z=af —yATy* (see lineof Algorithm, x =kt

(o2 =2k g ATyR a2 2 (@) - el ).

i
Summing up two previous inequalities, we get
(@i = af oy ATy = ) @ ATy a2
> (r@ ) = ritay))
After small rearrangements and multiplying by 2, we have
2at ka2 4 2 ka2
+ 29(AT Y2,y — 2 TV2) b 2y (AT (yFH12 — ), 2 T2 o)
> 2y (ri(xfﬂ/z) — ri(xi)> .
For the first line we use identity 2(a, b) = ||a + b||*> — ||a||*> — ||b]|?, and get
(lf = all® = g™t = @ = |27 = 2F||)
(Il — b — o2 — 2B — - 222
+ 29(ATYFHY2, w2 T2) 4 2y (AT (yFH12 — ), 2 T2 o)
> 2y (ri(xfﬂ/z) — Ti(xi)> .
A small rearrangement gives

k+1/2 k+1/2
[ R L A [

—wil <ot -
29 (AT YR HV2 gy — 2
k+1/2 k+1/2
+ 29(AT (2 — ), 2l o) — 2y (@) < i)

R e an

k
=llaf = asl)* ~ | i

+ 29(A;(z; — fo/Q), ykr1/2)
+ 2’y<Ai(mH1/2 — gty RY2 gy 9y (ri(mkﬂ/z) - ri(:pi)) )

K3 K3

Summing over all ¢ from 1 to n, we deduce

n

n n n

k41/2 k+1/2
STllaf = a2 < ek — a2 =3 el TV =k )2 = 3 (bt - )
=1 =1 =1

=1

k
+ 293" Aiwi — 2fT?), 2
1=1

+ 293 A TP = 2l 2 k) 0y N (ri($f+1/2) - m(xi)) :

i=1 i=1

With notation of A = [A4,.. - Ai, ..., Ap] and notation of z = [zT,... 2T ... 2117 from
and , one can obtain that ) " | A;x; = Ax:

||$k+1 _ xHQ SH.Z’k _ x”Q _ ||£L‘k+1/2 _ kaQ _ ka—i—l _ xk+1/2”2

+ 2’7<A(.’E _ (Ek+1/2)7yk+1/2>

29 (A2 = ), 2 ) g S () () )
i=1

:ka _ $||2 _ ”xk+1/2 _ ka2 _ ||$k+1 _ $k+1/2”2

28



Under review as a conference paper at ICLR 2025

+2y(A(z — aMTH/2) /2
+ 29 (AT (Y2 — yF), P2 — Ry 9y Z (ri(xfﬂ/z) — ri(mi)) .
i=1
By Cauchy Schwartz inequality: 2(a,b) < nfla]|* + L[[bl[* with a = AT (y**1/2 —y¥), b =
xhH1/2 _ ght1and n = 4, we get
lz*t = 2| <Jla® — a|® — [l2*H/2 — 2|2

+2y(A(z — aPT/2) /2
AT = )2 =29 Y () — @) ae)
i=1

Using the same steps, one can obtain for z € R?,
2541 = 22 ||z — 22 — 1252 - 22

_ 2%<yk-s-1/27 ” Zk+1/2>

A2l = R = 2y (620 - z,)) (17)
and for all y € R?,
[y =yl <[ly* — y)|* — Iy T2 — ¥
(3 At

=1
2

k
7| 2 Al k) - (=)
=1
=lly* = ylI® = lly* /2 = y*|I?
_ 2’}/<A£Ck+l/2 _ JkH1/2 y— yk+1/2>
+"}/2||A(IL‘}C+1/2 - l’k) 7 (Zk+1/2 7 Zk)||2. (18)

Here we also use notation of A and . Summing up (I6)), and (I8), we obtain
47— 22 4 1244 2] 4 g — g2
<[la® — 2| + |27 = 21> + y* — ylI?

_ ||$k+1/2 _ kaQ k+1/2 _ Zk||2 k+1/2 _ kaQ

— 2 —lly
+ 2vy(A(z — xk+1/2)’ yk+1/2> _ 27<yk+1/27 5 Zk:+1/2>
oy (A2 k2 k12

AT (G2 = P 2y =)

2
e HA(ka/z — k) - (Zk+1/2 _ Zk)H
=2y (2 0) 02, 0)) = 293 (el T2) < il )
=1

Again by Cauchy Schwartz inequality: |la — b||> < 2|la||> + 2||b]|? with a = A(zF+1/2 — 2F),
b= (P12 — 2F), we get
2+ = ]2 4 {25 = 2]+ [y gl
Sl — 2+ 2 — 2l + I~ ol

_ ||{Ek+1/2 _ kaQ _ 1.k+1/2 _ Zk||2 |, k+1/2 ka2

|2 lly

+ 2v(A(x — xk+1/2)’ yk+1/2> _ 2,y<yk+1/2’ ” Zk+1/2>
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o (AR 2 k2
+ P2 AT (YR — R |12 ARy — )2

422 HA(ka/z B mk)H2 +oy? sz+1/2 _ zkuz

— 2y (E(zk+1/2, b) — £(z, b)) — 27i (ri(xfﬂﬂ) — ri(sci)) .

Using the definition of A,.x () as a maximum eigenvalue, we get
[ = 2|” + [ = 2] + [l =yl
<[la® — 2| + |27 = 211 + |ly* - ylI?
_ ||zk+1/2 — k)2 - szﬂ/z k2 ||yk+1/2 — k|2
+ 2(14(33 _ xk+1/2),yk+1/2> _ 27<yk+1/27z _ Zk+1/2>
_ 2,Y<Axk+1/2 _ kL2 yk+1/2>
+ Amax (AAT) [y 2 — |12 4+ 42|l 2 — )12

2 2
N e

— 2~ (E(zk+1/2, b) — £(z, b)) — Z’Yi (ri(xfﬂ/z) — ri(:ci)) .

. . 1 . . . 1
With the choice of v < o3 min {1, 7\/m }, we get

2"+ — || + (|2 = 22 + " —y)?
<lz® =zl + 125 = 21> + " -yl
+ 2y(A(w — g T2) yFT2) oy (L2 R
o (AgF T/ L2 k2

— 2~ (K(zkH/?, b) — (=, b)) — 272”: (Ti(xfﬂ/z) — ri(xi))

=[la* =2 +12* = 2 + lv* - y]I”
+ 2’Y<A$ _ z,yk+1/2> _ 2’Y<A£L'k+1/2 _ k+1/2 y>

— 2y (K(zk+1/2,b) (z,b) ) - 272 ( k+1/2 ri(:ci)) .

After small rearrangements, we obtain

(E(z’”lm7 b) — E(z,b)) + Z (n(zkﬂﬂ) 7‘1(3:1))
=1
+ <A‘rk+l/2 - Zk+l/27y> - <A.’E - Zayk+1/2>
1
< g (I =2l + 1% = 217 + Il — ol
=l = = 2 = 22— R - y2).

Then we sum all over k£ from 0 to K — 1, divide by K, and have

2 () ) 4 3 L T (et - ra)
k=0
(A % Z LhH1/2 % ];) K2 N (A s Z Y12
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< g (12 =l + 10 = 2P+ — 1P

— [l — |2 = |25 = 2l ~ |y ~ 1)
< gl =2l + 112" = 21 + 1" — o).

With Jensen inequality for convex functions ¢ and r;, one can note that
| el ] el
-+ k+1/2 -+ k+1/2
E(KZZ ,b><KZ€(2 ,b)
k=0 =
= 1 K—1
r, (K kz_% xfﬂ/z) ri(z k+1/2

k=0
R T U E Y T e Ay T S
Then, with notation z;* = 7 kz x; VBN =5 kz A2 g = L kz y**+1/2 we have
=0 —0 —0

E(ZKJ?)—f(z7b)+Z(H(ff{)—n( z;)) + (AzX — 28, y) — (Ax — 2, 5")

< g le® =l +112° = 2+ Is° ~ ol

To complete the proof of the theorem, it is sufficient to do the same steps as when obtaining (T3).
i =1 . mi : 1
Finally, we need to put v = 73 * nin {1, ) } O

D.3 PROOF OF THEOREM [3.2]

Theorem D.4 (Theorem[3.2). Let Assumption 21| holds. Let problem () be solved by Algorithm 2]
with operators and @), which satisfy Definition Then for r = 1 — p and

_ 1—7 1—7 .
7 = 1 min {L I, L,Z \/w[Amax(AAT)HI(dzﬂ seed) max; max (A; ATV} \/wkmax(AAT)’ } )
it holds that

Egap(z*,2%,5%) = O([1 + /2(y/ Amax(AAT)) + Lo + L] - 2
+ \/21(diff seed) max {3/ Muax(4iAT)} - 22),

where the indicator function 1(diff. seed) is responsible for whether the different or same ran-

dom S}faf is used on all devices, TX = LY n  taktl/2 K = LSnL kt1/2 gK o
1 -1 k4+1/2 2. 0 2 0 2

* Lo ¥T/? and D? = max, - yex 2y [l2° — 2l® + 120 — 2 + Ily° — yl1?].

Proof. We start the proof with the following equations on the variables xf“, fo/ 2 x¥ and any

x; € R%:

o+t — ]2 = ok — 2l 4+ 24l — ok, 2

af, ot —ag) — o -2

k+1/2 k k k k+1/2 ko k+1/2 k k+1/2 k
llz; / _%HHQZH% _mi+1|‘2+2<xi / — LT / _xi+1>_||‘ri / _$i|‘2~

Summing up two previous inequalities and making small rearrangements, we get

i o 12 = a2 T —

k
= il* =llaf - @il* - |z

k+1 k+1 k+12 k+1/2 k+1
+2<a:i+ a?kar x;) + 2(x; / mf,mi / —xi+).

31



Under review as a conference paper at ICLR 2025

Using that 2™ — o = (1= m)(wf — 2f) — (AT QMY — ub) + u¥] + Vri(e[*1/?)) and
2t - wf = (1 —7)(wf — ) - (AT K+ Vr;(zF)), we obtain

K2

k+1/2 k+1/2
ok A e AR

R e [ [
+2(1 - 7')<wk — xf,xf'H x;)
— 29 (AT QY2 —ub) + ] + Vi (e T2 Y )
b 21— ) (wk — 2k, T2 gk
727<ATuk+VT1( k) zk+1/2 f‘H)
k+1/2 k+1/2
12— (|22 a2 — T k2

:”xz —
+2(1 — 7)(wk — xf,xfﬂ/z x;)
— 2y(AT[QM Y2 — uP) + uf] + Vri(af %), 22 — )
+29(AT[Q(" Y2 — ub)] + Vry (2 T1/%) — Wy (ah), 2f T2 — bt
=llef — il — g2 = b T
+2(1 = r)(wk — a2 22 g
+2(1— T)(gcfH/Q f,fo/Q —x;)

—2y(AT QW2 — k) + M + V(i T, T — )
+29(AT QW2 — b)) 4 V(@ H%) = Uri(af), 2 T2 — 2 ).
For the second and third lines we use identity 2(a, b) = ||a + b||> — ||a|> — ||b||?, and get

k+1/2 _:Ef;||2 k+1/2 _.’E,];+1H2

lof = |2 =¥ — il — ] — |l
+ (1= ) (k= ) = [lwf — 22— 2T - )2
+ (= 7) (|l = B2 |2 = ]| — e — )2
— 29(AT Q2 — ub) + uF] + V(o T/%), 2 — )
+29(ATIQ(M /2 — b)) + Vg (2 T2) — Ury(ak), T2 — 2 (19)
=rllzf — 2| + (1 = 7)wk — ;)2
o A L G | L L P e
— 2y(Ai(al TP — 20), B YR — 2y (O (2 TR), TR )
— 2p(Ai (TP ), QYR — k) — Y2 Ry
+29(Ai (2 T2 — ), QUM — b))
+27<v7‘1( k+1/2) VTZ( k) k+1/2 §+1>'
Summing over all ¢ from 1 to n and using the notation of A = [Ay,...,4;,..., A,], © =
[F, . 2l 2T w=[w],. . w], .. wl]T, we deduce

2" — 2l =rlla® - 2]* + 1 = 7)w* - 2
_ T||$k+1/2 _ kaQ _ (1 _ 7_)||wk _ $k+1/2||2 _ ka+1/2 _ $k+1||2
n
k-‘rl 2 k+1/2
= 2y AR =), YR = 2y Y (O (a2, T )
i=1

_ 2’7<A(xk+1/2 — ), Q(yk+1/2 _ uk) . yk+1/2 T uk>
(AR g QR

+ 29 (Vri(@l ) - Vri(ak), 2 T2 gkt
1=1
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=7llz* — 2|* + (1 = 7)llw” — 2|

k+1/2 :L'k||2 _ (1 - k+1/2||2 _ H k+1/2 _ xk+1||2

=7l 7)|lw® ~

_ 2’}/<A({Ek+1/2 _ :L’),yk+1/2 272 V?"Z k+1/2) k+1/2 1'1>

y Ly
=1

— 2y(A(@"T? = 2), Q(yF T — k) — yF T2 k)

+29(ATQy"Y? — ), 22 — M)

+29 Y (il ) = Vrg(ak), T2 - ),

i=1

By simple fact: 2(a, b) < n||a|*+ l||b||2 witha = ATQ(y*+t1/2 —uF), b = gF+1/2 _ghtl p = 2y
and a = Vry(a" %) = Wi (ak), b= 282 28 p = 24, we get

lz**t — 2lf* <7lla® - 2® + (1 - 7)Jw® — 2]

_ T||$k+1/2 _ kaQ _ (1 _ )”wk _ k+1/2||2 _ H k+1/2 $k+1||2

o 2,Y<A(1,k:+1/2 - x)’yk+1/2 272 S k+1/2 1.€+1/2 . 177>

— 2y(A(MT2 —2), QM2 - u’“) — T2 4k

1
+ 272||ATQ(yk+1/2 _ uk)||2 + §||xk+1/2 o mk+1||2

1
+27° Z [9ri(af %) = Vr(eh)|? + Sl 2 — 2k,

Adding to the both sides ||w**! — x|, one can obtain

lz* = 2| + [t - ]
<lz® = a|® + [lw”® — 2]
— (1= 7)llz" = 2l* = 7llw® - 2|® + [l — 2

=72 - K2 - (1= 7k — )

= 2(AEH =) M) = 20 Y (V) )
i=1

_ 27<A(.’L‘k+1/2 _ $)7Q(yk+1/2 _ uk) _ yk+1/2 + uk>

F2PATQUH T P

+2¢Z||v 2 T2) Ty (wh) |2

=||z* ~ w||2 +[w* —aff?

