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ABSTRACT

Adversarial purification with diffusion models has emerged as a promising de-
fense strategy, but existing methods typically rely on uniform noise injection,
which indiscriminately perturbs all frequencies, corrupting semantic structures
and undermining robustness. Our empirical study reveals that adversarial per-
turbations are not uniformly distributed: they are predominantly concentrated
in high-frequency regions, with heterogeneous magnitude intensity patterns that
vary across frequencies and attack types. Motivated by this observation, we in-
troduce MANI-Pure, a magnitude-adaptive purification framework that lever-
ages the magnitude spectrum of inputs to guide the purification process. Instead
of injecting homogeneous noise, MANI-Pure adaptively applies heterogeneous,
frequency-targeted noise, effectively suppressing adversarial perturbations in frag-
ile high-frequency, low-magnitude bands while preserving semantically critical
low-frequency content. Extensive experiments on CIFAR-10 and ImageNet-1K
validate the effectiveness of MANI-Pure. It narrows the clean accuracy gap to
within 0.59 % of the original classifier, while boosting robust accuracy by 2.15%,
and achieves the top-1 robust accuracy on the RobustBench leaderboard, surpass-
ing the previous state-of-the-art method.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse applications. However,
their vulnerability to adversarial perturbations remains a critical challenge (Weng et al., 2023} |Tao
et al.l 2024} |Goodfellow et al.l |2014)), particularly in safety-critical domains where reliability is
paramount (Bortsova et al., |2021; [Shao et al., 2025; |Ye et al.l 2024). A primary line of defense
is adversarial training (AT), which augments training with adversarial examples to enhance robust-
ness (Mao et al., [2023} [Schlarmann et al.| 2024). Although effective, AT incurs substantial com-
putational costs and suffers from limited generalization, posing challenges for both large-scale and
cross-domain deployment. These limitations have motivated an alternative paradigm: adversarial
purification (AP). Unlike AT, AP does not require retraining classifiers; instead purifies adversar-
ial inputs at inference, restoring them to clean representations (Samangouei et al.l 2018} [Nie et al.,
2022). This design offers flexibility, scalability, and compatibility with off-the-shelf models.

Diffusion-based purification (DBP) has become the most effective and widely adopted approach in
AP. It suppresses perturbations by injecting uniform noise in the forward process and then recon-
structing images via reverse diffusion. Several variants have been proposed, such as the gradual
noise scheduling (Lee & Kim| |[2023)) and the purification-enhanced AT method (Lin et al.| 2024).

Despite these advances, existing DBP and related defense methods often assume that adversarial
perturbations are uniformly distributed across the frequency domain—an assumption that is contra-
dicted by empirical evidence. As shown in Figure [Ia] radial spectral analysis reveals that perturba-
tions are unevenly concentrated in the high-frequency region. Figure [Tb]reflects the heterogeneity
in magnitude intensity across different frequency bands and attack strategies. As a result, uniform
noise injection faces a trade-off: strong noise disrupts low-frequency semantics, reducing clean ac-
curacy, whereas weak noise fails to suppress high-frequency perturbations, thereby compromising
robustness. This motivates the need for frequency-adaptive purification that targets perturbation-
prone regions while preserving semantic fidelity.
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(a) Magnitude distribution differences between clean (b) Noise magnitude spectra of common adversarial
and adversarial images attacks

Figure 1: Radial spectrum analysis of adversarial perturbations. Overall, adversarial noise aligns
with clean samples in low-to-mid frequencies but diverges in high-frequency bands. Specifically,
Left: adversarial samples show irregular high-frequency peaks with uneven magnitude distribution.
Right: common attacks concentrate perturbations in high-frequency regions, yet their spectral dis-
tributions and intensities differ significantly. These observations highlight the limitation of uniform
noise injection and directly motivate our magnitude-adaptive design.

To address this challenge, we propose MANI-Pure, a magnitude-adaptive purification framework
that redesigns the diffusion process from the frequency-domain perspective. The framework com-
prises two complementary modules:

* MANI adaptively adjusts the noise injection intensity across different regions based on the
magnitude spectrum, ensuring the injected noise aligns with the vulnerability to perturba-
tions while preserving the original image semantics from excessive distortion.

