EXPLORING NEW FRONTIERS IN VERTICAL FEDER ATED LEARNING: THE ROLE OF SADDLE POINT RE FORMULATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The objective of Vertical Federated Learning (VFL) is to collectively train a model using features available on different devices while sharing the same users. This paper focuses on the saddle point reformulation of the VFL problem via the classical Lagrangian function. We first demonstrate how this formulation can be solved using deterministic methods. More importantly, we explore various stochastic modifications to adapt to practical scenarios, such as employing compression techniques for efficient information transmission, enabling partial participation for asynchronous communication, and utilizing coordinate selection for faster local computation. We show that the saddle point reformulation plays a key role and opens up possibilities to use mentioned extension that seem to be impossible in the standard minimization formulation. Convergence estimates are provided for each algorithm, demonstrating their effectiveness in addressing the VFL problem. Additionally, alternative reformulations are investigated, and numerical experiments are conducted to validate performance and effectiveness of the proposed approach.

025 026 027

006

008 009 010

011

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 029

Federated Learning is an emergent paradigm that involves training a model on private data from several devices. It can be divided into two types: horizontal (HFL)(Konečný et al., 2016; McMahan et al., 2017), where data samples are distributed across clients, and vertical (VFL) (Liu et al., 2022; Yang et al., 2023; Wei et al., 2022; Khan et al., 2023) with orthogonal data partitioning. In contrast to HFL, VFL divides the features of the same samples across clients. In this paper, we focus on the VFL problem, which appears in various fields from scoring problems (Chen et al., 2021a) to healthcare (Dankar et al., 2019) and smart manufacturing (Ge et al., 2021).

Since we deal with a distributed environment in both horizontal and vertical data partitioning, the 037 organization of the communication process plays a crucial role in developing learning algorithms. Due to the difference in the formulations, unique characteristics and issues can arise. The HFL problem statement is very similar to the classical distributed cluster learning (Verbraeken et al., 040 2020), therefore, the study of various kinds of specialized HFL algorithms that take into account 041 different aspects ranging from communication efficiency to personalization is quite extensive and 042 comprehensive (Kairouz et al., 2021). It is a natural idea to transfer most of the techniques and 043 useful stories from the horizontal scenario to the vertical one. And there are such results – see e.g. 044 (Liu et al., 2022, Table 3), but not many at the moment. This can be due to the fact that the VFL problem is more ambiguous and complex from a formal optimization point of view, then it is not easy to use the theory from HFL. 046

Formally, VFL can be viewed as a classical minimization problem, with specifics in calculating the loss function, its gradient, or possibly higher-order derivatives. But there is another way to look at. In particular, the VFL problem can be rewritten as an augmented Lagrangian (Boyd et al., 2011, Section 8), which can be solved using the ADMM method (Glowinski & Marroco, 1975; Gabay & Mercier, 1976). Recent works argue that such a view of VFL is more private (Hu et al., 2019; Xie et al., 2022b). The augmented Lagrangian reformulation combined with the ADMM algorithm is a powerful tool for solving many practical optimization problems (not just VFL) (Bioucas-Dias & Figueiredo, 2010; Forero et al., 2010; Wahlberg et al., 2012; Wang & Banerjee, 2013; Sedghi et al.,

2014; Li et al., 2014). It provides privacy and an efficient solution for various scenarios, offering superior performance compared to other methods, making it a viable choice.

In spite of this, the already mentioned modifications from (Liu et al., 2022, Table 3) focus on the basic minimization formulation. Notably, many of these results are often empirical and lack a theoretical foundation for convergence. Moreover, current results around the Lagrangian statement have also shortcomings and are weakly studied. In particular, the widely-used approach to VFL based on ADMM is costly, as two additional minimization subproblems must be solved on each iteration. Thus, we propose to expand the theory around saddle point reformulations in this paper since the augmented Lagrangian reformulation is a good alternative to the classical minimization formulation. In particular, we address three research questions:

064 065

066

067

068 069 1. Is there any other way to rewrite the VFL problem which can provide advantages to the standard minimization formulation?

- 2. What basic method should be used to solve the new VFL problem reformulation?
- 3. Is it possible to modify the basic method for practical use?

1.1 OUR CONTRIBUTION

• New look at VFL. We first consider the VFL reformulation via classical Lagrangian and show that if the original VFL problem is convex, then the reformulation is convex-concave Saddle Point Problem (SPP), hence methods for SPP, such as ExtraGradient (Korpelevich, 1977; Nemirovski, 2004), can be applied to it.

• New basic method for VFL. The classical Lagrangian is a convex-concave SPP that can be solved using optimal methods. We introduce the basic deterministic algorithm and its efficient stochastic modifications for VFL and prove that they significantly outperform existing techniques, e.g., ADMM, in terms of iteration cost (Table 1 in Appendix A).

• Family of practical modifications. We present various modifications of the basic version of the algorithm to address practical needs and to make the basic algorithm more robust, including i) introducing compression operators to reduce the amount of transmitted information and solve the communication bottleneck (Alistarh et al., 2017; 2018); ii) allowing partial participation for asynchronous device communication (Ribero & Vikalo, 2020); iii) a coordinate modification to reduce the cost of local computing (Nesterov, 2012). Moreover, we show that the saddle reformulation allows to fully reveal the possibilities of these modifications.

• More VFL reformulations. We consider additional saddle point reformulations of the VFL problem, which have advantages, such as easier stepsize estimation, but require extra memory or existence of dual function of the loss.

• Extension to non-convex problems. We show how our approach can be generalized to handle non-convex learning problems. It is worth noting that all modifications are easily transferable.

• Numerical experiments. We show empirically that our approach can outperform existing VFL solutions in the standard minimization formulation and the saddle problem reformulation.

094 095 096

090

091 092

1.2 TECHNICAL PRELIMINARIES

We use $\langle a, b \rangle = \sum_{i=1}^{d} [a]_i [b]_i$ to denote the standard inner product of $a, b \in \mathbb{R}^d$ where $[a]_i$ corresponds to the *i*-th component of *a* in the standard basis in \mathbb{R}^d . It induces ℓ_2 -norm in \mathbb{R}^d in the following way $||x||_2 = \sqrt{\langle x, x \rangle}$. To denote maximal eigenvalue of positive semidefinite matrix $M \in \mathbb{R}^{d \times d}$ we use $\lambda_{\max}(M)$. Operator \mathbb{E} denotes mathematical expectation, and operator $\mathbb{E}_{\xi}[\cdot]$ express conditional mathematical expectation w.r.t. all randomness coming from random variable ξ .

We also need two classical definitions for the function f.

Definition 1.1. The function $f : \mathbb{R}^d \to \mathbb{R}$, is *L*-smooth, if there exists a constant L > 0 such that $\forall x, y \in \mathbb{R}^d ||\nabla f(x) - \nabla f(y)|| \le L ||x - y||.$

Definition 1.2. The function $f : \mathbb{R}^d \to \mathbb{R}$, is *convex*, if $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ for all $x, y \in \mathbb{R}^d$.

110

111

112 113

120

126 127

128

129 130

2 SADDLE POINT REFORMULATION AND EXTRAGRADIENT

Reformulation. The most common problem in machine learning, known as empirical risk minimization (Shalev-Shwartz & Ben-David, 2014), can be formulated as follows:

$$\min_{x \in \mathbb{R}^d} \quad \left[f(x) := \ell \left(Ax, b \right) + r(x) \right],\tag{1}$$

114 where x is a vector of model parameters, $A \in \mathbb{R}^{s \times d}$ is a data matrix, $b \in \mathbb{R}^s$ is a vector of labels, 115 $\ell : \mathbb{R}^s \times \mathbb{R}^s \to \mathbb{R}$ is a loss function, $r : \mathbb{R}^d \to \mathbb{R}$ is a separable regularizer, s is a number of 116 data samples and d is a size of the model. This paper considers a VFL setting where data is stored 117 across n different devices. Here, the matrix A is divided by columns, and each device gets different 118 features of each of the s data points (for simplicity, we assume that the matrix A contains no missing 119 data). Thus, we can rewrite (1) in the form of the VFL problem (Liu et al., 2024):

$$\min_{x \in \mathbb{R}^d} \left[\ell \left(\sum_{i=1}^n A_i x_i, b \right) + \sum_{i=1}^n r_i(x_i) \right],$$
(2)

where $A_i \in \mathbb{R}^{s \times d_i}$ is a local data matrix on the *i*-th device, x_i is a part of the parameters corresponding to the features of *i*-th device. It is natural to assume that x_i lies on *i*th device. We additionally assume that labels *b* contain private information and are stored in the first device. Problem (2) can be rewritten as a constrained problem with additional variable $z \in \mathbb{R}^s$:

$$\min_{x \in \mathbb{R}^d} \min_{z \in \mathbb{R}^s} \left[\ell\left(z, b\right) + \sum_{i=1}^n r_i(x_i) \right], \text{ s.t. } \sum_{i=1}^n A_i x_i = z.$$
(3)

In turn, the problem with constraints can be rewritten as a saddle point problem, where the target function is the Lagrangian function

$$\min_{(x,z)\in\mathbb{R}^{d+s}}\max_{y\in\mathbb{R}^s}\left[L(x,z,y):=\ell(z,b)+\sum_{i=1}^n r_i(x_i)+y^T\left(\sum_{i=1}^n A_ix_i-z\right)\right].$$
 (4)

Formulation (4) is the focus of our paper. Meanwhile, as we mentioned earlier, approaches to VFL based on ADMM also consider the Lagrangian functions with a regularizer $(\rho/2) \| \sum_{i=1}^{n} A_i x_i - z \|^2$ (we consider this case in Appendix C.1). For both reformulations, we propose a method that guarantees its convergence.

Why saddle point? Let us try to motivate the use of the saddle point reformulation (4) instead of the classical minimization problem (1) with the following example.

138 If we consider the classical formulation (1), which is valid for both vertical and horizontal cases, the 139 main difference between these two types of data partitioning is the nature of the gradient computation, in particular concerning the communication process. In the horizontal case of (1), all workers 140 have the same parameter vectors but different training samples: $\ell(Ax, b) = \sum_{i=1}^{n} \ell(\hat{A}_i x, b_i)$, where 141 $\hat{A}_i \in \mathbb{R}^{s_i \times d}$, $b_i \in \mathbb{R}^{s_i}$. To compute the gradient, we simply accumulate $\nabla_x \ell(\hat{A}_j x^k, \hat{b}_j)$ from all 142 143 the workers: $\nabla f(x) = \sum_{j=1}^{n} \nabla_x \ell(\hat{A}_j x^k, \hat{b}_j)$. In the vertical case, to calculate the gradient for 144 the parameters x_i stored on the *i*th device, it is necessary to obtain $A_j x_j$ from all the devices: 145 $\nabla_{x_i} f(x) = A_i^T \nabla_z \ell(z, b)$ with $z = \sum_{j=1}^n A_j x_j$. 146

In modern applications, various kinds of stochasticity arise in communication: compression to speed up information transfer or random noise for privacy (Abadi et al., 2016). Let us consider the simplest model in which the stochasticity of communication is additive to the package on which it acts: package + noise ξ . As we discussed, we send different things in the horizontal and vertical cases. More specifically, the randomness we introduce has the following effect on the true gradients:

152
$$\nabla f(x) \rightarrow \sum_{j=1}^{n} [\nabla_x \ell(\hat{A}_j x^k, \hat{b}_j) + \hat{\xi}_j] = \sum_{j=1}^{n} \nabla_x \ell(\hat{A}_j x^k, \hat{b}_j) + \sum_{j=1}^{n} \hat{\xi}_j$$
 in the horizontal case,
153 $\nabla_{x_i} f(x) \rightarrow A_i^T \nabla_z \ell(z, b)$, where $z = \sum_{j=1}^{n} A_j x_j + \xi_j$, in the vertical one.

A key detail can be seen here: the simplest additive stochasticity in the horizontal case remains additive, but in the vertical case, the influence of randomness dips much more firmly into the gradient structure. Let us look at how this kind of stochasticity affects the saddle point reformulation (4). One can note that it is also necessary to collect $A_j x_j$ during gradient computing. In more details, $\nabla_y L(x, z, y) = \sum_{j=1}^n A_j x_j - z$. With communication stochasticity this transfers to $\sum_{j=1}^n [A_j x_j + \xi_j] - z = \sum_{j=1}^n A_j x_j + \sum_{j=1}^n \xi_j - z$. The impact of randomness is additive. Because the saddle point reformulation "separates" the loss function ℓ and the data matrix A, the influence of stochasticity becomes more straightforward compared to (1). 162 Before moving to stochastic methods, we must learn a deterministic algorithm as a base for con-163 structing. 164

Basic method. The most straightforward idea is to solve the saddle problem using the gradient 165 descent-ascent method: $x^{k+1} = x^k - \gamma \nabla_x L(x^k, y^k), y^{k+1} = y^k + \gamma \nabla_y L(x^k, y^k)$. Gradient 166 descent-ascent is not the best solution (4). Indeed, it gives relatively poor convergence guaran-167 tees for strongly convex - strongly concave problems (Browder, 1966; Rockafellar, 1969; Sibony, 168 1970), and may diverge for convex-concave problems altogether (Goodfellow, 2016, Sections 7.2 169 and 8.2). Therefore, it is suggested to take the ExtraGradient/Mirror Prox method (Ko-170 rpelevich, 1977; Nemirovski, 2004). The essence of this method is the use of an additional extrapolation step: $x^{k+1/2} = x^k - \gamma \nabla_x L(x^k, y^k), x^{k+1} = x^k - \gamma \nabla_x L(x^{k+1/2}, y^{k+1/2})$ (the same 171 172 for y). It can be explained by the simplest example of a two-dimensional saddle point problem 173 $\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} g(x, y) = xy.$

174 For the first-order optimality con-175 dition, it has the unique saddle 176 point with $(x^*, y^*) = (0, 0)$. In 177 any point (x^k, y^k) , the step direction of gradient descent-ascent 178 179 $(-\nabla_x L(x^k, y^k), \nabla_y L(x^k, y^k))$ is orthogonal to $(x^k - x^*, y^k - y^*)$; thus the iteration of gradient descent-181 ascent enlarges the distance to the 182 saddle point. However, if we make 183 the step of ExtraGradient, the 184 direction $(-\nabla_x L(x^{k+1/2}, y^{k+1/2})),$ $\nabla_y L(x^{k+1/2}, y^{k+1/2}))$ attracts to the saddle point. Furthermore 185 186 the saddle point. Furthermore, 187 ExtraGradient is optimal for 188 convex-concave saddle point prob-189 lems (Zhang et al., 2021). Iteration 190 of the ExtraGradient method

201

202 203 204 Algorithm 1 EGVFL for (4)

- 1: Input: starting point $(x^0, z^0, y^0) \in \mathbb{R}^{d+2s}$, stepsize $\gamma > \gamma$ 0, number of steps K
- 2: for k = 0 to K 1 do
- 3: 1st device sends y^k to other devices
- All send $A_i x_i^k$ to 1st device 4:
- All update: $x_i^{k+1/2} = x_i^k \gamma \left(A_i^T y^k + \nabla r_i(x_i^k)\right)$ 1st updates: $z^{k+1/2} = z^k \gamma (\nabla \ell(z^k, b) y^k)$ 5:
- 6:
- 7:
- 8:
- 9:
- Ist updates: $z^{k+1/2} = z^k \gamma(\nabla \ell(z^k, b) y^k)$ 1st updates: $y^{k+1/2} = y^k + \gamma(\sum_{i=1}^n A_i x_i^k z^k)$ 1st device sends $y^{k+1/2}$ to other devices All devices send $A_i x_i^{k+1/2}$ to 1st device All update: $x_i^{k+1} = x_i^k \gamma(A_i^T y^{k+1/2} + \nabla r_i(x_i^{k+1/2}))$ 1st updates: $z^{k+1} = z^k \gamma(\nabla \ell(z^{k+1/2}, b) y^{k+1/2})$ 1st updates: $y^{k+1} = y^k + \gamma(\sum_{i=1}^n A_i x_i^{k+1/2} z^{k+1/2})$ 10:
- 11:
- 12:

13: end for

191 for our problem (4) is given in Algorithm 1, and convergence is proved in Theorem 2.2. The proof 192 is postponed to Appendix D.1.

193 **Assumption 2.1.** The function $\ell : \mathbb{R}^s \to \mathbb{R}$, is L_ℓ -smooth and convex. Each function $r_i : \mathbb{R}^{d_i} \to \mathbb{R}$, 194 is L_r -smooth and convex. 195

Theorem 2.2. Let Assumption 2.1 hold. Let problem (4) be solved by Algorithm 1. Then for $\gamma =$ 196 $\frac{1}{2} \cdot \min\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_\ell}\}, it holds that gap(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}(\frac{(1+\sqrt{\lambda_{\max}(A^T A)}+L_\ell+L_r)D^2}{K}),$ where $\bar{x}^K := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^K := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^K := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} and \ D^2 := \max_{x,z,y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} \left[\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2 \right].$ 197 199 200

In Theorem 2.2, we use the convergence criterion for convex-concave saddle point problems

$$gap(x, z, y) := \max_{\tilde{y} \in \mathcal{Y}} L(x, z, \tilde{y}) - \min_{\tilde{x}, \tilde{z} \in \mathcal{X}, \mathcal{Z}} L(\tilde{x}, \tilde{z}, y).$$
(5)

It is important that in the formulation of Theorem 2.2 and in the definition (5), we use some bounded 205 sets $\mathcal{X}, \mathcal{Z}, \mathcal{Y}$ although the original problem (1) is unbounded. Such an assumption is standard for 206 the analysis of methods for convex-concave problems. Criterion (5) can also be used for uncon-207 strained/unbounded problems. To do this, one can use the trick from (Nesterov, 2007) and introduce 208 bounded sets \mathcal{X} , \mathcal{Z} , \mathcal{Y} artificially as compact subsets of \mathbb{R}^d , \mathbb{R}^s , \mathbb{R}^s . This trick is valid if some solution x^*, y^*, z^* lies in $\mathcal{X}, \mathcal{Z}, \mathcal{Y}$. Moreover, following (Beck, 2017, Theorems 3.59, 3.60), one can show that in Theorem 2.2 we can use the criterion: $\ell(\bar{z}^K, b) - \ell(z^*, b) + ||A\bar{x}^K - \bar{z}^K||$, instead of (5). It is more natural and means that $A\bar{x}^K \to \bar{z}^K$ and $\ell(\bar{z}^K, b) \to \ell(Ax^*, b)$, which is 209 210 211 212 what is required in the original problem (1) (see Section D.11 for more details). One can find a 213 simplified version of gap (Xu, 2017). If we assume the existence of some solution (x^*, z^*, y^*) , 214 it can be used as follows: $gap^*(x, z, y) = L(x, z, y^*) - L(x^*, z^*, y)$. Theorem 2.2 can be rewritten with $gap^*(x, z, y)$: there is no maximum in the right-hand side of the estimate, simply 215 $||x^0 - x^*||^2 + ||z^0 - z^*||^2 + ||y^0 - y^*||^2$. But still, the use of (5) is preferable, e.g., for the already

216 mentioned problem $\min_{x \in \mathbb{R}} \max_{y \in \mathbb{R}} g(x, y) = xy$ with the solution (0, 0), but then gap^{*}(x, z, y) is 217 always exactly 0. The following corollary can be easily derived from Theorem 2.2. 218 Corollary 2.3. Under the conditions of Theorem 2.2, to achieve ε -solution we need 219 $\mathcal{O}(\frac{(1+\sqrt{\lambda_{\max}(A^TA)}+L_{\ell}+L_r)D^2}{\varepsilon})$ iterations. 220 221 An intriguing feature of the saddle point reformulation is that the expression $\ell(Ax, b)$ can be equiv-222 alently rewritten as $\ell(Ax, b)$ with $\ell(y, b) = \ell(y/\beta, b)$ and $A = \beta A$. We can select β such that in 223 Theorem 2.2 we have $\sqrt{\lambda_{\max}(\tilde{A}^T\tilde{A})} = L_{\tilde{\ell}}$. It becomes evident that the appropriate choice for 224 $\beta = L_{\ell}^{1/3} / \lambda_{\max}^{1/6}(A^T A)$. Then in Corollary 2.3 we can achieve $\mathcal{O}(\frac{(1+\sqrt[3]{\lambda_{\max}(A^T A) \cdot L_{\ell}} + L_r)D^2}{\varepsilon})$ iteration complexity (further details can be found in Section D.12). One can not Gradient 225 226 227 Descent (GD) and Accelerated Gradient Descent (AGD) - classical deterministic meth-228 ods for (1) have the following convergence estimates (Nesterov, 2003): $\mathcal{O}(\frac{(\lambda_{\max}(A^TA) \cdot L_{\ell} + L_r)D^2}{\epsilon})$ 229 and $\mathcal{O}(\frac{\sqrt{\lambda_{\max}(A^TA) \cdot L_{\ell} + L_r}D}{\sqrt{\varepsilon}})$ respectively. It can be seen that the obtained result is better than 230 231 Gradient Descent, and better than Accelerated Gradient Descent in terms of $\lambda_{\max}(A^T A)$ viewpoint (but worse in ε). As we mentioned in Section 1.1, there are approaches 232 233 for the saddle point reformulation, e.g., ADMM (Xie et al., 2022a). We compare the results in Table 1 (Appendix A). 234 235 This is possible because the loss function ℓ and the data matrix A are "separated". As mentioned 236 before, "separation" can be also good the stochastic algorithms, we explore them in the next section, 237 but now let us note that Algorithm 1 presents several drawbacks. One notable limitation is its de-

238 terministic nature. In the subsequent section, we underscore the disadvantages of this characteristic 239 and suggest alterations to enhance the foundational version of our general approach. Another significant drawback of Algorithm 1 is its reliance on the knowledge of $\lambda_{\max}(A^T A)$. Given that parts of 240 matrix A are dispersed across different devices, determining $\lambda_{\max}(A^T A)$ is challenging. However, 241 an estimation can be made using $\lambda_{\max}(A_i^T A_i)$, as illustrated in Lemma D.13. Alternatively, we can 242 contemplate a reformulation that negates the need for $\lambda_{\max}(A^T A)$ entirely, as discussed in Section 243 4. Furthermore, incorporating augmentation, as outlined in (Boyd et al., 2011), can be beneficial 244 and straightforward for implementation. It is crucial to highlight that any variations derived from 245 Section 4 and Appendix C, as well as any adaptations of Algorithm 1 from Section 3, can be seam-246 lessly integrated. Another limitation is that Algorithm 1 assumes we can calculate the gradient of 247 the function ℓ and the function r. But not all functions even allow this. For example, one can choose 248 the ℓ_1 regularizer as the function r. Or if we want to solve the constrained version of (1), we can 249 take r as an indicator function of some set \mathcal{X} . We consider the case where ℓ and r are generally 250 non-smooth but simple in Appendix B.1.

251

253 254

255

256

257

258

259

3 FAMILY OF MODIFICATIONS

This section presents the different modifications of Algorithm 1. These stochastic modifications are one of the main reasons for using saddle point reformulation. In any distributed optimization, including federated learning, both in its vertical and horizontal setting, the issue of communication organization is crucial. In particular, a lot of research is related to the efficiency to spend less time on communications (Konečný et al., 2016; Smith et al., 2018; Ghosh et al., 2020; Gorbunov et al., 2021), since they are from some point of view a waste of time (Kairouz et al., 2021).

260 261 3.1 Modification with quantization for effective communications

Let us take a look at one of one of the main techniques in the fight for communication efficiency
- compression (Seide et al., 2014; Alistarh et al., 2017). The following definition can formally
describe the compression of communicated vectors.

Definition 3.1. Operator $Q : \mathbb{R}^d \to \mathbb{R}^d$ is called *unbiased compressor/quantization* if there exists a constant $\omega \ge 1$ such that for all $x \in \mathbb{R}^d$ it holds $\mathbb{E}[Q(x)] = x$, $\mathbb{E}[||Q(x)||^2] \le \omega ||x||^2$.

Operator Q can be e.g., random coordinate choice or randomized rounding (Beznosikov et al., 2020).

Methods with compression in horizontal distributed learning are studied for quite a long time (Seide et al., 2014; Alistarh et al., 2017). Variance reduction methods provide a breakthrough here, initially

270 proposed to solve non-distributed stochastic finite-sum problems (Schmidt et al., 2017; Defazio 271 et al., 2014; Johnson & Zhang, 2013; Nguyen et al., 2017). Several papers have shown that the 272 variance reduction technique can be transferred to the distributed case, where stochasticity appears 273 not from the random choice of the batch number but from the compression (Mishchenko et al., 274 2019; Gorbunov et al., 2021; Qian et al., 2020). For our algorithm with unbiased compression (Algorithm 2), we take the variance reduction method for saddle point problems from (Alacaoglu 275 & Malitsky, 2021). We introduce an additional sequence of points w_i^k (reference points for x_i^k) and 276 u^k (reference points for y^k). In contrast to the classical variance reduction technique, we do not 277 introduce reference points for the z variables since we do not communicate them. To update all 278 w_i^k and u^k synchronously, we need to generate $b_k \in \{0, 1\}$, one can set the same random seed for 279 generating b^k on all devices to avoid additional communication. Next, we have to send full vectors 280 Aw_i^k and u^k to the first device and all the others, respectively. The key is that the reference points are 281 updated rarely, namely with low probability p, only when $b_k = 1$ (see lines 11 – 19). When w_i^k and 282 u^k are not updated, we only send compressed vectors $Q(y^{k+1/2} - u^k)$ and $Q(A_i x_i^{k+1/2} - A_i w_i^k)$ (lines 6, 7). Sending compressed information, rarely forwarding full packages, is the main point of 283 284 Algorithm 2. Theorem 3.2 gives the convergence; its proof can be found in Appendix D.3. 285

Theorem 3.2. Let Assumption 2.1 hold. Let problem (4) be solved by Algorithm 2 with operator Q that satisfies Definition 3.1. Then for $\gamma = \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\omega \lambda_{\max}(AA^T)}}; \sqrt{\frac{1-\tau}{\omega \lambda_{\max}(AA^T)}} \right\}, \tau = 1 - p$ it holds that

$$\mathbb{E}gap(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}([1 + \sqrt{\frac{\omega}{p}}(\sqrt{\lambda_{\max}(AA^T)}) + L_{\ell} + L_r]\frac{D^2}{K}),$$

where \bar{x}^{K} , \bar{z}^{K} , \bar{y}^{K} , D^{2} are defined in Theorem 2.2.

In Algorithm 2, one mandatory 294 communication round with com-295 pression occurs and possibly one 296 more (without compression) with 297 probability p. If Q compress a pack-298 age by a factor of β , then each it-299 eration requires $\mathcal{O}\left(\beta^{-1}+p\right)$ data 300 transfers on average. If p is close 301 to 1, Theorem 3.2 gives faster con-302 vergence, but more data transfer is 303 needed. If p tends to 0, the transmit-304 ted information complexity per iteration decreases but the iterative con-305 vergence rate drops. The optimal 306 choice of p is β^{-1} . For Theorem 3.2, 307 one can obtain an analogue of Corol-308 lary 2.3, which states that if p =309 β^{-1} , then the iterative complexity of 310 Algorithm 2 is $\sqrt{w\beta}$ times higher 311 than for Algorithm 1. But the esti-312 mated amount of information trans-313 ferred for Algorithm 2 is β times less 314 than the iterative complexity. For 315 Algorithm 1, the complexity of the transmitted information matches the 316 iterative one. Moreover, for most 317 practical operators $\beta \geq w$. Hence, 318 in the view of full information trans-319 ferred, Algorithm 2 may be better 320 than Algorithm 1. 321

286

287 288

293

Algorithm 2 EGVFL with unbiased compression for (4) 1: **Input:** initial point $(x^0, z^0, y^0) \in \mathbb{R}^{d+2s}, (w^0, u^0) \in$ \mathbb{R}^{d+s} , stepsize $\gamma > 0$, number of steps K 2: for k = 0 to K - 1 do 3: All update: $x_i^{k+1/2} = \tau x_i^k + (1 - \tau) w_i^k -\gamma \left(A_i^T u^k + \nabla r_i(x_i^k)\right)$ 4: 1st updates: $z^{k+1/2} = z^k - \gamma (\nabla \ell(z^k, b) - y^k)$ 5: 1st updates: $y^{k+1/2} = \tau y^k + (1 - \tau) u^k +\gamma (\sum_{i=1}^n A_i w_i^k - z^k)$ 6: 1st sends $Q(y^{k+1/2} - u^k)$ to other devices All send $Q(A_i x_i^{k+1/2} - A_i w_i^k)$ to 1st 7: All update: $x_i^{k+1} = \tau x_i^k + (1-\tau)w_i^k$ 8: All update: $x_i^{k+1} = \tau x_i^{k} + (1 - \tau)w_i^{k}$ $-\gamma(A_i^T[Q(y^{k+1/2} - u^k) + u^k] + \nabla r_i(x_i^{k+1/2}))$ 1st update: $z^{k+1} = z^k - \gamma(\nabla \ell(z^{k+1/2}, b) - y^{k+1/2})$ 1st update: $y^{k+1} = \tau y^k + (1 - \tau)u^k$ $+\gamma(\sum_{i=1}^n [Q(A_i x_i^{k+1/2} - A_i w_i^k) + A_i w_i^k] - z^{k+1/2})$ Flip a coin $b_k \in \{0, 1\}$ where $\mathbb{P}\{b_k = 1\} = p$ if $b_k = 1$ then 9: 10: 11: if $b_k = 1$ then 12: All update: $w_i^{k+1} = x_i^k$ 1st updates: $u^{k+1} = y^k$ 13: 14: All send uncompressed $A_i w_i^{k+1}$ to 1st 15: 1st sends uncompressed u^{k+1} to other devices 16: 17: else All update: $w_i^{k+1} = w_i^k$ 1st updates: $u^{k+1} = u^k$ 18: 19: 20: end if 21: end for

The use of compression was investigated for the VFL problem, but not in the saddle point formulation. The papers (Chen et al., 2021b; Xu et al., 2021; Cai et al., 2022; Sun et al., 2023) do not provide theoretical guarantees at all. The work (Castiglia et al., 2023) investigates only special

cases of compression operators. Only the authors of paper Stanko et al. (2024) give guarantees only for the quadratic loss ℓ : $\mathcal{O}(\omega^2 \frac{\lambda_{\max}^3(AA^T)}{\lambda_{\min}^2(AA^T)} \frac{D^2}{K^2})$. This is much worse than our guarantee estimates.

3.2 MODIFICATION WITH BIASED COMPRESSION FOR MORE EFFECTIVE COMMUNICATIONS

Using unbiased compression operators is more straightforward in theory, but the most popular compression operators in practice are biased (deterministic rounding (Horvath et al., 2019), greedy coordinate selection (Alistarh et al., 2018), vector decomposition (Vogels et al., 2019)) and can be described as follows.

Definition 3.3. Operator $C : \mathbb{R}^d \to \mathbb{R}^d$ (possibly randomized) is called a biased compressor if there exists a constant $\delta \ge 1$ such that for all $x \in \mathbb{R}^d$ it holds $\mathbb{E} \|C(x) - x\|^2 \le (1 - \frac{1}{\delta}) \|x\|^2$.

Using biased compressors is a complex issue. It can cause divergence even for quadratic problems (Beznosikov et al., 2020). To fix this, an error compensation technique (Stich et al., 2018; Karimireddy et al., 2019; Stich & Karimireddy, 2019) can be applied. This approach accumulates nontransmitted information ($\{e_k\}, \{e_i^k\}$) and adds it to a new package at the next iteration of Algorithm 2.

 $\begin{array}{rl} \textbf{340} \\ \textbf{341} \\ \textbf{342} \\ \textbf{343} \\ \textbf{342} \\ \textbf{343} \\ \textbf{343} \\ \textbf{343} \\ \textbf{343} \\ \textbf{343} \\ \textbf{343} \\ \textbf{344} \\ \textbf{344} \\ \textbf{344} \\ \textbf{345} \\ \textbf{345} \\ \textbf{345} \\ \textbf{345} \\ \textbf{346} \\ \textbf{346} \\ \textbf{346} \\ \textbf{347} \\ \textbf{347} \end{array} \begin{array}{rl} \textbf{6:} 1 \text{st sends } C(y^{k+1/2} - u^k + e^k) \text{ to other devices} \\ 1 \text{st update: } e^{k+1} = y^{k+1/2} - u^k + e^k - C(y^{k+1/2} - u^k + e^k) \\ \textbf{347} \\ \textbf{348} \\ \textbf{348} \\ \textbf{348} \\ \textbf{347} \\ \textbf{347} \\ \textbf{347} \end{array} \begin{array}{rl} \textbf{347} \\ \textbf{347} \end{array} \right) \\ \textbf{346} \\ \textbf{347} \\ \textbf{347} \\ \textbf{347} \end{array} \right) \\ \textbf{347} \\ \textbf{347} \\ \textbf{347} \\ \textbf{348} \\ \textbf{347} \\ \textbf{347} \\ \textbf{348} \\ \textbf{349} \\ \textbf{349}$

The full version of the algorithm is given in Appendix A, Theorem 3.4 gives the convergence, and proof can be found in Appendix D.4. Note that the proof techniques of Theorems 3.2 and Theorem 3.4 differ considerably, just as the proofs of convergence of distributed GD with unbiased and biased compression (Mishchenko et al., 2019; Stich & Karimireddy, 2019).

Theorem 3.4. Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 3 (Appendix A) with operators and C, which satisfy Definition 3.3. Then for $\tau = 1 - p$ and $\gamma = \frac{1}{4} \min\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\delta^2[\lambda_{\max}(AA^T)+n\cdot\max_i\{\lambda_{\max}(A_iA_i^T)\}]}}; \sqrt{\frac{1-\tau}{\omega\lambda_{\max}(AA^T)}}; \}$, it holds that $\mathbb{E}gap(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}([\frac{\delta}{\sqrt{p}}(\sqrt{\lambda_{\max}(AA^T)}+n\cdot\max_{i=1,\dots,n}\{\sqrt{\lambda_{\max}(A_iA_i^T)}\}) + L_\ell + L_r]\frac{D^2}{K}),$

where \bar{x}^{K} , \bar{z}^{K} , \bar{y}^{K} , D^{2} are defined in Theorem 2.2.

The choice of optimal p is the same as Algorithm 2. It is enough to take $p = \beta^{-1}$, where β is the compression power of C. The estimate from Theorem 3.4 shows the central theoretical problem with biased compressors. If $\delta \sim w$, the results in Theorem 3.4 are worse than in Theorem 3.2. Unfortunately, this kind of problem is inherent in all work around biased compressions – one cannot fully theoretically justify that biased compressors perform better (Gorbunov et al., 2021; Stich & Karimireddy, 2019; Richtárik et al., 2021). The only thing we can fight for is more or less acceptable convergence. Meanwhile, intuition and practical results show that biased operators are superior to unbiased ones (Beznosikov et al., 2020; Richtárik et al., 2021).

367 368

352

353

354 355

356 357 358

359

327

328

3.3 PARTIAL PARTICIPATION FOR ASYNCHRONOUS CLIENT CONNECTION

369 Algorithm 1 requires that at each 370 iteration all devices communicate 371 (send and receive messages). It is 372 possible that some devices may drop 373 out of the learning process. In this 374 subsection, we consider a modifi-375 cation of Algorithm 1, where only 1 randomly selected device commu-376 nicates at each iteration (Ribero & 377

6: 1st sends $y^{k+1/2}$ to other devices 7: Random device i_k sends $A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k$ to 1st 8: All update: $x_i^{k+1} = \tau x_i^k + (1-\tau)w_i^k$ $-\gamma(A_i^T y^{k+1/2} + \nabla r_i(x_i^{k+1/2}))$ 10: 1st update: $y^{k+1} = \tau y^k + (1-\tau)u^k$ $+\gamma(n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - z^{k+1/2})$

Vikalo, 2020; Chen et al., 2020; Cho et al., 2020; Lai et al., 2021). We take Algorithm 2 as a

378 base, but instead of compression, we use random client selection and only send information from 379 this client to the first device (see Algorithm 4 for full description). 380

Even though the first device sends $y^{k+1/2}$ to all devices, this does not mean that all devices need to receive the message at the exact same moment. They can get a set of several messages with y at 382 once when they contact the first device. In that case they just do several sequential updates of x_i .

Theorem 3.5. Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 4 (Appendix A). Then for $\tau = 1 - p$ and $\gamma = \frac{1}{4} \min\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1 - \tau}{\lambda_{\max}(AA^T) + n \cdot \max_i\{\lambda_{\max}(A_iA_i^T)\}}}\}$, it holds that

385 386 387

389

390

391

392

394

404

405

406

407 408

411

412

418

384

$$\mathbb{E}gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\left[\frac{1}{\sqrt{p}}(\sqrt{\lambda_{\max}(AA^{T})} + n \cdot \max_{i=1,\dots,n} \{\sqrt{\lambda_{\max}(A_{i}A_{i}^{T})}\}) + L_{\ell} + L_{r}\right] \frac{D^{2}}{K}\right)$$

where \bar{x}^{K} , \bar{z}^{K} , \bar{y}^{K} , D^{2} are defined in Theorem 2.2.

Using the same reasonings as after Theorem 3.2, one can find the optimal choice of p. In Algorithm 4, one mandatory communication round with only 1 client occurs and possibly one more (with all clients) with probability p. Then each iteration requires $O(n^{-1} + p)$ data transfers on average. The 393 optimal choice of p is β^{-1} .

3.4 COORDINATE MODIFICATION FOR LOW-COST LOCAL COMPUTING

The last modification is related to cheapening the cost of local computation in Algorithm 1. The 397 most expensive local operations are matrix vector multiplications: $A_i x_i^k$ and $A_i^T y^k$. To make them 398 cheaper, we can apply to the idea of coordinate descent (Nesterov, 2012; Nesterov & Stich, 2017; 399 Richtárik & Takáč, 2013; Qu & Richtárik, 2016) and compute not all coordinates for the resulting 400 vectors $A_i x_i^k$ and $A_i^T y^k$ but only 1, then instead of multiplying matrix by vector, we just compute 401 the scalar product of two vectors. This is implemented in the following modification of Algorithm 2. 402 The full version of algorithm (Algorithm 5) is given in Appendix A, Theorem 3.6 gives the conver-403 gence, proof can be found in Appendix D.6.