= 7R - R - (1= 7k — )

— 2y (AP — g), yF /2y - QWEn:WTi(fo/Q), xf+1/2 )
=1

— (=TI = 2 +

+2((1 = m)a* + Tt —wht )

— 2v(A(z k+1/2 _ x0)7 Q(yk+1/2 _ uk) . yk+1/2 4 uk>

— 2y(A(2° — 2), QT2 — uF) — Y2 4 k)

+ 297 ATQy Y — )P
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+297 Y IIVri(a ) = eI (20)
i=1
Using the same steps, one can obtain for z € R,
54— 2|2 <l2F - 2f? — || R4 - K2

+ 2y (T2 ZRE2 ) o (VH(ZF T2 B, 2R T2 )
+ 297 |y — P+ 297 VLR D) — VLR b)) 2D

and for all y € R?,

™+ =yl + [ =y
<Ily* = ylI* + [lu* — y|I?

—7llyF T — R = (1= 1)U — 2

k
o 2,y<zk+1/27yk+1/2 — )+ 27<Z AixiH/Z,yHl/Q — )

i=1

%

+ 2’Y<Z[Q(Ai$f+l/2 - Azwf) + Aiwzk - Aika/QL Yy — y°)
i=1

QAT — Awk) + Ajwl — At T?],0 — )

+ 27(

hE

— (L=l 1> = 7ll®|]* + [y
+2((1 = 1)y + Tub — b y)

«
Il
-

+29° D QA TP — Anf) [P + 297 H 2 — 2P, (22)
i=1

Summing up (20), 1)) and 22), we obtain
R e L P o W
<[la® = 2l® + [[w* —a]® + 12° = 212+ ly* = yll® + [[u® —yl?
S TE B B S I SV TTE B} S VE BT
o el N ¢ B | (A Vaaar o

_ 27<A([Ek+1/2 _ 1,)7yk+1/2> + 2,}/<yk+1/27zk+1/2 _ Z>

k+1/2
_ 2,Y<Zk+1/2,yk+1/2 —y)+ 27<ZA1IZ-+ / ,yk+1/2 —y)
i=1

— 2y zn:wri(a:fﬂ/2)7 S ) 2y (Va2 b, R )
i=1

— (1= 71)||zF ) = 7[Jw®)? + Jw*TH)|?

+2((1 = 7)2® + 7wk — Wt )

— (L=l |17 = 712 + g2

+2((1 = 7y + Tuf — uF T y)

— 2y (A(gF T2 = 20), QyF L2 — k) — kL2 4y

— 2’7<A(.”L'O _ x), Q(yk+1/2 _ uk) _ yk+1/2 + uk>

+ 293 1Q(A T — Anf) + Al — AT 2 )

i=1

+ 293 [Q(A T — Ajl) + Al — ATV 0 — )
=1

34



Under review as a conference paper at ICLR 2025

+ 292 ATQ(yM 12 — )2 + 242 ||ZQ 2¥ T2 Aul))?
=1

k+1/2
+ 292 3 IVri(aE ) - V()2 4 297 R -

i=1

+ 27|22 = 2 4 29| V(2 ) - VR b))

After small rearrangements, we have

29 |[(VO(RHY2, ), P2 — ) 37 (Wil %), 2l T2 — )

i=1
+ <A£k+1/2 _ Zk+1/2,y> _ <A.L“ _ Z,yk+1/2>:|
< la® = 2] + [Jw* = al® + 127 = 21 + 1y = yl® + [lu* — gl

= (™ =2 4 ™ =l + (]2 — 2+ [ly™ =yl + [ yl)?)
k+1/2 .Tk||2 _ (1 _ T)Hwk _ xk+1/2”2 _ ||zk+1/2 _ Zk||2

—7|lx
— 7y — R — (1= 1) et — )2
— (1= 7)||2*]]? = 7l|w®|]? + [wht?

+2((1 = 7)z* + 7w — wh L x)

= (=" =l +

+2((1 — 7)y" + TuF — T y)

_ 27<A(xk+1/2 o xO),Q(yk-&-l/Q _ uk) - yk+1/2 + uk)

— 29(A(2° — 2), QM2 — uh) — T2 k)
+29(Y[Q(A T — Awl) + Ak — A TR 2 g0

i=1
n

+ 29N QA T — Awk) + Ak — ATV 40 — )
=1

+ 22| ATQ( Y — uM)|? 4 242 ||ZQ af T2 Al

k12
+2722HV Y T () |2 4 292 |y - )

+29? HZ’““/2 = 2MP 292 V(T2 b) - VR )12

Using convexity and L,-smoothness of the function r; with convexity and L,-smoothness of the
function ¢ (Assumption 2.1)), we have

2 {E(zkﬂ/z 0(z,b) + Z kH/Q —ri(z;)

+ <A$k+1/2 _ Zk+1/2,y> _ <AJ$ _ Z,yk+1/2>

< fla® =2l + [lw® = ol + )12 = 217+ " =yl + lu” - yl?
= (120 = alf? + [l = 2l 4 25 = 2+ [l =yl + ™ = yl)?)
_ T||a?k+1/2 _ JZkHQ _ (1 _ T)Hwk _ l‘k+1/2||2 _ ||Zk+1/2 _ Zk||2

— Tl — R — (1= 7t — )2

= (=" = Tt + w2
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+2((1 = 7)2* + Tk — W 2)

— (L =) ly* 17 = 7llu®)® + g

+2((1 = 7)y" + ru —uF )

— 2’Y<A(xk+1/2 —29), Q(yk+1/2 _ uk) _ yk+1/2 + uk>
— 2’Y<A(x0 _ a:), Q(yk+1/2 _ uk) _ yk+1/2 + uk>

n
+ 29> QA — Agok) + Ak — Al Ty g0
=1
+29()_ QA2 = Aguf) + Ak — ATy — )

=1
+ 292 ATQF Y2 — )2 + 292 S QA T — Agul)|?
=1
+ 292 L2[|2R 2 R 4 292yt k2

+ 2922 — K2 22 LR M2 — o2

Then we sum all over k£ from 0 to K — 1, divide by K, use Jensen inequality for convex functions ¢

K=l i1 K—1 K—1
and r; with notation X = + 3 z; L2 = LS Y2 g = LS k412 and have
k=0 k=0 k=0

n

2y {[(EK,Z)) —l(z,b) + Z (TZ(EZK) — rl(:rz)) + <A:EK — ZK,y> — (Ax — z,gKﬁ
i=1

< = (12° = 2l + lw® — 2] + [12° = 201 + [1° =yl + [[u® = y]I?)

|-
_

(" =2l + [l = 2| + 125 = 2> + g™ = yl* + o™ —y]?)

K-1

K
T 1- 74 1

T k412 kj2 LT ko k+1/2)2 L k+1/2 k2
I LTt e DI

1—7
D7y g = S -y
k=0 k=0
K-1
= 0 [P = (= )l )2 = )]

k=

k=0
K-1

D [ e O 1 7 R T

1 _
k=0
1

K

2 n
+ 22 DO IQARTE — Agf) + Anwk — AT 2 g0
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-1 n

27
f Z Z[Q(AM?H/Q —Aiwf) +Aiwf —Aixfﬂ/g]vyo - )
k=0 i=1
2’72K1 T k+1/2 2, 272[(1 - k+1/2 ky(2
e Z IATQU 2 — P[P + 5= D0 1Y Q(Aw ™" — Ay
=0 k=0 i=1
K-1 K-1
L k+1/2 _ k2 4 2 § k+1/2 k|2
o) + Z ly ol
k=0

272 K= 272 L2
+ % Z ||Zk+1/2 _Zk||2 7 “ Ly Z B k+1/2 k||2'
k=0

As in (T3) we pass to the gap criterion by taking the maximum in y € ) and the minimum in z € X
and z € Z. Additionally, we also take the mathematical expectation

2vEgap(z”, 2, 5)

1
<= (max 2% — z||* 4+ max [|w® — 2||* + max [|2° — z||?
K\ zex reX z€Z

+ ma, 0 _ 2—|—ma uo— 2
yE;;IIy yll y&ll yl|

=

S

1 —
_ % E”xkﬂ/z _ kaz _ KT EHwk _ xk+1/2||2
k=0 k=0
| el
- ? E||Zk+1/2 _ Zk:||2
k=0
L K-l e
T Ello*+1/2 — k)12 — 2= E Y122
e ly 7l e [ |
k=0 k=0
| Kl
tx% Ellw 2 = (1 = 7)[[*]* = 7]|w”|?
k=0
K-1
+ Emax 1—Tx + 7wk — whtt, x)
reX
k:o
=
+ 2 2 ElyEHP = (= )yt )® = )
k=0
9 K-1
+ gBmax 3 (1= 7)y" +7ut —u"y)
k=0
2y K-1
_ F E<A(£Uk+1/2 _ $O),Q(yk+1/2 _ uk) _ yk+1/2 + uk>
k=0
9 K-1
+ 27 FEmax (A(z — 2°), Q(yk+1/2 by — Y2 4 k)
K zeEX
k=0
K-1 n
2
+ % E<Z[Q(Aixf+l/2 — Ajwk) + Agwf — Al T2 2 0
k=0  i=1
K-1
2y < k+1/2 k+1/2
+ — - Emax <Z[Q(Al Awl) + Aol — A 1,y° —y)
K veY o
o K—1 o K— n
+ 27 E”ATQ(ykJrl/? H2 l Z Z ] k+1/2 Azwk)HQ
= KD = '
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K-1

272L2 k+1/2 _ k)12 2v° k+1/2 k|2
Z Ellx I+ > Elly -y
k=0
— K—1
272 k41/2 k12 4 2y L% k+1/2 _ k2
T Z Ellz -z "+ Z Ellz [ (23)

Next, we work with the terms of (23] separately. Using that 1 — 7 = p and lines[T1]-[T9] we get
Ellw** 7 — (1 = 7)l|l2"]1? = 7]|w"|?
= EEy, [[lw* %] = (1 —7)[Ja®]|* — 7{|w"||?
= Epll2®|* + (1 = p)[w®||* = (1 = 7)[|lz"|> = 7[lw*|? =0. (24
The same way we can obtain
Ellu* 1 = (1 = 7)ly*|1* = 7]lu*]? = 0. (25)

With 1 — 7 = p, one can also note

K-1 K-1
Emax <(1 — T)zk + rwk — wk+17x> —Emax <(1 . T)Ik + Tk — wk+1’x> 10
TeEX TEX
k=0 k=0
K—1
=Emax (1= 1) + 7wk — Wt )
zeX
k=0
K—1
+EY {1 - et 47wk — By, [0t ], —20)
k=0
K—1
“Emax 3 (1 = 1)t + Tt — wb Tz — 29).
TeEX
k=0
By Cauchy Schwartz inequality: 2(a,b) < 7n|lal|® + %||b||2 with a = 2{2—01[(1 — 1)k + Tk —
wh 1], b =z — 2% and n = 1, one can obtain
K—1
Emax (1— T)mk +rwh — wk'H,x)
zeX
k=0
=
wr 12 0112
< Emax fHX% )k + rwk 11Z +2l|z — 29|
=
ZEgrlea?2||x—xO||2+E§|| Z (1 —7)2* + Tw” — wh 1|2
k=0
=
= 0112 & wh L2
— Emax2llo — ¥l + 5 3 E|(1 =)ot + 7ot ||
8=
1
+1 Z E((1 —7)z* + 7w® — w1l (1 — 7)zk2 4+ rwhe — ket
k1<ko
[ K1
_ 02 4 L2
—Ergzlea/%(2||x—x 1"+ ZEH 1—7)ak + rwk [
8=
1
1 > E((1—7)a +rwt — TRy (1 7)2™ 4 rwh —wh )
k1<ko
=
:Erwnea%QHx_xO”Q ’;)EH 1 — 7)z* + 1wk — w2
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K-1
1
= Emax 2o — o°|* + £ ) BBy, [w+!] - o
k=0
1 K-1
= Emax2||x _ x0||2 4+ Z EEs, H|wk+1||2} — ||Es, [wk+1]||2
x€EX 8 =
1 K-1
=Emax 2|z — 2°|* + 2 > EEy, [[[w* %] — By, [w" ]|
k=0

K-1
1
= Emax 2|z — 2°|* + ’;) E7[[w®||* + (1 = 7)ll2"|* = (1 = 7)a” + 7|2

K—-1
1
:Egé&;{QHx—xOHQ—i—g ZET(l—T)Hwk — k|2 (26)
k=0
Making the same steps, one can get
K—1
Emax Y (1 —7)y* + 7uf —u*1 g)
yey o

K-—1
1
< Emax2fy —y* + 5 3 Er(l—7)flu’ - | 27)
: k=0

With unbiasedness of ), we have
E(A@M/2 — 2%), QM2 — ub) — 412 4 k)
= E(A("Y/? = 2%), Eq[Q(y" /% — uF)] =2 1) = 0. (28)
And

EQ QA 2 — Apwl) + Apwl — Azl 202 0 = . (29)
i=1
Also with Cauchy Schwartz inequality: 2(a, b) < nllal|*+ £ ||b]|? with a = 3=, " AT[Q(y*+1/2 —
uF) — yF*t1/2 £ k], b = & — 2% and 1) = ~, one can obtain
K-1
0 AT k12 kY k+1/2 k
Ergeag;(z 20, ATQ(y ub) — yF 2 k)

K—1
Lo 2, w7 Ty k+1/2 .k k1/2 | k12
SEIIneaggﬂx — | +ES| kZ:OA [Q(y —u")—y + u"]|

K-—1
1 7
= Bmax ﬂllxo — | +Eg Y I1AT[QEI T — uf) =yt 4t
k=0
+Ey Y (AT[QUF Y2 — ) — R ol ] AT[QyRe Y2 — ) — kel g e
k1<ka
1 ~y K-—1
= Bmax ﬂllxo — | +Eg Y IIAT[QEI T — uf) =yt 4t
k=0
+Ey Y (AT[QUM 2 —ufh) — T2 b ] ATR G, [QyF TP — ubr) — R t2 g k)
k1<ka

K-1
1 Y
= Bmax o o” — P + B 37 JATIQUM — ) — g2 4l P
k=0

[\

K—1
1 Y
_ Erineaj((ﬂ”xo o :L'||2 _’_E§ Z EQ |:||AT[Q(yk+1/2 _ uk)] . EQ[AT[Q(yk+1/2 _ uk)]]”Q}
k=0
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K-1
< Emax—”xo :z:||2+1E7 Z IAT[Q(y"+1/2 — ukY]|12. (30)
=0
The same way one can note that
- n
Emax Z i k+1/2 — Aywl) + Aywf —Axk+l/2},y —y)
yeY oo o1
1 ¥ - k
< Bmax o "~y + B Z H Z@ a2 = AP 31
Combining (23) with (Z4), (23)., 26), 7). 8). @), (]3;0[), (31), we obtain
2yEgap(z”™, 2", g")