* FreqPure 2025a)) employs magnitude—phase decomposition to explicitly distin-
guish low and high frequency components, preserving low-frequency content while focus-

ing purification on high frequencies.

Together, MANI emphasizes magnitude-aware adaptivity, while FreqPure enforces explicit fre-
quency constraints. Their synergy enables precise suppression of concentrated perturbations while
maximally retaining semantic structure, thereby improving robustness across diverse attacks.

We conduct extensive evaluations on CIFAR-10 (Krizhevsky et al.,[2010) and ImageNet-1K (Deng
etall under strong adaptive attacks, including PGD+EOT (Madry et al., 2017} [Athalye et al.,
2018), AutoAttack (Croce & Hein| [2020), and BPDA+EOT (Hill et al., [2021). Results show that
MANI-Pure significantly enhances robustness while maintaining high clean accuracy, consistently
outperforming existing DBP methods. Importantly, the framework is plug-and-play, readily appli-
cable to modern architectures such as CLIP (Radford et al.}, [2021]), without additional training cost.

In summary, our main contributions are briefly summarized as follows:

* We empirically verify that adversarial perturbations are concentrated in high-frequency
bands and further reveal distributional differences between adversarial and clean samples
in the magnitude spectrum.

* The proposed MANI-Pure framework combines magnitude-adaptive diffusion with
frequency-domain purification, achieving a principled balance between semantic fidelity
and perturbation mitigation, reflected in improvements to both clean and robust accuracy.

» Extensive experiments across datasets, attacks, and backbones demonstrate the superiority
of our method in terms of robustness, clean accuracy and perceptual quality, as well as
its scalability as a plug-and-play module.
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2 RELATED WORK

Adpversarial purification provides a defense paradigm that restores adversarial inputs to clean repre-
sentations at inference time, thereby avoiding the retraining cost of adversarial training.

Generative Models for Adversarial Purification. Early AP methods employed GANs, such as
Defense-GAN (Samangouei et al., [2018)), which projected adversarial samples onto the manifold
of clean data. However, their limited generative fidelity and vulnerability to adaptive attacks sig-
nificantly hindered their effectiveness. The advent of diffusion models marked a turning point:
through stable likelihood-based training and high-quality reconstructions, they became the backbone
of modern AP. Representative approaches include DiffPure (Nie et al.|[2022)), stochastic score-based
denoising (Song et al.|[2020), and gradient-guided purification like GDMP (Wang et al.| [2022).

Precision Noise Injection. A key limitation of uniform noise injection lies in its disregard for
the spectral structure of adversarial noise. Prior studies have shown that perturbations are often
concentrate in high-frequency, low-magnitude regions (Yin et al.,[2019). Building on this insight,
FreqPure (Pei et al.,|2025b) preserved low-frequency amplitude during reverse diffusion, effectively
protects semantic content while targeting vulnerable high-frequency regions. These results highlight
the importance of frequency-aware purification. Another line of research refines the forward nois-
ing process itself. Divide-and-Conquer (Pei et al., 2025a) integrates heterogeneous noise to better
suppress adversarial perturbations, Sample-Specific Noise Injection (Sun et al., [2025) adapts noise
to each input, and DiffCap (Fu et al.| |2025) extends such ideas to vision-language models. While
promising, these strategies remain largely fixed or heuristic, and they do not explicitly adapt to the
actual spectral distribution of adversarial noise.

We unify these insights by introducing a magnitude-adaptive noise injection scheme that dynami-
cally allocates noise to spectrally vulnerable regions, coupled with frequency-domain purification.
This design enables precise suppression of perturbations while preserving semantic fidelity, thereby
advancing AP toward finer-grained and more generalizable defenses.

3 METHODOLOGY

To eliminate adversarial perturbations while preserving semantic content, we propose MANI-Pure,
a diffusion-based, frequency-domain purification framework comprising two complementary mod-
ules: Magnitude-Adaptive Noise Injection (MANI) and Frequency Purification (FreqPure). Fig-
ure [2] illustrates the overall structure. Before presenting the details, we briefly introduce the neces-
sary background information.

3.1 PRELIMINARIES

We briefly introduce diffusion model, adversarial purification, and the frequency-domain theory
relevant to our method.