6: 1st sends $y^{k+1/2}$ to other devices

7: All choice coordinate(s) c_i^k , computes $\langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k}$ and send to 1st

8: All choice coordinate(s) j_i^k and update:

$$x_i^{k+1} = \tau x_i^k + (1-\tau)w_i^k - \gamma (d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} + A_i^T u^k + \nabla r_i (x_i^{k+1/2}))$$
10: 1st update:

$$y^{k+1} = \tau y^k + (1-\tau)u^k + \gamma (\sum_{i=1}^n [s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} + A_i w_i^k] - z^{k+1/2})$$

Theorem 3.6. Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 5 (Appendix A). Then for $\gamma = \frac{1}{4} \min\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{s\lambda_{\max}(A^TA)}}; \sqrt{\frac{1-\tau}{d\max_i\{\lambda_{\max}(A_i^TA_i)\}}}\}$ and $\tau = 1-p$, it holds that

$$\mathbb{E}gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\Big([\frac{s}{\sqrt{p}} \sqrt{\lambda_{\max}(A^{T}A)} + \frac{d}{\sqrt{p}} \cdot \max_{i=1,\dots,n} \{\sqrt{\lambda_{\max}(A_{i}A_{i}^{T})}\} + L_{\ell} + L_{r}] \frac{D^{2}}{K} \Big),$$

where \bar{x}^{K} , \bar{z}^{K} , \bar{y}^{K} , D^{2} are defined in Theorem 2.2.

Using the same reasonings as after Theorem 3.2, one can find the optimal choice of p. In Algo-419 rithm 5, two mandatory computing of scalar products (instead of matrix vector multiplication) take 420 places and possibly two matrix vector multiplications with probability p. Then each iteration requires $\mathcal{O}(n + s + p \cdot ns)$ local computations on average. The optimal choice of p is (n + s)/(ns). 422

423 424

425

421

FAMILY OF REFORMULATIONS 4

Let us discuss other reformulations beyond (4), e.g., a reformulation with additional variables. In 426 formulation (3), instead of Ax = z, we can introduce constraints in a different way with variables 427 $z_i \in \mathbb{R}^s$, for $i \in \{1, 2, \ldots, n\}$ as follows 428

429
$$\min_{x \in \mathbb{R}^d} \min_{z \in \mathbb{R}^s} \left[\ell \left(\sum_{i=1}^n z_i, b \right) + \sum_{i=1}^n r_i(x_i) \right], \text{ s.t. } A_i x_i = z_i \text{ for } i = 1, \dots, n.$$

430 The expression in the form of a Lagrangian function is 431

 $\min_{(x,z)\in\mathbb{R}^{d+sn}}\max_{y\in\mathbb{R}^{sn}}[\tilde{L}(x,z,y):=\ell(\sum_{i=1}^{n}z_{i},b)+\sum_{i=1}^{n}r_{i}(x_{i})+\sum_{i=1}^{n}y_{i}^{T}(A_{i}x_{i}-z_{i})].$ (6)

432 This saddle can be also solved using ExtraGradient (see Algorithm 6 in Appendix A). 433

Theorem 4.1. Let Assumption 2.1 holds. Let problem (6) be solved by Algorithm 6 (Appendix A). 434 Then for $\gamma = \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\max_i \{\lambda_{\max}(A_i^T A_i)\}}}; \frac{1}{L_r}; \frac{1}{nL_\ell}\right\}$, it holds that

435

436 437 438

439 440

441

453

454 455

456

457 458

459 460

461

470

471

 $gap_1(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}(\frac{(1+\sqrt{\max_{i=1,\dots,n}\{\lambda_{\max}(A_i^TA_i)\}} + nL_\ell + L_r)D^2}{K}),$

where $gap_1(x,y) := \max_{\tilde{u}_i \in \tilde{\mathcal{V}}} \tilde{L}(x,z,\tilde{y}) - \min_{\tilde{x},z \in \mathcal{X},\tilde{z}} \tilde{L}(\tilde{x},\tilde{z},y)$ and \bar{x}^K , \bar{z}^K , \bar{y}^K , D^2 are defined in Theorem 2.2.

An important detail to note it is that the step γ in Theorem 4.1 depends on $\lambda_{\max}(A_i A_i^T)$. Previous 442 algorithms assumed knowledge of the estimate for $\lambda_{\max}(AA^T)$ which can be disadvantageous be-443 cause we cannot collect A on a single device, and estimating $\lambda_{\max}(AA^T)$ through $\lambda_{\max}(A_iA_i^T)$ can 444 give deplorable results. 445

Other reformulations are presented in Appendix C. Although this paper focuses primarily on the 446 classical Lagrangian, we also consider the *augmented* version, present an algorithm for it, and prove 447 convergence estimates. The convergence estimates of the method for the augmented Lagrangian are 448 no better (or even worse if the augmentation parameter is high) than those of the method for the clas-449 sical Lagrangian. That is why we focus on the non-augmented formulation and put the augmented 450 one in Appendix C.1. It is important to emphasize that for all reformulations, all modifications from 451 Section 3 can be made. 452

5 **EXTENSION TO NON-CONVEX MODELS**

Let us consider a more general formulation where we can use arbitrary functions/models $g_i(A_i, w_i)$: $\mathbb{R}^{d_{w_i}} \to \mathbb{R}^{s \times d_i}$ with weights/tuning variables $w_i \in \mathbb{R}^{d_{w_i}}$ instead of fixed data matrices A_i (2): $\min_{(x,w) \in \mathbb{R}^{d+d_w}} \left[\ell \left(\sum_{i=1}^n g_i(A_i, w_i) x_i, b \right) + \sum_{i=1}^n r_i(x_i) \right]$, Here, the analogue of the Lagrangian function (4) can be written as follows:

$$\min_{(x,w,z)\in\mathbb{R}^{d+d_w+s}} \max_{y\in\mathbb{R}^s} \left[\ell(z,b) + \sum_{i=1}^n r_i(x_i) + y^T \left(\sum_{i=1}^n g_i(A_i,w_i)x_i - z \right) \right].$$
(7)

This SPP is generally not 462 convex-concave, but can 463 be solved by the modi-464 fied version of Algorithm 465 The complete list-1. 466 ing of the algorithm can 467 be found in Algorithm 7 468 (Appendix A). 469

EXPERIMENTS 6

472 **Regression.** We conduct experiments on the linear regression problem: 473 $\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_2^2$. Here, the smoothness constant of gradients is 474 $L = \lambda_{\max}(AA^T) + \lambda$ with $\lambda = \lambda_{\max}(AA^T)/10^3$. Other smoothness constants, which we 475 use in theory for our method, are $L_{\ell} = 1, L_r = \lambda$. We take mushrooms, a9a, w8a and MNIST 476 datasets from LibSVM library (Chang & Lin, 2011). We vertically (by features) uniformly divide 477 the dataset between 5 devices. 478

This experiment uses different formulations to compare deterministic methods for solving the VFL 479 problem. Here, we're not focusing on the distributed nature of the problems; instead, we aim to 480 show that the saddle point reformulation using the classical Lagrangian function has merit (we in-481 vestigate modifications in Appendix E) and methods for solving it can compete effectively with 482 other approaches. 483

Since there are two formulations of VFL, classical minimization and saddle point, we choose several 484 methods for each formulation. For the minimization formulation, we take GD as the most popular 485 method, and AGD (Nesterov, 2003) as the theoretically unimprovable first-order method for smooth

486 convex problems. For the saddle point formulation, we consider ADMM and Algorithm 1. The 487 methods are tuned according to the corresponding theory. For GD we choose step as $\frac{1}{L}$ (Polyak, 2020), for Nesterov – step as $\frac{1}{L}$ and momentum as $\frac{\sqrt{L}-\sqrt{\lambda}}{\sqrt{L}+\sqrt{\lambda}}$ (Nesterov, 2003), for ADMM we take regularizer parameter equal to $\frac{1}{\sqrt{\lambda_{\max}(AA^T)}}$ (Lu & Yang, 2023). Algorithm 1 is tuned according to Theorem 2.2 with a location of the statement of the s 488 489 490 491 Theorem 2.2 with and without β -trick (see disscusion after Corollary 2.3). The application of the 492 β -trick can also be considered for other methods. However, in the case of GD and Nesterov, it does not alter the method since the data matrix A and the loss function ℓ are not split. All methods 493 start from zero. 494

Figure 1: Comparison of methods for solving the VFL problem in different formulations: minimization (GD, Nesterov) and saddle point (ADMM, ExtraGradient/Algorithm 1). The comparison is made on LibSVM datasets mushrooms, a9a, w8a and MNIST.

Fine-tuning of neural network. We consider the pre-trained 517 ResNet18 model on the ImageNet dataset. Our goal is to fine 518 tune it on the CIFAR-10 dataset. As in the previous experiments, 519 we take 5 clients, each client gets all the images, but only parts of 520 them (about 1/5 of the whole image for each client). Then, each 521 client passes its image portions through the pre-trained ResNet 522 without the last linear layer, adjusting for the square size. As a 523 result, each client receives embeddings corresponding to its sliced 524 images. A new linear layer with the cross-entropy loss is trained 525 on the embeddings of all clients, which means that the partition-526 ing of the data is also vertical in this case. As in the previous paragraph, we use GD, AGD, ADMM and Algorithm 1 as methods 527 for comparison. The methods are tuned as in the corresponding 528 theory, since for this problem we can also estimate L. In the case 529 of the 1 and ADMM algorithms, we also use the β -trick. 530

⁵³¹ The results reflected in Figure 2 show the superiority of Algo-

rithm 1 over competitors. When the β -trick is used, ExtraGradient significantly outperforms other methods, but even without the β -trick Algorithm 1 converges slightly worse than AGD, but later overtakes it as well.

535

495

496

497

498

499

500

501

502

504

505

506

507

509

510

511

516

536 REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC* conference on computer and communications security, pp. 308–318, 2016.

The results, illustrated in Figure 1, show that Algorithm 1 with the choice β convergence dramatically faster, the basic version Algorithm 1 initially lags behind GD and Nesterov, but in terms of steady-state convergence Algorithm 1 converges faster and eventually surpasses both GD and sometimes Nesterov. Furthermore, as previously discussed in Section 1, the saddle reformulation offers advantages in terms of privacy. Significantly, we surpass our competitor in solving SPP - ADMM, with ADMM also exhibiting notably costlier iterations. The same experiments but with grid-search tuning of parameters for all methods is presented in Appendix E. In this setting, Algorithm 1 is even more faster than competitors.

Figure 2: Comparison of methods for solving the VFL problem in different formulations: minimization (GD, Nesterov) and saddle point (ADMM, ExtraGradient/Algorithm 1). The comparison is made on CIFAR-10 dataset.

- Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality methods. *arXiv preprint arXiv:2102.08352*, 2021.
- Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
 Communication-efficient SGD via gradient quantization and encoding. In *Advances in Neural Information Processing Systems*, pp. 1709–1720, 2017.
- Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli. The convergence of sparsified gradient methods. In *Advances in Neural Information Processing Systems*, 2018.
- 550 Amir Beck. First-order methods in optimization. SIAM, 2017.

- Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression for distributed learning. *arXiv preprint arXiv:2002.12410*, 2020.
- José M. Bioucas-Dias and Mario A. T. Figueiredo. Alternating direction algorithms for con strained sparse regression: Application to hyperspectral unmixing. In 2010 2nd Workshop on
 Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4, 2010. doi:
 10.1109/WHISPERS.2010.5594963.
- Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends*® *in Machine learning*, 3(1):1–122, 2011.
- F. E. Browder. Existence and approximation of solutions of nonlinear variational inequalities. *Proceedings of the National Academy of Sciences*, 56(4):1080–1086, 1966.
- Dongqi Cai, Tao Fan, Yan Kang, Lixin Fan, Mengwei Xu, Shangguang Wang, and Qiang Yang.
 Accelerating vertical federated learning. *IEEE Transactions on Big Data*, pp. 1–10, 2022. ISSN 2372-2096.
- Timothy Castiglia, Anirban Das, Shiqiang Wang, and Stacy Patterson. Compressed-vfl:
 Communication-efficient learning with vertically partitioned data, 2023.
- Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.
- 573 Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wenjing Fang, Jin Tan, Lei Wang, Alex X. Liu,
 574 Hao Wang, and Cheng Hong. When homomorphic encryption marries secret sharing: Secure
 575 large-scale sparse logistic regression and applications in risk control. In *Proceedings of the 27th*576 ACM SIGKDD Conference on Knowledge Discovery Data Mining, KDD '21, pp. 2652–2662,
 577 New York, NY, USA, 2021a. Association for Computing Machinery. ISBN 9781450383325.
- Weijing Chen, Guoqiang Ma, Tao Fan, Yan Kang, Qian Xu, and Qiang Yang. Secureboost+ : A high performance gradient boosting tree framework for large scale vertical federated learning, 2021b.
- Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated learning.
 arXiv preprint arXiv:2010.13723, 2020.
- 583
 584
 584
 585
 585
 Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Convergence analysis and power-of-choice selection strategies. *arXiv preprint arXiv:2010.01243*, 2020.
- Fida K Dankar, Nisha Madathil, Samar K Dankar, and Sabri Boughorbel. Privacy-preserving anal ysis of distributed biomedical data: Designing efficient and secure multiparty computations using distributed statistical learning theory. *JMIR Med Inform*, 7(2):e12702, Apr 2019.
- Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in neural information processing systems*, pp. 1646–1654, 2014.
- ⁵⁹³ Pedro A. Forero, Alfonso Cano, and Georgios B. Giannakis. Consensus-based distributed support vector machines. *Journal of Machine Learning Research*, 11(55):1663–1707, 2010.

594 Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational 595 problems via finite element approximation. Computers and Mathematics with Applications, 2(1): 596 17-40, 1976. 597 Ning Ge, Guanghao Li, Li Zhang, and Yi Liu Yi Liu. Failure prediction in production line based on 598 federated learning: An empirical study, 2021. 600 Avishek Ghosh, Raj Kumar Maity, Arya Mazumdar, and Kannan Ramchandran. Communication 601 efficient distributed approximate Newton method. In IEEE International Symposium on Informa-602 tion Theory (ISIT), 2020. doi: 10.1109/ISIT44484.2020.9174216. 603 Roland Glowinski and A. Marroco. Sur l'approximation, par éléments finis d'ordre un, et la 604 résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires. 1975. 605 606 Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint 607 arXiv:1701.00160, 2016. 608 Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-609 convex distributed learning with compression. In 38th International Conference on Machine 610 Learning, 2021. 611 612 Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter 613 Richtárik. Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988, 614 2019. 615 Yaochen Hu, Peng Liu, Linglong Kong, and Di Niu. Learning privately over distributed features: 616 An admm sharing approach. arXiv preprint arXiv:1907.07735, 2019. 617 618 Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance 619 reduction. Advances in neural information processing systems, 26:315–323, 2013. 620 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin 621 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-622 vances and open problems in federated learning. Foundations and Trends® in Machine Learning, 623 14(1-2):1-210, 2021. 624 625 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback 626 fixes signsgd and other gradient compression schemes. In International Conference on Machine 627 Learning, pp. 3252-3261. PMLR, 2019. 628 Afsana Khan, Marijn ten Thij, and Anna Wilbik. Vertical federated learning: A structured literature 629 review, 2023. 630 631 Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and 632 Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016. 633 634 Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and 635 Dave Bacon. Federated learning: strategies for improving communication efficiency. In NIPS 636 Private Multi-Party Machine Learning Workshop, 2016. 637 638 G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon, 12:35-49, 1977. 639 640 Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient feder-641 ated learning via guided participant selection. In 15th USENIX Symposium on Operating Systems 642 Design and Implementation (OSDI 21), pp. 19-35. USENIX Association, 2021. ISBN 978-1-643 939133-22-9. 644 Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed ma-645 chine learning with the parameter server. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, 646 and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. 647 Curran Associates, Inc., 2014.

648 649	Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical federated learning. <i>arXiv preprint arXiv:2211.12814</i> , 2022.
651 652 653	Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye, Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical federated learning: Concepts, advances, and challenges. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2024.
654 655 656	Haihao Lu and Jinwen Yang. On a unified and simplified proof for the ergodic convergence rates of ppm, pdhg and admm. <i>arXiv preprint arXiv:2305.02165</i> , 2023.
657 658 659	Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In <i>Artificial intelligence and statistics</i> , pp. 1273–1282. PMLR, 2017.
660 661 662	Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. <i>arXiv preprint arXiv:1901.09269</i> , 2019.
663 664 665	Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. <i>SIAM Journal on Optimization</i> , 15(1):229–251, 2004.
666 667 668	Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. <i>SIAM Journal on Optimization</i> , 22(2):341–362, 2012.
669 670	Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media, 2003.
671 672 673	Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities and related problems. <i>Mathematical Programming</i> , 109(2):319–344, 2007.
674 675 676	Yurii Nesterov and Sebastian U. Stich. Efficiency of the accelerated coordinate descent method on structured optimization problems. <i>SIAM Journal on Optimization</i> , 27(1):110–123, 2017.
677 678 679	Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine learning problems using stochastic recursive gradient. In <i>International Conference on Machine Learning</i> , pp. 2613–2621. PMLR, 2017.
680 681	Neal Parikh, Stephen Boyd, et al. Proximal algorithms. <i>Foundations and trends</i> ® <i>in Optimization</i> , 1(3):127–239, 2014.
683	Boris Polyak. Introduction to Optimization. 07 2020.
684 685 686	Xun Qian, Peter Richtárik, and Tong Zhang. Error compensated distributed sgd can be accelerated. arXiv preprint arXiv:2010.00091, 2020.
687 688	Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling i: algorithms and complexity. <i>Optimization Methods and Software</i> , 31(5):829–857, 2016.
689 690 691	Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal client sampling. <i>arXiv preprint arXiv:2007.15197</i> , 2020.
692 693	Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent methods. <i>arXiv preprint arXiv:1310.3438</i> , 2013.
694 695 696	Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and practically faster error feedback. <i>arXiv preprint arXiv:2106.05203</i> , 2021.
697 698 699 700	R.T. Rockafellar. Convex functions, monotone operators and variational inequalities. theory and applications of monotone operators, pp. 13–65, 1969.
701	Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average gradient. <i>Mathematical Programming</i> , 162(1-2):83–112, 2017.

702 703	Hanie Sedghi, Anima Anandkumar, and Edmond Jonckheere. Multi-step stochastic admm in high dimensions: Applications to sparse optimization and matrix decomposition. In Z. Ghahramani,
704	M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information
705	Processing Systems, volume 27. Curran Associates, Inc., 2014.
706	Frank Saide Hao Fu, Jasha Dronno, Gang Li, and Dong Yu, 1 bit stochastic gradient descent and its
707	application to data-parallel distributed training of speech dnns. In <i>Fifteenth Annual Conference</i> of
708	the International Speech Communication Association, 2014.
709	
710	Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
711	rithms. Cambridge university press, 2014.
712	M. Sibony. Méthodes itératives pour les équations et inéquations aux dérivées partielles non linéaires
714	de type monotone. <i>Calcolo</i> , 7(1):65–183, 1970.
715	V Smith S Forte C Ma M Takáč M I Jordan and M Jaggi CoCoA: A general framework for
716	communication-efficient distributed optimization <i>Journal of Machine Learning Research</i> 18:
717	1–49, 2018.
718	General Grand and Theorem 11 and the state of the state o
719	Sergey Stanko, limur Karimullin, Aleksandr Beznosikov, and Alexander Gasnikov. Acceler-
720	arXiv:2404.13328. 2024
721	<i>urxiv.2404.13320, 2024.</i>
722	Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
723	sgd with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
724	2019.
725	Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sed with memory. <i>arXiv</i>
726	preprint arXiv:1809.07599, 2018.
727	
728	Jingwei Sun, Ziyue Xu, Dong Yang, Vishwesh Nath, Wenqi Li, Can Zhao, Daguang Xu, Yiran Chen,
729	samples 2023
730	samples, 2025.
731	Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
732	Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
733	1-33, 2020.
734	Thijs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
735	compression for distributed optimization. Advances In Neural Information Processing Systems
737	32 (Nips 2019), 32(CONF), 2019.
738	Bo Wahlberg Stephen Boyd Mariette Annergren and Yang Wang An admm algorithm for a class
739	of total variation regularized estimation problems [*] . <i>IFAC Proceedings Volumes</i> , 45(16):83–88,
740	2012. 16th IFAC Symposium on System Identification.
741	Unabus Wong and Arindam Danarias Online alternating direction method (langer version) anVin
742	preprint arXiv:1306.3721, 2013
743	preprint urxiv.1500.5721, 2015.
744	Kang Wei, Jun Li, Chuan Ma, Ming Ding, Sha Wei, Fan Wu, Guihai Chen, and Thilina Ranbaduge.
745	Vertical federated learning: Challenges, methodologies and experiments, 2022.
746	Chulin Xie, Pin-Yu Chen, Ce Zhang, and Bo Li. Improving vertical federated learning by efficient
747	communication with ADMM. In Workshop on Federated Learning: Recent Advances and New
748	Challenges (in Conjunction with NeurIPS 2022), 2022a.
749	Chulin Yie Din Yu Chen Ce Thang and Bo Li Improving privacy preserving vertical federated
750	learning by efficient communication with admm arXiv preprint arXiv:2207 10226 2022b
751	
752	Wuxing Xu, Hao Fan, Kaixin Li, and Kai Yang. Efficient batch homomorphic encryption for verti-
75/	cally federated xgboost, 2021.
755	Yangyang Xu. Accelerated first-order primal-dual proximal methods for linearly constrained com-

Liu Yang, Di Chai, Junxue Zhang, Yilun Jin, Leye Wang, Hao Liu, Han Tian, Qian Xu, and Kai Chen. A survey on vertical federated learning: From a layered perspective. arXiv preprint arXiv:2304.01829, 2023. Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the convex concave saddle point problems. Mathematical Programming, pp. 1-35, 2021.

Appendix

MISSING ALGORITHMS AND TABLE А

817 818 Algorithm 3 EGVFL with biased compression for (4) 819 1: Input: starting point $(x^0, z^0, u^0) \in \mathbb{R}^{d+2s}$, $(w^0, u^0) \in \mathbb{R}^{d+s}$, stepsize $\gamma > 0$, number of steps 820 K821 2: for k = 0 to K - 1 do All devices in parallel update: $x_i^{k+1/2} = \tau x_i^k + (1-\tau)w_i^k - \gamma \left(A_i^T u^k + \nabla r_i(x_i^k)\right)$ 822 3: First device updates: $z^{k+1/2} = z^k - \gamma(\nabla \ell(z^k, b) - y^k)$ 823 4: First device updates: $z^{k+1/2} = \tau y^k + (1-\tau)u^k + \gamma(\sum_{i=1}^n A_i w_i^k - z^k)$ First device compresses $C(y^{k+1/2} - u^k + e^k)$ and sends to other devices First device updates: $e^{k+1} = y^{k+1/2} - u^k + e^k - C(y^{k+1/2} - u^k + e^k)$ and sends to other 824 5: 825 6: 826 7: devices All devices in parallel compress $C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k)$ and send to first device All devices in parallel update: $e_i^{k+1} = A_i x_i^{k+1/2} - A_i w_i^k + e_i^k - C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k)$ All devices update: $x_i^{k+1} = \tau x_i^k + (1 - \tau) w_i^k - \gamma (A_i^T [C(y^{k+1/2} - u^k + e^k) + u^k] + u^k]$ 8: 9: 10: $\nabla r_i(x_i^{k+1/2}))$ First device update: $z^{k+1} = z^k - \gamma(\nabla \ell(z^{k+1/2}, b) - y^{k+1/2})$ 11: First device update: $y^{k+1} = \tau y^k + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + (1-\tau)u^k + \gamma (\sum_{i=1}^n [C(A_i x_i^{k+1/2} - A_i w_i^k + e_i^k) + (1-\tau)u^k + (1-$ 12: $A_i w_i^k] - z^{k+1/2}$ 13: Flip a coin $b_k \in \{0, 1\}$ where $\mathbb{P}\{b_k = 1\} = p$ 836 14: if $b_k = 1$ then 837 All devices in parallel update: $w_i^{k+1} = x_i^k$ 15: 838 First device updates: $u^{k+1} = y^k$ 16: 839 All devices send uncompressed $A_i w_i^{k+1}$ to first device 17: 840 First device sends uncompressed u^{k+1} to other devices 18: 841 19: else 842 All devices in parallel update: $w_i^{k+1} = w_i^k$ 20: 843 First device updates: $u^{k+1} = u^k$ 21: 844 end if 22: 845 23: end for 846 847 848 849 850 851 852 853 854 855

856

863

810 811 812

813 814 815

816

864	Alg	gorithm 4 EGVFL with partial participation for (4)
865	1.	Input: starting point $(x^0, z^0, u^0) \in \mathbb{R}^{d+2s}$ $(w^0, u^0) \in \mathbb{R}^{d+s}$ stepsize $\gamma > 0$ number of steps
866	1.	K
867	2:	for $k = 0$ to $K - 1$ do
868	3:	All devices in parallel update: $x_i^{k+1/2} = \tau x_i^k + (1-\tau) w_i^k - \gamma \left(A_i^T u^k + \nabla r_i(x_i^k) \right)$
869	4.	First device updates: $z^{k+1/2} = z^k - \gamma(\nabla \ell(z^k, b) - y^k)$
870	5.	First device updates: $u^{k+1/2} = \tau u^k + (1-\tau)u^k + \gamma(\sum_{i=1}^n A_i u^k - z^k)$
871	5. 6.	First device updates: $y = -iy + (1 - i)u + i(\sum_{i=1}^{n} n_i w_i - z)$
872	0. 7.	Pandom devices is condered when $devices$
873	/:	Kandom device i_k sends $(A_{i_k}x_{i_k} - A_{i_k}w_{i_k})$ to first device
075	8:	All devices update: $x_i^{k+1} = \tau x_i^k + (1 - \tau) w_i^k - \gamma (A_i^T y^{k+1/2} + \nabla r_i (x_i^{k+1/2}))$
070	9:	First device update: $z^{k+1} = z^k - \gamma(\nabla \ell(z^{k+1/2}, b) - y^{k+1/2})$
070	10:	First device update: $y^{k+1} = \tau y^k + (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^{k+1/2} - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^k - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + (1-\tau)u^k + \gamma (n \cdot [A_{i_k} x_{i_k}^k - A_{i_k} w_{i_k}^k] + \sum_{i=1}^n A_i w_i^k - (1-\tau)u^k + (1-\tau$
070		$z^{k+1/2})$
070	11:	Flip a coin $b_k \in \{0, 1\}$ where $\mathbb{P}\{b_k = 1\} = p$
019	12:	if $b_k = 1$ then
000	13:	All devices in parallel update: $w_i^{k+1} = x_i^k$
001	14:	First device updates: $u^{k+1} = y^k$
222	15:	All devices send uncompressed $A_i w_i^{k+1}$ to first device
88/	16:	First device sends uncompressed u^{k+1} to other devices
885	17:	else $k+1$
886	18:	All devices in parallel update: $w_i^{n+1} = w_i^n$
887	19:	First device updates: $u^{\kappa+1} = u^{\kappa}$
888	20:	end II and for
889	21:	
890	Alc	corithm 5 ECVEL with coordinate choice for (4)
891		
892	1:	Input: starting point $(x^0, z^0, y^0) \in \mathbb{R}^{d+2s}$, $(w^0, u^0) \in \mathbb{R}^{d+s}$, stepsize $\gamma > 0$, number of steps
893	•	
894	2:	IOF $k = 0$ IO $K - 1$ GO
895	3:	All devices in parallel update: $x_i^{-1} = \tau x_i^{-1} + (1 - \tau) w_i^{-1} - \gamma \left(A_i^{-1} u^{-1} + \nabla r_i(x_i^{-1}) \right)$
896	4:	First device updates: $z^{n+1/2} = z^n - \gamma(\nabla \ell(z^n, b) - y^n)$
897	5:	First device updates: $y^{\kappa+1/2} = \tau y^{\kappa} + (1-\tau)u^{\kappa} + \gamma(\sum_{i=1}^{n} A_i w_i^{\kappa} - z^{\kappa})$
898	6:	First device sends $y^{k+1/2}$ sends to other devices
899	7:	All devices in parallel choice coordinate(s) c_i^k , computes $\langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k}$ and
900		send to first device
901	8:	All devices choice coordinate(s) j_i^k and update: $x_i^{k+1} = \tau x_i^k + (1-\tau)w_i^k - \gamma (d_i \cdot d_i)$
902		$\langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} + A_i^T u^k + \nabla r_i(x_i^{k+1/2}))$
903	9:	First device update: $z^{k+1} = z^k - \gamma(\nabla \ell(z^{k+1/2}, b) - y^{k+1/2})$
904	10.	First device update: $u^{k+1} = \tau u^k + (1-\tau)u^k + \gamma(\sum_{i=1}^n (s \cdot (A_i)(x_i^{k+1/2} - w_i^k))) e_{i+1})e_{i+1} + (1-\tau)u^k + \gamma(\sum_{i=1}^n (s \cdot (A_i)(x_i^{k+1/2} - w_i^k)))e_{i+1})e_{i+1} + (1-\tau)u^k + \gamma(\sum_{i=1}^n (s \cdot (A_i)(x_i^{k+1/2} - w_i^k)))e_{i+1})e_{i+1} + (1-\tau)u^k + \gamma(\sum_{i=1}^n (s \cdot (A_i)(x_i^{k+1/2} - w_i^k)))e_{i+1})e_{i+1})e_{i+1}$
905	10.	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$
906	11.	$\begin{array}{l} F_{i}w_{i} = 2 \\ F_{i} = 0 \end{array}$
907	12.	in p a control $v_k \in \{0, 1\}$ where $\mathbb{I}\left\{v_k - 1\right\} = p$ if $b_1 = 1$ then
908	13:	All devices in parallel update: $w_{i}^{k+1} = x_{i}^{k}$
909	14:	First device updates: $u^{k+1} = u^k$
910	15.	All devices send uncompressed $A_i w_i^{k+1}$ to first device
911	16.	First device sends uncompressed u^{k+1} to other devices
912	17.	else
913	18:	All devices in parallel update: $w_i^{k+1} = w_i^k$
914	19:	First device updates: $u^{k+1} = u^{k}$
		T T T T T T T T T T T T T T T T T T T
915	20:	end if
915 916	20: 21:	end if end for

919 920 921 922 Algorithm 6 EGVFL for (6) 923 924 1: Input: starting point $(x^0, z^0, y^0) \in \mathbb{R}^{d+2s}$, stepsize $\gamma > 0$, number of steps K 925 2: for k = 0 to K - 1 do 926 First device sends y_i^k to other devices 3: 927 All devices in parallel send $A_i x_i^k$ to first device 4: All devices in parallel update: $x_i^{k+1/2} = x_i^k - \gamma(A_i^Ty_i^k + \nabla r_i(x_i^k))$ 928 5: First device updates: $z_i^{k+1/2} = z_i^k - \gamma(\nabla \ell(\sum_{i=1}^n z_i^k, b) - y_i^k)$ First device updates: $y_i^{k+1/2} = y_i^k + \gamma(A_i x_i^k - z_i^k)$ First device sends $y_i^{k+1/2}$ to other devices 929 6: 930 7: 931 8: 932 All devices in parallel send $A_i x_i^{k+1/2}$ to first device 933 9: All devices in parallel update: $x_i^{k+1} = x_i^k - \gamma(A_i^T y_i^{k+1/2} + \nabla r_i(x_i^{k+1/2}))$ First device updates: $z_i^{k+1} = z_i^k - \gamma(\nabla \ell(\sum_{i=1}^n z_i^{k+1/2}, b) - y_i^{k+1/2})$ First device updates: $y_i^{k+1} = y_i^k + \gamma(A_i x_i^{k+1/2} - z_i^{k+1/2})$ 934 10: 935 11: 936 12: 937 13: end for 938 939 940 941 942 943 944 945 946 947 948 949 Algorithm 7 EGVFL for (7) 950 1: Input: starting point $(x^0, w^0, z^0, y^0) \in \mathbb{R}^{d+d_w+2s}$, stepsize $\gamma > 0$, number of steps K 951 2: for k = 0 to K - 1 do 952 First device sends y^k to other devices 3: All devices in parallel send $g_i(A_i, w_i^k)x_i^k$ to first device All devices in parallel update: $x_i^{k+1/2} = x_i^k - \gamma \left(g_i^T(A_i, w_i^k)y^k + \nabla r_i(x_i^k)\right)$ 953 4: 954 5: 955 All devices in parallel update: $w_i^{k+1/2} = w_i^k - \gamma \left((y^k)^T \nabla g_i(A_i, w_i^k) x_i^k \right)$ 6: 956 First device updates: $z^{k+1/2} = z^k - \gamma(\nabla \ell(z^k, b) - y^k)$ 7: 957 First device updates: $y^{k+1/2} = y^k + \gamma \left(\sum_{i=1}^n g_i(A_i, w_i^k) x_i^k - z^k \right)$ 8: 958 First device sends $y^{k+1/2}$ to other devices 9: 959 All devices in parallel send $g_i(A_i, w_i^{k+1/2}) x_i^{k+1/2}$ to first device 10: 960 All devices in parallel update: $x_i^{k+1} = x_i^k - \gamma \left(g_i^T(A_i, w_i^{k+1/2}) y^{k+1/2} + \nabla r_i(x_i^{k+1/2}) \right)$ 961 11: 962 All devices in parallel update: $w_i^{k+1} = w_i^k - \gamma \left((y^{k+1/2})^T \nabla g_i(A_i, w_i^{k+1/2}) x_i^{k+1/2} \right)$ 12: 963 First device updates: $z^{k+1} = z^k - \gamma(\nabla \ell(z^{k+1/2}, b) - y^{k+1/2})$ 964 13: First device updates: $y^{k+1} = y^k + \gamma \left(\sum_{i=1}^n g_i(A_i, w_i^{k+1/2}) x_i^{k+1/2} - z^{k+1/2} \right)$ 965 14: 966 15: end for 967 968 969 970

971

ns.
ioi
ılat
Ш
for
re
ese
the
ng
Ι <u>ν</u> ί
SO
for
ls f
loc loc
letl
C III
stic
ini
EII.
ete
ğ
pun
ີລ
g
en
ą
0
prc
FL prc
VFL prc
the VFL pro
of the VFL prc
is of the VFL pro
ions of the VFL prc
lations of the VFL pro
mulations of the VFL pro
ormulations of the VFL pro
reformulations of the VFL pro
int reformulations of the VFL prc
point reformulations of the VFL prc
lle point reformulations of the VFL prc
addle point reformulations of the VFL prc
t saddle point reformulations of the VFL prc
ent saddle point reformulations of the VFL prc
ferent saddle point reformulations of the VFL prc
different saddle point reformulations of the VFL prc
of different saddle point reformulations of the VFL prc
on of different saddle point reformulations of the VFL prc
rison of different saddle point reformulations of the VFL pro-
parison of different saddle point reformulations of the VFL prc
omparison of different saddle point reformulations of the VFL pre
Comparison of different saddle point reformulations of the VFL prc
1: Comparison of different saddle point reformulations of the VFL prc
ole 1: Comparison of different saddle point reformulations of the VFL prc
Table 1: Comparison of different saddle point reformulations of the VFL pro

		Method	Iteration complexity	Local device cost of iteration	Local server cost of iteration	Communication cost of iteration	
	(4)	Algorithm 1	$\mathcal{O}\left(\frac{1 + \sqrt{\lambda_{\max}(A^T A)} + L_{\ell} + L_{r}}{\varepsilon} \right)$	$\mathcal{O}\left(ds\cdot \operatorname{Cost}(\operatorname{a.o.})+\operatorname{Cost}(arrow r) ight)$	$\mathcal{O}\left(s\cdot ext{Cost}(ext{a.o.})+ ext{Cost}(abla \ell) ight)$	$\mathcal{O}\left(s\cdot \operatorname{Send}(1\operatorname{coord.}) ight)$	
noitel	(9)	Algorithm 6	$\mathcal{O}\left(\frac{1+\sqrt{\max_i\{\lambda_{\max}(A_i^TA_i)\}}+nL_\ell+L_r}{\varepsilon}\right)$	$\mathcal{O}\left(ds\cdot \mathrm{Cost}(\mathrm{a.o.})+\mathrm{Cost}(abla r) ight)$	$\mathcal{O}\left(s \cdot \operatorname{Cost}(a.o.) + \operatorname{Cost}(\nabla\ell)\right)$	$\mathcal{O} \; (s \cdot \operatorname{Send}(1 \; \operatorname{coord.}))$	
nuuloj	8	Algorithm 9	$\mathcal{O}\left(\frac{1+\sqrt{\lambda_{\max}(A^TA)}+L_{\ell}+L_{r}}{\varepsilon}\right) (1)$	$\mathcal{O}\left(ds\cdotCost(\mathfrak{a.o.})+Cost(arrow r) ight)$	$\mathcal{O}\left(s \cdot \operatorname{Cost}(\operatorname{a.o.}) + \operatorname{Cost}(abla \ell) ight)$	$\mathcal{O} \; (s \cdot \operatorname{Send}(1 \; \operatorname{coord.}))$	
ł	<u> </u>	ADMM (Boyd et al., 2011; Lu & Yang, 2023)	$\mathcal{O}\left(\frac{1+\sqrt{\lambda_{\max}(A^TA)}}{\varepsilon}\right)^{(2)}$	$\mathcal{O}\left(\sqrt{\frac{1+\sqrt{\lambda\max\left(A^{T},A\right)}+Lr}{e}}\right)\cdot\mathcal{O}\left(d^{2}\cdot\operatorname{Cost}(a.o.)+\operatorname{Cost}(\nabla r)\right)+\mathcal{O}\left(ds\cdot\operatorname{Cost}(a.o.)\right)^{(3)}$	$\mathcal{O}\left(\sqrt{\frac{nL_{\ell}}{e}}\right) \cdot \mathcal{O}\left(s \cdot \operatorname{Cost}(\mathrm{a.o.}) + \operatorname{Cost}(\nabla\ell)\right)^{(3)}$	$\mathcal{O} \; (s \cdot \operatorname{Send}(1 \; \operatorname{coord.}))$	
	6	Algorithm 10	$\mathcal{O}\left(rac{1+\sqrt{\lambda_{\max(A^TA)}}+L_{\ell^*}+L_{r}}{\varepsilon} ight)$	$\mathcal{O}\left(ds \cdot \operatorname{Cost}(a.o.) + \operatorname{Cost}(\nabla r)\right)$	$\mathcal{O}\left(s \cdot \operatorname{Cost}(a.o.) + \operatorname{Cost}(\nabla \ell^*)\right)$	$\mathcal{O} \ (s \cdot \operatorname{Send}(1 \operatorname{ coord.}))$	
) det	ailed estimate has a dependence on the	parameter ρ , here we substitute $\rho = 1/r$	$\sqrt{\lambda_{\max}(A^T A)}$; ⁽²⁾ detailed estimate has a dependence on the parameter ρ (see C	Corollary 3 from (Lu & Yang, 2023)), in pa	irticular $\rho \lambda_{\max}(A^T A) + 1/\rho$,	•

then we substitute $\rho = 1/\sqrt{\lambda_{\max}(A^TA)}$; ⁽³⁾ at each iteration of ADMM (see Section 8.3 from (Boyd et al., 2011)) we need to solve subproblems on the first device/server and on all other devices, we assume that these subproblems are solved

to precision e using an optimal 1st order method - Nesterov's accelerated method (Nesterov, 2003); here we also substitute $\rho = 1/\sqrt{\lambda_{max}(A^T A)}$ *Columns:* Iteration complexity = number of iterations to achieve ε -solutio, Local device cost of iteration = computational cost of operations on devices per one iteration, Local server cost of iteration = communication spending during one iteration *Notation:* L_e = smoothness constant of t, L_r = smoothness constant of r, ε = precision of the solution, Cost of calculations: addition, multiplication of two numbers, $Cost(\nabla r)$, $Cost(\nabla r)$ = cost of calculations of gradients for r and ℓ , Sna(1 coord) = cost of services of calculations of atomic operations: addition, multiplication of two numbers, $Cost(\nabla r)$, $Cost(\nabla r)$ = cost of calculations of gradients for r and ℓ , Sna(1 coord) = cost of services of a calculations of gradients for r and ℓ .