1
< = (maXon — 2||? + max ||w® — z|* + max || 2° — z||?
K\ zex zeX 2€Z

il — yl? + mas y||2)
yey

N

K-1

1—
- LBl R T Bt - gt
k=0 k=0
1 K—-1
_ ? ]EHZkJrl/Z _zkH2
k=0
- K—-1 7_K 1
_T Ell/*+1/2 — k)2 yF+1/2)2
% ly (8 [ K El|u* — |
k=0 k=0
e — O + L S Er(1 - )t — 2
K zex 4K
k=0
+ 2 Emaxly — )2 + Kf Er(1 —7)|lu® — y*||?
K yey 4 5—0
K-1
+ L Emax [ — 2l + LEY JATIQUH 2 )
K zex K =0
2 n
k
+ Emaxny“ yll? + 2 EZ 1Y QA ™2 — A2
k=0 =1
» K-1 9 K— n
Z BIATQMY2 — i) + 2 S RIS QU - AP
k=0 1=1
29212 2 292
+ % ]E”karl/Q _ ka2 + % Z EHykJrl/Q _ yk”Q
k=0 k=0
9 2 K-—1 9 2L2 K—1
+% E||Zk+1/2_zk”2 7 Ly ZEH kH1/2 _ k)12

\ /\

<6max||;v —x\|2+max||w — z||? + max||2° — 2|2
zEZ

+ 6max||y° — y||? + max ||[«® — y||?
yeylly yll yeyll yll

- K-1 1— 1 K-1
_? ZE||:L,k+1/2_mkH2_ = E||wk—$k+l/2”2
k=0 k=0
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1 K-1
_ E E||Zk+1/2 _ Zk;H2
k=0
- K-1 1 r K-1
T Rllof+1/2 — k)2 — 2= ko k+1/2)2
e ly vt - El|u® — 3™
k=0 k=0
1 K-1 K—
+ ¢ 2 Br(t = )t —a*|? + 4 Z (1 =)l ="
k=0 k:O
372 K-1 ’y o K— n
k 1/2
+ 55 Y EIATQUWM — )P + Z E| Zcz AP
k=0
2L2 K-1 9 K—
K r Z E”xk+1/2 _ kaQ Z I k+1/2 yk||2
=0 k=0
2 K-1
+ 1 LZ E||Zk+1/2 _ Zk||2.

k=0
Applying Cauchy Schwartz inequality and using that 7 < 1, we get

2vEgap(z”™, 2", ")

1
<= (6 max ||2° — z||* + max ||w® — z|* + max||z° — z||?
K zeX zeX z€EZ

6 max |y — |12 + masx [0 — y||2)
y yey

l‘kHZ

ey
K-1 K-1
_ % E||J,‘k+1/2 _ JZkHQ - E”wk _ xk+1/2H2
k=0 o=
1 K-1
- E”Zk+1/2 _ ZkH2
K k=0
- K-1 11—+ K-1
_ ? EHyk—H/Q yk”Z _ T Z E”uk _ yk+1/2||2
k=0
1 K-1 1 K-1
5 O E(L - 7llwt - g 2+ Z E(1— 7)|lz+1/2 —
k=0 =0
1 K-1 1 K-1
L _ ko k122 4 B k4+1/2 k2
o 2 B = n)lluf =22 4 o2 S TR -7y v
k=0 =0
372 K-1 372 K-1 n k
1/2
+ 5= ) BATQMY? — b)) + Z Ef ZQ o
K K
k=0 =0
9 2L2 K-1 2 o K—1
+ IYK r Z E”xk+1/2 kH2 Z E”yk+1/2 _ yk||2
k=0 k=0
2) K-1
+ 2 1 LZ E||Zk+1/2 _ zkHQ
k=0

1
== (6 max ||z° — z||* + max ||w® — z||* + max||z° — 2|
K zeX zeX z2€EZ

6 0 _ 2 0 _ 2
+6maxly” —y|” + max flu” — y]|
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(=)

3r—1 1 &= 1— 52
_ - 272\ 1 k+1/2 k2 _ T kL k+1/2)2
( 5 L> % > El|z I - 5 > Ellw* - [
k k=0
K—

1

1
—(1-2y*(1+ L)) E||2F+1/2 — 2k
k=0

K— K-1

3r—1 1 1—71

_ ( 5 . 272) e Z E||yk+1/2 N yk”Q T Z EHuk - yk+1/2”2

k=0

2 K-1 '7 n

k 1 2
Z E[ATQ(y" 12 — ub) |2 + = Z E| ZQ T2 A2

(32)

Using the notation of Ay« () as @ maximum eigenvalue and the definition of unbiased compression,
we get

EllATQ(yk+1/2 - uk)Hz g)‘max(AAT)E||Q(i‘/k+1/2 - uk)H2
max(AATWE||yF 12 — uF|2.

For E|| >, Q(A; k+1/2 — A;wF)||* we have two options. If >0 Q(A; k+1/2 — Awk) =
Q(Zizl[A,,le/Q Anwk)) = Q(Azh+1/2 — Aw*), then

E| ZQ 22 Awb) |2 =E|Q(AZF T2 — Awk)|?

<WE||A(z" 12 — k)12
max (AT AWE|[F 172 — k2.

Y7 QAT — Auwk) # QX [Aixl T2 — A;wk)), but Q are independent, then

E| ZQ a2 A2

—ZEHQ 2¥ T2 A2

+ZE a2 = ), QAR - )
i#]
—ZEHQ 2TV Anb)|?
k 1/2 k+1/2
+ZE Eq, [Q(Asw}™1/? — Awb)] Eq, [Q(A;2} /% — Ajul))
i#£j
k 1 2
fZEIIQ T2 Anb)||?
+ZE 2P A kA M2 Ak
i#]
n
= EQ(Asz T — Al
=1
FEID [y = Aol ZEHA = AP

< w S B[4 - Al + B AR wh))?
=1
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< w0 Amax(ATADE2F % — b + A (AT A)E 172 — w2
=1

< wmax {Amax (AT A;)} ZEfo“/Q — wF))? + Amax (AT A)E||2F 12 — k|2

i=1
= (wmax Amax (AT 45)} + Amax (AT 4) ) ElJaF1/2 — w2
Let us introduce

— W/\max(ATA)’
Xcompress = W max; {Amax(A?AZ)} + )\max(ATA)a

depending on the case () we consider. Let us return to (32) and obtain
2Egap(z", 2", 5")

1
< = <6max 2% — z||* 4+ max [|w® — 2||* + max [|2° — z||?
K reX reX z€EZ

+6max||y0—y2+max||u°—y2)
yeY
3r—1
_( 7'2 _272Lf>~ Z]E” B2 k2
=0

1—71 K—-1
o < 2 - 3Xcompress'}/ > E”wk _ zk+1/2H2
k=0

K—1
1
—(1=2y*(1+ L)) ZIEHZ’““/Q—/CH2
=0

3r—1 1=
— 9.2 EllF+1/2 — o k)2
( 5 v ) % > Elly vl

k=0

_ <1 > max(AAT Yy > Z ]EH’LL k+1/2||2.

If we choose ™ > % and ~y as follows

< 1 . 1 1 1 1—-7 1—7
—min ¢ 15 —; —;
7= 4 Lr LZ Xcompresq max AAT

then one can obtain

1

Egap(z™, 2%, 3") < i

<6max||x —xH2—|—max||w —xHQ—i—matz —z|)?

+ 6max ||y° — y||? + max ||[u® — y||? ).
yeylly yll yeyll yll

With y = fmm{l, T leg' \/ -7 ;\/w/\ 1 ATy },we finish the proof. O

Xcompress

D.4 PROOF OF THEOREM [3.4]

Theorem D.5 (Theorem [3.4). Let Assumption 2.1 holds. Let problem () be solved by Algorithm 3]
(Appendix[A) with operators and C, which satisfy Definition[3.3} Then for 7 =1 — p and

1 1—7 1—7
Y = 7 min {1’ I’ L,_; \/62[)\max(AAT)+n max; max (A AT) ] \/wAmax(AAT)’ } )
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it holds that

Egap(z™, 25, 5%) = 1+\f (\/ max(AAT) +n - | max {\/ max(AiAT)}) + Lo + L) >
n ._ k+1/2 K . 1 K1 k41/2 2K . 1 NK-1 k12 d D? —
where X .—szox Zt = =) e 2 s T = Do Y an =

maxy z yex,z,y [[2° — ol + [12° = 2[* + y° — o).
To begin with, let us introduce the useful notation for the further proof:

A JkH1/2 _ kt1/2
ik =ak —yAT R, $-+/ ::UZ-JF/ — yAT e,

" (33)
=y —’vze“ GHVZ = b2 N ek
i=1
It is easy to verify that such sequences have useful properties:
Ak+1 a: — N AT ekt
=72f + (1 = 1wk — y(AT[CWMH? = uF + ¥) + uk] + Vi (afT1/%)) — yAT eF
AT (yk+1/2 uk ek C(yk+1/2 _ uk))
=7a¥ + (1 — 7w} — y(ATu* + Vr(zF))
— AT (yk+1/2 uk + ek> ~(Vr;(z kﬂ/z) Vri(zh))
:£f+1/2 — AT (ka/Q U ) v(Vri(z kH/Q) Vri(zF)), (34)
and
Gl =g+l 4 VZefﬂ
i=1
=myF + (1 —1)ub +~ (Z[C(Aixfﬂ/z — Agwl +ef) + Ak - zk+1/2>
i=1
+ ’yZ[Ai:EfH/Q — Al + e —C(Ax fﬂ/z Ak 4 €M)
=ry* + (1- T)uk + <Z Aiwf — zk> — 'yZef
i=1 i=1
k+1 2
93 a7~ k] -
" k /2
=jF /2 4 ’YZ T2 Awl] — (P2 R,
Now we are ready to start the proof.
Proof. We start the proof with the following equations on the variables :?;f“, atfﬂ/ 2, 2% and any
x; € R
15 = aill® = ™2 =l 4 20 =2l ) R P,
k k Wk Lk k .
% = ill® = =l + 2y - aF, T ) — e - aE)

Summing up two previous inequalities and making small rearrangements, we get
8 — il =&} — il * + 2088 — 88,22 — )
N k+1/2 k+1/2 L~k
IR =P Y - e (35)

44



Under review as a conference paper at ICLR 2025

Using the definitions (33) and (34), one can obtain
5+ — 2R <2flabtt — a2 4 2R - a2
=292 AT (12 — uF) — (Vri(2f T2 = Vri(@b)) |2 + 292 AT ¥ |2
<A AT (2 — )| 4 492 Vi TP) = ()2
+ 22| AT eF |2 (36)
With , and the update for zfﬂ/ 2, we have
GEHL gk —ghtl _ ghtl/2 4 phtl/2 gk
:if“ — ﬁf“ﬂ + fo/Q — xf
— = T (52 =) = (Tl ) = Vri(at)
+(1—T)(wk—x ) — (ATuk—l-Vn( f))
= = AATY* 2 £ i) + (1= ) (wh - ab). (37)
Combining (33), (36). (37), we get
5 — @il <[|2F — @il|? = 25 (ATYFH2 4 V(@) = (L= )l = 2f), 2772 — 2)
+ 42 AT W2 — b 4 492 T (2 ) = Ori(ak)
+ 2921 AT b |2 - 127 - 22
<[|#F — i) — 2y ATy 4 Ory(fT2)), a2 )
+2(1 - T)(UJZ»€ — xf+1/27 fo/Q — )
+2(1 - T)(xfﬂ/z — xf, fo/Q Z4)

k+1/2
AP AT (R — )2 dy?)| (2P — () )2

1 k+1/2 o
S e e e R Al

% =l ~ 200 AT 4 V@), 0 )
+2(1 — 7){wk — xfﬂ/z, f+1/2 x;)
+2(1 - T)<xf+1/2 —ab xfﬂ/z —T;)

+ 47| AT (12 — b P+ 4|2 2) = (el

F 2P AT K = ST — 2 4 AT MR

2

I?

In the last two steps we use and Cauchy Schwartz inequality in the form —|a[|? < —1|la +

b||2 + ||b]|? with a = xk+1/2 2% and b = 2% — z¥. For the second and third lines we use 1dent1ty
2(a,b) = ||a + b||* — ||a||2 ||b||2 and have
254 — 2|2 <|12F — @i — 29(AT Y2 4 Oy (2 TP, 2 TR )
(1= 7) (|l — 2 — Jwf — 2 T2 2T )2
+ (=)l B 2T ]| ek - 2)?)
A2 AT (yF 2 )2y (TP — (a2
1
+ 377 AT F | — 5l 2 - b
=[|&F — al|? — (1= 7) |2k — @il + (1= 7)[Jwb — 242
. 27<AiTyk+1/2 + Vri(xfﬂ/z), mf+1/2 _ -75i>
AP AT (2 — )2 4 2| (2P — () )2
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1 k+1/2 ; k+1/2
)ux 12 _ab? = (1= )k — a2,

3 AT - (7 - 5 ) e

Summing over all ¢ from 1 to n, we deduce

n
i —al? = (1=7) ) llaf —
i=1

n n n
Do lET =P <) |12 + (1= llwf -
i=1 i=1 i=1

— 29 Y ATy (@ TYR) 2 )
=1
+ 4y Y AT (2 - >||2+4v2z||w R I e
=1
+3722||Afe’€||2—< )Zn B2 k2
=1
(=) ka2
=1
With notation of A = [Ay,...,4;,...,A,), = = [, .27 .. 27T, & =
T, . 2f, 27T and w = [w],...,w],...,wl]T, one can obtain that > ;- , A;z; = Au,
S AT = AT and S AT (42 — ub) |2 = [ AT (4R — o)
125+ — 2||? <& — 2| — (1 - 7)[la* — 2| + (1—r>|\wk—x||2
72,Y<yk+1/2’A(l,k+1/2 7272 (Vs k+1/2)’ fH/Q*Iﬁ
=1
n
k
+ 42 AT (Y2 — i) |2 4 4y 3 V(TP = Ol
=1
) |lwk — 2220 (38)

1
3P JATH = (- 5 ) 12 P — (1 -
One can note that the updates for the variable z from lines [ and [TT] of Algorithm B]are the same as
those from lines[6]and[TT]of Algorithm|[I] Therefore, we can simply use (13), i.e. for z € R® it holds
1251 = 212 <||2* — 2% — || 2512 = 2R
+ 2’}/<yk+1/2,2’k+1/2 _ Z> 27<V£(zk+1/2,b),zk+1/2 _ Z>
+ 292 |y — P 292 | VLY ) — VLR b))

For the updates of the variable y from lines (3), (I2) and from (33)), we can repeat the same steps as

in obtaining (38). In particular, for all y € R®, we get
—yllP = A=)y =yl + (1 =) u* —yl?