Diffusion Model. Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.| [2020) generates
data through a two-stage process: a forward noising process and a reverse denoising process.

Forward process. A sample x is gradually perturbed into Gaussian noise through a Markov chain:

q(ze | 24-1) ZN(%&; V1-=5 $t—175t1) , t=1,...T, (1)
where f3; follows a predefined variance schedule. By marginalization:
q(xe | 0) = N (243 Var zo, (1 — a@)l) , 2
witha; =1 — B; and oy = Hi:l Os.
Reverse process. To recover clean samples, the reverse distribution is approximated as
po(zi—1 | m¢) = N (2413 po(ae, 1), 071) . 3)

Instead of predicting ¢ directly, DDPM parameterizes it with a noise predictor €y (z¢, t):

1 Bt
ﬁ(l‘t - 17—07,569(%’”)’ €]

He (ajta t) =
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Figure 2: The pipeline of MANI-Pure. (I) MANI. Starting from an adversarial sample, we apply
DFT to obtain its frequency representation, partition it into bands, compute average magnitudes, and
derive band-wise and spatial weights. These weights modulate Gaussian noise to produce heteroge-
neous perturbations. (II) FreqPure. During the reverse process, the magnitude and phase spectra of
the adversarial input and generated image are separated and recombined as shown, with the recon-
structed image iteratively fed into subsequent denoising steps.

and the variance has a closed form:

11—y
2 t—1
o} = —— B 5
t 1 _t t ()

Sampling. Starting from z1 ~ N (0, I), the model iteratively computes x;_1 = pg(x¢, t) + o2 with
2~N(0,I) until & is obtained.
Frequency-domain Theory. For an image € R”*W | the discrete Fourier transform (DFT) yields
F(x)(u,v) = Zx(h,w) e~ 2mi(uh/Htvw/W) (6)
hyaw
Each Fourier coefficient can be expressed in polar form as
F(@)(u,0) = Ag(u,v) - P4, (7)

where A, (u,v) = |F(x)(u,v)| is the magnitude spectrum, reflecting the intensity of frequency
components, and ® . (u, v) is the phase spectrum, encoding structural and semantic information.

3.2 MAGNITUDE-ADAPTIVE NOISE INJECTION

Building upon the frequency-domain preliminaries introduced in Section [3.1] we leverage the mag-
nitude spectrum of the adversarial input x,4, to capture the uneven distribution of frequency com-
ponents. Specifically, the spectrum is partitioned into n non-overlapping frequency bands B;. The
average magnitude in each band is computed as

1
| Bi]

where |B;| denotes the number of coefficients in band B;. This corresponds to step (a) of the
magnitude-adaptive noise injection on the left in Figure 2]

Mi = Afbadv (’LL,’U), (8)

(u,v)EB;

Low-magnitude bands are empirically more vulnerable to adversarial perturbations, while high-
magnitude bands correspond to dominant semantic structures. To emphasize fragile regions, we
assign larger weights to lower-magnitude bands:

1
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where 7y controls the sharpness of weighting and €, prevents numerical instability when M; is very
small. The band-wise weights produce a frequency-domain weight distribution, which is trans-
formed back to the spatial domain via inverse DFT to obtain a pixel-wise noise intensity map W. In
Figure[2] step (b) shows a visual representation of these two weights.

The spatial map W modulates Gaussian noise g ~ N (0, I') by element-wise multiplication:

a=Woeg, st W,eqeREXWXC (10)

Hence, the forward diffusion process becomes:

Ty = VO Tady + V1 — 0y €, (11)

where &; is the cumulative product of noise scheduling coefficients.

3.3 FREQUENCY PURIFICATION

To complement MANI, we further adopt a frequency purification strategy (Pei et al., |2025b) during
the reverse diffusion process. The key observation is that low-frequency magnitude components
exhibit strong robustness against adversarial perturbations, whereas the phase spectrum is more
easily affected across all frequencies.

For an image z; generated during the reverse process, its DFT can be decomposed into magnitude
Ay and phase ®;, with FreqPure handling them separately.