¹⁰⁰⁵ B MISSING MODIFICATIONS

 B.1 PROXIMAL MODIFICATION FOR COMPUTATIONAL FRIENDLY LOSSES/REGULARIZERS AND CONSTRAINED SETTING

Here we consider the case of non-smooth, but computing-friendly ℓ and r. One can modify lines 5, 6, 10, 11 in Algorithm 1 as follows.

1013 **Algorithm 8** EGVFL for (4) with proximal friendly functions 1014 1: Input: starting point $(x^0, z^0, y^0) \in \mathbb{R}^{d+2s}$, stepsize $\gamma > 0$, number of steps K 1015 2: for k = 0 to K - 1 do First device sends y^k to other devices 1016 3: 4: All devices in parallel send $A_i x_i^k$ to first device All devices in parallel update: $x_i^{k+1/2} = \operatorname{prox}_{\gamma r_i}(x_i^k - \gamma A_i^T y^k)$ 1018 5: 1019 First device updates: $z^{k+1/2} = \operatorname{prox}_{\gamma\ell}(z^k + \gamma y^k)$ 6: 1020 First device updates: $y^{k+1/2} = y^k + (\sum_{i=1}^n \gamma A_i x_i^k - \gamma z^k)$ 7: 1021 First device sends $y^{k+1/2}$ to other devices 8: 1022 All devices send $\gamma A_i x_i^{k+1/2}$ to first device 9: 1023 All devices in parallel update: $x_i^{k+1} = \operatorname{prox}_{\gamma r_i}(x_i^k - \gamma A_i^T y^{k+1/2})$ First device: $z^{k+1} = \operatorname{prox}_{\gamma \ell}(z^k + \gamma y^{k+1/2})$ 10: 1024 11: 1025 First device: $y^{k+1} = y^k + (\sum_{i=1}^n \gamma A_i x_i^{k+1/2} - \gamma z^{k+1/2})$ 1026 12: 1027 13: end for 1028 1029

Here $\operatorname{prox}_{\gamma f}$ is a proximal operator (Parikh et al., 2014): $\operatorname{prox}_{\gamma f}(x) = \operatorname{arg\,min}_{y \in \mathbb{R}^d}(\gamma f(y) + \frac{1}{2}||x - y||^2)$. In the general case, solving an additional minimization problem to calculate such an operator is necessary. But, in the case of simple, proximal-friendly functions ℓ and r, the proximal operator has a closed-form solution and can be computed exactly and sometimes for free. Theorem B.1 gives the convergence, and proof can be found in Appendix D.2.

Theorem B.1. Let ℓ and r be proximal-friendly and convex functions. Let problem (4) be solved by Algorithm 8 (Appendix A). Then for $\gamma = \frac{1}{\sqrt{2}} \cdot \min\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}\}$, it holds that $gap(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}(\frac{(1+\sqrt{\lambda_{\max}(A^T A)})D^2}{K})$, where $\bar{x}^K, \bar{z}^K, \bar{y}^K, D^2$ are defined in Theorem 2.2.

C FAMILY OF REFORMULATIONS

1041 1042 1043

1045 1046 1047

1050 1051

1053 1054

1035 1036

1012

C.1 REFORMULATION WITH AUGMENTATION

1044 Let us consider the augmented version of (4):

$$\min_{(x,z)\in\mathbb{R}^{d+s}} \max_{y\in\mathbb{R}^s} \left[L_{\text{aug}}(x,z,y) := \ell\left(z,b\right) + \sum_{i=1}^n r_i(x_i) + y^T \left(\sum_{i=1}^n A_i x_i - z \right) + \frac{\rho}{2} \| \sum_{i=1}^n A_i x_i - z \|^2 \right],$$
(8)

where $\rho \ge 0$. The statement (8) is classical and is considered in (Boyd et al., 2011). The saddle point problem (8) can also be solved using the ExtraGradient technique.

Theorem C.1. Let Assumption 2.1 holds. Let problem (8) be solved by Algorithm 9. Then for

$$\gamma = \frac{1}{4} \cdot \min\left\{1; \frac{1}{\rho}; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{\sqrt{\rho\lambda_{\max}(A^T A)}}; \frac{1}{\rho\lambda_{\max}(A^T A)}; \frac{1}{L_r}; \frac{1}{L_\ell}\right\},\,$$

it holds that

$$gap_{aug}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\frac{\left(1 + \rho + \sqrt{(1 + \rho)\lambda_{\max}(A^{T}A)} + \rho\lambda_{\max}(A^{T}A) + L_{\ell} + L_{r}\right)D^{2}}{K}\right),$$

1058

1059 Algorithm 9 EGVFL for (8) 1: Input: starting point $(x^0, z^0, y^0) \in \mathbb{R}^{d+2s}$, stepsize $\gamma > 0$, regularizer ρ , number of steps K 1061 2: for k = 0 to K - 1 do All devices in parallel send $A_i x_i^k$ to first device 3: 1063 First device sends y^k and $\sum_{i=1}^{n} A_i x_i^k - z^k$ to other devices All devices in parallel update: 4: 1064 5: $x_{i}^{k+1/2} = x_{i}^{k} - \gamma \left(A_{i}^{T} y^{k} + \nabla r_{i}(x_{i}^{k}) + \rho A_{i}^{T} (\sum_{i=1}^{n} A_{i} x_{i}^{k} - z^{k}) \right)$ 1066 First device updates: $z^{k+1/2} = z^k - \gamma \left(\nabla \ell(z^k, b) - y^k + \rho(z^k - \sum_{i=1}^n A_i x_i^k) \right)$ 6: 1067 First device updates: $y^{k+1/2} = y^k + \gamma(\sum_{i=1}^n A_i x_i^k - z^k)$ 7: 1068 All devices send $A_i x_i^{k+1/2}$ to first device 8: 1069 First device sends $y^{k+1/2}$ and $\sum_{i=1}^{n} A_i x_i^{k+1/2} - z^{k+1/2}$ to other devices 1070 9: 10: All devices in parallel update: $\begin{aligned} x_i^{k+1} &= x_i^k - \gamma(A_i^T y^{k+1/2} + \nabla r_i(x_i^{k+1/2}) + \rho A_i^T(\sum_{i=1}^n A_i x_i^k - z^k)) \\ \text{First device: } z^{k+1} &= z^k - \gamma(\nabla \ell(z^{k+1/2}, b) - y^{k+1/2} + \rho(z^k - \sum_{i=1}^n A_i x_i^k)) \end{aligned}$ 1072 11: First device: $y^{k+1} = y^k + \gamma (\sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2})$ 1074 12: 1075 13: end for 1076 where $gap_{aug}(x, z, y) := \max_{\tilde{y} \in \mathcal{Y}} L_{aug}(x, z, \tilde{y}) - \min_{\tilde{x}, \tilde{z} \in \mathcal{X}, \mathcal{Z}} L_{aug}(\tilde{x}, \tilde{z}, y)$ and \bar{x}^{K} $\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$ and D^{2} $\max_{x, z, y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} \left[\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2} \right].$ 1078 := 1079 1080 1081 The proof is postponed to Appendix D.8. The results of Theorem C.1 are no better than Theorem 2.2, and in the case of large ρ are even worse. Based on these guarantees (and they seem reasonable 1083 to us) the use of augmentation with ExtraGradeint in the theory does not give bonuses. 1084 1085 C.2 REFORMULATION WITH DUAL LOSS 1086 The definition of the dual function gives $\ell^*(y, b) = \max_{x \in \mathbb{R}^s} \{ \langle z, y \rangle - \ell(z, b) \}$. With small refor-1087 mulation and z = Ax, we get that $\ell(Ax, b) = \max_{y \in \mathbb{R}^s} \{ \langle y, Ax \rangle - \ell^*(y, b) \}$. Then, one can rewrite 1088 (1) as follows, 1089 1090 $\min_{x \in \mathbb{R}^d} \max_{y \in \mathbb{R}^s} \hat{L}(x, y) := \left| -l^*(y, b) + \sum_{i=1}^n r_i(x_i) + y^T \left(\sum_{i=1}^n A_i x_i \right) \right|.$ (9) 1091 The statement (9) is simpler than (4), since it does not contain additional variables z, but it requires the existence of a dual function for ℓ . The saddle point problem (9) can also be solved using the ExtraGradient technique. 1095 Algorithm 10 EGVFL for (9) 1097 1: Input: starting point $(x^0, y^0) \in \mathbb{R}^{d+s}$, stepsize $\gamma > 0$, number of steps K 2: for k = 0 to K - 1 do First device sends y^k to other devices 3: 1100 All devices in parallel send $A_i x_i^k$ to first device 4: 1101 All devices in parallel update: $x_i^{k+1/2} = x_i^k - \gamma(A_i^T y^k + \nabla r_i(x_i^k))$ First device updates: $y^{k+1/2} = y^k - \gamma(\nabla \ell^*(y^k, b) - \sum_{i=1}^n A_i x_i^k)$ 5: 1102 6: 1103 First device sends $y^{k+1/2}$ to other devices 7: 1104 All devices in parallel send $A_i x_i^{k+1/2}$ to first device 1105 8: All devices in parallel update: $x_i^{k+1} = x_i^k - \gamma (A_i^T y^{k+1/2} + \nabla r_i (x_i^{k+1/2}))$ 1106 9: First device updates: $y^{k+1} = y^k - \gamma (\nabla \ell^* (y^{k+1/2}, b) - \sum_{i=1}^n A_i x_i^{k+1/2})$ 1107 10: 1108 11: end for 1109 1110 1111 1112

Theorem C.2. Let l^* be L_{ℓ^*} -smooth and convex, r be L_r -smooth and convex. Let problem (9) be solved by Algorithm 10. Then for

$$\gamma = \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_{\ell^*}}\right\},\,$$

it holds that

$$ap_2(\bar{x}^K, \bar{y}^K) = \mathcal{O}\left(\frac{\left(1 + \sqrt{\lambda_{\max}(A^T A)} + L_{\ell^*} + L_r\right)\hat{D}^2}{K}\right),$$

where $gap_2(x,y) := \max_{\tilde{y} \in \mathcal{Y}} \hat{L}(x,\tilde{y}) - \min_{\tilde{x} \in \mathcal{X}} \hat{L}(\tilde{x},y)$ and $\bar{x}^K := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}$, $\bar{y}^K := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}$. $\frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} \text{ and } \hat{D}^2 := \max_{x,y \in \mathcal{X}, \mathcal{Y}} \left[\|x^0 - x\|^2 + \|y^0 - y\|^2 \right].$

The proof is postponed to Appendix D.9.

g

C.3 REFORMULATION WITH DUAL LOSS AND REGULARIZER

If we introduce dual functions for both ℓ and r, then equation 4 can be rewritten as follows

$$\max_{y \in \mathbb{R}^s} \left[-\sum_{i=1}^n r_i^* (-A_i^T y) - \ell^*(y, b) \right].$$
(10)

To prove it, we start from (4)

Definitions of dual functions: $\ell^*(y,b) = \max_{z \in \mathbb{R}^s} \{ \langle z, y \rangle - \ell(z,b) \}$ and $r^*(-A^T y) =$ $\max_{x \in \mathbb{R}^s} \{ \langle -A^T y, x \rangle - r(x) \},$ give

$$\max_{y \in \mathbb{R}^s} \left[-\ell^*(y, b) - r^*(-A^T y) \right].$$

Due to the separability of r, its conjugate is also separable. Hence, we have (10).

r

In fact (10) is the maximization of a concave function, which is very close to the original formulation (1). This problem can be solved by distributed variants of GD and not only.

ga

MISSING PROOFS D

D.1 PROOF OF THEOREM 2.2

Theorem D.1 (Theorem 2.2). Let Assumption 2.1 holds. Let problem equation 4 be solved by Algorithm 1. Then for

$$= \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_\ell}\right\}$$

it holds that

$$p(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}\left(\frac{(1+\sqrt{\lambda_{\max}(A^TA)}+L_\ell+L_r)D^2}{K}\right),$$

where $\bar{x}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} \ and \ D^{2} := \max_{x,z,y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} \left[\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2} \right].$

To prove the convergence it is sufficient to show that the problem is convex-concave (Lemma D.11), to estimate the Lipschitz constant of gradients and use the general results from (Nemirovski, 2004). But since proofs of the other algorithms is somewhat similar to proof of the basic algorithm, we provide the proof of Theorem 2.2 to complete the picture and to move from basic proofs to more complex ones.

Proof. We start the proof with the following equations on the variables x_i^{k+1} , $x_i^{k+1/2}$, x_i^k and any $x_i \in \mathbb{R}^{d_i}$:

 $\|x_i^{k+1} - x_i\|^2 = \|x_i^k - x_i\|^2 + 2\langle x_i^{k+1} - x_i^k, x_i^{k+1} - x_i\rangle - \|x_i^{k+1} - x_i^k\|^2,$ $\|x_i^{k+1/2} - x_i^{k+1}\|^2 = \|x_i^k - x_i^{k+1}\|^2 + 2\langle x_i^{k+1/2} - x_i^k, x_i^{k+1/2} - x_i^{k+1}\rangle - \|x_i^{k+1/2} - x_i^k\|^2.$

Summing up two previous inequalities and making small rearrangements, we get

$$\begin{aligned} \|x_i^{k+1} - x_i\|^2 &= \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ &+ 2\langle x_i^{k+1} - x_i^k, x_i^{k+1} - x_i\rangle + 2\langle x_i^{k+1/2} - x_i^k, x_i^{k+1/2} - x_i^{k+1}\rangle. \end{aligned}$$

Using that $x_i^{k+1} - x_i^k = -\gamma(A_i^T y^{k+1/2} + \nabla r_i(x_i^{k+1/2}))$ and $x_i^{k+1/2} - x_i^k = -\gamma(A_i^T y^k + \nabla r_i(x_i^k))$ (see lines 5 and 10 of Algorithm 1), we obtain

$$\begin{aligned} &\|x_{i}^{k+1} - x_{i}\|^{2} = \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2} \\ &\quad - 2\gamma \langle A_{i}^{T}y^{k+1/2} + \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1} - x_{i} \rangle \\ &\quad - 2\gamma \langle A_{i}^{T}y^{k} + \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1} \rangle \\ &= \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2} \\ &\quad - 2\gamma \langle A_{i}^{T}y^{k+1/2} + \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i} \rangle \\ &= \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - y_{i} \rangle + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1} - x_{i}^{k+1/2} \rangle \\ &= \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2} \\ &= \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1/2} - x_{i} \rangle \\ &= \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2} \\ &= 2\gamma \langle A_{i}(x_{i}^{k+1/2} - x_{i}), y^{k+1/2} \rangle - 2\gamma \langle \nabla r_{i}(x_{i}^{k+1/2} - x_{i} \rangle \\ &= 2\gamma \langle A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), y^{k+1/2} - y^{k} \rangle \\ &= 2\gamma \langle \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1} - x_{i}^{k+1/2} \rangle. \end{aligned}$$

Summing over all i from 1 to n, we deduce

1219
1220
$$-2\gamma \langle \sum_{i=1}^{n} A_i(x_i^{k+1/2} - x_i), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$

1221
1222
$$-2\gamma \langle \sum_{i=1}^{n} A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), y^{k+1/2} - y^{k} \rangle$$
1223

1224
1225
1226
$$-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle.$$

With notation of $A = [A_1, \ldots, A_i, \ldots, A_n]$ and notation of $x = [x_1^T, \ldots, x_i^T, \ldots, x_n^T]^T$ from equation 1 and equation 2, one can obtain that $\sum_{i=1}^n A_i x_i = Ax$:

$$\|x^{k+1} - x\|^2 = \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 - \|x^{k+1/2} - x^{k+1}\|^2$$

1231
1232
1232
1233

$$-2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$
1233

1233
1234
$$-2\gamma \langle A(x^{k+1}-x^{k+1/2}), y^{k+1/2}-y^k \rangle$$

1235
1236
1237

$$-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle$$
1237

1237
1238 =
$$||x^k - x||^2 - ||x^{k+1/2} - x^k||^2 - ||x^{k+1/2} - x^{k+1}||^2$$

1239
1240
$$-2\gamma \langle A(x^{k+1/2}-x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$
1241

1241
$$i=1$$

1242 $-2\gamma \langle A^T(y^{k+1/2}-y^k), x^{k+1}-x^{k+1/2} \rangle$

1243
1244
$$-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle.$$
1245

1246 By Cauchy Schwartz inequality:
$$2\langle a,b\rangle \leq \eta \|a\|^2 + \frac{1}{\eta}\|b\|^2$$
 with $a = A^T(y^{k+1/2} - y^k)$, $b = x^{k+1/2} - x^{k+1}$, $\eta = 2\gamma$ and $a = \nabla r_i(x^{k+1/2}_i) - \nabla r_i(x^k_i)$, $b = x^{k+1/2}_i - x^{k+1}_i$, $\eta = 2\gamma$, we get
1249 $\|x^{k+1} - x\|^2 \leq \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 - \|x^{k+1/2} - x^{k+1}\|^2$

$$\begin{array}{c} 1250 \\ 1251 \\ 1252 \\ 1252 \\ 1253 \\ 1254 \\ 1255 \\ 1256 \\ 1256 \\ 1257 \\ 1258 \\ 1258 \\ 1259 \end{array} \\ \begin{array}{c} -2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle \\ +2\gamma \langle A(x^{k+1/2} - y^k) \|^2 + \frac{1}{2} \|x^{k+1} - x^{k+1/2}\|^2 \\ +2\gamma^2 \sum_{i=1}^{n} \|\nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k)\|^2 + \frac{1}{2} \sum_{i=1}^{n} \|x_i^{k+1} - x_i^{k+1/2}\|^2 \\ = \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 \\ \end{array}$$

1260
$$-2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{k} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$
1261

1262
1263
1264
$$+ 2\gamma^2 \|A^T (y^{k+1/2} - y^k)\|^2 + 2\gamma^2 \sum_{i=1}^n \|\nabla r_i (x_i^{k+1/2}) - \nabla r_i (x_i^k)\|^2.$$
(12)

Using the same steps, one can obtain for $z \in \mathbb{R}^s$,

$$\begin{aligned} \|z^{k+1} - z\|^2 &\leq \|z^k - z\|^2 - \|z^{k+1/2} - z^k\|^2 \\ &+ 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle - 2\gamma \langle \nabla \ell(z^{k+1/2}, b), z^{k+1/2} - z \rangle \\ &+ 2\gamma^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 \|\nabla \ell(z^{k+1/2}, b) - \nabla \ell(z^k, b)\|^2. \end{aligned} \tag{13}$$

and for all $y \in \mathbb{R}^s$,

1272
1273
1274
$$\|y^{k+1} - y\|^2 \le \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2
- 2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle \sum_{i=1}^n A_i x_i^{k+1/2}, y^{k+1/2} - y \rangle$$

1275
1276
1277
$$+ 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \left\|\sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\right\|^2$$

1278
1279
$$= \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2$$
1279

1279
1280
1280
1281

$$-2\gamma\langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma\langle Ax^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \|A(x^{k+1/2} - x^k)\|^2.$$

(14)

1282 Here we also use notation of A and x. Summing up (12), (13) and (14), we obtain 1283

1284
1285
1285
1286
1287

$$\|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2$$

$$\leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2$$

$$- \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2$$

129

$$\begin{array}{c} 1286 \\ 1287 \\ 1288 \\ 1288 \\ -2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle + 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle \end{array}$$

1289
1290
1291

$$n = 2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle$$

1291
 $n = 2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle$

1292
$$-2\gamma \sum_{i=1} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle - 2\gamma \langle \nabla \ell(z^{k+1/2}, b), z^{k+1/2} - z \rangle$$
1293

$$\begin{aligned} & + 2\gamma^2 \|A^T (y^{k+1/2} - y^k)\|^2 + 2\gamma^2 \sum_{i=1}^n \|\nabla r_i (x_i^{k+1/2}) - \nabla r_i (x_i^k)\|^2 \\ & + 2\gamma^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 \|\nabla \ell (z^{k+1/2}, b) - \nabla \ell (z^k, b)\|^2 \end{aligned}$$

1297
$$+ 2\gamma^{2} \|y^{k+1/2} - y^{k}\|^{2} + 2\gamma^{2} \|\nabla\ell(z^{k+1/2}, b) - \nabla\ell(z^{k}, b) - \nabla\ell(z^{k}, b) + 2\gamma^{2} \|z^{k+1/2} - z^{k}\|^{2} + 2\gamma^{2} \|A(x^{k+1/2} - x^{k})\|^{2}.$$

1299 Using convexity and L_r -smoothness of the function r_i with convexity and L_ℓ -smoothness of the 1300 function ℓ (Assumption 2.1), we have 1301

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ - \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ - 2\gamma\langle A(x^{k+1/2} - x), y^{k+1/2} \rangle + 2\gamma\langle y^{k+1/2}, z^{k+1/2} - z \rangle \\ - 2\gamma\langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma\langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ - 2\gamma\langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma\langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ - 2\gamma\sum_{i=1}^n \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right) - 2\gamma \left(\ell(z^{k+1/2}, b) - \ell(z, b) \right) \\ + 2\gamma^2 \|A^T(y^{k+1/2} - y^k)\| + 2\gamma^2 L_r^2 \sum_{i=1}^n \|x_i^{k+1/2} - x_i^k\|^2 \\ + 2\gamma^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 L_r^2 \|z^{k+1/2} - z^k\|^2 \end{aligned}$$

1315
1316
$$+ 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \|A(x^{k+1/2} - x^k)\|^2.$$

1317 Using the definition of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue, we get 1318

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ \leq \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ - \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ - 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle + 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle \\ - 2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ - 2\gamma \sum_{i=1}^n \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right) - 2\gamma \left(\ell(z^{k+1/2}, b) - \ell(z, b) \right) \\ + 2\gamma^2 \lambda_{\max}(AA^T) \|y^{k+1/2} - y^k\| + 2\gamma^2 L_r^2 \|x^{k+1/2} - x^k\|^2 \end{aligned}$$

1329

$$+ 2\gamma^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 L_\ell^2 \|z^{k+1/2} - z^k\|^2$$

1330

1331
$$+ 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \lambda_{\max}(A^T A) \|x^{k+1/2} - x^k\|^2.$$

With the choice of
$$\gamma \leq \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_\ell}\right\}$$
, we get
$$\|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2$$

$$\leq \|x^{k} - x\|^{2} + \|z^{k} - z\|^{2} + \|y^{k} - y\|^{2}$$

$$\begin{array}{ll} \textbf{1337} & & -2\gamma \langle A(x^{k+1/2}-x), y^{k+1/2} \rangle + 2\gamma \langle y^{k+1/2}, z^{k+1/2}-z \rangle \\ \textbf{1338} & & -2\gamma \langle z^{k+1/2}, y^{k+1/2}-y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2}-y \rangle \end{array}$$

$$\begin{array}{ll} 1339 & -2\gamma \langle z^{\kappa+1/2}, y^{\kappa+1/2} - y \rangle + 2\gamma \langle Ax^{\kappa+1/2}, y^{\kappa+1/2} - y \rangle \\ 1340 & \\ 1341 & -2\gamma \sum_{i=1}^{n} \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right) - 2\gamma \left(\ell(z^{k+1/2}, b) - \ell(z, b) \right) \\ 1342 & \end{array}$$

$$= \|x^{k} - x\|^{2} + \|z^{k} - z\|^{2} + \|y^{k} - y\|^{2} + 2\gamma \langle Ax - z, y^{k+1/2} \rangle - 2\gamma \langle Ax^{k+1/2} - z^{k+1/2}, y \rangle$$

1344
$$+ 2\gamma \langle Ax - z, y^{k+1/2} \rangle -$$

After small rearrangements, we obtain

$$\begin{aligned} \left(\ell(z^{k+1/2},b) - \ell(z,b)\right) + \sum_{i=1}^{n} \left(r_i(x_i^{k+1/2}) - r_i(x_i)\right) \\ + \left\langle Ax^{k+1/2} - z^{k+1/2}, y \right\rangle - \left\langle Ax - z, y^{k+1/2} \right\rangle \\ &\leq \frac{1}{2\gamma} \left(\|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 - \|x^{k+1} - x\|^2 - \|z^{k+1} - z\|^2 - \|y^{k+1} - y\|^2 \right) \end{aligned}$$

Then we sum all over k from 0 to K - 1, divide by K, and have

$$\begin{split} \frac{1}{K} \sum_{k=0}^{K-1} \left(\ell(z^{k+1/2}, b) - \ell(z, b) \right) + \sum_{i=1}^{n} \frac{1}{K} \sum_{k=0}^{K-1} \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right) \\ + \langle A \cdot \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2} - \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, y \rangle - \langle Ax - z, \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} \rangle \\ &\leq \frac{1}{2\gamma K} \Big(\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2 \\ &- \|x^K - x\|^2 - \|z^K - z\|^2 - \|y^K - y\|^2 \Big) \\ &\leq \frac{1}{2\gamma K} (\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2). \end{split}$$

With Jensen inequality for convex functions ℓ and r_i , one can note that

1373
1374
$$\ell\left(\frac{1}{K}\sum_{k=0}^{K-1} z^{k+1/2}, b\right) \le \frac{1}{K}\sum_{k=0}^{K-1} \ell(z^{k+1/2}, b),$$

1375
1376
1377
1378

$$r_i \left(\frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}\right) \le \frac{1}{K} \sum_{k=0}^{K-1} r_i(x_i^{k+1/2})$$
1378

Then, with notation $\bar{x}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}, \bar{z}^K = \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \bar{y}^K = \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$, we have

$$\ell(\bar{z}^K, b) - \ell(z, b) + \sum_{i=1}^n \left(r_i(\bar{x}_i^K) - r_i(x_i) \right) + \langle A\bar{x}^K - \bar{z}^K, y \rangle - \langle Ax - z, \bar{y}^K \rangle$$

$$\leq \frac{1}{2\gamma K} (\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2).$$

Following the definition equation 5, we only need to take the maximum in the variable $y \in \mathcal{Y}$ and the minimum in $x \in \mathcal{X}$ and $z \in \mathcal{Z}$.

To complete the proof in the cases equation 15 , it remains to put γ = . $\min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_\ell}\right\}.$

D.2 PROOF OF THEOREM B.1

Theorem D.2 (Theorem B.1). Let ℓ and r be proximal-friendly and convex functions. Let problem (4) be solved by Algorithm 8 (Appendix A). Then for

$$\gamma = \frac{1}{\sqrt{2}} \cdot \min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}\right\},$$

it holds that

$$gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\frac{(1+\sqrt{\lambda_{\max}(A^{T}A)})D^{2}}{K}\right),$$

where $\bar{x}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} \ and \ D^{2} := \max_{x,z,y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} \left[\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2} \right].$

Before we start proving Theorem B.1, we need a small lemma concerning the proximal operator.

Lemma D.3. Let h be convex and $z^+ = prox_{\gamma h}(z)$ with some $\gamma > 0$. Then for all $x \in \mathbb{R}^d$ the following inequality holds

$$\langle z^+ - z, x - z^+ \rangle \ge \gamma \left(h(z^+) - h(x) \right)$$

Proof of Lemma D.3. We use convexity of the function γh and get for any $h'(z^+) \in \partial h(z^+)$

$$\gamma(h(x) - h(z^+)) - \langle h'(z^+), x - z^+ \rangle \ge 0.$$

With definition of the proximal operator and the optimality condition, one can note that $z - z^+ \in$ $\gamma \partial h(z^+)$. The only thing left to do is to take $\gamma h'(z^+) = z - z^+$ and finish the proof.

Proof of Theorem B.1. By Lemma D.3 for convex function $h = r_i, z^+ = x_i^{k+1}, z = x_i^k$ $\gamma A_i^T y^{k+1/2}$ (see line 10 of Algorithm 8) and $x = x_i \in \mathbb{R}^{d_i}$, we get

$$\langle x_i^{k+1} - x_i^k + \gamma A_i^T y^{k+1/2}, x_i - x_i^{k+1} \rangle \ge \gamma \left(r_i(x_i^{k+1}) - r_i(x_i) \right),$$

$$\begin{array}{ll} \text{1437} \\ \text{1438} \\ \text{1438} \\ \text{1439} \\ \text{1439} \\ \text{1440} \\ \text{1440} \\ \text{1441} \\ \end{array} \text{ Summing up two previous inequalities, we get} \\ \end{array} \text{ and for } z^+ = x_i^{k+1/2}, z = x_i^k - \gamma A_i^T y^k \text{ (see line 10 of Algorithm 8), } x = x_i^{k+1}, \\ \text{(} x_i^{k+1/2} - x_i^k + \gamma A_i^T y^k, x_i^{k+1} - x_i^{k+1/2} \text{)} \geq \gamma \left(r_i(x_i^{k+1/2}) - r_i(x_i^{k+1}) \right). \\ \text{(} x_i^{k+1/2} - x_i^k + \gamma A_i^T y^k, x_i^{k+1} - x_i^{k+1/2} \text{)} \geq \gamma \left(r_i(x_i^{k+1/2}) - r_i(x_i^{k+1}) \right). \\ \end{array}$$

Summing up two previous inequalities, we get

$$\langle x_i^{k+1} - x_i^k + \gamma A_i^T y^{k+1/2}, x_i - x_i^{k+1} \rangle + \langle x_i^{k+1/2} - x_i^k + \gamma A_i^T y^k, x_i^{k+1} - x_i^{k+1/2} \rangle$$

$$\geq \gamma \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right).$$

After small rearrangements and multiplying by 2, we have

$$2\langle x_i^{k+1} - x_i^k, x_i - x_i^{k+1} \rangle + 2\langle x_i^{k+1/2} - x_i^k, x_i^{k+1} - x_i^{k+1/2} \rangle + 2\gamma \langle A_i^T y^{k+1/2}, x_i - x_i^{k+1/2} \rangle + 2\gamma \langle A_i^T (y^{k+1/2} - y^k), x_i^{k+1/2} - x_i^{k+1} \rangle \geq 2\gamma \left(r_i (x_i^{k+1/2}) - r_i (x_i) \right).$$

For the first line we use identity $2\langle a, b \rangle = ||a + b||^2 - ||a||^2 - ||b||^2$, and get

$$\left(\|x_i^k - x_i\|^2 - \|x_i^{k+1} - x_i\|^2 - \|x_i^{k+1} - x_i^k\|^2 \right) + \left(\|x_i^{k+1} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1} - x_i^{k+1/2}\|^2 \right) + 2\gamma \langle A_i^T y^{k+1/2}, x_i - x_i^{k+1/2} \rangle + 2\gamma \langle A_i^T (y^{k+1/2} - y^k), x_i^{k+1/2} - x_i^{k+1} \rangle \geq 2\gamma \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right).$$

A small rearrangement gives

$$\begin{aligned} & \|x_{i}^{k+1} - x_{i}\|^{2} \leq \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1} - x_{i}^{k+1/2}\|^{2} \\ & + 2\gamma \langle A_{i}^{T}y^{k+1/2}, x_{i} - x_{i}^{k+1/2} \rangle \\ & + 2\gamma \langle A_{i}^{T}(y^{k+1/2} - y^{k}), x_{i}^{k+1/2} - x_{i}^{k+1} \rangle - 2\gamma \left(r_{i}(x_{i}^{k+1/2}) - r_{i}(x_{i})\right) \\ & + 2\gamma \langle A_{i}^{T}(y^{k+1/2} - x_{i}^{k})^{2} - \|x_{i}^{k+1} - x_{i}^{k+1/2}\|^{2} \\ & = \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1} - x_{i}^{k+1/2}\|^{2} \\ & + 2\gamma \langle A_{i}(x_{i} - x_{i}^{k+1/2}), y^{k+1/2} \rangle \\ & + 2\gamma \langle A_{i}(x_{i}^{k+1/2} - x_{i}^{k+1}), y^{k+1/2} - y^{k} \rangle - 2\gamma \left(r_{i}(x_{i}^{k+1/2}) - r_{i}(x_{i})\right). \end{aligned}$$

Summing over all i from 1 to n, we deduce

$$+ 2\gamma \langle \sum_{i=1}^{n} A_i(x_i^{k+1/2} - x_i^{k+1}), y^{k+1/2} - y^k \rangle - 2\gamma \sum_{i=1}^{n} \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right)$$

With notation of $A = [A_1, \ldots, A_i, \ldots, A_n]$ and notation of $x = [x_1^T, \ldots, x_i^T, \ldots, x_n^T]^T$ from (1) and (2), one can obtain that $\sum_{i=1}^n A_i x_i = Ax$:

1487
$$+ 2^{y} (A(x - x - y), y - y)$$

1488
1489
1489
$$+ 2\gamma \langle A(x^{k+1/2} - x^{k+1}), y^{k+1/2} - y^k \rangle - 2\gamma \sum_{i=1}^n \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right)$$

$$= \|x^{k} - x\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - \|x^{k+1} - x^{k+1/2}\|^{2}$$

1491
$$+ 2\gamma \langle A(x - x^{k+1/2}), y^{k+1/2} \rangle$$
 1492

1493
1494
1495
$$+ 2\gamma \langle A^T(y^{k+1/2} - y^k), x^{k+1/2} - x^{k+1} \rangle - 2\gamma \sum_{i=1}^n \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right).$$

By Cauchy Schwartz inequality: $2\langle a,b\rangle \leq \eta \|a\|^2 + \frac{1}{\eta}\|b\|^2$ with $a = A^T(y^{k+1/2} - y^k)$, b =1496 $x^{k+1/2} - x^{k+1}$ and $\eta = \gamma$, we get 1497

$$\|x^{k+1} - x\|^{2} \leq \|x^{k} - x\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} + 2\gamma \langle A(x - x^{k+1/2}), y^{k+1/2} \rangle + \gamma \|A^{T}(y^{k+1/2} - y^{k})\|^{2} - 2\gamma \sum_{i=1}^{n} \left(r_{i}(x_{i}^{k+1/2}) - r_{i}(x_{i})\right).$$
(16)

1504 Using the same steps, one can obtain for $z \in \mathbb{R}^s$,

1505
1506
1506
1507
1508
1509
1509
1510
and for all
$$u \in \mathbb{R}^{\delta}$$

1507
1508
1509
1510
1508
1509
1510
1508
1509
1510
1508
1509
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1510
1

and for all $y \in \mathbb{R}^s$,

$$\begin{aligned} \|y^{k+1} - y\|^2 \leq \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2 \\ &= 2\gamma \langle \sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2}, y - y^{k+1/2} \rangle \\ &= \|\gamma^2\| \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k) - (z^{k+1/2} - z^k) \|^2 \\ &= \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2 \\ &= 2\gamma \langle Ax^{k+1/2} - z^{k+1/2}, y - y^{k+1/2} \rangle \\ &+ \gamma^2 \|A(x^{k+1/2} - x^k) - (z^{k+1/2} - z^k)\|^2. \end{aligned}$$
(18)
Here we also use notation of A and x. Summing up (16), (17) and (18), we obtain

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ - \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ + 2\gamma\langle A(x - x^{k+1/2}), y^{k+1/2} \rangle - 2\gamma\langle y^{k+1/2}, z - z^{k+1/2} \rangle \\ 1530 \\ 1531 \\ 1532 \\ 1532 \\ 1533 \\ 1534 \\ 1535 \\ 1536 \\ 1537 \end{aligned}$$

Again by Cauchy Schwartz inequality: $||a - b||^2 \le 2||a||^2 + 2||b||^2$ with $a = A(x^{k+1/2} - x^k)$, 1538 $b = \gamma (z^{k+1/2} - z^k)$, we get 1539 15/0