(39)

19"+ —yll* <llg*
+29(Y ] Al THE — R 2y
=1

n 2
+ 42 | D[l T - Agul]| g - )

=1

? 1
132 S| = (7= ) I = g = (=l -
=g =l = (1= )l = 9l + (L= ) =
L2 /2 y)

+ 2y(AzF+1/2

2
+ 42 HAka/z - AwkH + 4’yz||zk+1/2 — "2
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2
n
1
> e _<T_2) e e A A )
=1

Here we also use the notation of A and z. Summing up (38), (39) and ([@0), we obtain
e e e
<& =l + 125 = 212 + 119" - yl)?
— (=" —z?+ (1 = n)fw* —z)? = (1 =1)]y* = yl*+ (1= 7)u* —yl

+ 377

=2 AGE =) = 29 3 (Vi) )
i=1

2y {2 SR ) = 0 (VU2 ), SR )
+ 27<Axk+1/2 _ Zk+1/2’yk+1/2 — )

1

- <7_ o 2> ||:L,k+1/2 _ ka2 . (1 o 7_)||wk o :L,k:+1/2||2 o ||Zk:+1/2 7 Zk||2
1

= (- 5 I g - gt - g

AP AT (Y2 M)+ V(e TR — (b))
1=1
+ 292 |y = R |2 4 292 V(T2 ) — Wa(2R, )2

2
+ 442 HA:E’““/z — AwF|| 4 49222 — k)2

n 2

Do
i=1
Using convexity and L,-smoothness of the function r; with convexity and L,-smoothness of the
function ¢, we have

125 = ]|® + [ = 2] + (195 -yl
<& — 2| + [I12F = 2)1* + [19* — yl?
— (=" —z?+ (1 =) —z)? = (1 =1)y* = yl* + (1= 7)u* —yl
+ 27<yk+1/2,A:17 - Z> - 2,Y<Axk+1/2 - Zk+1/2,y>
= 29(C(FHV2b) — £(2, b)) — 29 > (ra(a ) = ri(a))
i=1

1
- <7_ o 2) ”xk+1/2 _ ka2 _ (1 o 7_)||wk _ mk+1/2||2 o ||Zk+1/2 _ Zk||2

+ 32| ATeR|1? + 397

1
= (7= 3) I P - = et

+ 4,Y2>\max(AAT)”yk+1/2 - uk||2 + 4’}/2L$||Ik+1/2 _ Ik||2
+ 292y — k|2 4 292 L7 || A2 — R 2
+ 4’}’2/\max(ATA)||-'L'k+1/2 _ wk||2 + 4’}’2||Zk+1/2 _ zk||2
n 2
> e
=1

Also here we apply the definition of Ajax(+) as @ maximum eigenvalue. With Cauchy Schwartz

inequality for n summands: || Y7, e[| < n> 7 ||eF||? and after small rearrangements, we

: i=1 i >
obtain

29 [ (K112, b) — 0(2,b)) + i(n(mf“”) —ri(@;))

i=1

+ 37" Amax (AAT)[|€¥]]? + 3+
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+ <A$k+1/2 _ Zk+1/2,y> _ <ALIJ _ Z,yk+1/2>:|

< J3% = all? + 1% = 22 + 1g" — y)?
= (I =l + [ = 22 + g =)
—(1—T>ka—x||2 (=)t = a2 = (=)l =yl + (1= )t =y
} ( i 47%2) 45412 — M2 — (1= 7 = 4 A (AT A)) ¥ — 21722
— (1 - 492 = 2912 RH1/2 - 4|2

1
- ( N 272) Iy 2 = P = (1= 7 = 49 A (AAT)) [ — 22

+ 37" Amax (AAT) [ e* + 3970 Y [lef||*.

i=1

Then we sum all over £ from O to K — 1, divide by K, use Jensen inequality for convex functions ¢

S RV I N T W PP R R S A
and r; with notation X Z:c V2R = & ST PRH2 g =+ S~ y#+1/2 and have
= k=0
€25, b) — £(2,b) +Z (T xl))+<AxK_ZK’y>_<Ax—z,yK>]

- (IlfcO =l 2% = 2 + 15 - wl?)

K-
Z lw” — x|

(1—7) ?Z zF — )+ (1 —7) ?
k=0 k=0
1 K-1 1 K—-1
(=)= I =l =)= et =yl
k=0 k=0
1 1=
(g0t g X e -
k=0
=
— (1 =7 = 47°Anax (AT A)) - i7e Hwk - 33k+1/2||2
k=0
| Kl
—(1—-492 —29%L2)— Z |25 H1/2 — k)12
k=0
1 -1
() Z I = 5
] Kl
— (1= 7 = 7 Amax(AAT)) - 22 Dl =y 22
k=0
1 K-1 n K-1
37 A (A4T) - L ST P 4307 SN B @
k=0 i=1 k=0
Using small rearrangements, we can deduce
| Kl
—(1=1) e Sl =P+ (- 7) Z ko
k=0

K-—1 1K 1
k
}juw —all? = = 31— )l - 2] + 7l — 2]
k:O
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1 1
_ 0793”277 K*IHQ

=l =
K—1
1
+ e 2 (™ =zl = (= r)la® = 2]* = 7lw” - 2]?)
k=0
1 1 1=
= 2l =2 = 2™ -2+ = ’;[Hwk“HQ = (L =72 = 7lw*|?]
g K-l
+ Ve (1 =7)z* + 1w — w2, (42)
k=0
The same way we can make
K- | Kl
1-7) ; ly* = ol* + (1= 7) - 2 [u? = yl|?

1 0 2 1 K 2 1 - k412 k2 k2
= gl ol = gl = ulP o g 1P = L= P = )
k=0

K-1
2 k E_, k+1
+E Z((l—r)y +Tu” — Ut y). 43)

k=0

Substituting (#2) and [@3) to @I)), we obtain

n

2y {8(2}(719) —l(z,b) + Z (n(;EZK) — rl(mz)) + <A;EK — EK,y> — (Ax — z,yK>

i=1

1, )
<% (12° = 2[* 4+ [12° — 21> + 19° — y]I?)
1 1 1 =
+ gllw0 —z|” - glle —z|” + % Sl = (1= 7)ll*)? = 7llw® %]
k=0
g K1
+ 74 ((1— 7')x’c +rwk — wkﬂ,m)
k=0
1 1 1 Kl
Ellu0 —y|I? - EIIUK —ylI* + Z 12 = (1= 1)y 1? = llu® )]
k=0
9 K-1
+ 2 (- T)yF + ruf —uF T y)
k=0

—_

1Kfl
_ 4822 . — k+1/2 _ k|2
(g g X Ittt
— T — 4~? T 2k +1/2)12
— (1 =7 = 47" Amax (AT A)) KZHw [

|
— (1= 49" = 2°L) & Z I7H2 = 2

1
—(r——2 ) Zny’“*“? /2

— (1 =7 — 49" Amax (AAT)) Z Jub — i 17212
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n K-1

+ 39 Amax(AAT) - Z 417 + 32 2 57 37 ek,

1=1 k=0

As in (I5) we pass to the gap criterion by takmg the maximum in y € ) and the minimum inx € X
and z € Z. Additionally, we also take the mathematical expectation

2vEgap(z”, 2", ™)
1
K(HlaXIIw —w||2+m€a><||w x||2+glea)§llzo—2\\2
+ ma; — 2+ma uO— 2
yegjll yll yef}H yl|

K—1
1
+ % D B[P — (1= 1) k| - 7lwt|?
k=0

5 K-1
“ _\k ko, k1
+ KIEIglea% (1 —=71)z" 4+ 7w —w" ™, x)
k=0
| K
+ Ellu** 2 — (1= 7)lly*||* — 7llu"®
k=0
5 K-1
+ —Emax (1 = 7)y® + 7ub —uF 1 y)
K y
k=0
1 272 KH1/2 k)2
(7247L> ZEHx I
| K-l
— (=7 = 49" Amax(ATA)) - 22 > Eflw® — o122
k=0
=
L DOk s
1 | K1
(-t 5 2 L k+1/2 k(2
(7-3-27) & L EIF2 -4
k=0
| K1
-(1-7- 4’72)‘maX(AAT)) K ]EHU k+1/2H2
k=0
n K-1
+ 372 Amax (AAT) - Z Elle¥]|? + 3v*n - — Z > Ellek|*.
i=1 k=0
Since lines of Algorithm [3] are equivalent to lines [TTHI9] of Algorithm 2] Then, we can use
6. @7, and get
271Egap( AN
1
< % <5 max 20 — z|)* + max lw® — z||® + max 120 — z||?

Sl - vl + mag |~ 1?)

K

K—1
1
Z (1 —7)[w” - ’“IIQWZ:IET(l—T)Huk—y’“ll2
k=0

k=0

1 1 K-1
) ( T2 472L%) & 2 Bl
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1
— (1 =7 — 49 Amax (AT A)) - E|jw? — 2F+1/2)2
1 K—-1
(1 AN2 _9a2T2) k+1/2 _ k)2
=4 =2°LY) 7z ) Bz 2l

1 ] Kl
_ _7_2 2 L E k+1/2_ k2
(T 5 7) % > " Elly "l

k=0

N

-1

1
— (1= 7 = 49" Amax (AAT)) - 22 > Eflu® — 1722
0

B
I

K-

n K-
1
+ 37 M (A4T) - Z ||e’“||2+3v%-g22 Eflef1l*
i=1 k=0

Next we work with error feedback terms:
E”ek+1”2 :E”ykJrl/Q _ uk + ek o C(yk+1/2 _ uk + €k)||2

1
< (1 _ 6) E”yk+1/2 —uF + €k||2.

With Cauchy Schwartz inequality in the form ||a +b||% < (1 + %) llal|? + (1+n)|/b||* with a = €,
b=yFt1/2 —u¥ and n = 25, we get

Bl < (15 ) (14 35 ) I + @0+ 1) (1= 5 ) B2 - PP

< (1= 55 ) BIHI? + 6B+ — ¥

Running the recursion and using that eg = 0, we have

k k—j
1 . .
k+1)2 _ J+1/2 _ 512
Bl P <393 (1 25) Elly? /2 - |2

Then we sum all over k from 0 to K — 1, divide by K.

K—-1k—-1

| K1 1\l , 4
TOILE DY > (1 “5) Bl
k=0

= |yE /2 k)2 Z (1 _ >

| K-
<66% - Z Ely* 72 — o2, (44)
k.f

,_.

N

The same way we can make the following estimate:

- ZEH k2 <662 — ZEHA AR P (45)

Combining (#I)) with (IZ_Z[) and (@3)), we have
K K k)

27Egap(z™, 27,y
1
< = (5 max || — z||* + max ||w® — z||* + max||z° — 2|
K reX reX zeX

5 ~0 2 0 _ 2
+5max[|g” —y|” + max flu” — y]|
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—_

1K K—
+ 3 2 Brll =l =P+ 1; (17|t - o2

~(r-3-02t) ¢ ZEWW |

K—

1
_1_ _42n1xATA L E k+1/22
(17 = 4 ))K;:Oj o — 2172

K-1
1
— (=49 = 2°LY) 2= D Bl )
k=0

—1
1
~(r-3-2) % LY gy e
k=0
K—-1
1
VL ) S

>
Il

0
1 K-1
+189%0% A (AAT) - 2 Y B[y Y2 — ot
k=0

K—-1 n

1
2¢2 2 : § : k+l/2

k=0 i=1

Aywk |
For Z E| Az % — Ak we get

n
ZEHA FVE Af 2 <3 A (AT ADE |2 T2 — k2

i=1

< max Amax(A7 A;) B[22 — wl|?
! i=1
< max[Amax (A7 A))|E[2*1/2 — wk|2.
Then one can deduce

QVEgap(EK’ sz gK)

1
<= (5 max ||#° — 2||? + max ||w® — z|* + max ||2° — 2|
K zeX reX zeX
+ 5max [|9° — y||* + max ||u® — y|?
max |7 — y||” + max [lu” —y]
| Kl =
+ 4 D Er( = )t — 2P+ 5 Y T Er(L - r)fut -yt
k=0 k=0
1 | K1
(rog ) g DRIt
k=0
— (1 =7 — 49* Amax (AT A) — 187252 n max[Amax (A7 4;)]) -
| K1
(- 492 2PLY) e 3 B[ 2
k=0

1 1 K—-1
_ - 2 i k+1/2 k2
<T 5~ 27 > e kE_O Ely vl
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— (1 =7 — 4y Amax (AAT) (1 + 56%)) Z E|juf — yF+1/2)2.

With 7 < 1 and Cauchy Schwartz inequality, we have
2yEgap(z”, 2%, )
1
< = <5 max |20 — z||* + max [|w® — z||? + max ||z° — z||?
K reX reX zeX

+5ma 0~y + mae u” - y||2>
y€y 6

37 -2 272 k+1/2 _ k)2
(752 ) ZEHx ||

1-7 2 T 22 T 1 k k+1/22
- ( 5 Amax (A" A) — 18v%6 nmlax[)\max(Ai AN - % Z E||lw"® —z I

K-1
1
— (1497~ P LY 2 Y B 2
k=0
K-1
37 -2 2 1 k+1/2 k2
(F2-22) i Bl - )
k=0
-7 2 T 2 1= k k+1/22
- Amax(AAT) (1 + 56%) -?ZEHU —y 2.
k=0

If we choose 7 > % and ~y as follows

< 1 . 1 1 1 1—71 1—71
LI P . .
7= "L Lo \| 5020 max; P (A7 A47)] || 362 Amax (AAT) [

then one can obtain

1
KKK)<

Egap(z y K(Smax”a: —xH2—|—m€aX||w xH2—|—I;1€aZ);<||zo—z||2

+ 5max ||y° — y||? + max [[u® — y|? ).
ma ly” =yl ma [ yll

With 7 = $min {15 5 21 \ [ bomrrra /sy - we finish the proof. O

D.5 PROOF OF THEOREM[3.3]

Theorem D.6 (Theorem [3.3). Let Assumption 2.1 holds. Let problem () be solved by Algorithm{|
(Appendix[A). Then for T = 1 — p and

1 1—71
T = 4 min {L L) L’ \/)\max(AAT)-i-n-maxi{)\max(AiAlT)} } J

it holds that

Egap(z”X, 2%, 5%) = O({l—{—%( Amax(AAT) +n - , max {\/ Amax (A4; AT) }>+LZ+L} )

where 7K — LZK—l pk+1/2 K . 1 ZK 1 2k +1/2 pK k+1/2 d D? —
T K _£<k=0 ’ = Yy = KZ an

max, : yex,z,y [[[2° — z)|* +[|2° — 2|2 ¥ lly° = ylI?].