Magnitude purification. A low-pass filter H is applied to retain the low-frequency part of the adver-
sarial input x,4y, while the high-frequency part is taken from the current generated image x;:

AT = H(Anay) + (1= H)(Ar). (12)

Phase purification. Low-frequency components are preserved through a projection operator IT;(+)
that restricts the generated phase within a small neighborhood of the adversarial phase:

' = H(ILs (s, Paav)) + (1 — H)(Py), (13)

where II5(®;, ®oqy) denotes clipping ®; into [@.qy — d, Pagy + d], and § is a hyperparameter
controlling projection strength.

Reconstruction. The purified frequency representation (A*~1, ®*~1) is then transformed back into
the spatial domain using the inverse discrete Fourier transform (IDFT):

z =F (AT ), (14)

and iteratively participates in the reverse diffusion process until Z( is obtained. The above process
is described in the corresponding module on the right side of Figure

Overall, FreqPure leverages the stability of low-frequency magnitudes while constraining the phase
distribution, preventing structural distortions. In contrast, MANI avoids redundant noise in robust
regions and focuses perturbations on vulnerable frequency bands, enabling effective denoising with
minimal semantic loss. Together, they are complementary: MANI selectively suppresses adversar-
ial signals in the forward process, while FreqPure ensures frequency stability and semantic consis-
tency in the reverse process. The above methods are summarized in Appendix

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Model Architectures. We conduct experiments on two widely used datasets of dif-
ferent resolutions: CIFAR-10 and ImageNet-1K. Following the settings in prior works (Pei et al.,
2025a}; [Zhang et al., 2025b), we randomly select 512 samples from CIFAR-10 and 1,000 samples
from ImageNet-1K for evaluation. To better align with the development of large-scale multimodal
models, we adopt CLIP as the frozen classifier to accomplish zero-shot classification tasks. For the
diffusion models, we use the publicly released unconditional CIFAR-10 checkpoint of EDM (Karras
et al.,[2022)) for CIFAR-10, and 256x256 unconditional diffusion checkpoint for ImageNet-1K.
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Evaluation Metrics. We report both standard accuracy and robust accuracy. This dual evaluation
provides a comprehensive view of the trade-off between preserving performance on clean data and
enhancing resilience against attacks.

Attack Settings. In our experiments, we evaluate all defenses under strong adaptive attacks across
both ¢, and /5 threat models. Concretely, we employ PGD and AutoAttack as primary evalu-
ation tools, covering both /., and ¢y perturbations. Following |[Lee & Kim| (2023), we adopt
PGD combined with expectation over transformations (PGD+EOT) to mitigate variability caused
by stochastic components in the defense. In addition, we test BPDA+EOQOT to evaluate attacks that
approximate gradients through non-differentiable or randomized components. For computational
tractability while retaining attack strength, PGD and BPDA are run for 10 iterations, and EOT uses
10 samples per gradient estimate. AutoAttack is executed in its standard version. The perturbation
budgets are specified as ¢ = 8/255 for /o, attacks on CIFAR-10, ¢ = 4/255 for { attacks on
ImageNet, and € = 0.5 for /5 attacks on both datasets. Further experimental settings can be found
in Appendix D]

4.2 MAIN RESULTS

This section presents a comprehensive evaluation of MANI-Pure across multiple datasets, attack set-
tings, and metrics, with a focus on robustness, perceptual quality, and plug-and-play flexibility.

4.2.1 CLASSIFICATION ACCURACY UNDER ADAPTIVE ATTACKS

MANI-Pure consistently achieves the best trade-off between standard and robust accuracy
across datasets and backbones. As summarized in Table [1| (CIFAR-10, ViT-L/14), Table
(CIFAR-10, RN50), and Table [3] (ImageNet-1K, ViT-L/14), we evaluate against strong adaptive
attacks including PGD+EOT, AutoAttack under both ¢, and /5 norms, and BPDA+EQOT.

On CIFAR-10, MANI-Pure improves robust accuracy by 2.15% under AutoAttack (/) and by
2.54% under BPDA+EOT when using ViT-L/14. Consistent improvements are also observed
on RN50, confirming the backbone-agnostic nature of our framework. On ImageNet-1K, espe-
cially, MANI-Pure achieves the highest robust accuracy, outperforming all baselines by 3.8% under
BPDA+EOT, while maintaining competitive clean accuracy.