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ - \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ + 2\gamma \langle A(x - x^{k+1/2}), y^{k+1/2} \rangle - 2\gamma \langle y^{k+1/2}, z - z^{k+1/2} \rangle \end{aligned}$$

$$\begin{split} \left(\ell(z^{k+1/2},b)-\ell(z,b)\right) + \sum_{i=1}^{n} \left(r_i(x_i^{k+1/2})-r_i(x_i)\right) \\ + \left\langle Ax^{k+1/2}-z^{k+1/2},y\right\rangle - \left\langle Ax-z,y^{k+1/2}\right\rangle \\ &\leq \frac{1}{2\gamma} \Big(\|x^k-x\|^2+\|z^k-z\|^2+\|y^k-y\|^2 \\ &-\|x^{k+1}-x\|^2-\|z^{k+1}-z\|^2-\|y^{k+1}-y\|^2\Big). \end{split}$$

1593 Then we sum all over k from 0 to K - 1, divide by K, and have

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(\ell(z^{k+1/2}, b) - \ell(z, b) \right) + \sum_{i=1}^{n} \frac{1}{K} \sum_{k=0}^{K-1} \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right)$$

$$+ \langle A \cdot \frac{1}{K} \sum_{k=0}^{N-1} x^{k+1/2} - \frac{1}{K} \sum_{k=0}^{N-1} z^{k+1/2}, y \rangle - \langle Ax - z, \frac{1}{K} \sum_{k=0}^{N-1} y^{k+1/2} \rangle$$

1599
1600
1601
1602

$$\leq \frac{1}{2\gamma K} \Big(\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2 \\ - \|x^K - x\|^2 - \|z^K - z\|^2 - \|y^K - y\|^2 \Big)$$

 $\leq \frac{1}{2\gamma K} (\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2).$

 With Jensen inequality for convex functions ℓ and r_i , one can note that

$$\ell\left(\frac{1}{K}\sum_{k=0}^{K-1} z^{k+1/2}, b\right) \leq \frac{1}{K}\sum_{k=0}^{K-1} \ell(z^{k+1/2}, b),$$

$$r_i\left(\frac{1}{K}\sum_{k=0}^{K-1} x_i^{k+1/2}\right) \leq \frac{1}{K}\sum_{k=0}^{K-1} r_i(x_i^{k+1/2}).$$

$$r_i\left(\frac{1}{K}\sum_{k=0}^{K-1} x_i^{k+1/2}\right) \leq \frac{1}{K}\sum_{k=0}^{K-1} r_i(x_i^{k+1/2}).$$

Then, with notation $\bar{x}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}, \bar{z}^K = \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \bar{y}^K = \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$, we have

$$\ell(\bar{z}^{K}, b) - \ell(z, b) + \sum_{i=1}^{n} \left(r_{i}(\bar{x}_{i}^{K}) - r_{i}(x_{i}) \right) + \langle A\bar{x}^{K} - \bar{z}^{K}, y \rangle - \langle Ax - z, \bar{y}^{K} \rangle$$
$$\leq \frac{1}{2\gamma K} (\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2})$$

To complete the proof of the theorem, it is sufficient to do the same steps as when obtaining (15). Finally, we need to put $\gamma = \frac{1}{\sqrt{2}} \cdot \min \left\{ 1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}} \right\}.$

D.3 PROOF OF THEOREM 3.2

Theorem D.4 (Theorem 3.2). Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 2 with operators and Q, which satisfy Definition 3.1. Then for $\tau = 1 - p$ and

$$\gamma = \frac{1}{4} \min\left\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\omega[\lambda_{\max}(AA^T) + \mathbb{I}(diff. \ seed) \max_i\{\lambda_{\max}(A_i A_i^T)\}]}}; \sqrt{\frac{1-\tau}{\omega\lambda_{\max}(AA^T)}}; \right\}$$

it holds that

$$\begin{split} \mathbb{E}gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) &= \mathcal{O}\Big([1 + \sqrt{\frac{\omega}{p}} (\sqrt{\lambda_{\max}(AA^{T})}) + L_{\ell} + L_{r}] \cdot \frac{D^{2}}{K} \\ &+ \sqrt{\frac{\omega}{p}} \mathbb{I}(\textit{diff. seed}) \max_{i=1,\dots,n} \{\sqrt{\lambda_{\max}(A_{i}A_{i}^{T})}\} \cdot \frac{D^{2}}{K} \Big), \end{split}$$

where the indicator function $\mathbb{I}(diff. seed)$ is responsible for whether the different or same ran-dom seed is used on all devices, $\bar{x}^K := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}$, $\bar{z}^K := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}$, $\bar{y}^K :=$ $\frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} \text{ and } D^2 := \max_{x,z,y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} \Big[\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2 \Big].$

Proof. We start the proof with the following equations on the variables x_i^{k+1} , $x_i^{k+1/2}$, x_i^k and any $x_i \in \mathbb{R}^{d_i}$:

$$\begin{aligned} \|x_i^{k+1} - x_i\|^2 &= \|x_i^k - x_i\|^2 + 2\langle x_i^{k+1} - x_i^k, x_i^{k+1} - x_i\rangle - \|x_i^{k+1} - x_i^k\|^2, \\ |x_i^{k+1/2} - x_i^{k+1}\|^2 &= \|x_i^k - x_i^{k+1}\|^2 + 2\langle x_i^{k+1/2} - x_i^k, x_i^{k+1/2} - x_i^{k+1}\rangle - \|x_i^{k+1/2} - x_i^k\|^2. \end{aligned}$$

Summing up two previous inequalities and making small rearrangements, we get

$$\|x_i^{k+1} - x_i\|^2 = \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2$$

$$+2\langle x_i^{k+1}-x_i^k, x_i^{k+1}-x_i\rangle+2\langle x_i^{k+1/2}-x_i^k, x_i^{k+1/2}-x_i^{k+1}\rangle.$$

1692
$$+ 2\gamma \langle A_i(x_i^{k+1/2} - x_i^{k+1}), Q(y^{k+1/2} - u^k) \rangle$$

1693
$$+ 2\gamma \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1/2} - x_i^{k+1} \rangle$$
 1694

Summing over all *i* from 1 to *n* and using the notation of $A = [A_1, \ldots, A_i, \ldots, A_n], x = [x_1^T, \ldots, x_i^T, \ldots, x_n^T]^T, w = [w_1^T, \ldots, w_i^T, \ldots, w_n^T]^T$, we deduce 1695

$$\begin{aligned} & \|x^{k+1} - x\|^2 = \tau \|x^k - x\|^2 + (1 - \tau) \|w^k - x\|^2 \\ & 1698 \\ & 1699 \\ & -\tau \|x^{k+1/2} - x^k\|^2 - (1 - \tau) \|w^k - x^{k+1/2}\|^2 - \|x^{k+1/2} - x^{k+1}\|^2 \\ & n \end{aligned}$$

$$-2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$

1702 $-2\gamma \langle A(x^{k+1/2}-x), Q(y^{k+1/2}-u^k) - y^{k+1/2} + u^k \rangle$ 1703

1704
$$+ 2\gamma \langle A(x^{k+1/2} - x^{k+1}), Q(y^{k+1/2} - u^k) \rangle$$

1705
1706
$$+ 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1/2} \rangle$$

 $=\tau \|x^k - x\|^2 + (1 - \tau)\|w^k - x\|^2$

$$\begin{aligned} & ||x|^{k-1} = ||x|^{k-1/2} - ||x|^{k-1/2} - ||x|^{k-1/2} - ||x|^{k+1/2} - ||$$

1856 function ℓ (Assumption 2.1), we have

$$2\gamma \bigg[\ell(z^{k+1/2}, b) - \ell(z, b) + \sum_{i=1}^{n} r_i(x_i^{k+1/2}) - r_i(x_i) \\ + \langle Ax^{k+1/2} - z^{k+1/2}, y \rangle - \langle Ax - z, y^{k+1/2} \rangle \bigg] \\ \leq \|x^k - x\|^2 + \|w^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 + \|u^k - y\|^2 \\ - (\|x^{k+1} - x\|^2 + \|w^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 + \|u^{k+1} - y\|^2) \\ - \tau \|x^{k+1/2} - x^k\|^2 - (1 - \tau)\|w^k - x^{k+1/2}\|^2 - \|z^{k+1/2} - z^k\|^2 \\ - \tau \|y^{k+1/2} - y^k\|^2 - (1 - \tau)\|u^k - y^{k+1/2}\|^2$$

1868
$$-(1-\tau)\|x^k\|^2 - \tau\|w^k\|^2 + \|w^{k+1}\|^2$$

1869
$$+ 2\langle (1-\tau)x^k + \tau w^k - w^{k+1}, x \rangle$$

$$-(1-\tau)\|y^k\|^2 - \tau\|u^k\|^2 + \|y^{k+1}\|^2$$

1872
$$+ 2\langle (1-\tau)y^k + \tau u^k - u^{k+1}, y \rangle$$

 $-2\gamma \langle A(x^{k+1/2} - x^0), Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k \rangle$ $-2\gamma \langle A(x^0 - x), Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k \rangle$

$$-2\gamma \langle A(x^{0}-x), Q(y^{k+1/2}-u^{k}) - y^{k+1/2} + u^{k} \rangle$$

$$+ 2\gamma \langle \sum_{i=1}^{n} [Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}) + A_{i}w_{i}^{k} - A_{i}x_{i}^{k+1/2}], y^{k+1/2} - y^{0} \rangle$$

$$+2$$

$$+ 2\gamma \langle \sum_{i=1}^{n} [Q(A_i x_i^{k+1/2} - A_i w_i^k) + A_i w_i^k - A_i x_i^{k+1/2}], y^0 - y \rangle$$

$$i=1$$

+ $22^{2} ||A^{T} O(a^{k+1/2} - a^{k})||^{2} + 22^{2} ||X|$

$$+ 2\gamma^2 \|A^T Q(y^{k+1/2} - u^k)\|^2 + 2\gamma^2 \|\sum_{i=1}^n Q(A_i x_i^{k+1/2} - A_i w_i^k)\|^2$$

$$+ 2 \gamma \|A |Q(y) - u \| + 2 \gamma \| \sum_{i=1}^{k-1} Q(A_i x_i) - A_i \|$$

$$+ 2\gamma^{2}L_{r}^{2}\|x^{k+1/2} - x^{k}\|^{2} + 2\gamma^{2}\|y^{k+1/2} - y^{k}\|^{2} + 2\gamma^{2}\|z^{k+1/2} - z^{k}\|^{2} + 2\gamma^{2}L_{\ell}^{2}\|z^{k+1/2} - z^{k}\|^{2}.$$

Then we sum all over k from 0 to K - 1, divide by K, use Jensen inequality for convex functions ℓ and r_i with notation $\bar{x}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}, \ \bar{z}^K = \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^K = \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$, and have
1923
1924
$$+ \frac{2\gamma}{K} \sum_{i=1}^{K-1} \langle \sum_{i=1}^{n} [Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}) + A_{i}w_{i}^{k} - A_{i}x_{i}^{k+1/2}], y^{0} - y \rangle$$

1925
$$K = 0$$
 $i=1$
1926 $k = 2 K - 1$ $k = 0 K - 1 = 0$

$$+ \frac{2\gamma^2}{K} \sum_{k=0}^{N-1} \|A^T Q(y^{k+1/2} - u^k)\|^2 + \frac{2\gamma^2}{K} \sum_{k=0}^{N-1} \|\sum_{i=1}^{n} Q(A_i x_i^{k+1/2} - A_i w_i^k)\|^2$$

1929
$$2\alpha^2 I^2 \frac{K-1}{2}$$
 $2\alpha^2 \frac{K-1}{2}$

1930
$$+ \frac{2\gamma L_r}{K} \sum_{k=0} \|x^{k+1/2} - x^k\|^2 + \frac{2\gamma}{K} \sum_{k=0} \|y^{k+1/2} - y^k\|^2$$
1931

1932
1933
$$+ \frac{2\gamma^2}{K} \sum_{k=0}^{K-1} \|z^{k+1/2} - z^k\|^2 + \frac{2\gamma^2 L_{\ell}^2}{K} \sum_{k=0}^{K-1} \|z^{k+1/2} - z^k\|^2.$$
1934

1935 As in (15) we pass to the gap criterion by taking the maximum in $y \in \mathcal{Y}$ and the minimum in $x \in \mathcal{X}$ 1936 and $z \in \mathcal{Z}$. Additionally, we also take the mathematical expectation 1937 $2\gamma \mathbb{E} \text{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{u}^{K})$

$$\begin{aligned} &2\gamma \| \text{Sgap}(x^{-\tau}, z^{-\tau}, y^{-\tau}) \\ &\leq \frac{1}{K} \left(\max_{x \in \mathcal{X}} \| x^{0} - x \|^{2} + \max_{x \in \mathcal{X}} \| w^{0} - x \|^{2} + \max_{z \in \mathcal{Z}} \| z^{0} - z \|^{2} \\ &+ \max_{y \in \mathcal{Y}} \| y^{0} - y \|^{2} + \max_{y \in \mathcal{Y}} \| u^{0} - y \|^{2} \right) \\ &+ \max_{y \in \mathcal{Y}} \| y^{0} - y \|^{2} + \max_{y \in \mathcal{Y}} \| u^{0} - y \|^{2} \right) \\ &- \frac{\tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^{k} \|^{2} - \frac{1 - \tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^{k} - x^{k+1/2} \|^{2} \\ &- \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - z^{k} \|^{2} \\ &- \frac{\tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1/2} - y^{k} \|^{2} - \frac{1 - \tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^{k} - y^{k+1/2} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^{k+1} \|^{2} - (1 - \tau) \| x^{k} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^{k+1} \|^{2} - (1 - \tau) \| x^{k} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k-1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k-1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k-1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| w^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k-1} \|^{2} - x^{0} \| y^{k+1/2} - u^{k} \| y^{k} \|^{2} + u^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k-1} \|^{2} - x^{0} \| y^{k+1/2} - u^{k} \| y^{k+1/2} + u^{k} \|^{2} \\ &+ \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| \sum_{k=0}^{K-1} |x^{k} \|^{2} - x^{k} \|^{2} + \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| \| x^{k} \|^{2} - x^{k} \|^{2} + \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| \| x^{k} \|^{2} + \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| \| x^{k} \|^{2} + \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| \| x^{k} \|^{2} + \frac{2}{K} \sum_{k=0}^{K-1} \mathbb{$$

1977
1978
$$+ \frac{2\gamma^2 L_r^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^k\|^2 + \frac{2\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^k\|^2$$
1979

$$+ \frac{2\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^k\|^2 + \frac{2\gamma^2 L_{\ell}^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^k\|^2.$$

Next, we work with the terms of (23) separately. Using that $1 - \tau = p$ and lines 11 - 19, we get

$$\mathbb{E}\|w^{k+1}\|^{2} - (1-\tau)\|x^{k}\|^{2} - \tau\|w^{k}\|^{2}$$

$$= \mathbb{E}\mathbb{E}_{b_{k}}\left[\|w^{k+1}\|^{2}\right] - (1-\tau)\|x^{k}\|^{2} - \tau\|w^{k}\|^{2}$$

$$= \mathbb{E}p\|x^{k}\|^{2} + (1-p)\|w^{k}\|^{2} - (1-\tau)\|x^{k}\|^{2} - \tau\|w^{k}\|^{2} = 0.$$
(24)

1989 The same way we can obtain 1990

$$\mathbb{E}\|u^{k+1}\|^2 - (1-\tau)\|y^k\|^2 - \tau\|u^k\|^2 = 0.$$
(25)

(23)

With $1 - \tau = p$, one can also note

$$\begin{split} \mathbb{E}_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle (1-\tau) x^k + \tau w^k - w^{k+1}, x \rangle = \mathbb{E}_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle (1-\tau) x^k + \tau w^k - w^{k+1}, x \rangle + 0 \\ = \mathbb{E}_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle (1-\tau) x^k + \tau w^k - w^{k+1}, x \rangle \\ + \mathbb{E}_{k=0}^{K-1} \langle (1-\tau) x^k + \tau w^k - \mathbb{E}_{b_k} [w^{k+1}], -x^0 \rangle \\ = \mathbb{E}_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle (1-\tau) x^k + \tau w^k - w^{k+1}, x - x^0 \rangle. \end{split}$$

By Cauchy Schwartz inequality: $2\langle a, b \rangle \leq \eta ||a||^2 + \frac{1}{\eta} ||b||^2$ with $a = \sum_{k=0}^{K-1} [(1-\tau)x^k + \tau w^k - w^{k+1}]$, $b = x - x^0$ and $\eta = \frac{1}{4}$, one can obtain

$$\begin{split} & \sum_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle (1-\tau) x^k + \tau w^k - w^{k+1}, x \rangle \\ & \leq \max_{x \in \mathcal{X}} \left[\frac{1}{8} \| \sum_{k=0}^{K-1} [(1-\tau) x^k + \tau w^k - w^{k+1}] \|^2 + 2 \|x - x^0\|^2 \right] \\ & \leq \max_{x \in \mathcal{X}} \left[\frac{1}{8} \| \sum_{k=0}^{K-1} [(1-\tau) x^k + \tau w^k - w^{k+1}] \|^2 + 2 \|x - x^0\|^2 \right] \\ & \leq \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \mathbb{E} \frac{1}{8} \| \sum_{k=0}^{K-1} [(1-\tau) x^k + \tau w^k - w^{k+1}] \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & + \frac{1}{4} \sum_{k_1 < k_2} \mathbb{E} \langle (1-\tau) x^{k_1} + \tau w^{k_1} - w^{k_1+1}, (1-\tau) x^{k_2} + \tau w^{k_2} - w^{k_2+1} \rangle \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & + \frac{1}{4} \sum_{k_1 < k_2} \mathbb{E} \langle (1-\tau) x^{k_1} + \tau w^{k_1} - w^{k_1+1}, \mathbb{E}_{b_{k_2}} [(1-\tau) x^{k_2} + \tau w^{k_2} - w^{k_2+1}] \rangle \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| (1-\tau) x^k + \tau w^k - w^{k+1} \|^2 \\ & = \mathbb{E} \max_{x \in \mathcal{X}} 2 \|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| x - x^k \|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E} \| x - x^k$$

2031
2032
$$= \mathbb{E}_{x \in \mathcal{X}} 2\|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E}\|\mathbb{E}_{b_k}[w^{k+1}] - w^{k+1}\|^2$$
2033
2034

$$= \mathbb{E}_{x \in \mathcal{X}} 2\|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E}\mathbb{E}_{b_k}[\|w^{k+1}\|^2] - \|\mathbb{E}_{b_k}[w^{k+1}]\|^2$$

$$\mathbb{E}_{x \in \mathcal{X}} = \mathbb{E}_{x \in \mathcal{X}}$$

$$= \mathbb{E}\max_{x \in \mathcal{X}} 2\|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E}\mathbb{E}_{b_k}[\|w^{k+1}\|^2] - \|\mathbb{E}_{b_k}[w^{k+1}]\|^2$$

$$= \mathbb{E}\max_{x \in \mathcal{X}} 2\|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E}\tau \|w^k\|^2 + (1-\tau)\|x^k\|^2 - \|(1-\tau)x^k + \tau w^k\|^2$$

$$= \mathbb{E}_{x \in \mathcal{X}} 2\|x - x^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E}\tau(1-\tau) \|w^k - x^k\|^2.$$
(26)

Making the same steps, one can get

$$\mathbb{E}_{\substack{y \in \mathcal{Y} \\ y \in \mathcal{Y}}} \sum_{k=0}^{K-1} \langle (1-\tau)y^k + \tau u^k - u^{k+1}, y \rangle \\ \leq \mathbb{E}_{\substack{y \in \mathcal{Y} \\ y \in \mathcal{Y}}} 2\|y - y^0\|^2 + \frac{1}{8} \sum_{k=0}^{K-1} \mathbb{E}\tau (1-\tau)\|u^k - y^k\|^2.$$
(27)

With unbiasedness of Q, we have

$$\mathbb{E}\langle A(x^{k+1/2} - x^0), Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k \rangle = \mathbb{E}\langle A(x^{k+1/2} - x^0), \mathbb{E}_Q[Q(y^{k+1/2} - u^k)] - y^{k+1/2} + u^k \rangle = 0.$$
(28)

And

$$\mathbb{E}\langle \sum_{i=1}^{n} [Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}) + A_{i}w_{i}^{k} - A_{i}x_{i}^{k+1/2}], y^{k+1/2} - y^{0} \rangle = 0.$$
⁽²⁹⁾

Also with Cauchy Schwartz inequality: $2\langle a, b \rangle \leq \eta \|a\|^2 + \frac{1}{\eta} \|b\|^2$ with $a = \sum_{k=0}^{K-1} A^T [Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k]$, $b = x - x^0$ and $\eta = \gamma$, one can obtain $\mathbb{E}_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle x - x^0, A^T Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k \rangle$

$$\leq \mathbb{E}\max_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}\frac{\gamma}{2} \|\sum_{k=0}^{K-1} A^T [Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k] \|^2$$

$$= \mathbb{E}\max_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}\frac{\gamma}{2} \sum_{k=0}^{K-1} \|A^T [Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k]\|^2$$

$$+ \mathbb{E}\gamma \sum_{k_1 < k_2} \langle A^T [Q(y^{k_1+1/2} - u^{k_1}) - y^{k_1+1/2} + u^{k_1}], A^T [Q(y^{k_2+1/2} - u^{k_2}) - y^{k_2+1/2} + u^{k_2}] \rangle$$

$$= \mathbb{E}_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E} \frac{\gamma}{2} \sum_{k=0}^{K-1} \|A^T [Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k] \|^2 \\ + \mathbb{E} \gamma \sum_{k_1 < k_2} \langle A^T [Q(y^{k_1+1/2} - u^{k_1}) - y^{k_1+1/2} + u^{k_1}], A^T \mathbb{E}_{Q_{k_2}} [Q(y^{k_2+1/2} - u^{k_2}) - y^{k_2+1/2} + u^{k_2}] \rangle$$

$$= \mathbb{E}\max_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}\frac{\gamma}{2} \sum_{k=0}^{K-1} \|A^T[Q(y^{k+1/2} - u^k) - y^{k+1/2} + u^k]\|^2$$

2083
2084
$$= \mathbb{E}_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}_2^{\gamma} \sum_{k=0}^{K-1} \mathbb{E}_Q \left[\|A^T[Q(y^{k+1/2} - u^k)] - \mathbb{E}_Q[A^T[Q(y^{k+1/2} - u^k)]] \|^2 \right]$$

$$\begin{aligned} \leq \operatorname{Emax} \frac{1}{x \in X} \frac{1}{2\gamma} \| x^0 - x \|^2 + \mathbb{E} \frac{\gamma}{2} \sum_{k=0}^{K-1} \| A^T [Q(y^{k+1/2} - u^k)] \|^2. \end{aligned} (30) \\ \text{The same way one can note that} \\ \\ \mathbb{Emax} \sum_{k=0}^{K-1} \sum_{i=1}^n [Q(A_i x_i^{k+1/2} - A_i u_i^k) + A_i u_i^k - A_i x_i^{k+1/2}], y^0 - y) \\ \leq \operatorname{Emax} \sum_{y \in Y} \frac{1}{2\gamma} \| u^0 - y \|^2 + \mathbb{E} \frac{1}{2} \sum_{k=0}^{K-1} \| \sum_{i=1}^n Q(A_i x_i^{k+1/2} - A_i u_i^k) \|^2. \end{aligned} (31) \\ \text{Combining (23) with (24), (25), (26), (27), (28), (29), (30), (31), we obtain \\ 2\gamma \mathbb{E} gap(x^K, z^K, y^K) \\ \leq \frac{1}{K} \left(\max_{x \in Y} \| x^0 - x \|^2 + \max_{x \in Y} \| u^0 - x \|^2 + \max_{x \in Z} \| z^0 - z \|^2 \\ + \max_{y \in Y} \| u^0 - y \|^2 + \max_{y \in Y} \| u^0 - y \|^2 \right) \\ - \frac{\tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 - \frac{1 - \tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| u^k - x^{k+1/2} \|^2 \\ - \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 \\ - \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| y^{k+1/2} - x^k \|^2 \\ + \frac{1}{4K} \mathbb{E} \max_{x \in X} \| x - x^0 \|^2 + \frac{1}{4K} \sum_{k=0}^{K-1} \mathbb{E} \| (u^k - y^{k+1/2}) \|^2 \\ + \frac{1}{4K} \mathbb{E} \max_{x \in X} \| x - x^0 \|^2 + \frac{1}{4K} \sum_{k=0}^{K-1} \mathbb{E} [x(1 - \tau)] \| u^k - x^k \|^2 \\ + \frac{1}{K} \mathbb{E} \max_{y \in Y} \| y^0 - y \|^2 + \frac{\gamma^2}{K} \mathbb{E} \sum_{k=0}^{K-1} \| A^T [Q(y^{k+1/2} - u^k)] \|^2 \\ + \frac{1}{K} \sum_{y \in Y} \| y^0 - y \|^2 + \frac{\gamma^2}{K} \mathbb{E} \sum_{k=0}^{K-1} \| \| A^T [Q(y^{k+1/2} - A_i u_i^k) \|^2 \\ + \frac{3\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| A^T Q(y^{k+1/2} - u^k) \|^2 + \frac{3\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - A_i u_i^k \| \|^2 \\ + \frac{2\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| A^T Q(y^{k+1/2} - u^k) \|^2 + \frac{3\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 \\ + \frac{2\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| A^T Q(y^{k+1/2} - u^k) \|^2 + \frac{2\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 + \frac{2\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 \\ \leq \frac{1}{K} \left(0 \max_{x \in X} \| x^0 - x \|^2 + \frac{2\tau^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 \\ \leq \frac{1}{K} \left(0 \max_{x \in X} \| x^0 - x \|^2 + \max_{x \in X} \| u^0 - x \|^2 + \max_{x \in X} \| z^0 - x \|^2 \\ + \frac{6}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^{k+1/2} - x^k \|^2 - \frac{1 - \tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \| x^k - x^{k+1/2} \|^2 \right) \\ = \frac{1}{K} \left(0 \max_{x \in X} \| x^0 - x \|^2 + \max_{x \in X} \| u^0 - x \|^2$$

2139
2140
$$-\frac{1}{K}\sum_{k=1}^{K-1} \mathbb{E} \|z^{k+1/2} - z^k\|^2$$

$$K \sum_{k=0}^{2} ||^{2}$$

2142
2143
$$-\frac{\tau}{\tau}\sum_{k=1}^{K-1}\mathbb{E}\|y^{k+1/2} - y^k\|^2 - \frac{1-\tau}{\tau}\sum_{k=1}^{K-1}\mathbb{E}\|y^k - y^{k+1/2}\|^2$$

$$+ \frac{3\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|A^T Q(y^{k+1/2} - u^k)\|^2 + \frac{3\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|\sum_{i=1}^n Q(A_i x_i^{k+1/2} - A_i w_i^k)\|^2 \\ + \frac{2\gamma^2 L_r^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^k\|^2 + \frac{2\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^k\|^2$$

+
$$\frac{2\gamma^2(1+L_\ell^2)}{K}\sum_{k=0}^{K-1} \mathbb{E}||z^{k+1/2}-z^k||^2.$$

Applying Cauchy Schwartz inequality and using that $\tau \leq 1$, we get

$$\begin{aligned} &2\gamma \mathbb{E} \text{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \\ &\leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} \\ &+ 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right) \\ &2165 \\ &+ 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right) \\ &2166 \\ &- \frac{\tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^{k}\|^{2} - \frac{1 - \tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \|w^{k} - x^{k+1/2}\|^{2} \\ &- \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^{k}\|^{2} \\ &- \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2} - \frac{1 - \tau}{K} \sum_{k=0}^{K-1} \mathbb{E} \|u^{k} - y^{k+1/2}\|^{2} \\ &+ \frac{1}{2K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2} + \frac{1}{2K} \sum_{k=0}^{K-1} \mathbb{E} (1 - \tau) \|x^{k+1/2} - x^{k}\|^{2} \\ &+ \frac{1}{2K} \sum_{k=0}^{K-1} \mathbb{E} (1 - \tau) \|w^{k} - x^{k+1/2}\|^{2} + \frac{1}{2K} \sum_{k=0}^{K-1} \mathbb{E} (1 - \tau) \|y^{k+1/2} - x^{k}\|^{2} \\ &+ \frac{1}{2K} \sum_{k=0}^{K-1} \mathbb{E} \|A^{T}Q(y^{k+1/2} - u^{k})\|^{2} + \frac{3\gamma^{2}}{K} \sum_{k=0}^{K-1} \mathbb{E} \|\sum_{i=1}^{n} Q(A_{i}x^{k+1/2}_{i} - A_{i}w^{k}_{i})\|^{2} \\ &+ \frac{2\gamma^{2}L_{r}^{2}}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^{k}\|^{2} + \frac{2\gamma^{2}}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2} \\ &+ \frac{2\gamma^{2}(1 + L_{t}^{2})}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^{k}\|^{2} \\ &+ \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} \\ &+ 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right) \end{aligned}$$

2193
2194
2195
$$-\left(\frac{3\tau-1}{2}-2\gamma^2L_r^2\right)\cdot\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|x^{k+1/2}-x^k\|^2-\frac{1-\tau}{2K}\sum_{k=0}^{K-1}\mathbb{E}\|w^k-x^{k+1/2}\|^2$$

2196
2197
$$-\left(1-2\gamma^2(1+L_\ell^2)\right)\frac{1}{K}\sum_{k=1}^{K-1}\mathbb{E}\|z^{k+1/2}-z^k\|^2$$

2198
2199
$$(2\pi - 1 - 2 + K - 1) = K - 1$$

2199
2200
2201
2202
2202
2202

$$-\left(\frac{3\tau-1}{2}-2\gamma^2\right)\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|y^{k+1/2}-y^k\|^2 - \frac{1-\tau}{2K}\sum_{k=0}^{K-1}\mathbb{E}\|u^k-y^{k+1/2}\|^2$$
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
2202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
202
2

$$+\frac{3\gamma^2}{K}\sum_{k=0}^{K-1}\mathbb{E}\|A^T Q(y^{k+1/2}-u^k)\|^2 + \frac{3\gamma^2}{K}\sum_{k=0}^{K-1}\mathbb{E}\|\sum_{i=1}^n Q(A_i x_i^{k+1/2}-A_i w_i^k)\|^2.$$
(32)

Using the notation of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue and the definition of unbiased compression, we get

$$\begin{aligned} \mathbb{E} \|A^T Q(y^{k+1/2} - u^k)\|^2 &\leq \lambda_{\max}(AA^T) \mathbb{E} \|Q(y^{k+1/2} - u^k)\|^2 \\ &\leq \lambda_{\max}(AA^T) \omega \mathbb{E} \|y^{k+1/2} - u^k\|^2. \end{aligned}$$

 $\begin{array}{ll} \begin{array}{l} \mbox{2211}\\ \mbox{2212}\\ \mbox{2213}\\ \mbox{2213}\\ \mbox{2213}\\ \mbox{2214}\\ \mbox{2214}\\ \mbox{2214}\\ \mbox{2214}\\ \mbox{2215}\\ \mbox{2216}\\ \mbox{2216}\\ \mbox{2216}\\ \mbox{2216}\\ \mbox{2217}\\ \mbox{2216}\\ \mbox{2217}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox{2218}\\ \mbox{2219}\\ \mbox{2218}\\ \mbox$

2203 2204 2205

$$\begin{aligned} & = \sum_{i=1}^{n} Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}) \neq Q(\sum_{i=1}^{n} [A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}]), \text{ but } Q \text{ are independent, then} \\ & = \sum_{i=1}^{n} Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & = \sum_{i=1}^{n} \mathbb{E}\|Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & + \sum_{i\neq j} \mathbb{E}\langle Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}), Q(A_{j}x_{j}^{k+1/2} - A_{j}w_{j}^{k})\rangle \\ & = \sum_{i=1}^{n} \mathbb{E}\|Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & + \sum_{i\neq j} \mathbb{E}\langle Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & + \sum_{i\neq j} \mathbb{E}\langle Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & = \sum_{i=1}^{n} \mathbb{E}\|Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & = \sum_{i=1}^{n} \mathbb{E}\|Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & = \sum_{i\neq j}^{n} \mathbb{E}\|Q(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k})\|^{2} \\ & = \sum_{i=1}^{n} \mathbb{E}\|A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}\|^{2} + \mathbb{E}\|A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}\|^{2} \\ & \leq \omega \sum_{i=1}^{n} \mathbb{E}\|A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}\|^{2} + \mathbb{E}\|A_{i}x_{i}^{k+1/2} - w^{k}\|^{2} \end{aligned}$$

 $i{=}1$

2247
2248
$$\leq \omega \sum_{i=1}^{n} \lambda_{\max}(A_{i}^{T}A_{i}) \mathbb{E} \|x_{i}^{k+1/2} - w_{i}^{k}\|^{2} + \lambda_{\max}(A^{T}A) \mathbb{E} \|x^{k+1/2} - w^{k}\|^{2}$$

$$\leq \omega \max_{i} \left\{ \lambda_{\max}(A_{i}^{T}A_{i}) \right\} \sum_{i=1}^{n} \mathbb{E} \|x_{i}^{k+1/2} - w_{i}^{k}\|^{2} + \lambda_{\max}(A^{T}A)\mathbb{E} \|x^{k+1/2} - w^{k}\|^{2}$$

$$= \left(\omega \max_{i} \left\{\lambda_{\max}(A_{i}^{T}A_{i})\right\} + \lambda_{\max}(A^{T}A)\right) \mathbb{E} \|x^{k+1/2} - w^{k}\|^{2}.$$

Let us introduce

$$\chi_{\text{compress}} = \begin{cases} \omega \lambda_{\max}(A^T A), \\ \omega \max_i \left\{ \lambda_{\max}(A_i^T A_i) \right\} + \lambda_{\max}(A^T A), \end{cases}$$

depending on the case Q we consider. Let us return to (32) and obtain

$$\begin{split} &2\gamma \mathbb{E}\mathsf{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \\ &\leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} \\ &+ 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right) \\ &- \left(\frac{3\tau - 1}{2} - 2\gamma^{2}L_{r}^{2} \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^{k}\|^{2} \\ &- \left(\frac{1 - \tau}{2} - 3\chi_{\text{compress}} \gamma^{2} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|w^{k} - x^{k+1/2}\|^{2} \\ &- \left(1 - 2\gamma^{2}(1 + L_{\ell}^{2}) \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^{k}\|^{2} \\ &- \left(\frac{3\tau - 1}{2} - 2\gamma^{2} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2} \\ &- \left(\frac{1 - \tau}{2} - 3\lambda_{\max}(AA^{T})\omega\gamma^{2} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|u^{k} - y^{k+1/2}\|^{2} \end{split}$$

If we choose $\tau \geq \frac{1}{2}$ and γ as follows

$$\gamma \leq \frac{1}{4} \min\left\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\chi_{\text{compress}}}}; \sqrt{\frac{1-\tau}{\omega\lambda_{\max}(AA^T)}}; \right\},$$

then one can obtain

$$\mathbb{E}\mathsf{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \leq \frac{1}{2\gamma K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} + 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right).$$

$$\gamma = \frac{1}{4} \min\left\{ 1; \frac{1}{L}; \frac{1}{L}; \sqrt{\frac{1-\tau}{\chi-\tau}}; \sqrt{\frac{1-\tau}{\chi-\tau}}; \sqrt{\frac{1-\tau}{\chi-\chi-\tau}}; \right\}, \text{ we finish the proof.}$$

With l L_r , L_ℓ , $\bigvee \chi_{\text{compress}}$, $\bigvee \omega \lambda_{\max}(AA^T)$, \int

D.4 PROOF OF THEOREM 3.4

Theorem D.5 (Theorem 3.4). Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 3 (Appendix A) with operators and C, which satisfy Definition 3.3. Then for $\tau = 1 - p$ and

$$\gamma = \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\delta^2 [\lambda_{\max}(AA^T) + n \cdot \max_i \{\lambda_{\max}(A_i A_i^T)\}]}}; \sqrt{\frac{1-\tau}{\omega \lambda_{\max}(AA^T)}}; \right\},$$

To begin with, let us introduce the useful notation for the further proof:

$$\hat{x}_{i}^{k} = x_{i}^{k} - \gamma A_{i}^{T} e^{k}, \quad \hat{x}_{i}^{k+1/2} = x_{i}^{k+1/2} - \gamma A_{i}^{T} e^{k},$$
$$\hat{y}^{k} = y^{k} - \gamma \sum_{i=1}^{n} e_{i}^{k}, \quad \hat{y}^{k+1/2} = y^{k+1/2} - \gamma \sum_{i=1}^{n} e_{i}^{k}.$$
(33)

2314 It is easy to verify that such sequences have useful properties:

$$\begin{aligned} \hat{x}_{i}^{k+1} = & x_{i}^{k+1} - \gamma A_{i}^{T} e^{k+1} \\ = & \tau x_{i}^{k} + (1-\tau) w_{i}^{k} - \gamma (A_{i}^{T} [C(y^{k+1/2} - u^{k} + e^{k}) + u^{k}] + \nabla r_{i}(x_{i}^{k+1/2})) - \gamma A_{i}^{T} e^{k} \\ & - \gamma A_{i}^{T} \left(y^{k+1/2} - u^{k} + e^{k} - C(y^{k+1/2} - u^{k}) \right) \\ = & \tau x_{i}^{k} + (1-\tau) w_{i}^{k} - \gamma (A_{i}^{T} u^{k} + \nabla r_{i}(x_{i}^{k})) \\ & - \gamma A_{i}^{T} \left(y^{k+1/2} - u^{k} + e^{k} \right) - \gamma (\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})) \\ = & \hat{x}_{i}^{k+1/2} - \gamma A_{i}^{T} \left(y^{k+1/2} - u^{k} \right) - \gamma (\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})), \end{aligned}$$
(34)

 $=\tau y^{k} + (1-\tau)u^{k} + \gamma \left(\sum_{i=1}^{n} \left[C(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k} + e_{i}^{k}) + A_{i}w_{i}^{k}\right] - z^{k+1/2}\right)$

 $+\gamma \sum_{i=1}^{n} [A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k} + e_{i}^{k} - C(A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k} + e_{i}^{k})]$

2325 and

$$=\hat{y}^{k+1/2} + \gamma \sum_{i=1}^{n} [A_i x_i^{k+1/2} - A_i w_i^k] - \gamma (z^{k+1/2} - z^k).$$

+ $\gamma \sum_{i=1}^{n} [A_i x_i^{k+1/2} - A_i w_i^k] - \gamma (z^{k+1/2} - z^k)$

 $= \tau y^{k} + (1 - \tau)u^{k} + \gamma \left(\sum_{i=1}^{n} A_{i}w_{i}^{k} - z^{k}\right) - \gamma \sum_{i=1}^{n} e_{i}^{k}$

Now we are ready to start the proof.