Proof. The proof repeats almost the same steps as the proof of Theorem @l (Section @) In
particular, in the proof of Theorem [3.2] we need to replace Q(y*+1/2 — u*) by y*+1/2 —4/* and
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kﬂ/z wk]) by n- Ay, [, k172 _ w? ], and use. In the end, we arrive at the analogue

ey
2vEgap(z”, 2, ™)

1
<= (6 max ||2° — 2||? + max |[w® — z||? + max ||2° — z|?
K TeEX TEX zEZ

+Bmax [y — -+ ma y||2)
yey ye

3r—1 Kl 1— 754
- 5272 L k+1/2 _ kyj2 _ - k_ o k+1/2)2
(B -22) - & Smlt e - - LT Y Bt -k
k=0 k=0
K-—1
1
~ (=22 L)) 7 D B[ =P
k=0
K—-1 K—-1
_ 3T — _ 2,}/ i E||ylc+1/2 7yk||2 _ 1777_ Z E”uk 7yk+1/2||2
2 Kk—o 2K —
K—-1 K-—1
372 2n2 k+1 2
e 2 BIAT — )P ZEIIA% 2wk )2
k=0

Using the notation of Ay« (-) as a maximum eigenvalue and the random choice of iy, we get
k+1/2 _ k+1/2 _
B gy (2 = wh, ) |2 =Ry, [[14s, (22 - wh, )]

I k+1/2

== E[ Al —wf)|?
n 4

=1

1 n

> Z Arrlax(A?Ai)E“xf+l/2 - waQ

i=1

< maxi{)‘maX(AzTAi)}Eka+1/2 . wlc||2'
n

Therefore, we obtain
2yEgap(z™, 2%, 5"

1
<= (Gmax |2° — 2||? 4+ max || w® — z||* + max ||2° — z||?
K\ zex TEX 2€Z

+ 6 ma O — ylI% + max |[u® — 2)
yegHy yll yegH yll
K—1
-1 1
B (372 B QWQL?«) = Z E[|25+1/2 — k|2
1 _
-(4° o ATAD) ) o Z Bk — 4122

1
~(1-2y*(1+ L)) % Z]E||zk+1/2 2|12

3r—1 1 —
_ _92) 4 Ell*+1/2 _ |2
(%5 W)Kkz_o 4172 3|

B 1—7 — 3 (AAT)’YZ iKz_:lE”uk_yk+1/2”2
max K .

k=0
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If we choose T > £ and  as follows

< 1 . 1 1 1 1—71 1—71
—min ¢ 1y —; —;

T=1 L Lo\ nmax; (AT A1)} | Amax (AAT)
then one can obtain

K K K)< 1

Egap(z 'Y K<6max||:z: f:EHQerawa f:szeratz —z|)?

+ 6 max ||y° — y||? + max [[u® — y|* ).
mase [y — ]| + mave [u”

Wlth’y = %H’lln{l, £~;%y;\/nmax {)\1 T(A TAH \/ 1(1;-AT) }, we finish theproof. O

D.6 PROOF OF THEOREM [3.6]

Theorem D.7 (Theorem [3.6). Let Assumption 21| holds. Let problem () be solved by Algorithm 3]
(Appendix[A). Then for T = 1 — p and

_ 1 1.1 1—71 1—7
Y 4111111{17[, ng \/ (Amax (AT A)+I(diff Yeed)maxl{)\max(A A;) }) \/dmaxl{kmax(ATA )}’ }

it holds that

2
Egap(z¥, 2%, %) = o( [i <\/ max (AT A) 1 1(dif seed) _max {Amx<AiTAi)}+> F Lot LT] 2
V. K

Hooogi

+ [ (4 pex {remaan )] 20),

,,,,,

where 7K — Zk . 1 k+1/2 zK . 1 Z K Lo kt1/2 gK . %Z - L k+1/2 gpg D2 =

MaxXy ; yeX,z,y [||$ —xf|? +[|2° —Z||2+||y —yl?].

Proof. Most of the proof is the same as that of Theorem [3.2] We note only some main steps of the
proof and changes regarding Section [D.4] with the proof of Theorem [3.2] We start with an analogue

of (T9) and get

[ [ | N P . L i
k+1/2 k+1 2
(1= 7) (k= 2] — lwk — 222 (|2 )2
k+1 2 k+1/2
+ (=) (e =B TR ] ek - 2
—2v(d; - (4; Ty kt1/2 _ uk),e]k>e K —|—ATuk + Vri(z k+1/2),xf+1/2 —x;)
+29(d; - (AT ("2 = ub), ejdesn + Vri(af T72) — Urg(ak), 2 T2 — okt
=rlaf — 22 + (1 - 7)wf —:cin?
— 7l P = (L= ) e — 2T — e
— 29(d; - (AT ("2 — uF), ej)esn + ATUF + Vry(afTY2) 2 T2 — ay)
+2,Y<d <A (yk+1/2 uk:) >6 k +V7’,( k+1/2) VTZ( k) l’k+1/2 f+1>.
Summing over all ¢ from 1 to n and using the notation of A = [Ay,...,4;,...,A,], © =
[f, . 2l 2l w=[w], . w], . wl]T, we deduce

lz**t — 2]|* =rlla® — 2|® + (1 = 7)w® — 2]

o 7_”karl/Z _ ka2 _ (1 o 7_)||wk _ l,k:+1/2H2 o ||.Tk+1/2 o $k+1”2

— (AR — ) g2 - 2y S (Y)Y )
=1
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k
_ 2’72 k+1/2 Uk),€]f>egf — AT( k+1/2 _ uk)’xi+l/2 — )
+ 272 k:+1/2 u"), e >6J;c,9€f+1/2 §+1>

20 S (V) — by, £ b
=1
By simple fact: 2(a, b) < nl|al|? + %HbHQ with a = d; - [AT (yF /% — k)] e, b= af T2 gkt
=2yand a = Vri(z kH/Q) Vri(zk), b= kH/Q aF =2y, we get

k
el =l ol 1 - et o

_T||I‘k+1/2_1‘k”2_(1— )”wk‘_ k‘+1/2H2_ || k+1/2—1‘k+1||2

— 2y (A(aF Y2 — ), i H1/2) 272 _ kH/Q ’?*1/2 )

_ QVZ k+1/2 uk)7e]k>e]k — AT( k+1/2 _ uk)’xf+l/2 — )
1

+ 2’}/2 Z ||d k:+1/2 uk)7ejk>ejf||2 + §||$k+1/2 _ wk—HHQ

1
+27? Z V7 ™%) = Ve P + Gl = ah P

e~ + (1~ — ol

— 7'||1:k+1/2 _ l,kH2 —(1- 7_)||wk . xk+1/2H2

— 2y (A(aF T2 — ) R 12y QVZwri(fo/z)’xfﬂ/Q )

=1
_ QVZ k+1/2 uk)7e]k>e]k — AT(y k+1/2 _ uk)’xf+l/2 — )
+ 2722 ld: - (AT (52 = u®) e )egul|?

k 1 2
+272Z||V T2 — b))

The analogue of @) is
2 — )2 + [+ — ]|

<[la* - 2|” + lw* — 2]

_ Tka+1/2 _ lik||2 —(1- 7)Hwk . k+1/2”2
— oAV ), 2y Z(VH( k+1/2)7 fH/Q )
i=1

= (@ =" = Tt + w7

+2((1 = 7)z* + 7wk — w1 2)

k+1/2
_272 (/2 uk)7ejk>€jk AT (U2 k) R 0

_ 272 k+1/2 Uk),ejk>€jk — AT (y k+1/2 u’“)@? 2
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+2’722Hd k+1/2 uk),ejwejf 2

k+1/2
£ 3 Ve -
i=1
(1) is absolutely the same. The analogue of 22) is
Iyt =yl + T —y?

<[ly* = ylI* + [[u* —y|?

_ T||yk+1/2 B kaQ B (1 _ T)||uk . yk+1/2”2
k+1/2
_ 2,y<zk+1/2’yk+l/2 — )+ 27<Z Aﬁ«“ﬁ / ,yk“/g —y)
i=1
+ 2’Y<Z[S : <Ai($f+1/2 —wh), eck)ecr + Ak — Aifo/Q]’ka/? — 40
i=1

n
k k
+ 27<Z[S : <AZ(1'1 e - wf)v eci.“>eci.c =+ Azwzk - Azxz +1/2]v yO - y>
=1
— (L=l = 7l + [ly*+ )

+2((1 - T)y’C + b —uF )

+2y ||Zs (@] =) e et + 2972 -
The analogue of (23)) is
2yEgap(z”, 2%, ")

1
<= (max l2° — z|* + max ||w® — z||* + max||2° — 2|2
K\ zex TEX Z€EZ

+ max 0_ 2—+—max uo— 2
yeyIIy yll yeyH yll

=
N

1—
_ % E||xlc+1/2 _ xkuz . KT E||w k+1/2H2
k=0 k=0
| K-
_ = El5+1/2 _ k2
k=0
’ K—-1 1 TK 1
_ ]E k+1/2 k12 _ B ]E k+1/2 2
7 lly Al I [ — [
k=0 k=0
| K1
e Ellw* ) = (1 = 7)l|2*|* = flw”|?
k=0
9 K-1
i POk
| K-l
+ 22 D Bl = (= )l P =t
k=0
9 K-1
+ —Emax 1 —7)* + ruf — uk'H,
K yey kZ:O<( )y y)
2’}/ K—1 n
k+1/2
K E(d; - [AT ("7 = uP)) gy — AT Y2 = ), 22— af)
k=0 i=1
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K—-1 n
k+1 2 k T/ k+1/2 k
+7 IEI;?))((Z 2 —u )}(J‘f)_Ai (y /2y )T — x;
k=0 i=1
2 K-—1 n
+ = Z E(Y [s- <Ai(xf+1/2 — w’-“) e k>€ kTt A; w — A xk+1/2], k+1/2
K
k=0 =1
2 K—-1 n
+ 3 Emax 37 (3 ls - (Al - wh), eodea + Aml — Ay
K yey : k) Eck
k=0 =1
2’}/2 K—-1 n
+ 5 D DBl [AT (2 — ) |
k=0 i=1
92 2 K—1 n
+ % E|D s (A T2 —wk), e e
k=0 i=1
9~272 K1 g2 K1
+ Ly Z E||:I:k+1/2 . l,kH2 + 7 Z EHykJrl/z _ kaQ
K K
k=0 k=0
2 9 K-1 ‘ 9 2L2 K-—1
+ % E||Zk+1/2 k2 7 297 Ly Z E||z k+1/2 2.
k=0

4), 23), 26), 27) are absolutely the same. The analogue of (28) is

B{d; - (AT (52 — ), e ey — AT (g2 — k), T~ af)

_ ]E(]Ejgc [di . <AiT(yk+1/2 _ uk) ex) ]k] AT( k+1/2 _ uk) k+1/2 xQ> _

7] 7’L

The analogue of (29) is

E(Y s (Ai(a 2 —wl), e e + Ak — Al T2 12 g0

)

—y)

=B Eu[s (Ai(af T —wl) epden] + Ak — Al T2 12 _g0) = 0,

The analogue of (30) is
n K-1
Emax Y Y (di - (AT (52 = ), epp)ese — AT (12 =), 2 — af)
1=1 k=0
< EmaXi z”: 29 — ;)|
n K-1
+ E% Z | Z d; - (AT (y" /2 — uk),ejk>ejk — AT (12 k)2
=1 k=0
1 ~y n K-1
= Emax ﬂﬂxo —z|® + Eg SN ldi - (AT (g2 = ub), ejr)er — AT (yFT2 —u
i=1 k=0
FE[r 3D X (e ATOM ey — AT ),
=1 ki1<ko
[AT( ko+1/2 _ kQ)](jh) _ AZ“(yk2+1/2 o uk»
n K-1
= Emax—”x —z|? +Ev lld; - (AT (y*+1/2 — uk),e]k)ejk — AT (yh+1/2 _y
zeX 2 i i
i=1 k=0
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n

FEP Y B (e (AT - o)

,ejk>€Jk — AT(y kit1/2 _ ukl),
=1 ki1<ko
]Ej% [di : [A?(yk2+1/2 - Ukz)](j?‘z)} - A?(yk2+1/2 - uk)>
n K-1
— Binag o= o~ + FEGID S I (AT el — AT - )
Lo 2
= Emax —||z° — z||
reX 2")/
n K-1
FEDS S e [AT 2 ) gy — Epe - (AT (/2 — ), ey ] P
i=1 k=0
1 ~y n K-1
0 2 T, k+1/2 2
< B e ol $EG S0 S Jdoe (4T @ el
The analogue of (31)) is
K-1 n
Emax » () [s- (Ai(acfH/Q —wh),en)en + Awl — Aixfﬂﬂ],yo —y)
veY 120 =1
1 7K—1 n
k+1/2
SEglea;cgny()—ynuEg;||Z_Zs-<Ai<xi 12— wh), eadeq|?.
The analogue of (32) is
29Egap(z”, 2", ")
<= (6max 2% — z||? 4+ max [|w® — 2||* + max ||2° — z||?
K r€EX reEX 2€EZ
+ 6mally® ol + o — ?)
yey yey
3r—1 1~ 17—
_ — b 522 L k+1/2 _  ky2 _ LT ko kt1/2)2
(g -2 e DBt T S etk
s
(1= 2920+ L) = 3 B4+ 242
k=0
K-1 K-1
3r—1 1 -7
_o2) k+1/2 _ k2 Y122
=2 A P - T Y Bl -y
k=0 k=0
372 K-1 n
e D D Eldi (AT (Y2 — ) eju)esn?
k=0 i=1
3 2 K—1 n
+L > E| Z s (AT —wf), e e . (46)

Let us estimate two last lines. Here we use that coordinates j; and ¢; are chosen uniformly and
independently.

Elld; - (AT (4172 —u¥), ¢

k
T3

el =BEE, , [IKAT (1% — ¥, epu)e ;o]
d;

:d2 Z [” AT k+1/2 k)aer>€r”2}

r=1

=dE|AT (y* 12 — b
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SdiAmaX(AiA?)E|‘yk+l/2 - uk||2’
For E| S0 s+ (A (2l T2 — wh), er)e |2

k
S s (Al T — k) e e =

wk)7e k> ek, then

we have two options. If ¢¥@ = c* for all 4, then
(0 A (@52 k)] e Ve = s(A(h+1/2 -

7 7

V)

Euzs (25T k) e e |2 =Els(A@F Y2 — wh), eprden |
=B [[{A@" 72 = w"), eqe)eer 2]
_82E ZH TUARARS k)’er>er”2

=sE[||A(wk“/2 —wh)|?
<8$Amax (AT A)E|2F /2 — k)2,

If ¥ are chosen independently (i.e. c¥ # c? ), then

k 1/2
Enzs (a2 — k), e e
*ZEHS (@ ) e e
k+1 2 k+1/2
+ZE (T wf) eadeqn s (45T —w) e en)
i#]
k 1/2
—ZEHs (@2 — ) e e |2
k+1/2 k+1/2
+ZE { Ai(x i+ / —w?),66§>60§} 7Ec§ [8'<Aj(xj+ / _w;'c)vec_’;>ec_’7?>
i#]
—ZEHs (A2 = wl),ep)es |
k 1 2 k+1/2
+ZE TV k), AT — k)
i#]

=52 Y El(Ai(af T —wh), e e

+E[ Y A T2 - Al - ZEHA /2

i=1

zwf |2

< s S E[ AT - Al + B A@FTY? b))

i=1

<53 Mnax(ATADEI|2E 2 — w2 4 A (AT A)E2HH1/2 — w2
=1

< smax {Amax (AT A} Y B2 T2 — wf |2 + Aax (AT AE[2"H1/2 — ¥ 2
=1
= (s max {Amax (AT 43)} + Amax(AT 4) ) EJ*1/2 — )2

Let us introduce
— SAmaX(ATA)’
Xcoord = s max; {)\max(AzTAi)} + Amax (AT A),
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depending on the case ¢; we consider. It remains to come back to (@6) and get
29Egap(z”, 2%, ")