These results demonstrate that MANI-Pure not only surpasses existing AP and AT baselines (in-
cluding recent leaders on RobustBench), but also exhibits strong cross-dataset generalization and
backbone versatility. More results on different backbones can be found in the Appendix. [E.2]

Table 1: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP ViT-L/14. Zero-
shot CLIP (w/o defense) is denoted by {, its standard accuracy as the upper bound. Methods from
the Robustbench leaderboard are denoted by 1. AT and AP methods are marked accordingly.

Type Algorithm Standard PGD AutoAttack BPDA
eoo 62 foo 62
DHAT (Zhang et al.|[2025a) 85.45 63.14 6691 56.77 5740 54.84
AT DIAT (Wang et al.|[2023) * 92.69 7138 85.12 70.53 84.03 69.76
MeanSparse (Amini et al.|[2024) 92.98 74.02 86.41 68.85 8598 72.87
Zero-shot (w/o defense)’ 94.73 2.15 5586 0.00 0.00 0.78
+ DiffPure (Nie et al.|2022) 86.52 85.55 85.74 8535 8555 84.96
AP + DDPM++ (Song et al.[[2020) 86.33 84.77 85.16 8574 8574 86.13
+ REAP (Lee & Kim/[[2023) 81.45 79.69 79.87 80.08 80.18 80.86
+ FregPure (Pei et al.||2025b) 91.77 90.17 91.41 90.82 91.99 87.89
+ CLIPure (Zhang et al.||2025b) 93.55 89.06 92.19 90.04 9238 83.01
+ Ours 94.14 91.02 92.58 92.19 93.16 88.67
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Table 2: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP RN50. Zero-
shot CLIP (w/o defense) is denoted by 1, its standard accuracy as the upper bound. Only AP-based
methods are included.

Algorithm Standard PGD AutoAttack  ppyy\
goo 62 goo 42

Zero-shot (w/o defense) ! 69.92 0.00 19.73 0.39 0.39 3.32
+ DiffPure (Nie et al.|[2022) 61.91 59.77 61.13 59.77 60.64 60.16
+ DDPM++ (Song et al.[[2020) 56.64 56.25 56.64 56.05 5634 5527
+ REAP (Lee & Kim/[2023) 58.59 56.84 58.40 55.66 5840 56.25
+ FreqPure (Pei et al.|[2025b) 62.70 59.38 60.55 61.52 6256 58.79
+ CLIPure (Zhang et al.|[2025b) 61.33 53.71 60.55 56.84 60.55 53.32

+QOurs 65.23 6191 62.50 62.70 64.84 60.16

Table 3: Classification accuracy on ImageNet-1K under adversarial attacks using CLIP ViT-L/14.
Zero-shot CLIP (w/o defense) is denoted by 7, its standard accuracy as the upper bound. Only
AP-based methods are included.

PGD AutoAttack

Algorithm Standard BPDA
Zoo EQ Zoo EQ

Zero-shot (w/o defense)! 74.90 1.20  31.60 0.10 0.10 0.00
+ DiffPure (Nie et al.||2022) 71.10 43.00 43.40 4290 4420 42.50
+ DDPM++ (Song et al.|[2020) 70.70 66.00 70.00 68.10 7040 63.50
+ REAP (Lee & Kim|[2023) 51.30 4890 4990 48.40 50.10 48.50
+ OSCP (Lei et al.][2025) 71.60 65.70 69.00 68.30 70.10 66.00

+ Ours 73.10 67.30 70.80 68.90 7090 67.30

4.2.2 PERCEPTUAL QUALITY EVALUATION

MANI-Pure produces purified images that are perceptually closest to clean images across dif-
ferent backbones. Since diffusion-based purification is inherently generative, we complement ro-
bustness evaluation with perceptual quality metrics, conducted on the CIFAR-10 dataset. Table
reports results on SSIM (Wang et al., 2004) (higher is better) and LPIPS (Zhang et al., 2018)) (lower
is better). On RN50, MANI-Pure achieves an SSIM of 0.9274 and an LPIPS of 0.1136, both outper-
forming all baselines. Similar trends are observed with ViT-L/14. Overall, MANI-Pure consistently
achieves the highest perceptual similarity, underscoring its ability to defend against adversarial per-
turbations while preserving image fidelity.