 $\hat{y}^{k+1} = y^{k+1} + \gamma \sum_{i=1}^{n} e_i^{k+1}$

2346 *Proof.* We start the proof with the following equations on the variables \hat{x}_i^{k+1} , $x_i^{k+1/2}$, \hat{x}_i^k and any 2347 $x_i \in \mathbb{R}^{d_i}$:

$$\begin{split} \|\hat{x}_{i}^{k+1} - x_{i}\|^{2} &= \|x_{i}^{k+1/2} - x_{i}\|^{2} + 2\langle \hat{x}_{i}^{k+1} - x_{i}^{k+1/2}, x_{i}^{k+1/2} - x_{i}\rangle + \|\hat{x}_{i}^{k+1} - x_{i}^{k+1/2}\|^{2}, \\ \|x_{i}^{k+1/2} - x_{i}\|^{2} &= \|\hat{x}_{i}^{k} - x_{i}\|^{2} + 2\langle x_{i}^{k+1/2} - \hat{x}_{i}^{k}, x_{i}^{k+1/2} - x_{i}\rangle - \|x_{i}^{k+1/2} - \hat{x}_{i}^{k}\|^{2}. \end{split}$$

Summing up two previous inequalities and making small rearrangements, we get

2353
2354
$$\begin{aligned} \|\hat{x}_{i}^{k+1} - x_{i}\|^{2} = \|\hat{x}_{i}^{k} - x_{i}\|^{2} + 2\langle \hat{x}_{i}^{k+1} - \hat{x}_{i}^{k}, x_{i}^{k+1/2} - x_{i}\rangle \\ &+ \|\hat{x}_{i}^{k+1} - x_{i}^{k+1/2}\|^{2} - \|x_{i}^{k+1/2} - \hat{x}_{i}^{k}\|^{2}. \end{aligned}$$
(35)

Using the definitions (33) and (34), one can obtain $\|\hat{x}_{i}^{k+1} - x_{i}^{k+1/2}\|^{2} \leq 2\|\hat{x}_{i}^{k+1} - \hat{x}_{i}^{k+1/2}\|^{2} + 2\|\hat{x}_{i}^{k+1/2} - x_{i}^{k+1/2}\|^{2}$ $= 2\gamma^2 \|A_i^T(y^{k+1/2} - u^k) - (\nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k))\|^2 + 2\gamma^2 \|A_i^T e^k\|^2$ $\leq 4\gamma^2 \|A_i^T (y^{k+1/2} - u^k)\|^2 + 4\gamma^2 \|\nabla r_i (x_i^{k+1/2}) - \nabla r_i (x_i^k)\|^2$ $+ 2\gamma^2 \|A_i^T e^k\|^2.$ (36)With (33), (34) and the update for $x_i^{k+1/2}$, we have $\hat{x}_{i}^{k+1} - \hat{x}_{i}^{k} = \hat{x}_{i}^{k+1} - \hat{x}_{i}^{k+1/2} + \hat{x}_{i}^{k+1/2} - \hat{x}_{i}^{k}$ $=\hat{x}_{i}^{k+1} - \hat{x}_{i}^{k+1/2} + x_{i}^{k+1/2} - x_{i}^{k}$ $= -\gamma A_{i}^{T} \left(y^{k+1/2} - u^{k} \right) - \gamma (\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}))$ $+ (1-\tau)(w_i^k - x_i^k) - \gamma \left(A_i^T u^k + \nabla r_i(x_i^k)\right)$ $= -\gamma (A_i^T y^{k+1/2} + \nabla r_i (x_i^{k+1/2})) + (1-\tau) (w_i^k - x_i^k).$ (37)Combining (35), (36), (37), we get $\|\hat{x}_{i}^{k+1} - x_{i}\|^{2} \leq \|\hat{x}_{i}^{k} - x_{i}\|^{2} - 2\langle\gamma(A_{i}^{T}y^{k+1/2} + \nabla r_{i}(x_{i}^{k+1/2})) - (1-\tau)(w_{i}^{k} - x_{i}^{k}), x_{i}^{k+1/2} - x_{i}\rangle$ $+ 4\gamma^{2} \|A_{i}^{T}(y^{k+1/2} - u^{k})\|^{2} + 4\gamma^{2} \|\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})\|^{2}$ $+2\gamma^{2}\|A_{i}^{T}e^{k}\|^{2}-\|x_{i}^{k+1/2}-\hat{x}_{i}^{k}\|^{2}$ $\leq \|\hat{x}_{i}^{k} - x_{i}\|^{2} - 2\langle \gamma(A_{i}^{T}y^{k+1/2} + \nabla r_{i}(x_{i}^{k+1/2})), x_{i}^{k+1/2} - x_{i} \rangle$ $+2(1-\tau)\langle w_{i}^{k}-x_{i}^{k+1/2},x_{i}^{k+1/2}-x_{i}\rangle$ $+2(1-\tau)\langle x_{i}^{k+1/2}-x_{i}^{k},x_{i}^{k+1/2}-x_{i}\rangle$ $+ 4\gamma^{2} \|A_{i}^{T}(y^{k+1/2} - u^{k})\|^{2} + 4\gamma^{2} \|\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})\|^{2}$ $+2\gamma^{2}\|A_{i}^{T}e^{k}\|^{2}-\frac{1}{2}\|x_{i}^{k+1/2}-x_{i}^{k}\|^{2}+\|\hat{x}_{i}^{k}-x_{i}^{k}\|^{2}$ $= \|\hat{x}_{i}^{k} - x_{i}\|^{2} - 2\langle \gamma(A_{i}^{T}y^{k+1/2} + \nabla r_{i}(x_{i}^{k+1/2})), x_{i}^{k+1/2} - x_{i} \rangle$ $+2(1-\tau)\langle w_{i}^{k}-x_{i}^{k+1/2},x_{i}^{k+1/2}-x_{i}\rangle$ $+2(1-\tau)\langle x_{i}^{k+1/2}-x_{i}^{k},x_{i}^{k+1/2}-x_{i}\rangle$ $+4\gamma^{2}\|A_{i}^{T}(y^{k+1/2}-u^{k})\|^{2}+4\gamma^{2}\|\nabla r_{i}(x_{i}^{k+1/2})-\nabla r_{i}(x_{i}^{k})\|^{2}$

2392
2393
$$+ 2\gamma^2 \|A_i^T e^k\|^2 - \frac{1}{2} \|x_i^{k+1/2} - x_i^k\|^2 + \gamma^2 \|A_i^T e^k\|^2$$

In the last two steps we use (33) and Cauchy Schwartz inequality in the form $-||a||^2 \le -\frac{1}{2}||a + b||^2 + ||b||^2$ with $a = x_i^{k+1/2} - \hat{x}_i^k$ and $b = \hat{x}_i^k - x_i^k$. For the second and third lines we use identity $2\langle a, b \rangle = ||a + b||^2 - ||a||^2 - ||b||^2$, and have

$$\begin{split} \|\hat{x}_{i}^{k+1} - x_{i}\|^{2} &\leq \|\hat{x}_{i}^{k} - x_{i}\|^{2} - 2\gamma \langle A_{i}^{T}y^{k+1/2} + \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i} \rangle \\ &+ (1 - \tau)(\|w_{i}^{k} - x_{i}\|^{2} - \|w_{i}^{k} - x_{i}^{k+1/2}\|^{2} - \|x_{i}^{k+1/2} - x_{i}\|^{2}) \\ &+ (1 - \tau)(\|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} + \|x_{i}^{k+1/2} - x_{i}\|^{2} - \|x_{i}^{k} - x_{i}\|^{2}) \\ &+ 4\gamma^{2}\|A_{i}^{T}(y^{k+1/2} - u^{k})\|^{2} + 4\gamma^{2}\|\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})\|^{2} \\ &+ 3\gamma^{2}\|A_{i}^{T}e^{k}\|^{2} - \frac{1}{2}\|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} \end{split}$$

2406
$$= \|\hat{x}_i^k - x_i\|^2 - (1-\tau)\|x_i^k - x_i\|^2 + (1-\tau)\|w_i^k - x_i\|^2$$

2407
$$-2\gamma \langle A_i^T y^{k+1/2} + \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$
2408

 $+ 4\gamma^2 \|A_i^T (y^{k+1/2} - u^k)\|^2 + 4\gamma^2 \|\nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k)\|^2$

2409
2410
$$+ 3\gamma^2 \|A_i^T e^k\|^2 - \left(\tau - \frac{1}{2}\right) \|x_i^{k+1/2} - x_i^k\|^2 - (1-\tau) \|w_i^k - x_i^{k+1/2}\|^2.$$

Summing over all i from 1 to n, we deduce

2419
2420
2420
2421
2422
2422
2423
2424

$$+ 4\gamma^{2} \sum_{i=1}^{n} \|A_{i}^{T}(y^{k+1/2} - u^{k})\|^{2} + 4\gamma^{2} \sum_{i=1}^{n} \|\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})\|^{2} + 3\gamma^{2} \sum_{i=1}^{n} \|A_{i}^{T}e^{k}\|^{2} - \left(\tau - \frac{1}{2}\right) \sum_{i=1}^{n} \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2}$$

$$-(1-\tau)\sum_{i=1}^{n} \|w_{i}^{k}-x_{i}^{k+1/2}\|^{2}.$$

With notation of $A = [A_1, \dots, A_i, \dots, A_n], x = [x_1^T, \dots, x_i^T, \dots, x_n^T]^T, \hat{x} = [\hat{x}_1^T, \dots, \hat{x}_i^T, \dots, \hat{x}_n^T]^T$ and $w = [w_1^T, \dots, w_i^T, \dots, w_n^T]^T$, one can obtain that $\sum_{i=1}^n A_i x_i = Ax$, $\sum_{i=1}^n \|A_i^T e^k\| = \|A^T e^k\|^2$ and $\sum_{i=1}^n \|A_i^T (y^{k+1/2} - u^k)\|^2 = \|A^T (y^{k+1/2} - u^k)\|^2$: $\|\hat{x}^{k+1} - x\|^2 \le \|\hat{x}^k - x\|^2 - (1-\tau)\|x^k - x\|^2 + (1-\tau)\|w^k - x\|^2$

$$-2\gamma \langle y^{k+1/2}, A(x^{k+1/2} - x) \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$

$$+ 4\gamma^2 \|A^T (y^{k+1/2} - u^k)\|^2 + 4\gamma^2 \sum_{i=1}^n \|\nabla r_i (x_i^{k+1/2}) - \nabla r_i (x_i^k)\|^2$$

$$+ 3\gamma^2 \|A^T e^k\|^2 - \left(\tau - \frac{1}{2}\right) \|x^{k+1/2} - x^k\|^2 - (1-\tau)\|w^k - x^{k+1/2}\|^2.$$
(38)

One can note that the updates for the variable z from lines 4 and 11 of Algorithm 3 are the same as those from lines 6 and 11 of Algorithm 1. Therefore, we can simply use (13), i.e. for $z \in \mathbb{R}^s$ it holds

$$||z^{k+1} - z||^{2} \leq ||z^{k} - z||^{2} - ||z^{k+1/2} - z^{k}||^{2} + 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle - 2\gamma \langle \nabla \ell(z^{k+1/2}, b), z^{k+1/2} - z \rangle + 2\gamma^{2} ||y^{k+1/2} - y^{k}||^{2} + 2\gamma^{2} ||\nabla \ell(z^{k+1/2}, b) - \nabla \ell(z^{k}, b)||^{2}.$$
(39)

For the updates of the variable y from lines (5), (12) and from (33), we can repeat the same steps as in obtaining (38). In particular, for all $y \in \mathbb{R}^s$, we get

2449
2450
2450
2450
2450
2450
2451
2452
2453
2454
2455

$$\|\hat{y}^{k+1} - y\|^2 \le \|\hat{y}^k - y\|^2 - (1 - \tau)\|y^k - y\|^2 + (1 - \tau)\|u^k - y\|^2$$

$$+ 2\gamma \langle \sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2}, y^{k+1/2} - y \rangle$$

$$+ 4\gamma^2 \left\| \sum_{i=1}^n [A_i x_i^{k+1/2} - A_i w_i^k] \right\|^2 + 4\gamma^2 \|z^{k+1/2} - z^k\|^2$$

$$\|_{i=1} \qquad \| \\ + 3\gamma^2 \left\| \sum_{i=1}^{n} e_i^k \right\|^2 - \left(\tau - \frac{1}{2}\right) \|y^{k+1/2} - y^k\|^2 - (1-\tau)\|u^k - y^{k+1/2}\|^2$$

2458
2459
2460

$$= \|\hat{y}^{k} - y\|^{2} - (1 - \tau)\|y^{k} - y\|^{2} + (1 - \tau)\|u^{k} - y\|^{2}$$

2460
$$-\|y - y\| = (1 - 7)\|y - y\| = (1 -$$

$$+ 4\gamma^2 \left\| Ax^{k+1/2} - Aw^k \right\|^2 + 4\gamma^2 \|z^{k+1/2} - z^k\|^2$$

$$\begin{aligned} & 2463 \\ 2464 \\ 2465 \\ 2466 \\ 2466 \\ 2466 \\ 2466 \\ 2466 \\ 2466 \\ 2466 \\ 2466 \\ 2466 \\ 2469 \\ 2469 \\ 2470 \\ & -(1-\tau)\|x^{k+1} - z\|^2 + \|\hat{y}^{k+1} - y\|^2 \\ & \leq \|\hat{x}^k - x\|^2 + \|z^k - z\|^2 + \|\hat{y}^k + 1 - y\|^2 \\ & \leq \|\hat{x}^k - x\|^2 + \|z^k - z\|^2 + \|\hat{y}^k - y\|^2 \\ & -(1-\tau)\|x^k - x\|^2 + (1-\tau)\|w^k - x\|^2 - (1-\tau)\|y^k - y\|^2 + (1-\tau)\|u^k - y\|^2 \\ & -(1-\tau)\|x^k - x\|^2 + (1-\tau)\|w^k - x\|^2 - (1-\tau)\|y^k - y\|^2 + (1-\tau)\|u^k - y\|^2 \\ & -2\gamma\langle y^{k+1/2}, A(x^{k+1/2} - x)\rangle - 2\gamma\sum_{i=1}^n \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i\rangle \\ & +2\gamma\langle y^{k+1/2}, z^{k+1/2} - z\rangle - 2\gamma\langle \nabla \ell(z^{k+1/2}, b), z^{k+1/2} - z\rangle \\ & +2\gamma\langle Ax^{k+1/2} - z^{k+1/2}, y^{k+1/2} - y\rangle \\ & -\left(\tau - \frac{1}{2}\right)\|x^{k+1/2} - x^k\|^2 - (1-\tau)\|w^k - x^{k+1/2}\|^2 - \|z^{k+1/2} - z^k\|^2 \\ & -\left(\tau - \frac{1}{2}\right)\|y^{k+1/2} - y^k\|^2 - (1-\tau)\|u^k - y^{k+1/2}\|^2 \\ & +4\gamma^2\|A^T(y^{k+1/2} - u^k)\|^2 + 4\gamma^2\sum_{i=1}^n\|\nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k)\|^2 \\ & +2\gamma^2\|y^{k+1/2} - y^k\|^2 + 2\gamma^2\|\nabla \ell(z^{k+1/2}, b) - \nabla \ell(z^k, b)\|^2 \\ & +4\gamma^2\|Ax^{k+1/2} - Aw^k\|^2 + 4\gamma^2\|z^{k+1/2} - z^k\|^2 \\ & +3\gamma^2\|A^Te^k\|^2 + 3\gamma^2\|\sum_{i=1}^n e_i^k\|^2. \end{aligned}$$

Using convexity and L_r -smoothness of the function r_i with convexity and L_ℓ -smoothness of the function ℓ , we have 2492 . 1 . . 1. . 1 $L \perp 1$

$$\begin{aligned} \|\hat{x}^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|\hat{y}^{k+1} - y\|^2 \\ &\leq \|\hat{x}^k - x\|^2 + \|z^k - z\|^2 + \|\hat{y}^k - y\|^2 \\ &\leq \|\hat{x}^k - x\|^2 + \|z^k - z\|^2 + \|\hat{y}^k - y\|^2 \\ &\leq \|\hat{x}^k - x\|^2 + \|z^k - z\|^2 + \|\hat{y}^k - y\|^2 \\ &\leq \|(1 - \tau)\| \|x^k - x\|^2 + (1 - \tau)\| \|w^k - x\|^2 - (1 - \tau)\| \|y^k - y\|^2 + (1 - \tau)\| \|u^k - y\|^2 \\ &+ 2\gamma \langle y^{k+1/2}, Ax - z \rangle - 2\gamma \langle Ax^{k+1/2} - z^{k+1/2}, y \rangle \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b)) - 2\gamma \sum_{i=1}^n (r_i(x_i^{k+1/2}) - r_i(x_i)) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b) - \ell(z, b) \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b) - \ell(z, b) \\ \\ &= 2\gamma (\ell(z^{k+1/2}, b) - \ell(z, b) - \ell($$

2510 2511

2491

$$+ 3\gamma^{2}\lambda_{\max}(AA^{T}) \|e^{k}\|^{2} + 3\gamma^{2} \left\|\sum_{i=1}^{n} e_{i}^{k}\right\|^{2}.$$

2512 Also here we apply the definition of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue. With Cauchy Schwartz inequality for n summands: $\|\sum_{i=1}^{n} e_i^k\|^2 \leq n \sum_{i=1}^{n} \|e_i^k\|^2$ and after small rearrangements, we 2513 2514 obtain 2515 n

2516
$$2\gamma \left[\ell(z^{k+1/2}, b) - \ell(z, b)) + \sum_{i=1}^{n} (r_i(x_i^{k+1/2}) - r_i(x_i)) \right]$$

 Then we sum all over k from 0 to K - 1, divide by K, use Jensen inequality for convex functions ℓ and r_i with notation $\bar{x}_i^K = \frac{1}{K} \sum_{l=0}^{K-1} x_i^{k+1/2}$, $\bar{z}^K = \frac{1}{K} \sum_{l=0}^{K-1} z^{k+1/2}$, $\bar{y}^K = \frac{1}{K} \sum_{l=0}^{K-1} y^{k+1/2}$, and have $2\gamma \left[\ell(\bar{z}^K, b) - \ell(z, b) + \sum_{i=1}^n \left(r_i(\bar{x}_i^K) - r_i(x_i) \right) + \langle A\bar{x}^K - \bar{z}^K, y \rangle - \langle Ax - z, \bar{y}^K \rangle \right]$ $\leq \frac{1}{K} \left(\|\hat{x}^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|\hat{y}^{0} - y\|^{2} \right)$ $-(1-\tau)\cdot\frac{1}{K}\sum_{k=1}^{K-1}\|x^{k}-x\|^{2}+(1-\tau)\cdot\frac{1}{K}\sum_{k=1}^{K-1}\|w^{k}-x\|^{2}$ $-(1-\tau)\cdot\frac{1}{K}\sum_{k=0}^{K-1}\|y^{k}-y\|^{2}+(1-\tau)\cdot\frac{1}{K}\sum_{k=0}^{K-1}\|u^{k}-y\|^{2}$ $-\left(\tau - \frac{1}{2} - 4\gamma^2 L_r^2\right) \cdot \frac{1}{K} \sum_{k=1}^{K-1} \|x^{k+1/2} - x^k\|^2$ $-(1-\tau-4\gamma^{2}\lambda_{\max}(A^{T}A))\cdot\frac{1}{K}\sum_{k=0}^{K-1}\|w^{k}-x^{k+1/2}\|^{2}$ $-(1-4\gamma^2-2\gamma^2L_{\ell}^2)\frac{1}{K}\sum_{i=1}^{K-1}\|z^{k+1/2}-z^k\|^2$ $-\left(\tau - \frac{1}{2} - 2\gamma^{2}\right) \cdot \frac{1}{K} \sum_{k=1}^{K-1} \|y^{k+1/2} - y^{k}\|^{2}$ $-(1-\tau-4\gamma^{2}\lambda_{\max}(AA^{T}))\cdot\frac{1}{K}\sum_{k=1}^{K-1}\|u^{k}-y^{k+1/2}\|^{2}$ $+ 3\gamma^{2}\lambda_{\max}(AA^{T}) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \|e^{k}\|^{2} + 3\gamma^{2}n \cdot \frac{1}{K} \sum_{i=1}^{n} \sum_{k=0}^{K-1} \|e^{k}_{i}\|^{2}.$ (41)Using small rearrangements, we can deduce

2566
2567
$$-(1-\tau) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \|x^k - x\|^2 + (1-\tau) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \|w^k - x\|^2$$
2569

2569
2570
$$= \frac{1}{K} \sum_{k=0}^{K-1} \|w^k - x\|^2 - \frac{1}{K} \sum_{k=0}^{K-1} [(1-\tau)\|x^k - x\|^2 + \tau \|w^k - x\|^2]$$

2571
2572
$$= \frac{1}{K} \|w^0 - x\|^2 - \frac{1}{K} \|w^K - x\|^2$$

$$+ \frac{1}{K} \sum_{k=0}^{K-1} [\|w^{k+1} - x\|^2 - (1 - \tau)\|x^k - x\|^2 - \tau \|w^k - x\|^2]$$

$$= \frac{1}{K} \|w^0 - x\|^2 - \frac{1}{K} \|w^K - x\|^2 + \frac{1}{K} \sum_{k=0}^{K-1} [\|w^{k+1}\|^2 - (1 - \tau)\|x^k\|^2 - \tau \|w^k\|^2]$$

$$= \frac{2}{K} \sum_{k=0}^{K-1} ((x - \epsilon) - k) - k - \epsilon - k + 1 - \epsilon)$$

$$+\frac{2}{K}\sum_{k=0}^{K-1} \langle (1-\tau)x^k + \tau w^k - w^{k+1}, x \rangle.$$
(42)

The same way we can make

$$-(1-\tau) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \|y^{k} - y\|^{2} + (1-\tau) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \|u^{k} - y\|^{2}$$

$$= \frac{1}{K} \|u^{0} - y\|^{2} - \frac{1}{K} \|u^{K} - y\|^{2} + \frac{1}{K} \sum_{k=0}^{K-1} [\|u^{k+1}\|^{2} - (1-\tau)\|y^{k}\|^{2} - \tau\|u^{k}\|^{2}]$$

$$+ \frac{2}{K} \sum_{k=0}^{K-1} \langle (1-\tau)y^{k} + \tau u^{k} - u^{k+1}, y \rangle.$$
(43)

Substituting (42) and (43) to (41), we obtain

$$\begin{aligned} & 2\gamma \left[\ell(\bar{z}^{K}, b) - \ell(z, b) + \sum_{i=1}^{n} \left(r_{i}(\bar{x}_{i}^{K}) - r_{i}(x_{i}) \right) + \langle A\bar{x}^{K} - \bar{z}^{K}, y \rangle - \langle Ax - z, \bar{y}^{K} \rangle \right] \\ & \leq \frac{1}{K} \left(\| \hat{x}^{0} - x \|^{2} + \| z^{0} - z \|^{2} + \| \hat{y}^{0} - y \|^{2} \right) \\ & + \frac{1}{K} \| w^{0} - x \|^{2} - \frac{1}{K} \| w^{K} - x \|^{2} + \frac{1}{K} \sum_{k=0}^{K-1} [\| w^{k+1} \|^{2} - (1 - \tau) \| x^{k} \|^{2} - \tau \| w^{k} \|^{2}] \\ & + \frac{2}{K} \sum_{k=0}^{K-1} \langle (1 - \tau) x^{k} + \tau w^{k} - w^{k+1}, x \rangle \\ & + \frac{1}{K} \| u^{0} - y \|^{2} - \frac{1}{K} \| u^{K} - y \|^{2} + \frac{1}{K} \sum_{k=0}^{K-1} [\| u^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| u^{k} \|^{2}] \\ & + \frac{2}{K} \sum_{k=0}^{K-1} \langle (1 - \tau) y^{k} + \tau u^{k} - w^{k+1}, x \rangle \\ & + \frac{1}{K} \| u^{0} - y \|^{2} - \frac{1}{K} \| u^{K} - y \|^{2} + \frac{1}{K} \sum_{k=0}^{K-1} [\| u^{k+1} \|^{2} - (1 - \tau) \| y^{k} \|^{2} - \tau \| u^{k} \|^{2}] \\ & + \frac{2}{K} \sum_{k=0}^{K-1} \langle (1 - \tau) y^{k} + \tau u^{k} - u^{k+1}, y \rangle \\ & - \left(\tau - \frac{1}{2} - 4\gamma^{2} L_{r}^{2} \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \| x^{k+1/2} - x^{k} \|^{2} \\ & - (1 - \tau - 4\gamma^{2} \lambda_{\max} (A^{T} A)) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \| w^{k} - x^{k+1/2} \|^{2} \\ & - \left(\tau - \frac{1}{2} - 2\gamma^{2} \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \| y^{k+1/2} - y^{k} \|^{2} \\ & - \left(1 - \tau - 4\gamma^{2} \lambda_{\max} (AA^{T}) \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \| u^{k} - y^{k+1/2} \|^{2} \end{aligned}$$

$$+ 3\gamma^2 \lambda_{\max}(AA^T) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \|e^k\|^2 + 3\gamma^2 n \cdot \frac{1}{K} \sum_{i=1}^n \sum_{k=0}^{K-1} \|e_i^k\|^2.$$

As in (15) we pass to the gap criterion by taking the maximum in $y \in \mathcal{Y}$ and the minimum in $x \in \mathcal{X}$ and $z \in \mathcal{Z}$. Additionally, we also take the mathematical expectation

$$\begin{array}{ll} 233 \\ 2\gamma \mathbb{E}\text{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \\ \leq \frac{1}{K} \bigg(\max_{x \in \mathcal{X}} \|\bar{x}^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{X}} \|z^{0} - z\|^{2} \\ + \max_{y \in \mathcal{Y}} \|\bar{y}^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|w^{0} - y\|^{2} \bigg) \\ + \max_{y \in \mathcal{Y}} \|\bar{y}^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|w^{0} - y\|^{2} \bigg) \\ + \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|w^{k+1}\|^{2} - (1 - \tau)\|x^{k}\|^{2} - \tau\|w^{k}\|^{2} \\ + \frac{2}{K} \mathbb{E}\max_{x \in \mathcal{X}} \sum_{k=0}^{K-1} \langle (1 - \tau)x^{k} + \tau w^{k} - w^{k+1}, x \rangle \\ + \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|u^{k+1}\|^{2} - (1 - \tau)\|y^{k}\|^{2} - \tau\|u^{k}\|^{2} \\ + \frac{2}{K} \mathbb{E}\max_{y \in \mathcal{Y}} \sum_{k=0}^{K-1} \langle (1 - \tau)y^{k} + \tau u^{k} - u^{k+1}, y \rangle \\ + \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|u^{k+1}\|^{2} - (1 - \tau)\|y^{k}\|^{2} - \tau\|w^{k}\|^{2} \\ + \frac{2}{K} \mathbb{E}\max_{y \in \mathcal{Y}} \sum_{k=0}^{K-1} \langle (1 - \tau)y^{k} + \tau u^{k} - u^{k+1}, y \rangle \\ + \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|u^{k+1}\|^{2} - (1 - \tau)y^{k} + \tau u^{k} - u^{k+1}) \bigg) \\ + \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|w^{k} - x^{k+1/2}\|^{2} \\ + \frac{1}{2} \sum_{k=0}^{K-1} \mathbb{E}\|z^{k+1/2} - x^{k}\|^{2} \\ + (1 - \tau)^{2} - 2\gamma^{2}L_{t}^{2}) \sum_{k=0}^{K-1} \mathbb{E}\|z^{k+1/2} - z^{k}\|^{2} \\ + (1 - 4\gamma^{2} - 2\gamma^{2}L_{t}^{2}) \sum_{k=0}^{K-1} \mathbb{E}\|y^{k+1/2} - y^{k}\|^{2} \\ + (1 - \tau)^{2} \lambda_{\max}(AA^{T}) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|w^{k} - y^{k+1/2}\|^{2} \\ + 3\gamma^{2} \lambda_{\max}(AA^{T}) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|e^{k}\|^{2} + 3\gamma^{2}n \cdot \frac{1}{K} \sum_{k=0}^{N-1} \mathbb{E}\|e^{k}\|^{2}. \end{aligned}$$

$$2\gamma \mathbb{E} \operatorname{gap}(\bar{x}^K, \bar{z}^K, \bar{y}^K)$$

$$+5 \max_{y \in \mathcal{Y}} \|\hat{y}^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \bigg)$$

2674
2675
2676
$$+ \frac{1}{4} \sum_{k=0}^{K-1} \mathbb{E}\tau(1-\tau) \|w^k - x^k\|^2 + \frac{1}{4} \sum_{k=0}^{K-1} \mathbb{E}\tau(1-\tau) \|u^k - y^k\|^2$$

2677
$$\begin{pmatrix} 1 & 2-2 \end{pmatrix} = 1 \sum_{k=0}^{K-1} -1 \sum_{k=1}^{K-1} -1$$

2678
$$-\left(\tau - \frac{1}{2} - 4\gamma^2 L_r^2\right) \cdot \frac{1}{K} \sum_{k=0} \mathbb{E} \|x^{k+1/2} - x^k\|^2$$

$$- (1 - \tau - 4\gamma^2 \lambda_{\max}(A^T A)) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^k - x^{k+1/2} \|^2$$

$$- (1 - \tau - 4\gamma^2 \lambda_{\max}(A^T A)) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^k - x^{k+1/2} \|^2$$

$$- (1 - \tau - 4\gamma^2 \lambda_{\max}(A^T A)) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \| w^k - x^{k+1/2} \|^2$$

$$-(1-4\gamma^2-2\gamma^2 L_{\ell}^2)\frac{1}{K}\sum_{k=0}^{K} \mathbb{E}||z^{k+1/2}-z^k||^2$$

$$-\left(\tau - \frac{1}{2} - 2\gamma^{2}\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2}$$

$$-(1-\tau-4\gamma^{2}\lambda_{\max}(AA^{T}))\cdot\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|u^{k}-y^{k+1/2}\|^{2}$$

$$+ 3\gamma^2 \lambda_{\max}(AA^T) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|e^k\|^2 + 3\gamma^2 n \cdot \frac{1}{K} \sum_{i=1}^n \sum_{k=0}^{K-1} \mathbb{E} \|e_i^k\|^2.$$

Next we work with error feedback terms:

$$\mathbb{E} \|e^{k+1}\|^2 = \mathbb{E} \|y^{k+1/2} - u^k + e^k - C(y^{k+1/2} - u^k + e^k)\|^2$$

$$\leq \left(1 - \frac{1}{\delta}\right) \mathbb{E} \|y^{k+1/2} - u^k + e^k\|^2.$$

With Cauchy Schwartz inequality in the form $||a+b||^2 \le \left(1+\frac{1}{\eta}\right) ||a||^2 + (1+\eta) ||b||^2$ with $a = e^k$, $b = y^{k+1/2} - u^k$ and $\eta = 2\delta$, we get

$$\begin{split} \mathbb{E} \|e^{k+1}\|^2 &\leq \left(1 - \frac{1}{\delta}\right) \left(1 + \frac{1}{2\delta}\right) \mathbb{E} \|e^k\|^2 + (2\delta + 1) \left(1 - \frac{1}{\delta}\right) \mathbb{E} \|y^{k+1/2} - u^k\|^2 \\ &\leq \left(1 - \frac{1}{2\delta}\right) \mathbb{E} \|e^k\|^2 + 3\delta \mathbb{E} \|y^{k+1/2} - u^k\|^2. \end{split}$$

Running the recursion and using that $e_0 = 0$, we have

2708
2709
2710
2711
$$\mathbb{E} \|e^{k+1}\|^2 \le 3\delta \sum_{j=0}^k \left(1 - \frac{1}{2\delta}\right)^{k-j} \mathbb{E} \|y^{j+1/2} - u^j\|^2.$$

Then we sum all over k from 0 to K - 1, divide by K.

2713
2714
2715
2716

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|e^k\|^2 \le 3\delta \cdot \frac{1}{K} \sum_{k=0}^{K-1} \sum_{j=0}^{k-1} \left(1 - \frac{1}{2\delta}\right)^{k-1-j} \mathbb{E} \|y^{j+1/2} - u^j\|^2$$
2716
2716

2716
2717
2718
$$\leq 3\delta \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - u^k\|^2 \sum_{j=0}^{\infty} \left(1 - \frac{1}{2\delta}\right)^j$$

2719
2720
2721
$$\leq 6\delta^2 \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - u^k\|^2.$$
(44)

The same way we can make the following estimate:

$$\frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|e_i^k\|^2 \le 6\delta^2 \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|A_i x_i^{k+1/2} - A_i w_i^k\|^2.$$
(45)

Combining (41) with (44) and (45), we have

$$2\gamma \mathbb{E} \operatorname{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \leq \frac{1}{2} \left(5 \max \|\hat{x}^{0} - x\|^{2} + \max \right)$$

2730
2731
$$\leq \frac{1}{K} \left(5 \max_{x \in \mathcal{X}} \| \hat{x}^0 - x \|^2 + \max_{x \in \mathcal{X}} \| w^0 - x \|^2 + \max_{z \in \mathcal{X}} \| z^0 - z \|^2 \right)$$

2732
$$+ 5 \max_{y \in \mathcal{Y}} \|\hat{y}^0 - y\|^2 + \max_{y \in \mathcal{Y}} \|u^0 - y\|^2 \right)$$

$$\begin{array}{ll} 2733 \\ 2734 \\ + \frac{1}{4} \sum_{k=0}^{K-1} \mathbb{E}\tau(1-\tau) \| w^k - x^k \|^2 + \frac{1}{4} \sum_{k=0}^{K-1} \mathbb{E}\tau(1-\tau) \| w^k - y^k \|^2 \\ - \left(\tau - \frac{1}{2} - 4\gamma^2 L_r^2\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| x^{k+1/2} - x^k \|^2 \\ - \left(1 - \tau - 4\gamma^2 \lambda_{\max}(A^T A)\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| w^k - x^{k+1/2} \| \|^2 \\ 2744 \\ - \left(1 - 4\gamma^2 - 2\gamma^2 L_r^2\right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - y^k \|^2 \\ - \left(\tau - \frac{1}{2} - 2\gamma^2\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - y^k \|^2 \\ - \left(1 - \tau - 4\gamma^2 \lambda_{\max}(AA^T)\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - y^k \|^2 \\ - \left(1 - \tau - 4\gamma^2 \lambda_{\max}(AA^T)\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - u^k \|^2 \\ + 18\gamma^2 \delta^2 \lambda_{\max}(AA^T) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - u^k \|^2 \\ + 18\gamma^2 \delta^2 \lambda_{\max}(AA^T) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - a_i w_i^k \|^2 \\ + 18\gamma^2 \delta^2 n \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| y^{k+1/2} - A_i w_i^k \|^2 \\ + 18\gamma^2 \delta^2 n \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| x^{k+1/2} - A_i w_i^k \|^2 \\ \leq \max_{i} \lambda_{\max}(A_i^T A_i) \mathbb{E}\| x^{k+1/2}_i - w^k_i \|^2 \\ \leq \max_{i} \lambda_{\max}(A_i^T A_i) \mathbb{E}\| x^{k+1/2}_i - w^k_i \|^2 \\ \leq \max_{i} \lambda_{\max}(A_i^T A_i) \mathbb{E}\| x^{k+1/2} - w^k_i \|^2 \\ \leq \frac{1}{K} \left(5 \max_{i \in \mathcal{K}} \| x^0 - x \|^2 + \max_{x \in \mathcal{K}} \| w^0 - x \|^2 + \max_{x \in \mathcal{K}} \| z^0 - z \|^2 \\ + 5 \max_{i \in \mathcal{Y}} \| y^0 - y \|^2 + \max_{i \in \mathcal{Y}} \| w^0 - y \|^2 \right) \\ + \frac{1}{4} \sum_{k=0}^{K-1} \mathbb{E}\tau(1 - \tau) \| w^k - x^k \|^2 + \frac{1}{4} \sum_{k=0}^{K-1} \mathbb{E}\tau(1 - \tau) \| u^k - y^k \|^2 \\ - \left(\tau - \frac{1}{2} - 4\gamma^2 L_r^2\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| x^{k+1/2} - x^k \|^2 \\ - \left(1 - \tau - 4\gamma^2 \lambda_{\max}(A^T A) - 18\gamma^2 \delta^2 n \max_{i} |\lambda_{\max}(A_i^T A_i)| \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\| w^k - x^{k+1/2} \|^2 \\ 2782 \\ X = 1 \end{array}$$

$$-(1-4\gamma^2-2\gamma^2L_{\ell}^2)\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|z^{k+1/2}-z^k\|^2$$

2785
2786
$$-\left(\tau - \frac{1}{2} - 2\gamma^2\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^k\|^2$$

2787
2788
$$-(1-\tau-4\gamma^2\lambda_{\max}(AA^T)(1+5\delta^2))\cdot \frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|u^k-y^{k+1/2}\|^2.$$

2789
2790 With $\tau < 1$ and Cauchy Schwartz inequality, we have

 $\leq \frac{1}{K} \left(5 \max_{x \in \mathcal{X}} \| \hat{x}^0 - x \|^2 + \max_{x \in \mathcal{X}} \| w^0 - x \|^2 + \max_{z \in \mathcal{X}} \| z^0 - z \|^2 \right)$

With $\tau \leq 1$ and Cauchy Schwartz inequality, we have

 $2\gamma \mathbb{E} \operatorname{gap}(\bar{x}^K, \bar{z}^K, \bar{y}^K)$

$$+ 5 \max_{y \in \mathcal{Y}} \|\hat{y}^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \Big)$$

$$- \left(\frac{3\tau - 2}{2} - 4\gamma^{2}L_{r}^{2}\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^{k}\|^{2}$$

$$- \left(\frac{1 - \tau}{2} - 4\gamma^{2}\lambda_{\max}(A^{T}A) - 18\gamma^{2}\delta^{2}n \max_{i} [\lambda_{\max}(A_{i}^{T}A_{i})]\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|w^{k} - x^{k+1/2}\|^{2}$$

$$-\left(1-4\gamma^2-2\gamma^2 L_\ell^2\right)\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|z^{k+1/2}-z^k\|^2\\-\left(\frac{3\tau-2}{2}-2\gamma^2\right)\cdot\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|y^{k+1/2}-y^k\|^2$$

$$-\left(\frac{1-\tau}{2} - 4\gamma^2 \lambda_{\max}(AA^T)(1+5\delta^2)\right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E}\|u^k - y^{k+1/2}\|^2.$$

If we choose $\tau \geq \frac{1}{2}$ and γ as follows

$$\gamma \leq \frac{1}{4} \min\left\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{5\delta^2 n \max_i [\lambda_{\max}(A_i^T A_i)]}}; \sqrt{\frac{1-\tau}{3\delta^2 \lambda_{\max}(AA^T)}}; \right\},$$

then one can obtain

$$\mathbb{E}\mathsf{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \leq \frac{1}{2\gamma K} \left(5 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} + 5 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right).$$

With $\gamma = \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{5\delta^2 n \max_i [\lambda_{\max}(A_i^T A_i)]}}; \sqrt{\frac{1-\tau}{3\delta^2 \lambda_{\max}(AA^T)}}; \right\}$, we finish the proof.