1
<= (Gmax [|2° — 2||* + max ||[w® — z||? + max || 2° — z||?
K TeX TEX 2€Z
+ 6max ||y° — y||* + max ||u® — y|?
max [y — yl|” + max [|u” — ]
3r— 1 1= 17—~
_ 1 5 2p2) . L k+1/2 _ k2 _ 1T k _ o k+1/2)2
(g -] X e T S Bt

K—
—-(1-2*(1+ L)) ZE||zk+1/2—zk||2

3r—1 13+ k+1/2 k|2 1-7%~ k k+1/22
-3 — 272 % 2_ Ely A iy > Eluf -y [
k=0 k=0
372 K-1 n
R AT k+1/2 _ k|2
K Z Zdz)‘max (AiA; )Elly u”||
k=0 i=1
3 K-1
T 2 ;C(coord Z ]EH.IkJrl/Q _ wkH2
k=0

1
< = (6 max [|2° — 2|2 + max ||[w® — z||? + max ||2° — z||?
K reX reX z€Z

6 max g — |12 + max [ — y|2)
yey yey

3r—1 1 = 1— i
- L 5272\ 4 k+1/2  _kj2 _ + T ko k+1/2)2
( 5 2y L7-> KE Elz =I° - o5 > Ellw* -z [
k=0 k=0
K—-1

- (1-292(1+ L) E|[2F+1/2 — 2F)2

3r—1 1= 1-r' &
_ 92 Ellgc+1/2 — k2 - 2= Ellu — o*+1/2)2
(%5 7)K IS S s

3 T k 2 k|12
+7 dmax { Amax(A] A7) Z]EHy 2 k|

342 K-1
+ g ;((coord Z ]E||$k+1/2 — w2
k=0

If we choose ™ > % and ~y as follows

< 1—7 1—7
mln
T=17 'L, Le "V Xeoora’ | dmax; Amax(AT A}

then one can obtain

1
Egap(z”, 2%, ") < K<6ma><|la? — ol + max o’ — 2* + max||2® - 2|*

+ 6max ||y — y||? + max ||[u® — y||? ).
ma ly” =yl max [ yll

Wlth T= % mln{ ) % LL \/Xcoord \/d m'lxz{)\max(ATA )} }’ we ﬁniSh the prOOf. D
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D.7 PROOF OF THEOREM [4.1]

Theorem D.8 (Theorem [.1). Let Assumption 2.1 holds. Let problem ([6) be solved by Algorithm|6]
(Appendix[A)). Then for

1 : q L
= = - min 1 L1
T { " V/max; {Amax (AT A;)} T Lr? nle } )

it holds that
1+\/maxi:1 ..... n{Amax (AT A;)}+nLe+L, ) D?
gap (2, 25, 5%) = 0<( K ) )
where gapi(z,y) =  maxy .y L(z,2,§) — min, zexzf’(fz Zy) and K =
K—1 - K—1 _ K— 1
% k=0 IR, G = lezo 2172, g o= KZ ]”1/2 and D? =

max, ; yex,z,y [12° — z|? + [12° — z|I> + lly° — ylI?].

Proof. We start the proof from (TIJ), since the updates for x; variables in Algorithms [} [] are the
same (with a slight modification y to y;):

k k+12 k k+1/2 k
[Eian e R A

k
= il® =laf - @il® ~ ||;

2y (Ai(a! kt+1/2 _ ), ny/Q) 2y(Vrs(x 1€+1/2)7 fH/Q o)
=2t a2 AT - )
= 2y{ria %) = Ori(ad), 2l - 2T,
By simple fact: 2(a, b) < n||al|® + l||bH2 with a = AlT(yl].CH/2 —yF), b= fo/Q oty =2y
and a = Vry(2¥ /%) = Wy (@), b = 2FT2 - 251 = 24, we get

it — i) =llaf — ail|? = [l — af|?
= 2y A T =)y ) = (V) )
k+1/2 k+1/2
+ 292 AT (2 — B2 + 292 il TY?) - V(e |
Summing over all ¢ from 1 to n and using the notation of A = [Ay,...,4;,...,A,], © =
[F, ... 2T, ... 2l]T, we deduce
o454 —af? =l a0 b R

B 272 k+1/2 —z), yf+1/2> B 272(Vri(xf+l/2),xf+l/2 — )

i=1

(2

k+1/2 k+1/2
- 2’YZ<$?+1 _$i+ / >AzT(yi+ / —y))

=2y Y (e ) = Vri(ad), o - 2, )
i=1
Using the same steps as for , one can obtain for the notation of z = [27,... 21, ... 2117 and

y: [y{77y777yZ]T
251 — 2P S — 2P — [FH2 = R R 2

)

N L P 2C ) DIE R 3
i=1 j=1 Jj=1
k
— 292V [ ST AT ) v (SR ] 12+ 292y Y2 - b2
j=1 j=1
(48)
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and,
1 s e 1 R e e e Vil o

n
k+1/2  k+1/2 k+1 2 k+1 2
_272<2i / ' Yi / +2’YZ i / /

lly

k+1/2
+ 292 S AT )2 4 2922 - kR,
=1

Summing up @#7), @8) and @9), we obtain
[T —2|® + |25 — 2] + " =yl

<lz® =z + 12 = 2l* + ly* — ylI?

— [ 12— |2 2 k2 gy
k+1/2 k+1/2 k+1/2 _k+1/2
7QVZ<A"(%+/ 7$i)7yi+/>+2f}/z<yi+/ ,Zi+/ - z;)
i i=1
n
k k k k
_272<Zi+1/27yi+1/2 +272 . +1/2 +1/2 — )

k+1/2 k+1/2 k+1/2 k+1/2
DB CARD R ARSEEN R DDA IO BE AR

i=1 j=1
k 1/2 k+1/2
292 S AT G < B + 22 3 [0 - V() P
=1 =1
- k+1/2
292y = P 2y O (ST | - e Zz b)IP
j=1
+ 2922 P 2y Y A )P
i=1

Using the definition of Apax(+) as a maximum eigenvalue, we get
2™ — @+ M = 2]+ Iyt -y

<lz® = al® + [12* = 2* + lly* — yl®

_ ||IIJk+1/2 _ $k||2 _ sz+1/2 _ ZkHQ _ ||yk+1/2 _ ka2
n n

+ 27 ) (A — 2, it 272<Ai-73§+1/2 — 22 )
i=1 i=1

— 272<V1"i(:17f+1/2), xf—H/Q —x;) — 2v9(V{ zk+1/2 Z k+1/2
=1 7j=1 7j=1

+2722AmaXAAT>|| prz yzu2+2v22nv @2y — V(2

i=1 i=1

k+1/2
292y = yF 2 2y e [ ST | - e Zz b)IP

Jj=1

n
k+1/2
+ 292 Y2 = 2R )2 4292 3 A (AT Ay |2 T2 - k2
=1
<||lz* — 2| + |2 — 22 + [|ly* — )

_ ||.Z‘k+1/2 _ Ik||2 _ HZkJrl/Q _ ZkH2 |1,k +1/2

ly —y*|?
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+2y Z<Ai$z ayl TR — 2y Z(Aifo/Q — 22 )

_ 2’yZ<V7‘¢(mf+1/2)7mf+1/2 — ) — 24(VE szl_c+1/2’ b k+1/2 sz

i=1 j=1 j=1

k
+ 29 max{max (A AT Y2 = gMP + 297 D [V ™) = Vra(ah) P

i=1

n
+ 292 |lyF 2 — R 2y Ve [ 32| — e Z 0] |?
j=1
+ 29[| 2FH2 — 28|12 + 29 max{Amax (AT 4;) 2" /2 — :v’“||2~
1

Using convexity and L,-smoothness of the function r; with convexity and L,-smoothness of the
function ¢, we have

2 — a2+ |2 = 2|2+ g -yl

<l2* =2 + |12 = 2l* + ly* — ylI?

_ ka—&-l/Q _ .’L'k”Q _ ||Zk+1/2 _ Zk||2 k+1/2

—ly —y¥|?

n n
+ 2y Z<Az$z -z, yf“/Q — 2y Z(Ami—ﬁlm — zf+1/27 Yi)

i=1 i=1

—272(7“1»(35?“/2) —ri(x;)) — 2v(¢ szﬂ/z, -/ sz,b
i=1 j=1

+ 297 max{Amax (4 A7) }[y" 12—y ||2 + 297 L[ 12 — k|2

k 1/2
+ 292 [y — R 4 272 annZ TR ST
j=1 j=

+ 29712512 — 2 4 29 max{Amax (AT 40)}|2*F1/2 — *)%,

Cauchy Schwartz inequality in the form: || 377, (] L2k P <nd, ||zf+1/2 — K2, gives

2"+ — ]+ |25 — 2] + Iy -y

<lla® = 2] + )12 = 21 + ly* — ylI?

_ Hl,k+1/2 _ ,Ik||2 _ ||Zk+1/2 _ Zk||2 k+1/2

—ly —y*|1?

+27 ) (Aiwi — 2,y ) - 20D (AT - T )

i=1 i=1

— 2y Z(n—(xfﬂ/z) —ri(z;)) — 27v(¢ szH/Q —/ sz, b
i=1 j=1

+ 292 max{Amax (A AT Hly* /2 — (o 2L gt

F PR — R 22 L2 R
#2212 2P 292 mae{ A (AT A1) 212 — 22

i i L mi . 1 .11
With the choice of v < 5 - min {1, o D (ATAD} Lo ke } we get

2" — ]+ |25 — 2] + Iy -yl
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<||=* - x||2 + 125 =2 + v - y||2
+2vz (Asx; — 23,9y kH/z 272 kH/Q Hl/z,yﬁ
=1

n n

=293 (il ) () — 20 [ oA — e[ S 20 ).

Jj=1 Jj=1

After small rearrangements, we obtain

(¢ izf“ﬂ -/ izj,b )—&—i(n(wkﬂ/z) rl(mz))
j=1 j=1 i=1

+ ) (Agaf 72— T2 g — ) (Agwi — 2,y %)
= =

1 . X .
< g (et =2l 4 112F = 217+l )
o AR R Planeb SR Mt R

Then we sum all over k£ from 0 to K — 1, divide by K, and have

K—-1 n n n
1

r D DI R DEA IO I < Z(- S =)
k:o j=1 Jj=1 =1

n n
(AT 2 ST (A — 2yt

1=1 1=1

< g (2 =l + 12 = 2 4 — ol

— I = a2 = 125 = 2P — Iy - yll?)

< 277[((”%0 =l + 1127 = 2* + ly° — ylI?).
With Jensen inequality for convex functions ¢ and r;, one can note that
K—-1 n K-1
FX T A < Z ZZ’”” bl
k=0 j=1 k=
= , 1 K=l )
k+1/2 k+1/2
w(F XA < e Dt
k=0 k=0
K—1 K—1 K—1
Then, with notation :?lK = % > fo/Q, ZiK = % > zf+1/2, gjiK = % > ny/Q, we have

+ Z<Aix§+l/2 - Z§+1/27yi> - <Ale Z27yf+1/2>

< g le® =l +112° =21 + Iy — yl).
Following the definition of gap,, we only need to take the maximum in the variable y; € ) and the
minimum in x € X and z; € Z.

gap, (", 2%, y")

65



Under review as a conference paper at ICLR 2025

= maxf/(jK7zK,g]) — min L z,2,9%)
gey F,2€EX .2
n n
o [0 (3055 0] + 3 ) + Z P2 R
yey i=1 i=1
n n
: k
_ min _ ZZ“ +Z’]”,L Z Axl Z'L7y7l+1/2>
z,zEX ,Z i=1 i—

yeY x,2€X 2

= max max [ <sz(,b) —f(ZZi,b> Z ri(w;))

i=1
n n
+Z<Ai$f+l/2 k+1/2 ] Z At — %, k+1/2>1
i=1 i=1
1
< — (max 2% — z|* + max ||2° — z||* + max ||3° — yz)
2 Z2€EZ Ey
O

D.8 PROOF OF THEOREMI[C.]]

Theorem D.9 (Theorem|[C.1). Ler Assumption[2.1|holds. Let problem (8) be solved by Algorithm[9}
Then for

1 1. 1 1 . 1 1.1
7= -min {1’ b’ VAmax(ATA)’ \/pAmax(ATA)’ PAmax(ATA)? L. Le } ’

it holds that

80P (TF, 25, %) = O <(

1+P+\/(1+p)Amax(ATA)+p>\max(ATA)+L5+Lr) D? )
K k)

where gapaug(x z,y) = maxgey Laug(®,2,§) — ming zex,z Lag(Z,2,y) and 7K =

sz CLght2, §K :2: %OZ"’_% ZhF1/2 g;{ — %Zf:_olykﬂﬂ and D2
maX, ; yex,z,y [12° — z|? + [12° — 2|1 + l|ly° — ylI?].

To prove the convergence it is sufficient to show that the problem is convex—concave (Lemma[D.12),
to estimate the Lipschitz constant of gradients and use the general results from (Nemirovskil, [2004).
But for completeness, we give the proof of our special case here.