D.5 PROOF OF THEOREM 3.5

Theorem D.6 (Theorem 3.5). Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 4 (Appendix A). Then for $\tau = 1 - p$ and

$$\gamma = \frac{1}{4} \min\left\{1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\lambda_{\max}(AA^T) + n \cdot \max_i\{\lambda_{\max}(A_iA_i^T)\}}}\right\},$$

it holds that

$$\mathbb{E}gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\left[1 + \frac{1}{\sqrt{p}}\left(\sqrt{\lambda_{\max}(AA^{T})} + n \cdot \max_{i=1,\dots,n}\left\{\sqrt{\lambda_{\max}(A_{i}A_{i}^{T})}\right\}\right) + L_{\ell} + L_{r}\right] \cdot \frac{D^{2}}{K}\right)$$

where $\bar{x}^{K} := \frac{1}{K}\sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^{K} := \frac{1}{K}\sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^{K} := \frac{1}{K}\sum_{k=0}^{K-1} y^{k+1/2} \ and \ D^{2} := \max_{x,z,y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}}\left[\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2}\right].$

Proof. The proof repeats almost the same steps as the proof of Theorem 3.2 (Section D.3). In particular, in the proof of Theorem 3.2 we need to replace $Q(y^{k+1/2} - u^k)$ by $y^{k+1/2} - u^k$ and

$$\begin{split} \sum_{i=1}^{n} Q(A_i[x_i^{k+1/2} - w_i^k]) & \text{by } n \cdot A_{i_k}[x_{i_k}^{k+1/2} - w_{i_k}^k], \text{ and use. In the end, we arrive at the analogue of (32). \\ 2\gamma \mathbb{E}\text{gap}(\bar{x}^K, \bar{z}^K, \bar{y}^K) \\ & \leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^0 - x\|^2 + \max_{x \in \mathcal{X}} \|w^0 - x\|^2 + \max_{z \in \mathcal{Z}} \|z^0 - z\|^2 \\ & + 6 \max_{y \in \mathcal{Y}} \|y^0 - y\|^2 + \max_{y \in \mathcal{Y}} \|u^0 - y\|^2 \right) \\ & - \left(\frac{3\tau - 1}{2} - 2\gamma^2 L_r^2 \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^k\|^2 - \frac{1 - \tau}{2K} \sum_{k=0}^{K-1} \mathbb{E} \|w^k - x^{k+1/2}\|^2 \\ & - (1 - 2\gamma^2(1 + L_\ell^2)) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^k\|^2 \\ & - \left(\frac{3\tau - 1}{2} - 2\gamma^2 \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^k\|^2 - \frac{1 - \tau}{2K} \sum_{k=0}^{K-1} \mathbb{E} \|u^k - y^{k+1/2}\|^2 \\ & + \frac{3\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|A^T(y^{k+1/2} - u^k)\|^2 + \frac{3\gamma^2 n^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|A_{i_k}(x_{i_k}^{k+1/2} - w_{i_k}^k)\|^2. \end{split}$$
Using the notation of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue and the random choice of i_k , we get
$$\mathbb{E} \|A_{i_k}(x_{i_k}^{k+1/2} - w_{i_k}^k)\|^2 = \mathbb{E}\mathbb{E}_{i_k} \left[\|A_{i_k}(x_{i_k}^{k+1/2} - w_{i_k}^k)\|^2 \right] \\ & = \frac{1}{n} \sum_{i=1}^n \mathbb{E} \|A_i(x_i^{i_k+1/2} - w_i^k)\|^2 \\ & \leq \frac{1}{n} \sum_{i=1}^n \lambda_{\max}(A_i^T A_i)\mathbb{E} \|x_i^{k+1/2} - w_i^k\|^2 \end{split}$$

2874

Therefore, we obtain

$$2\gamma \mathbb{E}gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K})$$

$$\leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2}$$

$$\leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2}$$

$$+ 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right)$$

$$= \left(\frac{3\tau - 1}{2} - 2\gamma^{2}L_{r}^{2} \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^{k}\|^{2}$$

$$= \left(\frac{1 - \tau}{2} - 3\gamma^{2}n \max_{i} \{\lambda_{\max}(A_{i}^{T}A_{i})\} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|w^{k} - x^{k+1/2}\|^{2}$$

$$= \left((1 - 2\gamma^{2}(1 + L_{\ell}^{2})) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^{k}\|^{2}$$

$$= \left(\frac{3\tau - 1}{2} - 2\gamma^{2} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2}$$

$$= \left(\frac{1 - \tau}{2} - 3\lambda_{\max}(AA^{T})\gamma^{2} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|u^{k} - y^{k+1/2}\|^{2}.$$

 $\leq \frac{\max_i \{\lambda_{\max}(A_i^T A_i)\}}{n} \mathbb{E} \|x^{k+1/2} - w^k\|^2.$

If we choose $\tau \geq \frac{1}{2}$ and γ as follows $\gamma \leq \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{n \max_i \{\lambda_{\max}(A_i^T A_i)\}}}; \sqrt{\frac{1-\tau}{\lambda_{\max}(AA^T)}}; \right\},$ then one can obtain $\mathbb{E} \text{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \leq \frac{1}{2\gamma K} \bigg(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2}$ $+6 \max_{u \in \mathcal{V}} \|y^0 - y\|^2 + \max_{u \in \mathcal{V}} \|u^0 - y\|^2 \Big).$ With $\gamma = \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{n \max_i \{\lambda_{\max}(A_i^T A_i)\}}}; \sqrt{\frac{1-\tau}{\lambda_{\max}(AA^T)}}; \right\}$, we finish the proof. D.6 PROOF OF THEOREM 3.6 **Theorem D.7** (Theorem 3.6). Let Assumption 2.1 holds. Let problem (4) be solved by Algorithm 5 (Appendix A). Then for $\tau = 1 - p$ and $\gamma = \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{s(\lambda_{\max}(A^TA) + \mathbb{I}(diff. seed) \max_i \left\{ \lambda_{\max}(A_i^TA_i) \right\})}}; \sqrt{\frac{1-\tau}{d \max_i \left\{ \lambda_{\max}(A_i^TA_i) \right\}}}; \right\},$ it holds that $\mathbb{E}gap(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\left[\frac{1}{\sqrt{p}}\left(s\sqrt{\lambda_{\max}(A^{T}A) + \mathbb{I}(\textit{diff. seed})}\max_{i=1,\dots,n}\left\{\lambda_{\max}(A^{T}_{i}A_{i})\right\} + \right) + L_{\ell} + L_{r}\right] \cdot \frac{D^{2}}{K}$ $+ \left[\frac{1}{\sqrt{p}} \left(d \cdot \max_{i=1,\dots,n} \left\{ \sqrt{\lambda_{\max}(A_i A_i^T)} \right\} \right) \right] \cdot \frac{D^2}{K} \right),$

where $\bar{x}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2} \ and \ D^{2} := \max_{x,z,y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} \left[\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2} \right].$

Proof. Most of the proof is the same as that of Theorem 3.2. We note only some main steps of the proof and changes regarding Section D.4 with the proof of Theorem 3.2. We start with an analogue of (19) and get

$$\begin{aligned} & \|x_{i}^{k+1} - x_{i}\|^{2} = \|x_{i}^{k} - x_{i}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2} \\ & + (1 - \tau)(\|w_{i}^{k} - x_{i}\|^{2} - \|w_{i}^{k} - x_{i}^{k+1/2}\|^{2} - \|x_{i}^{k+1/2} - x_{i}\|^{2}) \\ & + (1 - \tau)(\|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} + \|x_{i}^{k+1/2} - x_{i}\|^{2} - \|x_{i}^{k} - x_{i}\|^{2}) \\ & + (1 - \tau)(\|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} + \|x_{i}^{k+1/2} - x_{i}\|^{2} - \|x_{i}^{k} - x_{i}\|^{2}) \\ & - 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + A_{i}^{T}u^{k} + \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & = \tau \|x_{i}^{k} - x_{i}\|^{2} + (1 - \tau)\|w_{i}^{k} - x_{i}\|^{2} \\ & - \tau \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - (1 - \tau)\|w_{i}^{k} - x_{i}^{k+1/2}\|^{2} - \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2} \\ & - 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \Lambda_{i}^{T}u^{k} + \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}}\rangle e_{j_{i}^{k}} + \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1}\rangle \\ & + 2\gamma\langle d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_$$

Summing over all *i* from 1 to *n* and using the notation of $A = [A_1, \ldots, A_i, \ldots, A_n]$, $x = \begin{bmatrix} x_1^T, \ldots, x_i^T, \ldots, x_n^T \end{bmatrix}^T$, $w = \begin{bmatrix} w_1^T, \ldots, w_i^T, \ldots, w_n^T \end{bmatrix}^T$, we deduce

2945
$$\|x^{k+1} - x\|^2 = \tau \|x^k - x\|^2 + (1 - \tau)\|w^k - x\|^2$$

2946
$$-\tau \|x^{k+1/2} - x^k\|^2 - (1 - \tau)\|w^k - x^{k+1/2}\|^2 - \|x^{k+1/2} - x^{k+1}\|^2$$

2947
2948
$$-2\gamma \langle A(x^{k+1/2}-x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$

2949	n $(m + 1/2)$ $(m + 1/2)$ $(m + 1/2)$ $(m + 1/2)$
2950	$-2\gamma \sum \langle d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T(y^{k+1/2} - u^k), x_i^{k+1/2} - x_i \rangle$
2951	i=1
2952	$\sum_{k=1}^{n} (J_{k} + 1/2) (k+1/2) (k$
2953	$+ 2\gamma \sum_{i=1}^{k} \langle a_i \cdot \langle A_i (y + i - u), e_{j_i^k} \rangle e_{j_i^k}, x_i = -x_i \rangle$
2954	i=1 n
2955	$+ 2\gamma \sum_{k=1}^{k} \langle \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1/2} - x_{i}^{k+1} \rangle$
2956	$\sum_{i=1}^{n-1} (1, 1, \infty_i) = (1, 1, \infty_i) = \sum_{i=1}^{n-1} (1, 1, \ldots_i) = \sum_{i=1}^{n-1} (1, \ldots_i) = \sum$
2957	By simple fact: $2/a$ $h < a \ a\ ^2 + \frac{1}{\ b\ ^2}$ with $a = d \left[A^T(ak+1/2 - ak) \right]$, $b = a^{k+1/2} - a^{k+1}$
2958	By simple fact. $2\langle a, b \rangle \le \eta a + \frac{1}{\eta} b $ with $a = a_i \cdot [A_i (g + -a)]_{(j_i^k)}, b = x_i - x_i$,
2959	$\eta = 2\gamma$ and $a = \nabla r_i(x_i^{\kappa_{11/2}}) - \nabla r_i(x_i^{\kappa}), b = x_i^{\kappa_{11/2}} - x_i^{\kappa_{11/2}}, \eta = 2\gamma$, we get
2960	$\ x^{k+1} - x\ ^2 = \tau \ x^k - x\ ^2 + (1 - \tau)\ w^k - x\ ^2$
2901	$-\tau \ x^{k+1/2} - x^k\ ^2 - (1-\tau)\ w^k - x^{k+1/2}\ ^2 - \ x^{k+1/2} - x^{k+1}\ ^2$
2902	n
2903	$-2\gamma \langle A(x^{k+1/2}-x), y^{k+1/2} \rangle - 2\gamma \sum \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$
2904	$\sum_{i=1}^{n} (1 - i)^{n} (1 -$
2905	n $n \to 1/2$ $n \to 1/2$
2967	$-2\gamma \sum \langle d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T(y^{k+1/2} - u^k), x_i^{k+1/2} - x_i \rangle$
2968	$\overline{i=1}$
2969	$1 = 2\sum_{k=1}^{n} k + 4T(k+1/2 k) = 2 + \frac{1}{ k+1/2 k+1 2 }$
2970	$+ 2\gamma^{2} \sum_{i} \ d_{i} \cdot \langle A_{i}^{*}(y^{*+1/2} - u^{*}), e_{j_{i}^{k}} \rangle e_{j_{i}^{k}} \ ^{2} + \frac{1}{2} \ x^{*+1/2} - x^{*+1}\ ^{2}$
2971	i=1
2972	$+ 2\gamma^2 \sum_{k=1}^{n} \ \nabla r_k(x^{k+1/2}) - \nabla r_k(x^k)\ ^2 + \frac{1}{2} \ x^{k+1/2} - x^{k+1}\ ^2$
2973	$+27\sum_{i=1}^{n} \ \nabla r_i(x_i) - \nabla r_i(x_i)\ + 2^{n}$
2974	$\frac{1}{ _{\infty}^{k}} = \frac{ _{\infty}^{k}}{ _{\infty}^{k}} = \frac{ _{\infty}^{k}}{ _{\infty}^{k}} = \frac{ _{\infty}^{k}}{ $
2975	$= \tau \ x - x\ + (1 - \tau) \ w - x\ $
2976	$-\tau \ x^{k+1/2} - x^k\ ^2 - (1-\tau)\ w^k - x^{k+1/2}\ ^2$
2977	n = (k+1/2) $(k+1/2)$ $(k+1/2)$
2978	$-2\gamma \langle A(x^{\kappa+1/2}-x), y^{\kappa+1/2} \rangle - 2\gamma \sum \langle \nabla r_i(x_i^{\kappa+1/2}), x_i^{\kappa+1/2} - x_i \rangle$
2979	i=1
2980	$-2 \propto \sum_{k=1}^{n} (d_{k+1}/A^{T}(y^{k+1/2} - y^{k}) + y^{k}) + A^{T}(y^{k+1/2} - y^{k}) + x^{k+1/2} - x^{k})$
2981	$\sum_{i=1}^{2} \sqrt{u_i} \sqrt{u_i} \left(y - u_i \right), \sqrt{j_i^k} \sqrt{j_i^k} \sqrt{u_i} \left(y - u_i \right), \sqrt{u_i} \sqrt{u_i} $
2982	
2983	$+ 2\gamma^2 \sum \ d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{i^k} angle e_{i^k} \ ^2$
2984	i=1
2985	$\sum_{k=1}^{n} \frac{k+1/2}{2} \sum_{k=1}^{n} \frac{k}{k} \frac{k}{k}$
2986	$+ 2\gamma^2 \sum \ \nabla r_i(x_i + \gamma) - \nabla r_i(x_i^*)\ ^2.$
2987	i=1
2988	The analogue of (20) is $k+1$ $k+1$ $k+2$
2989	$\ x^{n+1} - x\ ^2 + \ w^{n+1} - x\ ^2$
2990	$\leq \ x^k - x\ ^2 + \ w^k - x\ ^2$
2991	$-\tau \ x^{k+1/2} - x^k\ ^2 - (1-\tau)\ w^k - x^{k+1/2}\ ^2$
2992	$r \parallel \omega \qquad \omega \parallel (1 \ r \) \parallel \omega \qquad \omega \parallel n$
2995	$-2\gamma \langle A(x^{k+1/2}-x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x^{k+1/2}), x^{k+1/2}, x^{k+1/2} - x_i \rangle$
2005	= / (- (
2995	$-(1-\tau)\ x^k\ ^2 - \tau\ w^k\ ^2 + \ w^{k+1}\ ^2$
2997	(1, i) $(1, i)$ $($
2998	$+2\langle (1- au)x^{n}+ au w^{n}-w^{n+1},x angle$
2999	$2n \sum_{k=1}^{n} \left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k}} \right) = \frac{1}{\sqrt{k}} \left(\frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k}} \right)$
3000	$-2\gamma \sum_{i=1}^{n} (u_{i} \cdot (A_{i} (y + i - u)), e_{j_{i}^{k}}) e_{j_{i}^{k}} - A_{i} (y + i - u), x_{i} - x_{i}^{*})$
3001	i=1 n
3002	$-2\gamma \sum \langle d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{ik} \rangle e_{ik} - A_i^T(y^{k+1/2} - u^k), x_i^0 - x_i \rangle$
	i=1

3003	
3004	$+ 2\gamma^2 \sum \ d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} \ ^2$
3005	$\overline{i=1}$
3006	$n \sum_{k=1}^{n} \dots \sum_{k=1}^{k+1/2} \dots \sum_{k=1}^{n} n$
3007	$+ 2\gamma^2 \sum \ \nabla r_i(x_i^{\kappa+1/2}) - \nabla r_i(x_i^{\kappa})\ ^2.$
3008	
3009	(21) is absolutely the same. The analogue of (22) is
3010	$\ y^{k+1} - y\ ^2 + \ u^{k+1} - y\ ^2$
3011	$< \ u^k - u\ ^2 + \ u^k - u\ ^2$
3012	$= \ g g\ + \ ^{\infty} g\ $ $= \frac{k+1}{2} k + \frac{1}{2} k + 1$
3013	$- au \ y^{n+1/2} - y^n\ ^2 - (1- au)\ u^n - y^{n+1/2}\ ^2$
3014	n (k+1/2) (k
3015	$-2\gamma\langle z^{++}, y^{++}, -y \rangle + 2\gamma\langle \sum_{i=1}^{n} A_i x_i^{++}, y^{++}, -y \rangle$
3016	i=1
3017	$+2\gamma \langle \sum_{k=1}^{n} [s \cdot (A_{i}(x_{k}^{k+1/2} - w_{k}^{k}) e_{k}) e_{k} + A_{i}w_{k}^{k} - A_{i}x_{k}^{k+1/2}] y^{k+1/2} - y^{0} \rangle$
3018	$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\sum_{i$
3019	n
3020	$+ 2\gamma \langle \sum [s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c^k} \rangle e_{c^k} + A_i w_i^k - A_i x_i^{k+1/2}], y^0 - y \rangle$
3021	$\overline{i=1}$ i i
3022	$-(1- au)\ y^k\ ^2 - au\ u^k\ ^2 + \ y^{k+1}\ ^2$
3023	$+ \frac{2}{(1-\tau)u^k} + \frac{\pi u^k}{(1-\tau)u^k} + \frac{\pi u^k}{$
3024	$+2\langle (1-i)g + ia - a , g \rangle$
3025	$+ 2\gamma^2 \ \sum_{k=1}^{n} e_k / A_k (x^{k+1/2} - w^k) e_k e_k ^2 + 2\gamma^2 \ x^{k+1/2} - x^k\ ^2$
3026	$ 2 / \sum_{i=1}^{n-1} \delta^{-1} \langle I_{i} (x_{i} - w_{i}), c_{c_{i}^{k}} / c_{c_{i}^{k}} + 2 / 2 - 2 .$
3027	The analogue of (23) is $(-1)^{-1}$
3028	$2 \propto \mathbb{E} \operatorname{gap}(\bar{x}^K \ \bar{z}^K \ \bar{y}^K)$
3029	$2/\Xi gap(w, z, g)$
3030	$\leq \frac{1}{L} \left(\max_{x} \ x^0 - x\ ^2 + \max_{x} \ w^0 - x\ ^2 + \max_{x} \ z^0 - z\ ^2 \right)$
3031	$K \setminus x \in \mathcal{X}$ is a $x \in \mathcal{X}$ is a $z \in \mathcal{Z}$ is a set of \mathcal{Z} is a set of $z \in \mathcal{Z}$ i
2022	$+ \max \ u^0 - u\ ^2 + \max \ u^0 - u\ ^2$
3033	$\left(\begin{array}{ccc} & & & \\ & & & \\ y \in \mathcal{Y} \end{array}\right) \left(\begin{array}{ccc} & & & \\ & & y \in \mathcal{Y} \end{array}\right) \left(\begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array}\right)$
3035	$\tau \sum_{k=1}^{K-1} -\pi k + 1/2$, $h=2, 1-\tau \sum_{k=1}^{K-1} -\pi k - k + 1/2 + 2$
3036	$-\frac{1}{K}\sum_{k}\mathbb{E}\ x^{\kappa+1/2}-x^{\kappa}\ ^{2}-\frac{1}{K}\sum_{k}\mathbb{E}\ w^{\kappa}-x^{\kappa+1/2}\ ^{2}$
3037	
3038	$1 \sum_{k=1}^{K-1} \frac{1}{k+1/2} $
3039	$-\frac{1}{K}\sum_{l=0}^{K} \mathbb{E}\left\ z^{l+l}-z^{l}\right\ $
3040	K=0 $K=1$ $K=1$
3041	$-\frac{\tau}{2}\sum_{k=1}^{N-1}\mathbb{E}\ u^{k+1/2}-u^{k}\ ^{2}-\frac{1-\tau}{2}\sum_{k=1}^{N-1}\mathbb{E}\ u^{k}-u^{k+1/2}\ ^{2}$
3042	$K \underset{k=0}{\overset{\sum}{\longrightarrow}} g $ $K \underset{k=0}{\overset{\sum}{\longrightarrow}} g $
3043	1 K-1
3044	$+ \frac{1}{\tau \tau} \sum \mathbb{E} \ w^{k+1}\ ^2 - (1-\tau) \ x^k\ ^2 - \tau \ w^k\ ^2$
3045	$K \underset{k=0}{\overset{\sim}{\underset{\scriptstyle}}}$
3046	K-1
3047	$+\frac{2}{\tau}\mathbb{E}\max\left[\sum_{k}\langle (1-\tau)x^{k}+\tau w^{k}-w^{k+1},x ight]$
3048	$K x \in \mathcal{X} \underset{k=0}{\overset{\frown}{\longrightarrow}} ($
3049	$1 \frac{K-1}{K-1}$
3050	$+ rac{1}{K} \sum \mathbb{E} \ y^{k+1}\ ^2 - (1- au) \ y^k\ ^2 - au \ u^k\ ^2$
3051	$\prod_{k=0}$
3052	$2 - \sum_{k=1}^{K-1} (k - k) + k - k + 1 - k$
3053	$+ \frac{1}{K} \underset{u \in \mathcal{V}}{\mathbb{E}} \sum_{\kappa \in \mathcal{V}} \left\langle (1 - \tau) y^{\kappa} + \tau u^{\kappa} - u^{\kappa+1}, y \right\rangle$
3054	k=0
3055	$2\gamma \sum_{k=1}^{K-1} \sum_{m=1,2,\ldots,k+1/2}^{n} \sum_{k=1,2,\ldots,k+1/2}^{K-1} \sum_{k=1,2,\ldots,k+1/2}^{n} \sum_{k=1,2,\ldots,k+1/2}^{K-1} \sum_{k=1,2,\ldots,k+1/2}^{n} \sum_{k=1,2,\ldots,k+1/2}^{K-1} \sum_{k=1,2,\ldots,k+1/2}^{n} \sum_{k=1,2,\ldots,k+1/2}^{K-1} \sum_{k=1,2,\ldots,k+1/2}^{N-1} \sum_{k=1,2,\ldots,k+1/2}^{$
3030	$-\frac{1}{K}\sum_{i=1}^{K}\sum_{i=1}^{k}\mathbb{E}\langle a_{i}\cdot[A_{i}^{-}(y^{n+i},-u^{n})]_{(j_{i}^{k})}-A_{i}^{-}(y^{n+i},-u^{n}),x_{i}^{-},-x_{i}^{0}\rangle$
	$k{=}0$ $i{=}1$

$$+ \frac{2\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|\sum_{i=1}^n s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2$$

$$+ \frac{2\gamma^2 L_r^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^k\|^2 + \frac{2\gamma^2}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^k\|^2$$

 $+ \frac{2\gamma^2}{K} \sum_{i=1}^{K-1} \sum_{i=1}^{n} \mathbb{E} \|d_i \cdot [A_i^T (y^{k+1/2} - u^k)]_{(j_i^k)}\|^2$

(24), (25), (26), (27) are absolutely the same. The analogue of (28) is

$$\mathbb{E}\langle d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T(y^{k+1/2} - u^k), x_i^{k+1/2} - x_i^0 \rangle$$

= $\mathbb{E}\langle \mathbb{E}_{j_i^k} \left[d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} \right] - A_i^T(y^{k+1/2} - u^k), x_i^{k+1/2} - x_i^0 \rangle = 0.$

 $+\frac{2\gamma^2}{K}\sum_{\ell=1}^{K-1}\mathbb{E}\|z^{k+1/2}-z^k\|^2+\frac{2\gamma^2L_{\ell}^2}{K}\sum_{\ell=1}^{K-1}\mathbb{E}\|z^{k+1/2}-z^k\|^2.$

 $+\frac{2\gamma}{K}\cdot\mathbb{E}_{x\in\mathcal{X}}\sum_{i=1}^{K-1}\sum_{i=1}^{n}\langle d_{i}\cdot[A_{i}^{T}(y^{k+1/2}-u^{k})]_{(j_{i}^{k})}-A_{i}^{T}(y^{k+1/2}-u^{k}),x_{i}-x_{i}^{0}\rangle$

 $+\frac{2\gamma}{K}\sum_{k=0}^{K-1}\mathbb{E}\langle\sum_{i=1}^{n}[s\cdot\langle A_{i}(x_{i}^{k+1/2}-w_{i}^{k}),e_{c_{i}^{k}}\rangle e_{c_{i}^{k}}+A_{i}w_{i}^{k}-A_{i}x_{i}^{k+1/2}],y^{k+1/2}-y^{0}\rangle$

 $+\frac{2\gamma}{K}\cdot\mathbb{E}\max_{y\in\mathcal{Y}}\sum_{k=0}^{K-1}\langle\sum_{i=1}^{n}[s\cdot\langle A_{i}(x_{i}^{k+1/2}-w_{i}^{k}),e_{c_{i}^{k}}\rangle e_{c_{i}^{k}}+A_{i}w_{i}^{k}-A_{i}x_{i}^{k+1/2}],y^{0}-y\rangle$

The analogue of (29) is

$$\mathbb{E}\langle \sum_{i=1}^{n} [s \cdot \langle A_{i}(x_{i}^{k+1/2} - w_{i}^{k}), e_{c_{i}^{k}} \rangle e_{c_{i}^{k}} + A_{i}w_{i}^{k} - A_{i}x_{i}^{k+1/2}], y^{k+1/2} - y^{0} \rangle$$

$$= \mathbb{E}\langle \sum_{i=1}^{n} \mathbb{E}_{c_{i}^{k}} [s \cdot \langle A_{i}(x_{i}^{k+1/2} - w_{i}^{k}), e_{c_{i}^{k}} \rangle e_{c_{i}^{k}}] + A_{i}w_{i}^{k} - A_{i}x_{i}^{k+1/2}, y^{k+1/2} - y^{0} \rangle = 0.$$

The analogue of (30) is

$$\begin{aligned} & \sup_{x \in \mathcal{X}} \sum_{i=1}^{n} \sum_{k=0}^{K-1} \langle d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T (y^{k+1/2} - u^k), x_i - x_i^0 \rangle \\ & \leq \mathbb{E}_{\max x} \frac{1}{2\gamma} \sum_{i=1}^{n} \|x_i^0 - x_i\|^2 \\ & \quad + \mathbb{E}_2^{\gamma} \sum_{i=1}^{n} \|\sum_{k=0}^{K-1} d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T (y^{k+1/2} - u^k) \|^2 \\ & \quad + \mathbb{E}_2^{\gamma} \sum_{i=1}^{n} \|\sum_{k=0}^{K-1} d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T (y^{k+1/2} - u^k) \|^2 \\ & \quad = \mathbb{E}_{\max x} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}_2^{\gamma} \sum_{i=1}^{n} \sum_{k=0}^{K-1} \|d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T (y^{k+1/2} - u^k) \|^2 \\ & \quad + \mathbb{E} \left[\gamma \sum_{i=1}^{n} \sum_{k_1 < k_2} \langle d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T (y^{k+1/2} - u^k) \rangle \right] \\ & \quad d_i \cdot [A_i^T (y^{k_2 + 1/2} - u^{k_2})]_{(j_i^{k_2})} - A_i^T (y^{k_2 + 1/2} - u^k) \rangle \right] \\ & \quad = \mathbb{E}_{\max x} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}_2^{\gamma} \sum_{i=1}^{n} \sum_{k=0}^{K-1} \|d_i \cdot \langle A_i^T (y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T (y^{k+1/2} - u^k) \rangle \right] \end{aligned}$$

$$\begin{split} & \overset{3111}{12} & + \mathbb{E} \bigg[\gamma \sum_{i=1}^{n} \sum_{k_1 < k_2} \langle d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T(y^{k_1 + 1/2} - u^{k_1}), \\ & \overset{3113}{114} \\ & \overset{3114}{115} & \mathbb{E}_{j_i^{k_2}} \big[d_i \cdot [A_i^T(y^{k_2 + 1/2} - u^{k_2})]_{(j_i^{k_2})} \big] - A_i^T(y^{k_2 + 1/2} - u^k) \rangle \bigg] \end{split}$$

$$= \mathbb{E}_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}_{\frac{\gamma}{2}} \sum_{i=1}^n \sum_{k=0}^{K-1} \|d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} - A_i^T(y^{k+1/2} - u^k) \|^2$$
$$= \mathbb{E}_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2$$

$$+ \mathbb{E}\frac{\gamma}{2} \sum_{i=1}^{n} \sum_{k=0}^{K-1} \|d_i \cdot [A_i^T(y^{k+1/2} - u^k)]_{(j_i^k)} - \mathbb{E}_{j_i^k} [d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k}] \|^2$$

$$\leq \mathbb{E}\max_{x \in \mathcal{X}} \frac{1}{2\gamma} \|x^0 - x\|^2 + \mathbb{E}\frac{\gamma}{2} \sum_{i=1}^n \sum_{k=0}^{K-1} \|d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} \|^2.$$

The analogue of (31) is

$$\begin{split} & \mathbb{E}_{y \in \mathcal{Y}} \sum_{k=0}^{K-1} \langle \sum_{i=1}^{n} [s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} + A_i w_i^k - A_i x_i^{k+1/2}], y^0 - y \rangle \\ & \leq \mathbb{E}_{\max} \frac{1}{2\gamma} \|y^0 - y\|^2 + \mathbb{E} \frac{\gamma}{2} \sum_{k=0}^{K-1} \|\sum_{i=1}^{n} s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2. \end{split}$$

The analogue of (32) is

$$\begin{aligned} & 3136 \\ & 3137 \\ & 2\gamma \mathbb{E}\text{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \\ & \leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} \\ & + 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right) \\ & + 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right) \\ & - \left(\frac{3\tau - 1}{2} - 2\gamma^{2}L_{r}^{2} \right) \cdot \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|x^{k+1/2} - x^{k}\|^{2} - \frac{1 - \tau}{2K} \sum_{k=0}^{K-1} \mathbb{E} \|w^{k} - x^{k+1/2}\|^{2} \\ & - \left(1 - 2\gamma^{2}(1 + L_{\ell}^{2}) \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|z^{k+1/2} - z^{k}\|^{2} \\ & - \left(\frac{3\tau - 1}{2} - 2\gamma^{2} \right) \frac{1}{K} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - y^{k}\|^{2} - \frac{1 - \tau}{2K} \sum_{k=0}^{K-1} \mathbb{E} \|u^{k} - y^{k+1/2}\|^{2} \\ & + \frac{3\gamma^{2}}{K} \sum_{k=0}^{K-1} \sum_{i=1}^{n} \mathbb{E} \|d_{i} \cdot \langle A_{i}^{T}(y^{k+1/2} - u^{k}), e_{j_{i}^{k}} \rangle e_{j_{i}^{k}}\|^{2} \\ & + \frac{3\gamma^{2}}{K} \sum_{k=0}^{K-1} \mathbb{E} \|\sum_{i=1}^{n} s \cdot \langle A_{i}(x_{i}^{k+1/2} - w_{i}^{k}), e_{c_{i}^{k}} \rangle e_{c_{i}^{k}}\|^{2}. \end{aligned}$$

$$(46)$$

Let us estimate two last lines. Here we use that coordinates j_i and c_i are chosen uniformly and independently.

$$\mathbb{E}\|d_i \cdot \langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k}\|^2 = d_i^2 \mathbb{E}\mathbb{E}_{e_{j_i^k}} \left[\|\langle A_i^T(y^{k+1/2} - u^k), e_{j_i^k} \rangle e_{j_i^k} \|^2 \right]$$

3162
3163
3164
$$= d_i^2 \mathbb{E} \frac{1}{d_i} \sum_{r=1}^{d_i} \left[\|\langle A_i^T(y^{k+1/2} - u^k), e_r \rangle e_r \|^2 \right]$$
3164

$$= d_i \mathbb{E} \|A_i^T (y^{k+1/2} - u^k)\|^2$$

 $\leq d_i \lambda_{\max}(A_i A_i^T) \mathbb{E} \| y^{k+1/2} - u^k \|^2.$ For $\mathbb{E} \| \sum_{i=1}^n s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2$ we have two options. If $c_i^k = c^k$ for all i, then $\sum_{i=1}^{n} \sum_{i=1}^{n} s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} = s \langle \sum_{i=1}^{n} [A_i(x_i^{k+1/2} - w_i^k)], e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c^k} \rangle e_{c^k} \rangle e_{c^k} = s \langle A(x^{k+1/2} - w_i^k)] \rangle e_{c^k} \rangle e_{c$ w^k), $e_{c^k} \rangle e_{c^k}$, then $\mathbb{E}\|\sum_{i=1}^{n} s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2 = \mathbb{E}\|s \langle A(x^{k+1/2} - w^k), e_{c^k} \rangle e_{c^k} \|^2$ $=s^{2}\mathbb{E}\mathbb{E}_{c^{k}}\left[\|\langle A(x^{k+1/2}-w^{k}),e_{c^{k}}\rangle e_{c^{k}}\|^{2}\right]$ $=s^{2}\mathbb{E}\frac{1}{s}\sum^{s} \|\langle A(x^{k+1/2}-w^{k}), e_{r}\rangle e_{r}\|^{2}$ $=s\mathbb{E}\left[\|A(x^{k+1/2}-w^k)\|^2\right]$ $\leq s\lambda_{\max}(A^TA)\mathbb{E}||x^{k+1/2} - w^k||^2$ If c_i^k are chosen independently (i.e. $c_i^k \neq c_i^k$), then $\mathbb{E} \| \sum_{i=1}^{n} s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2$ $= \sum_{i=1}^{n} \mathbb{E} \| s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2$ $+\sum_{i < i} \mathbb{E} \langle s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k}, s \cdot \langle A_j(x_j^{k+1/2} - w_j^k), e_{c_j^k} \rangle e_{c_j^k} \rangle$ $= \sum_{i=1}^{n} \mathbb{E} \| s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2$ $+\sum_{i \in I} \mathbb{E} \langle \mathbb{E}_{c_i^k} \left[s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \right], \mathbb{E}_{c_j^k} \left[s \cdot \langle A_j(x_j^{k+1/2} - w_j^k), e_{c_j^k} \rangle e_{c_j^k} \rangle \right]$ $= \sum_{i=1}^{n} \mathbb{E} \| s \cdot \langle A_i(x_i^{k+1/2} - w_i^k), e_{c_i^k} \rangle e_{c_i^k} \|^2$ + $\sum_{i \neq j} \mathbb{E} \langle A_i(x_i^{k+1/2} - w_i^k), A_j(x_j^{k+1/2} - w_j^k) \rangle$ $= s^{2} \sum_{i=1}^{n} \mathbb{E} \| \langle A_{i}(x_{i}^{k+1/2} - w_{i}^{k}), e_{c_{i}^{k}} \rangle e_{c_{i}^{k}} \|^{2}$ $+\mathbb{E}\|\sum_{i=1}^{n}[A_{i}x_{i}^{k+1/2}-A_{i}w_{i}^{k}]\|^{2}-\sum_{i=1}^{n}\mathbb{E}\|A_{i}x_{i}^{k+1/2}-A_{i}w_{i}^{k}\|^{2}$ $\leq s \sum_{i=1}^{n} \mathbb{E} \|A_{i}x_{i}^{k+1/2} - A_{i}w_{i}^{k}\|^{2} + \mathbb{E} \|A(x^{k+1/2} - w^{k})\|^{2}$ $\leq s \sum_{i=1}^{n} \lambda_{\max}(A_{i}^{T}A_{i}) \mathbb{E} \|x_{i}^{k+1/2} - w_{i}^{k}\|^{2} + \lambda_{\max}(A^{T}A) \mathbb{E} \|x^{k+1/2} - w^{k}\|^{2}$ $\leq s \max_{i} \left\{ \lambda_{\max}(A_{i}^{T}A_{i}) \right\} \sum_{i=1}^{n} \mathbb{E} \|x_{i}^{k+1/2} - w_{i}^{k}\|^{2} + \lambda_{\max}(A^{T}A)\mathbb{E} \|x^{k+1/2} - w^{k}\|^{2}$ $= \left(s \max_{i} \left\{\lambda_{\max}(A_i^T A_i)\right\} + \lambda_{\max}(A^T A)\right) \mathbb{E} \|x^{k+1/2} - w^k\|^2.$ Let us introduce $\chi_{\text{coord}} = \begin{cases} s\lambda_{\max}(A^T A), \\ s\max_i \left\{ \lambda_{\max}(A_i^T A_i) \right\} + \lambda_{\max}(A^T A), \end{cases}$

depending on the case c_i we consider. It remains to come back to (46) and get $2\gamma \mathbb{E} \operatorname{gap}(\bar{x}^K, \bar{z}^K, \bar{y}^K)$ $\leq \frac{1}{K} \left(6 \max_{x \in \mathcal{X}} \|x^0 - x\|^2 + \max_{x \in \mathcal{X}} \|w^0 - x\|^2 + \max_{z \in \mathcal{Z}} \|z^0 - z\|^2 \right)$ $+6 \max_{u \in \mathcal{V}} \|y^0 - y\|^2 + \max_{u \in \mathcal{V}} \|u^0 - y\|^2$ $-\left(\frac{3\tau-1}{2}-2\gamma^{2}L_{r}^{2}\right)\cdot\frac{1}{K}\sum_{r}^{K-1}\mathbb{E}\|x^{k+1/2}-x^{k}\|^{2}-\frac{1-\tau}{2K}\sum_{r}^{K-1}\mathbb{E}\|w^{k}-x^{k+1/2}\|^{2}$ $-\left(1-2\gamma^{2}(1+L_{\ell}^{2})\right)\frac{1}{K}\sum_{k=0}^{K-1}\mathbb{E}\|z^{k+1/2}-z^{k}\|^{2}$ $-\left(\frac{3\tau-1}{2}-2\gamma^2\right)\frac{1}{K}\sum_{k=1}^{K-1}\mathbb{E}\|y^{k+1/2}-y^k\|^2-\frac{1-\tau}{2K}\sum_{k=0}^{K-1}\mathbb{E}\|u^k-y^{k+1/2}\|^2$ + $\frac{3\gamma^2}{K} \sum_{i=1}^{K-1} \sum_{j=1}^{n} d_i \lambda_{\max}(A_i A_i^T) \mathbb{E} \| y^{k+1/2} - u^k \|^2$ $+\frac{3\gamma^2\chi_{\text{coord}}}{K}\sum_{k=1}^{K-1}\mathbb{E}\|x^{k+1/2}-w^k\|^2$ $\leq \frac{1}{K} \bigg(6 \max_{x \in \mathcal{X}} \|x^0 - x\|^2 + \max_{x \in \mathcal{X}} \|w^0 - x\|^2 + \max_{z \in \mathcal{Z}} \|z^0 - z\|^2$ $+6 \max_{u \in \mathcal{V}} \|y^0 - y\|^2 + \max_{u \in \mathcal{V}} \|u^0 - y\|^2$ $-\left(\frac{3\tau-1}{2}-2\gamma^{2}L_{r}^{2}\right)\cdot\frac{1}{K}\sum_{k=1}^{K-1}\mathbb{E}\|x^{k+1/2}-x^{k}\|^{2}-\frac{1-\tau}{2K}\sum_{k=1}^{K-1}\mathbb{E}\|w^{k}-x^{k+1/2}\|^{2}$ $-\left(1-2\gamma^{2}(1+L_{\ell}^{2})\right)\frac{1}{K}\sum^{K-1}\mathbb{E}\|z^{k+1/2}-z^{k}\|^{2}$ $-\left(\frac{3\tau-1}{2}-2\gamma^{2}\right)\frac{1}{K}\sum_{k=1}^{K-1}\mathbb{E}\|y^{k+1/2}-y^{k}\|^{2}-\frac{1-\tau}{2K}\sum_{k=1}^{K-1}\mathbb{E}\|u^{k}-y^{k+1/2}\|^{2}$ + $\frac{3\gamma^2}{K} \cdot d \max_i \{\lambda_{\max}(A_i^T A_i)\} \sum_{k=0}^{K-1} \mathbb{E} \|y^{k+1/2} - u^k\|^2$ + $\frac{3\gamma^2\chi_{\text{coord}}}{K}\sum_{k=1}^{K-1}\mathbb{E}\|x^{k+1/2}-w^k\|^2.$

3261 If we choose $\tau \geq \frac{1}{2}$ and γ as follows

$$\gamma \leq \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\chi_{\text{coord}}}}; \sqrt{\frac{1-\tau}{d \max_i \{\lambda_{\max}(A_i^T A_i)\}}}; \right\},$$

then one can obtain

$$\mathbb{E}\text{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) \leq \frac{1}{2\gamma K} \left(6 \max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{x \in \mathcal{X}} \|w^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} + 6 \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2} + \max_{y \in \mathcal{Y}} \|u^{0} - y\|^{2} \right).$$

With $\gamma = \frac{1}{4} \min \left\{ 1; \frac{1}{L_r}; \frac{1}{L_\ell}; \sqrt{\frac{1-\tau}{\chi_{\text{coord}}}}; \sqrt{\frac{1-\tau}{d \max_i \{\lambda_{\max}(A_i^T A_i)\}}}; \right\}$, we finish the proof.

D.7 PROOF OF THEOREM 4.1

Theorem D.8 (Theorem 4.1). Let Assumption 2.1 holds. Let problem (6) be solved by Algorithm 6 (Appendix A). Then for

$$\gamma = \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\max_i\{\lambda_{\max}(A_i^T A_i)\}}}; \frac{1}{L_r}; \frac{1}{nL_\ell}\right\}$$

it holds that

$$gap_1(\bar{x}^K, \bar{z}^K, \bar{y}^K) = \mathcal{O}\left(\frac{\left(1 + \sqrt{\max_{i=1,\dots,n} \{\lambda_{\max}(A_i^T A_i)\}} + nL_\ell + L_r\right)D^2}{K}\right),$$

where $gap_1(x,y) := \max_{\tilde{y}_i \in \tilde{\mathcal{Y}}} \tilde{L}(x,z,\tilde{y}) - \min_{\tilde{x},z \in \mathcal{X},\tilde{\mathcal{Z}}} \tilde{L}(\tilde{x},\tilde{z},y)$ and \bar{x}^K $\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{z}^K := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^K := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$ and D^2 $\max_{x,z,y \in \mathcal{X},\mathcal{Z},\mathcal{Y}} \left[\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2 \right].$:=:=

> *Proof.* We start the proof from (11), since the updates for x_i variables in Algorithms 1, 6 are the same (with a slight modification y to y_i):

$$\begin{aligned} \|x_i^{k+1} - x_i\|^2 &= \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ &- 2\gamma \langle A_i(x_i^{k+1/2} - x_i), y_i^{k+1/2} \rangle - 2\gamma \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle \\ &- 2\gamma \langle x_i^{k+1} - x_i^{k+1/2}, A_i^T(y_i^{k+1/2} - y_i^k) \rangle \\ &- 2\gamma \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle \end{aligned}$$

 $-2\gamma \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle.$ By simple fact: $2\langle a, b \rangle \leq \eta \|a\|^2 + \frac{1}{\eta} \|b\|^2$ with $a = A_i^T (y_i^{k+1/2} - y_i^k), b = x_i^{k+1/2} - x_i^{k+1}, \eta = 2\gamma$ and $a = \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), b = x_i^{k+1/2} - x_i^{k+1}, \eta = 2\gamma$, we get

$$\begin{split} \|x_i^{k+1} - x_i\|^2 &= \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 \\ &- 2\gamma \langle A_i(x_i^{k+1/2} - x_i), y_i^{k+1/2} \rangle - 2\gamma \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle \\ &+ 2\gamma^2 \|A_i^T(y_i^{k+1/2} - y_i^k)\|^2 + 2\gamma^2 \|\nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k)\|^2. \end{split}$$

Summing over all i from 1 to n and using the notation of $A = [A_1, \ldots, A_i, \ldots, A_n], x =$ $[x_1^T,\ldots,x_i^T,\ldots,x_n^T]^T$, we deduce

$$\begin{aligned} \|x^{k+1} - x\|^2 &= \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 - \|x^{k+1/2} - x^{k+1}\|^2 \\ &= 2\gamma \sum_{i=1}^n \langle A_i(x_i^{k+1/2} - x_i), y_i^{k+1/2} \rangle - 2\gamma \sum_{i=1}^n \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle \\ &= 2\gamma \sum_{i=1}^n \langle A_i(x_i^{k+1/2} - x_i), y_i^{k+1/2} \rangle - 2\gamma \sum_{i=1}^n \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle \\ &= 2\gamma \sum_{i=1}^n \langle x_i^{k+1} - x_i^{k+1/2}, A_i^T(y_i^{k+1/2} - y_i^k) \rangle \end{aligned}$$

3312
$$-2\gamma \sum_{i=1} \langle x_i^{k+1} - x_i^{k+1/2}, A_i^T (y_i^k) \rangle$$

i=1

$$-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle.$$
(47)

Using the same steps as for (47), one can obtain for the notation of $z = [z_1^T, \ldots, z_i^T, \ldots, z_n^T]^T$ and $y = [y_1^T, \dots, y_i^T, \dots, y_n^T]^T,$

3319
$$||z^{k+1} - z||^2 \le ||z^k - z||^2 - ||z^{k+1/2} - z^k||^2 - ||z^{k+1/2} - z^{k+1}||^2$$

3320 n

$$+ 2\gamma \sum_{i=1}^{n} \langle y_i^{k+1/2}, z_i^{k+1/2} - z_i \rangle - 2\gamma \langle \nabla \ell \left(\sum_{j=1}^{n} z_j^{k+1/2}, b \right), \sum_{j=1}^{n} z_j^{k+1/2} - \sum_{j=1}^{n} z_j \rangle$$

3324
3325
3326
$$-2\gamma^2 n \|\nabla \ell\left(\sum_{j=1}^n z_j^{k+1/2}, b\right) - \nabla \ell\left(\sum_{j=1}^n z_j^k, b\right)\|^2 + 2\gamma^2 \|y^{k+1/2} - y^k\|^2,$$
(48)

and, $\|y^{k+1} - y\|^2 \le \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2 - \|y^{k+1/2} - y^{k+1}\|^2$ $-2\gamma \sum_{i=1}^{n} \langle z_i^{k+1/2}, y_i^{k+1/2} - y_i \rangle + 2\gamma \sum_{i=1}^{n} \langle A_i x_i^{k+1/2}, y_i^{k+1/2} - y_i \rangle$ + $2\gamma^2 \sum_{i=1}^{n} \|A_i(x_i^{k+1/2} - x_i^k)\|^2 + 2\gamma^2 \|z^{k+1/2} - z^k\|^2.$ (49)Summing up (47), (48) and (49), we obtain $||x^{k+1} - x||^2 + ||z^{k+1} - z||^2 + ||y^{k+1} - y||^2$ $< ||x^k - x||^2 + ||z^k - z||^2 + ||y^k - y||^2$ $- \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2$ $-2\gamma \sum_{i=1}^{k} \langle A_i(x_i^{k+1/2} - x_i), y_i^{k+1/2} \rangle + 2\gamma \sum_{i=1}^{k} \langle y_i^{k+1/2}, z_i^{k+1/2} - z_i \rangle$ $-2\gamma \sum_{i=1}^{n} \langle z_{i}^{k+1/2}, y_{i}^{k+1/2} - y_{i} \rangle + 2\gamma \sum_{i=1}^{n} \langle A_{i} x_{i}^{k+1/2}, y_{i}^{k+1/2} - y_{i} \rangle$ $-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle - 2\gamma \langle \nabla \ell \left(\sum_{i=1}^{n} z_j^{k+1/2}, b \right), \sum_{i=1}^{n} z_j^{k+1/2} - \sum_{i=1}^{n} z_j \rangle$ $+2\gamma^{2}\sum_{i=1}^{n} \|A_{i}^{T}(y_{i}^{k+1/2}-y_{i}^{k})\|^{2}+2\gamma^{2}\sum_{i=1}^{n} \|\nabla r_{i}(x_{i}^{k+1/2})-\nabla r_{i}(x_{i}^{k})\|^{2}$ $+ 2\gamma^{2} \|y^{k+1/2} - y^{k}\|^{2} + 2\gamma^{2}n \|\nabla \ell \left(\sum_{j=1}^{n} z_{j}^{k+1/2}, b\right) - \nabla \ell \left(\sum_{j=1}^{n} z_{j}^{k}, b\right) \|^{2}$ $+ 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \sum_{i=1}^n \|A_i(x_i^{k+1/2} - x_i^k)\|^2.$ Using the definition of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue, we get $||x^{k+1} - x||^2 + ||z^{k+1} - z||^2 + ||y^{k+1} - y||^2$ $\leq \|x^{k} - x\|^{2} + \|z^{k} - z\|^{2} + \|y^{k} - y\|^{2}$ $- \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2$ $+2\gamma \sum_{i=1}^{n} \langle A_{i} x_{i} - z_{i}, y_{i}^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle A_{i} x_{i}^{k+1/2} - z_{i}^{k+1/2}, y_{i} \rangle$ $-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle - 2\gamma \langle \nabla \ell \left(\sum_{i=1}^{n} z_j^{k+1/2}, b \right), \sum_{i=1}^{n} z_j^{k+1/2} - \sum_{i=1}^{n} z_j \rangle$ $+2\gamma^{2}\sum_{i=1}^{k}\lambda_{\max}(A_{i}A_{i}^{T})\|y_{i}^{k+1/2}-y_{i}^{k}\|^{2}+2\gamma^{2}\sum_{i=1}^{k}\|\nabla r_{i}(x_{i}^{k+1/2})-\nabla r_{i}(x_{i}^{k})\|^{2}$ $+ 2\gamma^{2} \|y^{k+1/2} - y^{k}\|^{2} + 2\gamma^{2}n \|\nabla \ell \left(\sum_{j=1}^{n} z_{j}^{k+1/2}, b\right) - \nabla \ell \left(\sum_{j=1}^{n} z_{j}^{k}, b\right) \|^{2}$ $+ 2\gamma^{2} \|z^{k+1/2} - z^{k}\|^{2} + 2\gamma^{2} \sum_{i=1}^{n} \lambda_{\max}(A_{i}^{T}A_{i}) \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2}$ $\leq \|x^{k} - x\|^{2} + \|z^{k} - z\|^{2} + \|y^{k} - y\|^{2}$ $- \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2$

$$+ 2\gamma \sum_{i=1}^{n} \langle A_i x_i - z_i, y_i^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle A_i x_i^{k+1/2} - z_i^{k+1/2}, y_i \rangle$$

$$3383$$

$$-2\gamma \sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle - 2\gamma \langle \nabla \ell \left(\sum_{j=1}^{n} z_j^{k+1/2}, b \right), \sum_{j=1}^{n} z_j^{k+1/2} - \sum_{j=1}^{n} z_j \rangle$$

+
$$2\gamma^2 \max_i \{\lambda_{\max}(A_i A_i^T)\} \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 \sum_{i=1}^n \|\nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k)\|^2$$

$$+ 2\gamma^{2} \|y^{k+1/2} - y^{k}\|^{2} + 2\gamma^{2}n\|\nabla \ell \left(\sum_{j=1}^{n} z_{j}^{k+1/2}, b\right) - \nabla \ell \left(\sum_{j=1}^{n} z_{j}^{k}, b\right)\|^{2} + 2\gamma^{2} \|z^{k+1/2} - z^{k}\|^{2} + 2\gamma^{2} \max_{i} \{\lambda_{\max}(A_{i}^{T}A_{i})\}\|x^{k+1/2} - x^{k}\|^{2}.$$

Using convexity and L_r -smoothness of the function r_i with convexity and L_ℓ -smoothness of the function ℓ , we have

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ = \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ + 2\gamma \sum_{i=1}^n \langle A_i x_i - z_i, y_i^{k+1/2} \rangle - 2\gamma \sum_{i=1}^n \langle A_i x_i^{k+1/2} - z_i^{k+1/2}, y_i \rangle \\ \leq 2\gamma \sum_{i=1}^n (r_i (x_i^{k+1/2}) - r_i (x_i)) - 2\gamma (\ell \left(\sum_{j=1}^n z_j^{k+1/2}, b\right) - \ell \left(\sum_{j=1}^n z_j, b\right)) \\ + 2\gamma^2 \max_i \{\lambda_{\max} (A_i A_i^T)\} \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 L_r^2 \|x^{k+1/2} - x^k\|^2 \\ + 2\gamma^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 n L_\ell^2 \|\sum_{j=1}^n z_j^{k+1/2} - \sum_{j=1}^n z_j^k\|^2 \\ + 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \max_i \{\lambda_{\max} (A_i^T A_i)\} \|x^{k+1/2} - x^k\|^2. \end{aligned}$$

Cauchy Schwartz inequality in the form: $\|\sum_{j=1}^n (z_j^{k+1/2} - z_j^k)\|^2 \le n \sum_{j=1}^n \|z_j^{k+1/2} - z_j^k\|^2$, gives

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ = \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ + 2\gamma \sum_{i=1}^n \langle A_i x_i - z_i, y_i^{k+1/2} \rangle - 2\gamma \sum_{i=1}^n \langle A_i x_i^{k+1/2} - z_i^{k+1/2}, y_i \rangle \\ = 2\gamma \sum_{i=1}^n (r_i (x_i^{k+1/2}) - r_i (x_i)) - 2\gamma (\ell \left(\sum_{j=1}^n z_j^{k+1/2}, b\right) - \ell \left(\sum_{j=1}^n z_j, b\right)) \\ + 2\gamma^2 \max_i \{\lambda_{\max} (A_i A_i^T)\} \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 L_r^2 \|x^{k+1/2} - x^k\|^2 \\ + 2\gamma^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 n^2 L_\ell^2 \|z^{k+1/2} - z^k\|^2 \\ + 2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \max_i \{\lambda_{\max} (A_i^T A_i)\} \|x^{k+1/2} - x^k\|^2. \end{aligned}$$
With the choice of $\gamma \leq \frac{1}{2} \cdot \min \left\{ 1; \frac{1}{\sqrt{\max_i \{\lambda_{\max} (A_i^T A_i)\}}}; \frac{1}{L_r}; \frac{1}{nL_\ell} \right\},$ we get

$$||x^{k+1} - x||^2 + ||z^{k+1} - z||^2 + ||y^{k+1} - y||^2$$

3435
3436
$$\leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2$$

$$+2\gamma \sum_{i=1}^{n} \langle A_{i} x_{i} - z_{i}, y_{i}^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle A_{i} x_{i}^{k+1/2} - z_{i}^{k+1/2}, y_{i} \rangle$$

$$-2\gamma \sum_{i=1}^{n} (r_i(x_i^{k+1/2}) - r_i(x_i)) - 2\gamma(\ell\left(\sum_{j=1}^{n} z_j^{k+1/2}, b\right) - \ell\left(\sum_{j=1}^{n} z_j, b\right)).$$

After small rearrangements, we obtain

$$(\ell \left(\sum_{j=1}^{n} z_{j}^{k+1/2}, b\right) - \ell \left(\sum_{j=1}^{n} z_{j}, b\right)) + \sum_{i=1}^{n} \left(r_{i}(x_{i}^{k+1/2}) - r_{i}(x_{i})\right) + \sum_{i=1}^{n} \langle A_{i}x_{i}^{k+1/2} - z_{i}^{k+1/2}, y_{i} \rangle - \sum_{i=1}^{n} \langle A_{i}x_{i} - z_{i}, y_{i}^{k+1/2} \rangle \leq \frac{1}{2\gamma} \left(\|x^{k} - x\|^{2} + \|z^{k} - z\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1} - x\|^{2} - \|z^{k+1} - z\|^{2} - \|y^{k+1} - y\|^{2} \right).$$

Then we sum all over k from 0 to K - 1, divide by K, and have

$$\begin{split} \frac{1}{K} \sum_{k=0}^{K-1} (\ell \left(\sum_{j=1}^{n} z_{j}^{k+1/2}, b \right) - \ell \left(\sum_{j=1}^{n} z_{j}, b \right)) + \sum_{i=1}^{n} \frac{1}{K} \sum_{k=0}^{K-1} \left(r_{i}(x_{i}^{k+1/2}) - r_{i}(x_{i}) \right) \\ + \sum_{i=1}^{n} \langle A_{i}x_{i}^{k+1/2} - z_{i}^{k+1/2}, y_{i} \rangle - \sum_{i=1}^{n} \langle A_{i}x_{i} - z_{i}, y_{i}^{k+1/2} \rangle \\ &\leq \frac{1}{2\gamma K} \left(\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2} - \|x^{K} - x\|^{2} - \|z^{K} - z\|^{2} - \|y^{K} - y\|^{2} \right) \\ &\leq \frac{1}{2\gamma K} (\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2}). \end{split}$$

With Jensen inequality for convex functions ℓ and r_i , one can note that

$$\ell\left(\frac{1}{K}\sum_{k=0}^{K-1}\sum_{j=1}^{n}z_{j}^{k+1/2},b\right) \leq \frac{1}{K}\sum_{k=0}^{K-1}\ell\left(\sum_{j=1}^{n}z_{j}^{k+1/2},b\right),$$
$$r_{i}\left(\frac{1}{K}\sum_{k=0}^{K-1}x_{i}^{k+1/2}\right) \leq \frac{1}{K}\sum_{k=0}^{K-1}r_{i}(x_{i}^{k+1/2}).$$

 $r_i \left(\overline{K} \sum_{k=0}^{K} x_i^{K+1/2} \right) \leq \overline{K} \sum_{k=0}^{K} r_i (x_i^{K+1/2}).$ Then, with notation $\bar{x}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}, \bar{z}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} z_i^{k+1/2}, \bar{y}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} y_i^{k+1/2}$, we have

$$\ell\left(\sum_{i=1}^{n} \bar{z}_{i}^{K}, b\right) - \ell\left(\sum_{i=1}^{n} z_{i}, b\right) + \sum_{i=1}^{n} \left(r_{i}(\bar{x}_{i}^{K}) - r_{i}(x_{i})\right) \\ + \sum_{i=1}^{n} \langle A_{i}x_{i}^{k+1/2} - z_{i}^{k+1/2}, y_{i} \rangle - \sum_{i=1}^{n} \langle A_{i}x_{i} - z_{i}, y_{i}^{k+1/2} \rangle \\ \leq \frac{1}{2\gamma K} (\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2})$$

Following the definition of gap_1, we only need to take the maximum in the variable $y_i \in \mathcal{Y}$ and the minimum in $x \in \mathcal{X}$ and $z_i \in \mathcal{Z}$.

 $\operatorname{gap}_1(\bar{x}^K, \bar{z}^K, \bar{y}^K)$

D.8 PROOF OF THEOREM C.1

Theorem D.9 (Theorem C.1). Let Assumption 2.1 holds. Let problem (8) be solved by Algorithm 9. Then for

$$\gamma = \frac{1}{4} \cdot \min\left\{1; \frac{1}{\rho}; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{\sqrt{\rho\lambda_{\max}(A^T A)}}; \frac{1}{\rho\lambda_{\max}(A^T A)}; \frac{1}{L_r}; \frac{1}{L_\ell}\right\},\,$$

it holds that

$$gap_{aug}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\frac{\left(1 + \rho + \sqrt{(1 + \rho)\lambda_{\max}(A^{T}A)} + \rho\lambda_{\max}(A^{T}A) + L_{\ell} + L_{r}\right)D^{2}}{K}\right)$$

where $gap_{aug}(x, z, y) := \max_{\tilde{y} \in \mathcal{Y}} L_{aug}(x, z, \tilde{y}) - \min_{\tilde{x}, \tilde{z} \in \mathcal{X}, \mathcal{Z}} L_{aug}(\tilde{x}, \tilde{z}, y)$ and \bar{x}^{K} $\frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \quad \bar{z}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \quad \bar{y}^{K} := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$ and D^{2} $\max_{x, z, y \in \mathcal{X}, \mathcal{Z}, \mathcal{Y}} [\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2}].$:=:=

To prove the convergence it is sufficient to show that the problem is convex-concave (Lemma D.12), to estimate the Lipschitz constant of gradients and use the general results from (Nemirovski, 2004). But for completeness, we give the proof of our special case here.

Proof. We start the proof with the following equations on the variables x_i^{k+1} , $x_i^{k+1/2}$, x_i^k and any $x_i \in \mathbb{R}^{d_i}$:

$$\begin{split} \|x_i^{k+1} - x_i\|^2 &= \|x_i^k - x_i\|^2 + 2\langle x_i^{k+1} - x_i^k, x_i^{k+1} - x_i\rangle - \|x_i^{k+1} - x_i^k\|^2, \\ \|x_i^{k+1/2} - x_i^{k+1}\|^2 &= \|x_i^k - x_i^{k+1}\|^2 + 2\langle x_i^{k+1/2} - x_i^k, x_i^{k+1/2} - x_i^{k+1}\rangle - \|x_i^{k+1/2} - x_i^k\|^2. \end{split}$$

Summing up two previous inequalities and making small rearrangements, we get

$$\begin{aligned} \|x_i^{k+1} - x_i\|^2 &= \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ &+ 2\langle x_i^{k+1} - x_i^k, x_i^{k+1} - x_i\rangle + 2\langle x_i^{k+1/2} - x_i^k, x_i^{k+1/2} - x_i^{k+1/2}\rangle \end{aligned}$$

Using that $x_i^{k+1} - x_i^k = -\gamma (A_i^T y^{k+1/2} + \nabla r_i (x_i^{k+1/2}) + \rho A_i^T (\sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2}))$ and $x_i^{k+1/2} - x_i^k = -\gamma (A_i^T y^k + \nabla r_i (x_i^k) + \rho A_i^T (\sum_{i=1}^n A_i x_i^k - z^k))$ (see lines 5 and 10 of Algorithm 9) we obtain 9), we obtain

3540
$$||x_i^{k+1} - x_i||^2 = ||x_i^k - x_i||^2 - ||x_i^{k+1/2} - x_i^k||^2 - ||x_i^{k+1/2} - x_i^{k+1}||^2$$

3541 n

3542
$$-2\gamma \langle A_i^T y^{k+1/2} + \nabla r_i (x_i^{k+1/2}) + \rho A_i^T (\sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2}), x_i^{k+1} - x_i \rangle$$

$$\begin{array}{ll} 3543 \\ 3544 \\ 3545 \\ 3546 \\ 3546 \\ 3546 \\ \qquad = \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ \qquad = \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ \qquad - 2\gamma \langle A_i^T y^{k+1/2} + \nabla r_i(x_i^{k+1/2}) + \rho A_i^T (\sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2}), x_i^{k+1/2} - x_i\rangle \\ \qquad - 2\gamma \langle A_i^T (y^{k+1/2} - y^k) + \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2}\rangle \\ \qquad - 2\gamma \langle A_i^T (\sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k) + z^k - z^{k+1/2}), x_i^{k+1} - x_i^{k+1/2}\rangle \\ \qquad - 2\gamma \rho \langle A_i^T (\sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k) + z^k - z^{k+1/2}), x_i^{k+1} - x_i^{k+1/2}\rangle \\ \qquad = \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ \qquad = \|x_i^k - x_i\|^2 - \|x_i^{k+1/2} - x_i^k\|^2 - \|x_i^{k+1/2} - x_i^{k+1}\|^2 \\ \qquad - 2\gamma \langle A_i (x_i^{k+1/2} - x_i), y^{k+1/2} \rangle - 2\gamma \langle \nabla r_i (x_i^{k+1/2} - x_i)\rangle \\ \qquad = 2\rho \gamma \langle \sum_{i=1}^n A_i x_i^{k+1/2} - z^{k+1/2}, A_i (x_i^{k+1/2} - x_i)\rangle \\ \qquad - 2\rho \langle \Delta_i (x_i^{k+1} - x_i^{k+1/2}), y^{k+1/2} - y^k\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle \\ \qquad - 2\gamma \rho \langle A_i (x_i^{k+1} - x_i^{k+1/2}), \sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\rangle$$

$$\sum_{i=1}^{n} \|x_{i}^{k+1} - x_{i}\|^{2} = \sum_{i=1}^{n} \|x_{i}^{k} - x_{i}\|^{2} - \sum_{i=1}^{n} \|x_{i}^{k+1/2} - x_{i}^{k}\|^{2} - \sum_{i=1}^{n} \|x_{i}^{k+1/2} - x_{i}^{k+1}\|^{2}$$

$$= 2\gamma \langle \sum_{i=1}^{n} A_{i}(x_{i}^{k+1/2} - x_{i}), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i} \rangle$$

$$= 2\rho \gamma \sum_{i=1}^{n} \langle \sum_{i=1}^{n} A_{i}x_{i}^{k+1/2} - z^{k+1/2}, A_{i}(x_{i}^{k+1/2} - x_{i}) \rangle$$

$$= 2\rho \gamma \sum_{i=1}^{n} \langle \nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k}), x_{i}^{k+1} - x_{i}^{k+1/2} \rangle$$

$$= 2\gamma \langle \sum_{i=1}^{n} A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), y^{k+1/2} - y^{k} \rangle$$

$$= 2\gamma \langle \sum_{i=1}^{n} A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), y^{k+1/2} - y^{k} \rangle$$

$$= 2\gamma \rho \sum_{i=1}^{n} \langle A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), \sum_{i=1}^{n} A_{i}(x_{i}^{k+1/2} - x_{i}^{k}) \rangle$$

$$= 2\gamma \rho \sum_{i=1}^{n} \langle A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), z^{k} - z^{k+1/2} \rangle.$$

$$= 2\gamma \rho \sum_{i=1}^{n} \langle A_{i}(x_{i}^{k+1} - x_{i}^{k+1/2}), z^{k} - z^{k+1/2} \rangle.$$

With notation of $A = [A_1, \ldots, A_i, \ldots, A_n]$ and notation of $x = [x_1^T, \ldots, x_i^T, \ldots, x_n^T]^T$ from equation 1 and equation 2, one can obtain that $\sum_{i=1}^n A_i x_i = Ax$:

$$\|x^{k+1} - x\|^2 = \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 - \|x^{k+1/2} - x^{k+1}\|^2$$

$$- 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{k} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i \rangle$$

$$\begin{array}{c} \overline{3594} & \overline{i=1} \\ 3595 & -2\rho\gamma\langle Ax^{k+1/2} - z^{k+1/2}, A(x^{k+1/2} - x)\rangle \\ -2\gamma\langle A(x^{k+1} - x^{k+1/2}), y^{k+1/2} - y^k \rangle \end{array}$$

$$-2\gamma \langle A(x^{\kappa+1} - x^{\kappa+1/2}), y^{\kappa+1/2} - y \rangle$$

$$\begin{aligned} & -2\gamma\sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}) - \nabla r_i(x_i^k), x_i^{k+1} - x_i^{k+1/2} \rangle \\ & -2\gamma\rho(A(x^{k+1} - x^{k+1/2}), A(x^{k+1/2} - x^k)) \\ & -2\gamma\rho(A(x^{k+1} - x^{k+1/2}), x^k - z^{k+1/2}) \\ & = \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 - \|x^{k+1/2} - x^{k+1}\|^2 \\ & -2\gamma(A(x^{k+1/2} - x), y^{k+1/2}) - 2\gamma\sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i) \\ & -2\gamma(A(x^{k+1/2} - x), y^{k+1/2}) - 2\gamma\sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i) \\ & -2\gamma(A(x^{k+1/2} - y^k), x^{k+1} - x^{k+1/2}) \\ & -2\gamma(A(x^{k+1/2} - y^k), x^{k+1} - x^{k+1/2}) \\ & -2\gamma(A(x^{k+1/2} - y^k), x^{k+1} - x^{k+1/2}) \\ & -2\gamma(A(x^{k+1/2} - x^{k+1/2}), A(x^{k+1/2} - x^k)) \\ & -2\gamma(A(x^{k+1/2} - x^{k+1/2}), x^k - 2x^{k+1/2}). \end{aligned}$$
By Cauchy Schwartz inequality, we get
$$\|x^{k+1} - x\|^2 \le \|x^k - x\|^2 - \|x^{k+1/2} - x^k\|^2 - \|x^{k+1/2} - x^{k+1}\|^2 \\ & -2\gamma(A(x^{k+1/2} - x), y^{k+1/2}) - 2\gamma\sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i) \\ & -2\gamma(A(x^{k+1/2} - x), y^{k+1/2}) - 2\gamma\sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i) \\ & -2\gamma(A(x^{k+1/2} - x), y^{k+1/2}) - 2\gamma\sum_{i=1}^{n} \langle \nabla r_i(x_i^{k+1/2}), x_i^{k+1/2} - x_i) \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 + 4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x) \\ & +2\gamma (x^{k+1/2} - x^{k+1/2} - x^k)\|^2 + \frac{1}{4} \|x^{k+1} - x^{k+1/2}\|^2 \\ & +4\gamma^2 (x^{k+1/2} - x^k)\|^2 + 4\gamma^2 \beta^2 \|A^T (x^{k+1/2} - x^k)\|^2 . \end{aligned}$$
(51)
Using the same steps, one can obtain for z \in \mathbb{R}^k, \\ \|x^{k+1} - z\|^2 \le \|x^k - z\|^2 - \|x^{k+1/2} - z^k\|^2 + 4\gamma^2 (x^k (x^{k+1/2} - z)) \\ & +2\gamma (x^{k+1/2} - x^k)\|^2 + 4\gamma^2 (x^k (x^{k+1/2} - z)) \\ & +2\gamma (x^{k+1/2} - x^k)\|^2 + 4\gamma^2 (x^k (x^{k+1/2} - z)) \\ & +2\gamma (x^{k+1/2} - x^k)\|^2

and for all $y \in \mathbb{R}^s$, $\|y^{k+1} - y\|^2 \le \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2$

3648 3649

$$\begin{aligned} & -2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ & +2\gamma^2 \|z^{k+1/2} - z^k\|^2 + 2\gamma^2 \|A(x^{k+1/2} - x^k)\|^2. \end{aligned}$$
(53)

3654 Summing up equation 51, equation 52 and equation 53, we obtain

3	6	5	5
3	6	5	6

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ \leq \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ - \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ \leq \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ - 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle + 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle \\ \leq \|z^{k+1/2} - z^k\|^2 - \|z^{k+1/2} - z^k\|^2 + 2\gamma \langle y^{k+1/2} - z^k\|^2 - |z^k\|^2 \\ \leq \|z^{k+1/2} - z^k\|^2 - \|z^{k+1/2} - z^k\|^2 + 2\gamma \langle y^{k+1/2} - z^k\|^2 - |z^k\|^2 \\ \leq \|z^{k+1/2} - z^k\|^2 + 2\gamma \langle y^{k+1/2} - z^k\|^2$$

$$\begin{array}{l} -2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ 3662 \\ 3663 \\ 3664 \\ 3664 \\ 3665 \\ 3665 \\ 3666 \\ 3666 \\ 3667 \\ 3667 \\ 3667 \\ 3668 \\ 3669 \end{array} + 2\gamma^2 \|A^T (y^{k+1/2} - y^k)\|^2 + 2\gamma^2 \sum_{i=1}^{n} \|\nabla r_i (x_i^{k+1/2}) - \nabla r_i (x_i^k)\|^2 \\ + 2\gamma^2 \|A^T (y^{k+1/2} - y^k)\|^2 + 2\gamma^2 \sum_{i=1}^{n} \|\nabla r_i (x_i^{k+1/2}) - \nabla r_i (x_i^k)\|^2 \\ \end{array}$$

$$\begin{array}{c} 1 \\ 3670 \\ 3671 \\ 3671 \\ 4\gamma^2 \|y^{k+1/2} - y^k\|^2 + 4\gamma^2 \|\nabla \ell(z^{k+1/2}, b) - \nabla \ell(z^k, b)\|^2 \end{array}$$

$$\begin{array}{l} 3672 \\ 3673 \\ 3674 \end{array} + 4\gamma^2 \|z^{k+1/2} - z^k\|^2 + 4\gamma^2 \|A(x^{k+1/2} - x^k)\|^2 \\ + 4\gamma^2 \rho^2 \|A^T (z^{k+1/2} - z^k)\|^2 + 4\gamma^2 \rho^2 \|A^T A(x^{k+1/2} - x^k)\|^2 \\ \end{array}$$

$$\begin{aligned} &+ 4\gamma^2 \rho^2 \|A^T (z^{k+1/2} - z^k)\|^2 + 4\gamma^2 \rho^2 \|A^T A (x^{k+1/2} - x^k)\|^2 \\ &+ 4\gamma^2 \rho^2 \|z^{k+1/2} - z^k\|^2 + 4\gamma^2 \rho^2 \|A (x^{k+1/2} - x^k)\|^2. \end{aligned}$$