Proof. We start the proof with the following equations on the variables xk“ Pt %, o¥ and any

K3
x; € Réi:

b+ — 2|2 = [lab — 2il|? + 20t — b, e ) — (|2 k|2,
k+1/2 k+1/2 k+1/2 k+1/2
|2 — a2 = ||k — Y2 4 2T —xf,xﬁ/ — Y 2R k2,

Summing up two previous inequalities and making small rearrangements, we get

k k+1/2 k+1/2 K
lzstt = ail|2 =[laf — wil|? — [l2f 2 = | - flaf TP - 2
4 2(ak gk R gy 4 2(a] ktl/2 xf,xf“m — gkl

Using that xk-ﬁ-l /_g _ _,Y(AT k+1/2 4 Vri(fo/Q) + pAiT(Z?:l Ai$f+1/2 _ Zk+1/2)) and

GF TV gk = —fy(ATyk + Vri(xF) + pAT (31, Azk — 2%)) (see linesandof Algorithm
@) we obtain

k k
bt i = 2fI? — fla T

= ail® =llaf - @il® ~ ||z

27<A1Tyk+1/2 + Vri(mf+1/2) _’_pAZT(Z Aixf“/z _ Zk+1/2)’xic+1 — ;)
i=1
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— 2v(ATy* + Vri(zf) + pA] ( Z Azl — 28, $k+1/2 AR
i=1

k k+1/2 k k+1/2 k
e [ A A e |

_27<AT k+1/2+VT'( k+1/2)+ AT ZA k+1/2 k+1/2),xf+1/2—xi>
i=1

= 20(AT (P — ) V() - Ol T - 2T

- 27p(AiT(Z A (T2 ghy gk hH1/2) gkl kL2
i=1
1P = Nl % = b — |

=llzf — @il® — ||}

g 7 =

i

—27<A( k+1/2 xi)’yk+1/2> 29(Vri(z k+1/2) k+1/2 — )

- 2m<2 AT U2 A (YR )

i=1
— 29(Ai(f ’-““/%,yk“/? ~v")
= 29(Vrila ) = Ory(ak), a2

'L

k+1/2 k 1 2
— 2yp( A — 2TV ST AP - b))
=1

_ 2fyp<Ai(acf+1 k+1/2) B k+1/2> (50)

Summing over all ¢ from 1 to n, we deduce

n n n n

k+1/2 k+1/2
Zux;ﬂ“—xin?:anf—xin?—ani /—x§||2—2||xi A
=1 =1 1 i

. 27 Z k+1/2 i),yk+1/2 272 Vn chrl/Q)7 ic+1/2 _ UCZ>
i=1 1=1

—2py Y (O AT 2 AT )

i=1 i=1

=29 Y (Vri(@f ) - (el 2k 2T

2
=1

- 2’7(2 Ayt = gTR) 2k

—29p Y (AT — T2 ST AT k)
=1

i=1

—29p > (Ai(af T — TP h - 2y

With notation of A = [Ay, ..., A;,...,A,] and notation of x = [T, ... 2T ... 2T]T from equa-
tion and equation one can obtain that )" | A;z; = Aux:
R A P e &

n

— 2y (A2 — ),y ) — 0y N (il ), 2 TR — )
i=1

_ 2p,y<Al,k+1/2 7 Zlc+1/2’A(xk+1/2 . 13))

_ 27<A($k+1 _ $k+1/2), yk+1/2 _ yk>
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— 2y S (Vri (@) — Vry(ah), 2kt - 2T

Ly Ly
i=1
_ 2’)/p<A(l‘k+1 _ l‘k+1/2),A(.’Ek+1/2 _ l‘k)>
o 2’yp<A({Ek+1 _ $k+1/2)72k _ Zk+1/2>

i R R A

— 29 (A2 — ), g2 = 2y S (O TY?), 2TV )
=1

_ 2p’Y<A$k+1/2 _ Zk+1/2,A(.’17k+1/2 _ JJ)>

_ 27<AT(yk+1/2 _ yk)7mk+1 _ xk+1/2>

-2 Z(Vn(xfﬂ/z) (k) 2h T - 2

i=1
— 2yp(A(2MTh — 2M T2 A(gF T2 — k)
_ 2’)/p<A(l‘k+1 _ mk+1/2),zk _ Zk+1/2>.
By Cauchy Schwartz inequality, we get
Hl,kJrl _ :17”2 S”xk _ IHZ _ ||l,k+1/2 _ Ik||2 _ ||£Ck+1/2 . l,k+1||2

— 2y (A(aF Y2 — ) ym2) QVZ<VT1_(:E§:+1/2) fH/Q ;)
i=1

_ 2p’7<A£Ek+1/2 _ Zk+1/2,A(l‘k+1/2 o $)>
1
ST - g2 an’”l A i

k12 k+1/2
+4722HV i b))% + ZH R

1
+4,)/2/)2”AT(ZkJrl/Z _ Zk)HZ + Zka+1 _ l,k+1/2||2

1
492 P AT A — ) o — 22

R e e

_ 2,Y<A(xk+1/2 _ x)7yk+1/2> _ 272(Vn—(mf+1/2),xf+1/2 — )
i=1

_ 2p’}/<Al‘k+1/2 _ Zk+1/2,A(l‘k+1/2 _ $)>

n
k+1/2
+ 4P AT = )P 4492 Y [V ) = Vel
i=1
AP AT (R P 4 4 R AT AR a2 )
Using the same steps, one can obtain for z € R?,
1251 — 2] <||2* = 2| — || 2512 = 2F)P?

+ 2’y<yk+1/2, ZRH1/2 z) — 27<V€(zk+1/2, b), ZRH1/2 _ z)

i 27p<zk+1/2 N Axk+1/272k+1/2 i z)
+ 472 |y T — R 4 42V (T2 ) — Ve, b))
+ Ay || — K2 4 4y p? | AR T2 — 2R |2 (52)

and for all y € R?,
Iy =yl <[ly* — gl = g2 — )2

68



Under review as a conference paper at ICLR 2025

Lo (M2 L2y o kL2 k12
+ 2,}/2”2k+1/2 _ ZkH2 + 2’)/2||A(£Ek+1/2 _ xk)H2
Summing up equation [51] equation[52]and equation[53] we obtain
2%+ = l|? 4 (|25 = 2] [y -y

<[la® —af® + 12" — 2 + " -yl

_ ||xk+1/2 _ kaQ _ sz-'rl/2 _ Zk||2 k+1/2 _ kaQ

—ly
o 2"}/<A($k+1/2 _ x),yk+1/2> + 2’y<yk+1/2,zk+1/2 o Z>
— 2y (P2 T2 gy oy (Agh T2 R L2 g

— 2y ZW”(Ifﬂ/?),xfﬂ/? C ) — 2y (V2 ) 2

=1
= 2y (A = 2 A2 ) — (U2 )

- 2%0<Zk+1/2 — A2 SRz 2)

k
+ 22| AT (Y2 — )12+ 292 3 Vi) — V()2
=1

492 [y — P 4P VYR, ) - VR, D)
AP = 2 a? AR - |2

+ 472p2HAT(Zk:+1/2 _ Zk)”Q + 472p2HATA(xk+1/2 _ xk)HZ
F AP E P 4 4 AR k) .

(53)

Using convexity and L,-smoothness of the function r; with convexity and L,-smoothness of the

function ¢ (Assumption [2.1)), we have
¥+ — )|+ (|25 — 2+ [yt -yl

<llz® = al® + [12° = 21 + lly* -yl

_ ||{Ek+1/2 _ LL’kHQ _ ||zk+1/2 _ Zk”Z k+1/2 kaQ

—lly
_ 2’}/<A(l'k+l/2 _ x),y]”l/Q} + 2,y<yk+1/2’zk+1/2 _ Z>
— 2y (P2 T2 gy oy (Agh T2 R 12 g

— Q’VZ (Ti(xf+1/2) — 7‘1(%)> — 2y <l(zk+1/2’ b) — Iz, b))
i=1
— 2py(AghH1/2 R/ AR Y2 gy (L2 )

k+1/2
+ 42 AT (Y2 — R+ 49223 (2T b
=1
+ 42|y — R 4y L) T - R
+ 4y2(| 2R Z = R 4 4P| A2 — 2R
+ 497 AT (T2 = 2P P 4 4y [ AT A — o) 2
+ 472P2H2k+1/2 _ ZkH2 + 4’y2p2||A(£L'k+1/2 _ .’tk)||2.

Using the definition of A« () as a maximum eigenvalue, we get

2"+ — ]+ |25 = 2] + Iy -yl
<[lz® =z + 12 = 2 + ly* — ylI?

_ ||zk+1/2 _ ka2 _ sz+1/2 _ Zk||2 g k12 ka2

ly
— 2y(A(2MTH2 — ) yFTU2) 2y (yF T2 SR g
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_ 27<Zk+1/27yk+1/2 )+ 2,Y<Axk+1/2’yk+1/2 —y)

_ 27§: (Ti(xfﬂ/z) _ Ti(-ri)) — 2y (l(zk+1/27 b) — (2, b))

_ 2p7<Axk+1/2 _ Zk+1/2’A(xk+1/2 —a)— (zk+1/2 —2))

+ 47 Amax(AAT) |yFF12 — ||+ 4P L2 |12 — k|2

e Rl R 71 P e

+ 472||zk+1/2 — k|2 Jr4,y2/\max(ATA)||$Ic+1/2 — |2

+ 492 0P Amax (AAT)[|ZFFV2 — 2K 4 42 0?0 (AAT) |2 F1/2 — oF)2
+ 472p2||2k+1/2 ek +4’72p2>\max(AAT)||$k+l/2 — |

1 1 1 L1.1
With the choice of v < 7 - min {1, > o ATA) \/p/\max(ATA) P (ATA) T3 T }, we get

12578 = 2| 4 [ = 2 [y — )
<[la® —af® + 12" — 2 + " -yl
_ 2’V<A(5Ek+1/2 _ x),yk+1/2> + 27<yk+1/272k+1/2 _ Z>
o 2’)/<Zk+1/2,yk+1/2 _ y> + 2’y<Axk+1/2,ka/2 o y>

_ 27273 (ri(xf+l/2) N Ti(xi)) oy (l(zk+l/27b) N l(z,b))
i=1

_ 2p’y<A.’L‘k+1/2 _ Zk+1/2,A($k+1/2 _ l‘) _ (zk+1/2 _ Z)>
=llz® — 2l + 12" = 2)* + lly* — yll?
+2y(Az — 2, yFT2) — 29 (Agh T2 — SRFL/2 )

=29 Y (el = mitwn)) = 20 (1412, 0) — 1(z,0)
i=1
— Y| AP T2 — FH2112 4 oy Ax — 2| — py|| A(eFH2 - 2) — (P2 - )|
After small rearrangements, we obtain
(£GFH12,0) = 2,0)) + 3 (ra(alT2) = i)
i=1

+ <A$k+1/2 _ Zk+1/2,y> _ <A$ _ Z,yk+1/2>
+ BHAxk+1/2 _ Zk+1/2||2 _ gHAx _ Z||2
1
< o (I = ol 12 = 21 + g ol

=l = a2 — = 2 R - y)?).

Then we sum all over k from 0 to K — 1, divide by K, and have

n K-1
1
k+1/2 _ L (Y2
}: @ )= Hz0) + 30 5 D (™ rz(xz))
- i=1 " k=0
1 k12 L - kt1/2, k+1/2
+(A- 74 x ~% E z y) — (Az — z, — g y
k=0 k=0
p 1= p
rL k+1/2 _ k+1/2)2 _ P L2
g 2 et R = Bar )
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< g (12 =l + 10 = 2P+ — 1P
— [l = ]2 5 = 2] - |y~ )
< Ul =l +112° = 2l + s” — 9l)

With Jensen inequality for convex functions /, r; and || - ||?, one can note that
| Kl | Kl
il k+1/2 - k+1/2

| K-l | Kl
m( x{c+1/2> < Ti($f+l/2)

? )
k=0 k=0
| K1 | K1 2 | K1
AE xk+1/2 E Zk+1/2 < ? Z ||Axk+1/2 _ Zk+1/2||2.
k=0 k=0 k=0

S

—1 K—1 1
. . k+1/2 _
Then, with notation 7 = % ) AR g % S AR gK = % > yF*+1/2, we have
k=0 k=0 k=0

=
|

0Z"0) — 0z, 0) + Y (@) — rilas)) + (AZX = 25, y) — (Aw — 2, 95)
=1
Pia-K =Ky2 P 2
Pllazk — 252 — P Ag — 2> < ——
+5 1A =2~ Sl A — 2| S oK

Following the definition gap,,,,, we only need to take the maximum in the variable y € ) and the
minimuminz € X and z € Z.

gap,,, (", 2, §™)

(2 =2l + [12° = 21* + lly” = ylI*).

K oK . _K
:glea)))(Laug(x ) 2 7y)7z’£€1g(1’ZLaug(l‘azvy )
n
— max |05, 0) + S r(@K) + (AFE — K y) 4 P AzK — 2K
max | (27, b) ; i(7;0) +( )+ 5 I

_ : - o K P 2
L nin [E(z,b)Jan(wz)ﬂAw 2,97) + 5 Az ZII]

i=1
1
< —— (max ||2° — z||* + max ||2° — z||* + max ||y° — y||?).
< g g malla® — o+ ma [0 — 2l + max [ — y]1?)
(54)
To complete the proof in the cases equation , it remains to put v < % .
i 1. 1 . 1 . 1 .11
Tin {1’ P\ Amax(ATA) " \/pAmax (AT A) PAmax(ATA)? L, Ly } &

D.9 PROOF OF THEOREMI[C.2|

Theorem D.10 (Theorem [C.2). Let I* be Ly--smooth and convex, r be L,.-smooth and convex. Let
problem ({9) be solved by Algorithm[I0} Then for

_ 1 . . 1 D P |
Y=3 ~m1n{1, ——Amax(ATA)’ T, m}:
it holds that

)

e 1+4/Amax (AT A)+ L=+ L, ) D?
gapz(wK,yK)=0(( — ) )
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where gap,(x,y) = maxgcy L(z,§) — mingex L(Z,y) and 7 = + kK;Ol ghtl/2 gK .—

K-1 ~
% Ypeo Y2 and D? := max, yex y [|2° — z|1> + ly° — y?].

Proof. We start the proof from (12), since the updates for z variables in Algorithms [T} [I0] are the
same:

2+ — 2] <l — a2 — 2 — ok

— 2y (A2 — ) ) = 2y ST (Ui (e TY?), 2 TR - )

=1

+ 292 AT (Y2 — )12+ 292 V(TR = V(B2 (55)
=1

Using the same steps as for (I2), one can obtain for y € R® from Algorithms[10]
Iyt = yl? <lly* = yll* = lly" 72 —y*|?

* k
— 2p(VE (g2 0) g 2 ) 4 29 (D AT 2 )
i=1
2

+ 292V ("2 0) = VO B)IIP + 297 |3 Ag(af TP - k)

i=1
=[ly* =yl — [ly*T/2 — )2
— 29(VE (yFT2 b), yF T2 — ) 4 2y (Agh T2 2 g
+ 292V (Y2, b) — VO (yF, b) [P + 292 A(aR T2 - 2R )2 (56)

Here we also use notation of A and 2. Summing up (53) and (56), we obtain
2"+ — 2| + [ly* — gl

<lla® —al® + lly* =yl — P2 =Py R

— 2 {A@M =) ) oy (Va2 2T )
i=1
o (VO (Y2 B, g2 gy g o (AR /2y

+ 292 AT (M2 = M) 2 4 292 3 [Ty ) — i)
i=1
+ 297V (Y2 0) = VR (R, D)) + 297 AT — )
Using convexity and L,-smoothness of the function r; with convexity and Lg--smoothness of the
function ¢ and with the definition of A« () as a maximum eigenvalue, we have

2" — 2|+ |y =y
<||lz¥ — 2|2 + [y —yl? — "2 — 2R — yE = )2
+ 2y (A, gt 2) = 2y Y [l ) = i)
=1
— 29(I* (yF T2, b) — 17 (y, b)) — 2y( Ak T2 )

n
k+1/2
+ 29 A (AAT [yF 12 — |2 4 2922 3 (|2 T2 — ok 2
i=1
+ 272L,%*||yk+1/2 - kaQ + 2,}/2>\max(ATA)”:L,k+l/2 - ka2
. : 1 : . 1 .11
With the choice Of’y S 5" min {1, m, I, Ll”*}’ we get

277 =]+ [ly™ =yl <lla® = 2] + [ly* — yll?
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+ 29 (A, yF Y2 — 29 il ) — i)
=1
— 2y(I* (y* T2, b) — 1" (y, b)) — 2y (A H1/2 g,

After small rearrangements, we obtain

I (y"/2,0) Z 2P TVE) ()] + (AdF V2 ) — (Ax, yFH2)

1
Sﬂ (I=* = 2|1 + [lg* = ylI> — " — | — [ly* T = yl?) .
Then we sum all over k£ from 0 to K — 1, divide by K, and have
1 — * * -
e [l <yk+1/2’b) — 1" (y,b) + Z[m(l‘kﬂ/z) ri(@;)] + (Aka/Q,y) _ <Ax,yk+1/2>]
0 i=1
1 2
<5y (la® =l + Iy o).