Using convexity and L_r -smoothness of the function r_i with convexity and L_ℓ -smoothness of the 3677 function ℓ (Assumption 2.1), we have 3678

$$\begin{split} &\|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ &- \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ &- \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ &- 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle + 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle \\ &- 2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ &- 2\gamma \sum_{i=1}^n \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right) - 2\gamma \left(l(z^{k+1/2}, b) - l(z, b) \right) \\ &- 2\rho \gamma \langle Ax^{k+1/2} - z^{k+1/2}, A(x^{k+1/2} - x) - (z^{k+1/2} - z) \rangle \\ &+ 4\gamma^2 \|A^T (y^{k+1/2} - y^k)\| + 4\gamma^2 L_r^2 \sum_{i=1}^n \|x_i^{k+1/2} - x_i^k\|^2 \\ &+ 4\gamma^2 \|y^{k+1/2} - y^k\|^2 + 4\gamma^2 L_\ell^2 \|z^{k+1/2} - z^k\|^2 \\ &+ 4\gamma^2 \|z^{k+1/2} - z^k\|^2 + 4\gamma^2 \|A(x^{k+1/2} - x^k)\|^2 \\ &+ 4\gamma^2 \rho^2 \|A^T (z^{k+1/2} - z^k)\|^2 + 4\gamma^2 \rho^2 \|A^T A(x^{k+1/2} - x^k)\|^2 . \end{split}$$

Using the definition of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue, we get 3699

$$\begin{aligned} \|x^{k+1} - x\|^2 + \|z^{k+1} - z\|^2 + \|y^{k+1} - y\|^2 \\ \leq \|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ & \leq \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ & - \|x^{k+1/2} - x^k\|^2 - \|z^{k+1/2} - z^k\|^2 - \|y^{k+1/2} - y^k\|^2 \\ & - 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle + 2\gamma \langle y^{k+1/2}, z^{k+1/2} - z \rangle \end{aligned}$$

$$\begin{aligned} & \begin{array}{l} 3705 \\ & & -2\gamma \langle z^{k+1/2}, y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle \\ & & -2\gamma \sum_{i=1}^{n} \left(r_i (x_i^{k+1/2}) - r_i (x_i) \right) - 2\gamma \left(l(z^{k+1/2}, b) - l(z, b) \right) \\ & & -2\rho \gamma \langle Ax^{k+1/2} - z^{k+1/2}, A(x^{k+1/2} - x) - (z^{k+1/2} - z) \rangle \\ & & +4\gamma^2 \lambda_{\max} (AA^T) \| y^{k+1/2} - y^k \| + 4\gamma^2 L_r^2 \| x^{k+1/2} - x^k \|^2 \\ & & +4\gamma^2 \| y^{k+1/2} - y^k \|^2 + 4\gamma^2 L_t^2 \| z^{k+1/2} - z^k \|^2 \\ & & +4\gamma^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & +4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & +4\gamma^2 \rho^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & +4\gamma^2 \rho^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & +4\gamma^2 \rho^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & +4\gamma^2 \rho^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & & +4\gamma^2 \rho^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & & +4\gamma^2 \rho^2 \| z^{k+1/2} - z^k \|^2 + 4\gamma^2 \rho^2 \lambda_{\max} (AA^T) \| x^{k+1/2} - x^k \|^2 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

$$\begin{split} \Big(\ell(z^{k+1/2},b) - \ell(z,b)\Big) + \sum_{i=1}^{n} \Big(r_i(x_i^{k+1/2}) - r_i(x_i)\Big) \\ + \langle Ax^{k+1/2} - z^{k+1/2}, y \rangle - \langle Ax - z, y^{k+1/2} \rangle \\ + \frac{\rho}{2} \|Ax^{k+1/2} - z^{k+1/2}\|^2 - \frac{\rho}{2} \|Ax - z\|^2 \\ &\leq \frac{1}{2\gamma} \Big(\|x^k - x\|^2 + \|z^k - z\|^2 + \|y^k - y\|^2 \\ &- \|x^{k+1} - x\|^2 - \|z^{k+1} - z\|^2 - \|y^{k+1} - y\|^2 \Big). \end{split}$$

Then we sum all over k from 0 to K - 1, divide by K, and have

$$\begin{split} &\frac{1}{K}\sum_{k=0}^{K-1} \left(\ell(z^{k+1/2},b) - \ell(z,b) \right) + \sum_{i=1}^{n} \frac{1}{K}\sum_{k=0}^{K-1} \left(r_i(x_i^{k+1/2}) - r_i(x_i) \right) \\ &+ \langle A \cdot \frac{1}{K}\sum_{k=0}^{K-1} x^{k+1/2} - \frac{1}{K}\sum_{k=0}^{K-1} z^{k+1/2}, y \rangle - \langle Ax - z, \frac{1}{K}\sum_{k=0}^{K-1} y^{k+1/2} \rangle \\ &+ \frac{\rho}{2} \frac{1}{K}\sum_{k=0}^{K-1} \|Ax^{k+1/2} - z^{k+1/2}\|^2 - \frac{\rho}{2} \|Ax - z\|^2 \end{split}$$

$$\leq \frac{1}{2\gamma K} \Big(\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2 \\ - \|x^K - x\|^2 - \|z^K - z\|^2 - \|y^K - y\|^2 \Big)$$

$$= \frac{1}{2\gamma K} \Big(\|x^0 - x\|^2 - \|z^K - z\|^2 - \|y^K - y\|^2 \Big)$$

$$= \frac{1}{2\gamma K} \Big(\|x^0 - x\|^2 - \|z^K - z\|^2 - \|y^K - y\|^2 \Big)$$

 $\leq \frac{1}{2\gamma K} (\|x^0 - x\|^2 + \|z^0 - z\|^2 + \|y^0 - y\|^2).$

With Jensen inequality for convex functions ℓ , r_i and $\|\cdot\|^2$, one can note that $\ell\left(\frac{1}{K}\sum_{k=0}^{K-1}z^{k+1/2},b\right) \leq \frac{1}{K}\sum_{k=0}^{K-1}\ell(z^{k+1/2},b),$

$$r_i\left(\frac{1}{K}\sum_{k=0}^{K-1} x_i^{k+1/2}\right) \le \frac{1}{K}\sum_{k=0}^{K-1} r_i(x_i^{k+1/2}),$$

$$\left\|A\frac{1}{K}\sum_{k=0}^{K-1} x^{k+1/2} - \frac{1}{K}\sum_{k=0}^{K-1} z^{k+1/2}\right\|^2 \le \frac{1}{K}\sum_{k=0}^{K-1} \|Ax^{k+1/2} - z^{k+1/2}\|^2.$$

Then, with notation
$$\bar{x}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}, \ \bar{z}^K = \frac{1}{K} \sum_{k=0}^{K-1} z^{k+1/2}, \ \bar{y}^K = \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$$
, we have

$$\ell(\bar{z}^{K}, b) - \ell(z, b) + \sum_{i=1}^{N} \left(r_{i}(\bar{x}_{i}^{K}) - r_{i}(x_{i}) \right) + \langle A\bar{x}^{K} - \bar{z}^{K}, y \rangle - \langle Ax - z, \bar{y}^{K} \rangle \\ + \frac{\rho}{2} \|A\bar{x}^{K} - \bar{z}^{K}\|^{2} - \frac{\rho}{2} \|Ax - z\|^{2} \le \frac{1}{2\pi K} (\|x^{0} - x\|^{2} + \|z^{0} - z\|^{2} + \|y^{0} - y\|^{2})$$

$$+\frac{\rho}{2}\|A\bar{x}^{K}-\bar{z}^{K}\|^{2}-\frac{\rho}{2}\|Ax-z\|^{2} \leq \frac{1}{2\gamma K}(\|x^{0}-x\|^{2}+\|z^{0}-z\|^{2}+\|y^{0}-y\|^{2}).$$

Following the definition $\operatorname{gap}_{\operatorname{aug}}$, we only need to take the maximum in the variable $y \in \mathcal{Y}$ and the minimum in $x \in \mathcal{X}$ and $z \in \mathcal{Z}$.

$$gap_{aug}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \max_{y \in \mathcal{Y}} L_{aug}(\bar{x}^{K}, \bar{z}^{K}, y) - \min_{x, z \in \mathcal{X}, \mathcal{Z}} L_{aug}(x, z, \bar{y}^{K}) \\ = \max_{y \in \mathcal{Y}} \left[\ell(\bar{z}^{K}, b) + \sum_{i=1}^{n} r_{i}(\bar{x}_{i}^{K}) + \langle A\bar{x}^{K} - \bar{z}^{K}, y \rangle + \frac{\rho}{2} \|A\bar{x}^{K} - \bar{z}^{K}\|^{2} \right] \\ - \min_{x, z \in \mathcal{X}, \mathcal{Z}} \left[\ell(z, b) + \sum_{i=1}^{n} r_{i}(x_{i}) + \langle Ax - z, \bar{y}^{K} \rangle + \frac{\rho}{2} \|Ax - z\|^{2} \right] \\ \leq \frac{1}{2\gamma K} (\max_{x \in \mathcal{X}} \|x^{0} - x\|^{2} + \max_{z \in \mathcal{Z}} \|z^{0} - z\|^{2} + \max_{y \in \mathcal{Y}} \|y^{0} - y\|^{2}).$$
(54)

 $\frac{1}{4}$. To complete the proof in the cases equation 54 , it remains to put γ \leq $\min\left\{1;\frac{1}{\rho};\frac{1}{\sqrt{\lambda_{\max}(A^TA)}};\frac{1}{\sqrt{\rho\lambda_{\max}(A^TA)}};\frac{1}{\rho\lambda_{\max}(A^TA)};\frac{1}{L_r};\frac{1}{L_\ell}\right\}.$

D.9 PROOF OF THEOREM C.2

Theorem D.10 (Theorem C.2). Let l^* be L_{ℓ^*} -smooth and convex, r be L_r -smooth and convex. Let problem (9) be solved by Algorithm 10. Then for

$$\gamma = \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_{\ell^*}}\right\},\,$$

it holds that

$$gap_2(\bar{x}^K, \bar{y}^K) = \mathcal{O}\left(\frac{\left(1 + \sqrt{\lambda_{\max}(A^T A)} + L_{\ell^*} + L_r\right)\hat{D}^2}{K}\right)$$

$$\begin{array}{ll} \textbf{3813} \\ \textbf{3814} \\ \textbf{3814} \\ \textbf{3815} \end{array} \quad \begin{array}{ll} \textbf{where } gap_2(x,y) := \max_{\tilde{y} \in \mathcal{Y}} \hat{L}(x,\tilde{y}) - \min_{\tilde{x} \in \mathcal{X}} \hat{L}(\tilde{x},y) \text{ and } \bar{x}^K := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{y}^K := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}, \ \bar{y}^K := \frac{1}{K} \sum_{k=0}^{K-1} x^{k+1/2}, \ \bar{y}^K := \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}, \ \bar{y}^K$$

Proof. We start the proof from (12), since the updates for x variables in Algorithms 1, 10 are the same:

$$\|x^{k+1} - x\|^{2} \leq \|x^{k} - x\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i} \rangle + 2\gamma^{2} \|A^{T}(y^{k+1/2} - y^{k})\|^{2} + 2\gamma^{2} \sum_{i=1}^{n} \|\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})\|^{2}.$$
(55)
Using the same steps as for (12), one can obtain for $u \in \mathbb{R}^{s}$ from Algorithms 10.

Using the same steps as for (12), one can obtain for $y \in \mathbb{R}^s$ from Algorithms 10,

$$\begin{split} \|y^{k+1} - y\|^2 &\leq \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2 \\ &- 2\gamma \langle \nabla \ell^*(y^{k+1/2}, b), y^{k+1/2} - y \rangle + 2\gamma \langle \sum_{i=1}^n A_i x_i^{k+1/2}, y^{k+1/2} - y \rangle \\ &+ 2\gamma^2 \|\nabla \ell^*(y^{k+1/2}, b) - \nabla \ell^*(y^k, b)\|^2 + 2\gamma^2 \left\|\sum_{i=1}^n A_i (x_i^{k+1/2} - x_i^k)\right\|^2 \\ &= \|y^k - y\|^2 - \|y^{k+1/2} - y^k\|^2 \\ &- 2\gamma \langle \nabla \ell^*(y^{k+1/2}, b), y^{k+1/2} - y \rangle + 2\gamma \langle A x^{k+1/2}, y^{k+1/2} - y \rangle \\ &+ 2\gamma^2 \|\nabla \ell^*(y^{k+1/2}, b) - \nabla \ell^*(y^k, b)\|^2 + 2\gamma^2 \|A(x^{k+1/2} - x^k)\|^2. \end{split}$$
(56)
Here we also use notation of A and x. Summing up (55) and (56), we obtain

$$||x^{k+1} - x||^2 + ||y^{k+1} - y||^2$$

$$\leq \|x^{k} - x\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - \|y^{k+1/2} - y^{k}\|^{2}$$

$$\leq \|x^{k} - x\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - \|y^{k+1/2} - y^{k}\|^{2}$$

$$= 2\gamma \langle A(x^{k+1/2} - x), y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} \langle \nabla r_{i}(x_{i}^{k+1/2}), x_{i}^{k+1/2} - x_{i} \rangle$$

$$= 2\gamma \langle \nabla \ell^{*}(y^{k+1/2}, b), y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle$$

$$= 2\gamma \langle \nabla \ell^{*}(y^{k+1/2}, b), y^{k+1/2} - y \rangle + 2\gamma \langle Ax^{k+1/2}, y^{k+1/2} - y \rangle$$

$$= 2\gamma^{2} \|A^{T}(y^{k+1/2} - y^{k})\|^{2} + 2\gamma^{2} \sum_{i=1}^{n} \|\nabla r_{i}(x_{i}^{k+1/2}) - \nabla r_{i}(x_{i}^{k})\|^{2}$$

$$+ 2\gamma^2 \|\nabla \ell^*(y^{k+1/2}, b) - \nabla \ell^*(y^k, b)\|^2 + 2\gamma^2 \|A(x^{k+1/2} - x^k)\|^2.$$

Using convexity and L_r -smoothness of the function r_i with convexity and L_{ℓ^*} -smoothness of the function ℓ and with the definition of $\lambda_{\max}(\cdot)$ as a maximum eigenvalue, we have

$$||x^{k+1} - x||^2 + ||y^{k+1} - y||^2$$

$$\leq \|x^{k} - x\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - \|y^{k+1/2} - y^{k}\|^{2}$$

$$\leq \|x^{k} - x\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - \|y^{k+1/2} - y^{k}\|^{2}$$

$$\leq \|x^{k} - x\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1/2} - x^{k}\|^{2} - \|y^{k+1/2} - y^{k}\|^{2}$$

$$+ 2\gamma \langle Ax, y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{k} [r_i(x_i^{k+1/2}) - r_i(x_i)]$$
3856
3857
3858

$$-2\gamma(l^{*}(y^{k+1/2},b) - l^{*}(y,b)) - 2\gamma\langle Ax^{k+1/2},y\rangle$$

$$+ 2\gamma^{2}\lambda_{\max}(AA^{T})\|y^{k+1/2} - y^{k}\|^{2} + 2\gamma^{2}L_{r}^{2}\sum_{i=1}^{m}\|x_{i}^{k+1/2} - x_{i}^{k}\|^{2}$$

3862
3863
$$+ 2\gamma^2 L_{\ell^*}^2 \|y^{k-1}\|^2$$

$$+ 2\gamma^2 L_{\ell^*}^2 \|y^{k+1/2} - y^k\|^2 + 2\gamma^2 \lambda_{\max}(A^T A) \|x^{k+1/2} - x^k\|^2.$$

3864
3865
3866
With the choice of
$$\gamma \leq \frac{1}{2} \cdot \min\left\{1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_{\ell^*}}\right\}$$
, we get

$$\|x^{k+1} - x\|^2 + \|y^{k+1} - y\|^2 \leq \|x^k - x\|^2 + \|y^k - y\|^2$$
$$3867 + 2\gamma \langle Ax, y^{k+1/2} \rangle - 2\gamma \sum_{i=1}^{n} [r_i(x_i^{k+1/2}) - r_i(x_i)]$$

$$-2\gamma(l^*(y^{k+1/2},b) - l^*(y,b)) - 2\gamma\langle Ax^{k+1/2}, y\rangle.$$
3870

After small rearrangements, we obtain

$$l^{*}(y^{k+1/2}, b) - l^{*}(y, b) + \sum_{i=1}^{n} [r_{i}(x_{i}^{k+1/2}) - r_{i}(x_{i})] + \langle Ax^{k+1/2}, y \rangle - \langle Ax, y^{k+1/2} \rangle$$

$$\leq \frac{1}{2\gamma} \left(\|x^{k} - x\|^{2} + \|y^{k} - y\|^{2} - \|x^{k+1} - x\|^{2} - \|y^{k+1} - y\|^{2} \right).$$

Then we sum all over k from 0 to K - 1, divide by K, and have

$$\frac{1}{K} \sum_{k=0}^{K-1} \left[l^*(y^{k+1/2}, b) - l^*(y, b) + \sum_{i=1}^n [r_i(x_i^{k+1/2}) - r_i(x_i)] + \langle Ax^{k+1/2}, y \rangle - \langle Ax, y^{k+1/2} \rangle \right] \\
\leq \frac{1}{2\gamma K} \left(\|x^0 - x\|^2 + \|y^0 - y\|^2 \right).$$

With Jensen inequality for convex functions ℓ and r_i , one can note that

$$\ell^* \left(\frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}, b \right) \le \frac{1}{K} \sum_{k=0}^{K-1} \ell^*(y^{k+1/2}, b),$$
$$r_i \left(\frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2} \right) \le \frac{1}{K} \sum_{k=0}^{K-1} r_i(x_i^{k+1/2}).$$

Then, with notation $\bar{x}_i^K = \frac{1}{K} \sum_{k=0}^{K-1} x_i^{k+1/2}, \ \bar{y}^K = \frac{1}{K} \sum_{k=0}^{K-1} y^{k+1/2}$, we have

$$\ell^{*}(\bar{y}^{K}, b) - \ell^{*}(y, b) + \sum_{i=1}^{n} [r_{i}(\bar{x}_{i}^{K}) - r_{i}(x_{i})] + \langle A\bar{x}^{K}, y \rangle - \langle Ax, \bar{y}^{K} \rangle$$

$$\leq \frac{1}{2\gamma K} \left(\|x^{0} - x\|^{2} + \|y^{0} - y\|^{2} \right)$$

Following the definition of gap_2 , we only need to take the maximum in the variable $y \in \mathcal{Y}$ and the minimum in $x \in \mathcal{X}$.

 $\operatorname{gap}_2(\bar{x}^K, \bar{y}^K)$

 $= \max_{y \in \mathcal{Y}} \hat{L}(\bar{x}^K, y) - \min_{x \in \mathcal{X}} \hat{L}(x, \bar{y}^K)$

$$= \max_{y \in \mathcal{Y}} \max_{x \in \mathcal{X}} \left[\ell^*(\bar{y}^K, b) - \ell^*(y, b) + \sum_{i=1}^n [r_i(\bar{x}^K_i) - r_i(x_i)] + \langle A\bar{x}^K, y \rangle - \langle Ax, \bar{y}^K \rangle \right]$$

 $-\min_{x \in \mathcal{X}} \left[-\ell(\bar{y}^K, b) + \sum_{i=1}^n r_i(x_i) + (\bar{y}^K)^T \left(\sum_{i=1}^n A_i x_i \right) \right]$

3917
3918
$$\leq \frac{1}{2\gamma K} \left(\max_{x \in \mathcal{X}} \|x^0 - x\|^2 + \max_{y \in \mathcal{Y}} \|y^0 - y\|^2 \right).$$
3919

 $= \max_{y \in \mathcal{Y}} \left[-\ell^* \left(y, b \right) + \sum_{i=1}^n r_i(\bar{x}_i^K) + y^T \left(\sum_{i=1}^n A_i \bar{x}_i^K \right) \right]$

To complete the proof, it remains to put $\gamma = \frac{1}{2} \cdot \min \left\{ 1; \frac{1}{\sqrt{\lambda_{\max}(A^T A)}}; \frac{1}{L_r}; \frac{1}{L_{\ell^*}} \right\}.$

3921 D.10 THREE LEMMAS 3922

3923 Lemma D.11. If ℓ and r_i are convex, then L(x, z, y) from (4) is convex-concave.

Proof. We start from checking of convexity.

$$\nabla_{(x,z)}L(x,z,y) = \begin{pmatrix} A_1^T y + \nabla r_1(x_1) \\ & \ddots \\ A_i^T y + \nabla r_i(x_i) \\ & \ddots \\ A_n^T y + \nabla r_n(x_n) \\ & \nabla \ell(z,b) - y \end{pmatrix}.$$

3933 Then, we need to check the condition of Theorem 2.1.3 from (Nesterov, 2003):

$$\langle \nabla_{(x,z)} L(x_1, z_1, y) - \nabla_{(x,z)} L(x_2, z_2, y), (x_1, z_1) - (x_2, z_2) \rangle$$

$$= \langle \begin{pmatrix} \nabla r_1(x_{1,1}) - \nabla r_1(x_{1,2}) \\ \dots \\ \nabla r_i(x_{i,1}) - \nabla r_i(x_{i,2}) \\ \dots \\ \nabla \ell(z_1, b) - \nabla \ell(z_2, b) \end{pmatrix}, \begin{pmatrix} x_{1,1} - x_{1,2} \\ \dots \\ x_{i,1} - x_{i,2} \\ \dots \\ x_{n,1} - x_{n,2} \\ z_1 - z_2 \end{pmatrix} \rangle \ge 0.$$

Here we also use that ℓ and r_i are convex. It means that the problem (4) is convex on (x, z). Next, we move to check concavity.

$$\nabla_y L(x, z, y) = \left(\sum_{i=1}^n A_i x_i - z\right)$$

Then, again with Theorem 2.1.3 from (Nesterov, 2003):

$$\langle \nabla_y L(x,z,y_1) - \nabla_y L(x,z,y_2), y_1 - y_2 \rangle = 0 \le 0,$$

3950 we get that the problem (4) is concave on y.

Lemma D.12. If ℓ and r_i are convex, then $L_{aug}(x, z, y)$ from (8) is convex-concave.

Proof. We start from checking of convexity.

$$\nabla_{(x,z)}L(x,z,y) = \begin{pmatrix} A_1^T y + \nabla r_1(x_1) + \rho A_1^T (Ax - z) \\ & \ddots \\ A_i^T y + \nabla r_i(x_i) + \rho A_i^T (Ax - z) \\ & \ddots \\ A_n^T y + \nabla r_n(x_n) + \rho A_n^T (Ax - z) \\ & \nabla \ell(z,b) - y + \rho(z - Ax) \end{pmatrix}.$$

Then, we need to check the condition of Theorem 2.1.3 from (Nesterov, 2003):

$$\begin{array}{l} \begin{array}{l} 3963 \\ 3964 \\ 3964 \\ 3965 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3966 \\ 3968 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3969 \\ 3970 \\ 3970 \\ 3970 \\ 3970 \\ 3970 \\ 3970 \\ 3971 \\ 3971 \\ 3971 \\ 3972 \\ 3974 \end{array} = \left\langle \begin{pmatrix} \nabla r_1(x_{1,1}) - \nabla r_n(x_{n,2}) + \rho A_n^T[A(x_1 - x_2) - (z_1 - z_2)] \\ & \ddots \\ \nabla r_n(x_{n,1}) - \nabla r_n(x_{n,2}) + \rho A_n^T[A(x_1 - x_2) - (z_1 - z_2)] \\ & \nabla \ell(z_1, b) - \nabla \ell(z_2, b) + \rho[z_1 - z_2 - A(x_1 - x_2)] \end{pmatrix} \right\rangle, \begin{pmatrix} x_{1,1} - x_{n,2} \\ & \ddots \\ x_{n,1} - x_{n,2} \\ & z_1 - z_2 \end{pmatrix} \right\rangle \\ 3970 \\ 3970 \\ 3971 \\ 3972 \\ 3973 \\ 3974 \\ \end{array}$$

$$\begin{array}{ccc} \mathbf{3975} \\ \mathbf{3976} \\ \mathbf{3976} \\ \mathbf{3976} \\ \mathbf{3977} \\ \mathbf{3978} \\ \mathbf{3978} \\ \mathbf{3978} \\ \mathbf{3978} \\ \mathbf{3979} \\ \mathbf{3980} \\ \mathbf{3981} \end{array} = \left\langle \begin{pmatrix} \nabla r_1(x_{1,1}) - \nabla r_1(x_{1,2}) \\ \cdots \\ \nabla r_i(x_{i,1}) - \nabla r_i(x_{i,2}) \\ \cdots \\ \nabla r_n(x_{n,1}) - \nabla r_n(x_{n,2}) \\ \nabla \ell(z_1, b) - \nabla \ell(z_2, b) \end{pmatrix}, \begin{pmatrix} x_{1,1} - x_{1,2} \\ \cdots \\ x_{i,1} - x_{i,2} \\ \cdots \\ x_{n,1} - x_{n,2} \\ z_1 - z_2 \end{pmatrix} \right\rangle$$

Here we also use that ℓ and r_i are convex. It means that the problem (8) is convex on (x, z). Next, we move to check concavity.

$$\nabla_y L(x, z, y) = \left(\sum_{i=1}^n A_i x_i - z\right)$$

Then, again with Theorem 2.1.3 from (Nesterov, 2003):

 $+\rho \|z_1-z_2-A(x_1-x_1)\|$

> 0.

$$\langle \nabla_y L(x, z, y_1) - \nabla_y L(x, z, y_2), y_1 - y_2 \rangle = 0 \le 0$$

we get that the problem (8) is concave on y.

Lemma D.13. For any matrix $A = [A_1 \dots A_n]$ it holds that $||A|| \leq \sqrt{\sum_{i=1}^n ||A_i||^2}$.

Proof. Let us consider $A = [A_1A_2]$. Then, we have

$$\begin{aligned} &\|A\| = \sup_{\|x\|^2 = 1} \left[\|Ax\| \right] = \sup_{\|x_1\|^2 + \|x_2\|^2 = 1} \left[\|A_1x_1 + A_2x_2\| \right] \le \sup_{\|x_1\|^2 + \|x_2\|^2 = 1} \left[\|A_1x_1\| + \|A_2x_2\| \right] \\ &\text{4001} \\ &\text{4002} \\ &= \sup_{\alpha \in [0;1]} \left[\sup_{\|x_1\|^2 = \alpha} \|A_1x_1\| + \sup_{\|x_1\|^2 = 1 - \alpha} \|A_2x_2\| \right] \\ &\text{4004} \\ &\text{4005} \\ &= \sup_{\alpha \in [0;1]} \left[\sqrt{\alpha} \cdot \sup_{\|x_1\|^2 = 1} \|A_1x_1\| + \sqrt{1 - \alpha} \cdot \sup_{\|x_1\|^2 = 1} \|A_2x_2\| \right] \\ &\text{4006} \\ &= \sup_{\alpha \in [0;1]} \left[\sqrt{\alpha} \|A_1\| + \sqrt{1 - \alpha} \|A_2\| \right]. \end{aligned}$$

Optimizing $\alpha \in [0; 1]$, we get that $\alpha^* = \frac{\|A_1\|}{\|A_1\|^2 + \|A_2\|^2}$ and

$$A\| \le \sqrt{\|A_1\|^2 + \|A_2\|^2}$$

This result can be extended to any n by induction. In more details, if $A = [\tilde{A}_{n-1}A_n]$ with $\tilde{A}_{n-1} =$ $[A_1 \dots A_{n-1}]$ and we assume that $\|\tilde{A}_{n-1}\| \leq \sqrt{\sum_{i=1}^{n-1} \|A_i\|^2}$, then we have

$$\|A\| \le \sqrt{\|\tilde{A}_{n-1}\|^2 + \|A_n\|^2} \le \sqrt{\sum_{i=1}^{n-1} \|A_i\|^2 + \|A_n\|^2} = \sqrt{\sum_{i=1}^n \|A_i\|^2}.$$

D.11 ON CONVERGENCE GAP

In our theoretical analysis, we use the criterion: $gap(x, z, y) := \max_{\tilde{y} \in \mathcal{Y}} L(x, z, \tilde{y}) \min_{\tilde{x},\tilde{z}\in\mathcal{X},\mathcal{Z}} L(\tilde{x},\tilde{z},y), \text{ where } L(x,z,y) = \ell(z,b) + r(x) + y^T(Ax - z).$ Since $\min_{\tilde{x}, \tilde{z} \in \mathcal{X}, \mathcal{Z}} L(\tilde{x}, \tilde{z}, y) \leq L(x^*, z^*, y)$, we get

$$\max_{\tilde{y} \in \mathcal{Y}} L(x, z, \tilde{y}) - L(x^*, z^*, y) \le \operatorname{gap}(x, z, y)$$

We note that $Ax^* = z^*$, then $\max_{\tilde{y} \in \mathcal{Y}} L(x, z, \tilde{y}) - L(x^*, z^*, y) = \left[\ell(z, b) + r(x) + \max_{\tilde{y} \in \mathcal{Y}} \tilde{y}^T (Ax - z)\right] - \left[\ell(z^*, b) + r(x^*) + (y)^T (Ax^* - z^*)\right]$ $= [\ell(z,b) + r(x) + \max_{\tilde{y} \in \mathcal{Y}} \tilde{y}^T (Ax - z)] - [\ell(Ax^*, b) + r(x^*)].$

When taking maximum for $y \in \mathcal{Y}$ we can define \mathcal{Y} as we need. In particular, we can choose $\mathcal{Y} = [y \in \mathbb{R}^s \mid ||y||_{\infty} \leq C]$ for some C > 0. Then

$$\max_{\tilde{y} \in \mathcal{Y}} \tilde{y}^T (Ax - z) = C \|Ax - z^k\|_1 \ge C \|Ax - z\|$$

Finally, we get

 $gap(x, z, y) \ge [\ell(z, b) + r(x) - \ell(Ax^*, b) + r(x^*)] + C ||Ax^k - z^k|| = newgap(x, z).$

If it holds that $gap(x, z, y) \leq \varepsilon$, we guarantee that $newgap(x, z, y) \leq \varepsilon$. The question that arises is whether newgap $(x, z, y) \le \varepsilon$ implies that $[\ell(z, b) + r(x) - \ell(Ax^*, b) + r(x^*)]$ as well as ||Ax - z||are also "small" in the sense that they are smaller than ε (up to constants). In general, the answer is no: $[\ell(z,b) + r(x) - \ell(Ax^*,b) + r(x^*)]$ might be very small (and negative), and $||Ax - z||_2$ can be very large. But Theorem 3.60 from (Beck, 2017) shows that if C is large enough such a conclusion can be drawn. In particular, if newgap $(x^k, z^k, y^k) \leq \varepsilon$ then $C ||Ax^k - z^k||_2 \leq \varepsilon$ and we have $Ax^k \to z^k$.

D.12 ON TUNING OF STEPSIZE

We can rewrite the original problem (1) in the following way:

$$\min_{x \in \mathbb{R}^d} \left[\ell\left(Ax, b\right) + r(x) \right] = \left[\ell\left(\frac{1}{\beta} \cdot \beta Ax, b\right) + r(x) \right] = \left[\tilde{\ell}\left(\tilde{A}x, b\right) + r(x) \right],$$

where $\tilde{\ell}(y,b) = \ell\left(\frac{y}{\beta},b\right)$ and $\tilde{A} = \beta A$. Next, we can estimate $L_{\tilde{\ell}}$ and $\lambda_{\max}(\tilde{A}^T \tilde{A})$:

$$\begin{aligned} \|\nabla \tilde{\ell}(y_1, b) - \nabla \tilde{\ell}(y_2, b)\| &= \|\nabla_y \ell\left(\frac{y_1}{\beta}, b\right) - \nabla_y \ell\left(\frac{y_2}{\beta}, b\right)\| \\ &= \frac{1}{\beta} \|\nabla \ell\left(\frac{y_1}{\beta}, b\right) - \nabla \ell\left(\frac{y_2}{\beta}, b\right)\| \le \frac{L_\ell}{\beta^2} \|y_1 - y_2\|, \end{aligned}$$

$$\lambda_{\max}(\tilde{A}^T \tilde{A}) = \lambda_{\max}(\beta^2 A^T A) = \beta^2 \lambda_{\max}(A^T A).$$

We get that $L_{\tilde{\ell}} = \frac{L_{\ell}}{\beta^2}$ and $\lambda_{\max}(\tilde{A}^T \tilde{A}) = \beta^2 \lambda_{\max}(A^T A)$.

Our goal is to equivalize $L_{\tilde{\ell}}$ and $\sqrt{\lambda_{\max}(\tilde{A}^T \tilde{A})}$ in Theorem 2.2 to make stepsize bigger for free. Then

$$\frac{L_{\ell}}{\beta^2} = L_{\tilde{\ell}} = \sqrt{\lambda_{\max}(\tilde{A}^T \tilde{A})} = \beta \sqrt{\lambda_{\max}(A^T A)}$$

$$\Rightarrow \beta = -$$

$$\beta = \frac{L_\ell^{1/3}}{\lambda_{\max}^{1/6}(A^T A)} \quad \Rightarrow \quad L_{\tilde{\ell}} = L_\ell^{1/3} \lambda_{\max}^{1/3}(A^T A).$$

Hence, the bound on the stepsize in Theorem 2.2 become

$$\gamma = \frac{1}{2} \cdot \min\{1; \frac{1}{\sqrt[3]{L_\ell \lambda_{\max}(A^T A)}}; \frac{1}{L_r}\}.$$

This, in turn, modifies the convergence result of the theorem as follows:

$$\operatorname{gap}(\bar{x}^{K}, \bar{z}^{K}, \bar{y}^{K}) = \mathcal{O}\left(\frac{(1 + \sqrt[3]{L_{\ell}\lambda_{\max}(A^{T}A)} + L_{r})D^{2}}{K}\right).$$

4083 E ADDITIONAL EXPERIMENTS

In the main part (Figure 1 of Section 6) we shown that the concept of the saddle point reformulation
 and Algorithm 1 for its solution is competitive in the deterministic case. Here we present additional
 experiments.

As in the main part, we conduct experiments on the linear regression problem: $\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{2} ||Ax - b||^2 + \lambda ||x||_2^2$. We take mushrooms, a9a, w8a and MNIST datasets from LibSVM library (Chang & Lin, 2011). We vertically (by features) uniformly divide the whole dataset between 5 devices.

First we repeat the same experiments as in the main part, but now for each method we tune the parameters using a grid search. The results are shown in Figure 3. If we compare Figure 1 and Figure 3, the one method that accelerates the most is Algorithm 1.

Figure 3: Comparison of tuned methods for solving the VFL problem in different formulations: minimization (GD, Nesterov) and saddle point (ADMM, ExtraGradient/Algorithm 1). The comparison is made on LibSVM datasets mushrooms, a9a, w8a and MNIST.

4116

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4117 Next, we want to consider modifications of Algorithm 1 and show that they can speed Algorithm 1 up from different points of view.

In the first group of experiments with modifications (Figure 4), we test the performance of Algorithm 4120 2. We use the compression operator Q = RandK%, which is a random selection coordinates: 100% 4121 (Algorithm 1), 50%, 25%, 10%. An important detail is that we set the same random generator 4122 and seed on each of the devices. Therefore, at each iteration we send random coordinates, but 4123 they are the same for all devices. The comparison is made in terms of the number of full vectors 4124 transmitted. In contrast to the main part, here we tune stepsizes, since with the theoretical step it is 4125 not possible to achieve the best acceleration compared to Algorithm 1. The comparison is done in 4126 two settings: the basic one and using the β -trick (see disscusion after Corollary 2.3). The results 4127 show that compression can indeed speed up the communication process.

4128 In the second group of experiments with modifications (Figure 5), we test the performance of Al-4129 gorithm 3 in comparison with Algorithm 2. We use the compression operators C = TopK% (for 4130 Algorithm 3), which is a greedy selection coordinates, and Q = RandK% (for Algorithm 2) with K 4131 = 25% and 10%. The comparison is made in terms of the number of full vectors transmitted. As 4132 in the previous experiment, we tune stepsizes. In experiments, we see that unbiased compression 4133 outperforms biased compression almost always. In the horizontal case, the opposite is usually true 4134 (Beznosikov et al., 2020). We attribute this effect to the fact that in the case of RandK% compression we set the same random generator and seed on different devices and therefore they send the 4135 same random coordinates at each iteration. In the case of using TopK% operator we cannot do this, 4136 therefore convergence is worse.

Figure 4: Comparison of Algorithm 2 for solving the VFL problem (4). The comparison is made on LibSVM datasets mushrooms, a9a, w8a and MNIST. The compression operator Q = RandK%. The criterion for comparison is the number of full vectors transmitted. The top line reflects the work of methods on the basic problem, the bottom line solves the problem with the β -trick (see disscusion after Corollary 2.3).

In the third group of experiments with modifications (Figure 6), we test the performance of Algorithm 4. At each iteration we generate only 2 devices out of 5 that communicate. The comparison is made in terms of the number of full vectors transmitted from all devices. As in the previous experiments, we tune stepsizes. The results show that the partial participation technique can indeed speed up the communication process in terms of the number of devices communicated.

In the fouth group of experiments with modifications (Figure 7), we test the performance of Algorithm 5. We use a random selection coordinates: 100% (Algorithm 1), 50%, 25%, 10%. An important detail is that we set the same random generator and seed on each of the devices. The comparison is made in terms of the computational powers. Here we also tune stepsizes. The results show that the random coordinate selection can indeed speed up the computational process.

4184 E.1 TECHNICAL DETAILS

Our algorithms is written in Python 3.10, with the use of PyTorch optimization library. We implement a simulation of distributed optimization system on a single server. Our server is AMD Ryzen Threadripper 2950X 16-Core Processor @ 2.2 GHz CPU and x2 NVIDIA GeForce GTX 1080 Ti GPU.

4189

4183

4172

Figure 5: Comparison of Algorithm 3 and Algorithm 2 for solving the VFL problem (4). The comparison is made on LibSVM datasets mushrooms, a9a, w8a and MNIST. The compression operators C = TopK% and Q = RandK%. The criterion for comparison is the number of full vectors transmitted. The top line reflects the work of methods on the basic problem, the bottom line solves the problem with the β -trick (see disscusion after Corollary 2.3).

Figure 7: Comparison of Algorithm 5 for solving the VFL problem (4) on LibSVM datasets mushrooms, a 9a, w8a and MNIST. The criterion for comparison is the computational powers. The top line reflects the work of methods on the basic problem, the bottom line solves the problem with the β -trick (see disscusion after Corollary 2.3).