=

b
Il

With Jensen inequality for convex functions ¢ and r;, one can note that

| K-l
« [ L k+1/2
‘ <K Z ! ’b> k

—_

K-1
ZE* k+1/2

K-1

X / 1 /
k+1/2 k+12
(KZ )52

K
. . _ 1 k+1/2 _ 1
Then, with notation zX = = > ; / g% =L 3 yF+/2 we have
k=0 ¥=0

C@0) — () + S (@) — rie)] + (A, y) — (A, 55)

=1
1
<oz (I =l + 1" ).

Following the definition of gap,, we only need to take the maximum in the variable y € ) and the
minimum in z € X.

gap, (2™, 5")
— ﬁ _K _ . E K
max (™, y) min (z,9")
= 0 (y,b) + > (@) +y" Az
ma (,b) ;T(x) y (2_; z
_ . _p(=K . ) 7 KN\T o
min | —£(7",0) + 3 i) + (v") (Zﬁh:&)

i=1
_ /% ~K b) — ¢* b i 7Ky _ i(x; A_K —(A T
Ifeaﬁ(?ea?[ (7. b) = £ (y, )+;[7" (77°) = ri(ws)] + (AZ7, y) — (Az,57)
< 1 max [|2° — z||* + max ||y° — y||?
T 29K \zex yeY '

To complete the proof, it remains to put y = 1 - min {1- S S——— }

" VAmax (AT A) L Lo
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D.10 THREE LEMMAS

Lemma D.11. If ¢ and r; are convex, then L(x, z,y) from (E]) is convex-concave.

Proof. We start from checking of convexity.

ATy + Vri(z1)

e
V(m,z)L(m7zyy) = A y+ Vi)

ATy + Vrn(xn)
Vi(z,b) —y

Then, we need to check the condition of Theorem 2.1.3 from (Nesterov, 2003)):

<v(m,z)L(x1> 21, y) - v(m,z)L(:EQa 22, y>7 (mlv 21) - (.%'27 22)>

VT1($1,1) - VT1($1,2) T11 — T1,2
_ < V?”i(l‘iJ) — Vri(a:@g) 7 37@1 — $i72 > Z 0.
Vro(tn1) = Vi (2n2) Tn,1 — Tn,2
V((Zl, b) — Vé(zg, b) Z1 — %2

Here we also use that £ and r; are convex. It means that the problem (4)) is convex on (z, z). Next,
we move to check concavity.

VyL(z, 2,y) (Zsz—z)

Then, again with Theorem 2.1.3 from (Nesterov, 2003)):
<VyL(37»Zayl) - vyL(xa Z>y2)7y1 - ?JQ> =0 S 07
we get that the problem () is concave on . O

Lemma D.12. If ¢ and r; are convex, then Lgug(x, z,y) from (@) is convex-concave.

Proof. We start from checking of convexity.
ATy +Vri(z1) + pAf (Az — 2)

., o B
Vo Lz, 2,y) = Aly + Vri(x;) + pAl (Ax — 2)

ALy + Vr,(x,) + pAL (Az — 2)
Vi(z,b) —y+ p(z — Ax)

Then, we need to check the condition of Theorem 2.1.3 from (Nesterov, [2003)):

(Vie,o)L(71, 21,Y) — V(a,2) L(22, 22,9), (21, 21) — (22, 22))

Vri(z11) — Vri(z12) + pAT[A(z1 — 22) — (21 — 22)] T11— T12
_ < V’I"i(ifi,l) — Vn-(xi,g) + pA;‘F[A(xl — {EQ) — (21 — 2’2)] Ti1 — g2 >
Vrp(zn1) — Vrg(an,2) + pAT[A(xy — 29) — (21 — 22)] Tnl — Tn2
Vil(z1,b) — VU(22,b) + plz1 — 22 — A(z1 — 22)] zZ1— 22
VTl(u’Cl,l) - VT1($1,2) T11 — T1,2
—( Vri(xm).;.vﬁ(xm) 3311—%2 )
vrn(xn,l).;.vrn(xnﬂ) xn,l.;.xnﬂ
Vé(zl, b) — VE(ZQ, b) Z1 — %2
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+p (21 — 22/1* = 2(21 — 22) " A1 — 2) + ||A(z1 — 32)|?)

Vri(z1,1) — Vri(o2) T11— T1,2
= Vri(zin) — Vri(w;2) Ti1 — Tq2 )
Vro(Tn1) = Vrp(zn,2) Tp,1 — Tn,2
VE(Zl, b) - Vé(zz, b) 21 — k2
+pllzr — 22 — A(zy — 2)||

> 0.

Here we also use that ¢ and r; are convex. It means that the problem (8) is convex on (z, z). Next,
we move to check concavity.

VyL(x,2,y) (ZAxZ—z>.

Then, again with Theorem 2.1.3 from (Nesterov, 2003)):
(VyL(z,2,y1) — VyL(2,2,92),y1 —y2) = 0 <0,
we get that the problem (8) is concave on y. [

Lemma D.13. For any matrix A = [A; ... A, it holds that ||A|| < />, [|A;]|>.

Proof. Let us consider A = [A; A5]. Then, we have
Al = Sup MAell= - sup (1A Aozl < sup [ Awe | Aswa]]

Iz )12+ lz2][2=1 lz1 12+ llz2]2=1

= sup [ sup ||[Aizi||+  sup  [[A2s

a€l0;1] | ||z1]|2=a [|z1]?=1—c
= p - osup  [[Ayz|[ + V1 sup || Azas|
llz1)2=1 \w1|\2:1
= sup [ValAill+v1-allAs].
a€el0;1]
Optimizing « € [0; 1], we get that o* % and

[A < V1 Ax]? + [ A2

This result can be extended to any n by induction. In more details, if A = [fln_lAn] with fln_l =
[A; ... A,_1] and we assume that || A, 1| < /S0 |4

1AL < VIl An I+ 14002 < | 14002 + 14012 =

>4l
=1

i=1
O

D.11 ON CONVERGENCE GAP
In our theoretical analysis, we use the criterion: gap(z,z,y) := maxgey L(z,2,7) —
ming zex z L(Z,2,y), where L(z,z,y) = £(z,b) + r(z) + y'(Adz — 2).  Since

mini,iex,z L(i‘v 579) < L(.I'*, Z*a y)a we get

maXL(x7Zag) - L(I*7Z*,y) < gap(x,z,y).
JeEY
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We note that Ax* = z*, then

masc L(x, 2, §) = L(a", 2%, y) = [(2,0) + r(w) + max " (Az — 2)] = [((z",0) + r(2") + (9)" (A" = 27))

ye

= [l(z,b) +r(z) + r;leaa)jcng(Ax —2)] — [L(Az",b) + r(x"))].

When taking maximum for y € ) we can define ) as we need. In particular, we can choose
Y=y € R|||yl|lo < C]forsome C > 0. Then

rpea;;(gT(Aa: —2) = C| Az — 2*|, > C||Az — 2.
]

Finally, we get

gap(z, 2,y) > [£(z,b) +r(x) — L(Ax*,b) + r(a*)] + C[| Az" — 2*|| = newgap(z, 2).
If it holds that gap(z, z,y) < e, we guarantee that newgap(z, z,y) < e. The question that arises is
whether newgap(z, z,y) < ¢ implies that [£(z,b) + r(x) — £(Az*,b) + r(z*)] as well as || Az — z||
are also “small” in the sense that they are smaller than ¢ (up to constants). In general, the answer
is no: [0(z,b) + r(x) — £(Az*,b) + r(x*)] might be very small (and negative), and ||Az — z||2
can be very large. But Theorem 3.60 from (Beck, [2017) shows that if C' is large enough such a

conclusion can be drawn. In particular, if newgap(x*, 2*, y*) < e then C||Az* — 2¥||3 < e and we
have Azk — 2.

D.12 ON TUNING OF STEPSIZE

We can rewrite the original problem (TJ) in the following way:

min [0 (Az,b) +r(z)] = [12 (; -/J’Ax,b) +r(x)] - [é (Aa:,b) +r(x)] :

reRd

where £ (y,b) = ¢ (%, b) and A = BA. Next, we can estimate L; and Apax (AT A):

V0.0 - Vi) = 19,6 (%.0) = 9,6 (Z.0)

1 L
=10t (B0) ~ve (2.0} 1 < L~ al,
Amax(ATIZi) = )\max(BQATA) = BzAmaX(ATA)'

We get that L; = L* and Apax (AT A) = B2 Amax (AT A).

Our goal is to equivalize L; and \/)\max(flel) in Theorem to make stepsize bigger for free.

Then
?: Z: maxAA \/ deAA
L1/3 s
— /3 (AT
B rln/fx(ATA) = Lé L Amax(A A)
Hence, the bound on the stepsize in Theorem [2.2]become
1 1
=1 min{l; ——————; —}.
V=g mindl e L)

This, in turn, modifies the convergence result of the theorem as follows:

K K ) _ ((1+ 3 LgAmaX(ATA)nLLT)DQ)
- .

gap(T N
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E ADDITIONAL EXPERIMENTS

In the main part (Figure[T]of Section[6) we shown that the concept of the saddle point reformulation
and Algorithm [T]for its solution is competitive in the deterministic case. Here we present additional
experiments.

As in the main part, we conduct experiments on the linear regression problem:
min,ega f(x) = 5[|Az — b||? + A||z]|3. We take mushrooms, a%a, w8a and MNIST datasets
from LibSVM library (Chang & Lin, 2011). We vertically (by features) uniformly divide the whole
dataset between 5 devices.

First we repeat the same experiments as in the main part, but now for each method we tune the
parameters using a grid search. The results are shown in Figure [3] If we compare Figure [T] and
Figure[3] the one method that accelerates the most is Algorithm [T}

MUSHROOMS (TUNED) A9A (TUNED)

= - & - — &
107 EG B-TRICK * 10t EG B-TRICK
= —& NESTEROV = ~& NESTEROV
| 107 — 6p | — &
— 4= ADI ~ 107 - ADMM
% 107 4 ADMM B-TRICK 2 —— ADMM B-TRICK
s s —
~ 10~ —~ 10
10 % 107
I 107* I
BN £ 100
X 00 e
= =

1o 1000 2000 3000 4000 5000 6000 7000 8000 10 1000 2000 3000 4000 5000 6000 7000 8000

Iteration, No. Iteration, No.
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— & ~ &
. EG B-TRICK ~ EG B-TRICK
10 —& NESTEROV 107 —& NESTEROV

~f= GD
—He— ADMM
~- ADMM B-TRICK

== GD
- ADMM
107 - ADMM B-TRICK

1My = fx )| 1 |f(x®) = f(x )|

1000 2000 3000 4000 5000 6000 7000 8000 a 1000 2000 3000 4000 5000 6000 7000 8000
Iteration, No. Iteration, No.

(c) w8a (d) MNIST

Figure 3: Comparison of tuned methods for solving the VFL problem in different formulations: minimization
(GD, Nesterov) and saddle point (ADMM, ExtraGradient/Algorithm [I). The comparison is made on
LibSVM datasets mushrooms, a9a, w8a and MNIST.

Next, we want to consider modifications of Algorithm [T]and show that they can speed Algorithm ]
up from different points of view.

In the first group of experiments with modifications (Figure[d]), we test the performance of Algorithm
We use the compression operator (Q = RandK%, which is a random selection coordinates: 100%
(Algorithm |I|), 50%, 25%, 10%. An important detail is that we set the same random generator
and seed on each of the devices. Therefore, at each iteration we send random coordinates, but
they are the same for all devices. The comparison is made in terms of the number of full vectors
transmitted. In contrast to the main part, here we tune stepsizes, since with the theoretical step it is
not possible to achieve the best acceleration compared to Algorithm [I] The comparison is done in
two settings: the basic one and using the 3-trick (see disscusion after Corollary 2.3). The results
show that compression can indeed speed up the communication process.

In the second group of experiments with modifications (Figure [3)), we test the performance of Al-
gorithm [3[in comparison with Algorithm [2| We use the compression operators C' = TopK% (for
Algorithm , which is a greedy selection coordinates, and Q = RandK% (for Algorithm with K
=25% and 10%. The comparison is made in terms of the number of full vectors transmitted. As
in the previous experiment, we tune stepsizes. In experiments, we see that unbiased compression
outperforms biased compression almost always. In the horizontal case, the opposite is usually true
(Beznosikov et al., [2020). We attribute this effect to the fact that in the case of RandK% compres-
sion we set the same random generator and seed on different devices and therefore they send the
same random coordinates at each iteration. In the case of using TopK% operator we cannot do this,
therefore convergence is worse.
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Figure 4: Comparison of Algorithmfor solving the VFL problem (EI) The comparison is made on LibSVM
datasets mushrooms, a9a, w8a and MNIST. The compression operator = RandK%. The criterion for
comparison is the number of full vectors transmitted. The top line reflects the work of methods on the basic
problem, the bottom line solves the problem with the S-trick (see disscusion after Corollary @

In the third group of experiments with modifications (Figure [f)), we test the performance of Algo-
rithm[d At each iteration we generate only 2 devices out of 5 that communicate. The comparison is
made in terms of the number of full vectors transmitted from all devices. As in the previous experi-
ments, we tune stepsizes. The results show that the partial participation technique can indeed speed
up the communication process in terms of the number of devices communicated.

In the fouth group of experiments with modifications (Figure [7), we test the performance of Al-
gorithm |§[ We use a random selection coordinates: 100% (Algorithm |ID, 50%, 25%, 10%. An
important detail is that we set the same random generator and seed on each of the devices. The
comparison is made in terms of the computational powers. Here we also tune stepsizes. The results
show that the random coordinate selection can indeed speed up the computational process.

E.1 TECHNICAL DETAILS

Our algorithms is written in Python 3.10, with the use of PyTorch optimization library. We imple-
ment a simulation of distributed optimization system on a single server. Our server is AMD Ryzen
Threadripper 2950X 16-Core Processor @ 2.2 GHz CPU and x2 NVIDIA GeForce GTX 1080 Ti
GPU.
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Figure 5: Comparison of Algorithm and Algorithm [2| for solving the VFL problem @) The comparison is
made on LibSVM datasets mushrooms, a9a, w8a and MNIST. The compression operators C' = TopK% and
@ = RandK%. The criterion for comparison is the number of full vectors transmitted. The top line reflects
the work of methods on the basic problem, the bottom line solves the problem with the 8-trick (see disscusion

after Corollary 2.3).
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Figure 6: Comparison of Algorithm for solving the VFL problem (EI) The comparison is made on LibSVM
datasets mushrooms, a9a, w8a and MNIST. The criterion for comparison is the number of full vectors
transmitted.
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Figure 7: Comparison of Algorithm for solving the VFL problem @) on LibSVM datasets mushrooms,
a9a, w8a and MNIST. The criterion for comparison is the computational powers. The top line reflects the
work of methods on the basic problem, the bottom line solves the problem with the S-trick (see disscusion after

Corollary 23).
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