Table 4: To evaluate the quality of the generated images, we compute the SSIM and LPIPS scores
between the images purified by different AP methods and the clean images.

Backbone Metric Methods
Adversarial DiffPure REAP FreqPure Ours
VIT-L/14 SSIM 1t 0.8204 0.8342  0.8044 0.9172 0.9270
LPIPS| 0.4403 0.2110  0.2553 0.1214 0.1133
RN50 SSIM 1 0.8180 0.8344  0.8045 0.9176 0.9274
LPIPS| 0.3907 0.2110  0.2551 0.1217 0.1136

4.2.3 QUALITATIVE VISUALIZATION

Visualizations confirm that MANI-Pure selectively suppresses adversarial perturbations while
preserving semantics. To better validate the effectiveness of adaptive noise injection, we visual-
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ize the difference between the injected noise and adversarial noise. Figure [3] clearly shows that
adaptive noise aligns much better with adversarial perturbations than uniform noise, especially in
high-frequency regions that are most vulnerable to attacks. Quantitatively, KL divergence further
confirms this observation: adaptive noise (0.1628) is substantially closer to adversarial noise than
uniform noise (0.4988).

-0.025

These findings highlight our core advan-
tage—precise suppression of adversarially
vulnerable regions while preserving semantic
fidelity elsewhere.

-0.000

We further compare purified samples from i .
DDPM++ and MANI-Pure, together with s
pixel-wise difference heatmaps relative to e lfﬂ:ms
clean images. Our method introduces smaller i rerdn .
modiﬁcations in 1OW_frequency background Adaptive noise VS adv noise Normal noise VS adv noise
regions, while applying targeted changes in . .
high-frequency regions most affected by per- Flgure 3: lefe.rence hqatmaps between adaptlye
turbations, which provides direct evidence of N018¢€ (left) / uniform noise (right) and adversarial
MANI-Pure’s frequency-adaptive design. noise. Lighter colors indicate smaller differences.

Clean Adversarial DDPM++ Purified DDPM++ Diff Ours Purified Ours Diff

Figure 4: Visualization of purification before and after defense. The figure compares purified results
from DDPM++ and MANI-Pure, together with pixel-wise difference heatmaps relative to clean im-
ages. Overall: MANI-Pure introduces smaller modifications in low-frequency background regions,
avoiding unnecessary semantic loss. Key effect: it selectively alters high-frequency vulnerable
regions, providing direct evidence of its frequency-adaptive design.

4.2.4 PLUG-AND-PLAY COMPATIBILITY

As a modular noise injection strategy, MANI can be seamlessly combined with various existing
DBP methods. Table[5|reports results under £, attacks (results under ¢, are listed in Appendix [E.3).

We observe that MANI consistently improves both clean and robust accuracy across all tested
AP baselines. In particular, REAP benefits the most, with its clean accuracy increased by 4.10%
and robust accuracy under AutoAttack improved by 1.95%. More importantly, the combination of
MANI with FreqPure yields the overall best performance, highlighting the complementary design
philosophy between the two modules.These results validate MANI as a general and effective plug-in
for enhancing diverse purification pipelines.



Under review as a conference paper at ICLR 2026

Table 5: Plug-and-play validation of the MANI module under /., attacks. We integrated MANI
into various diffusion-based purification frameworks and evaluated them on CIFAR-10. Results are
reported both without MANI (w/0) and with MANI (w/).

. Standard PGD AutoAttack BPDA
Algorithm
w/o w/ w/o w/ w/o w/ w/o w/
+DiffPure (Nie et al.;[2022) 86.52 87.72 8555 86.82 8535 8691 8496 8543
+DDPM++ (Song et al.[[2020) 86.33 87.30 84.77 86.33 8574 86.52 86.13 86.33
+REAP (Lee & Kim|[2023) 81.45 8555 79.69 81.45 80.08 82.03 80.86 82.42

+FreqPure (Pei et al.|[2025b) 91.77 94.14 90.17 91.02 90.82 92.19 87.89 88.67

4.3 ABLATION STUDIES

We conducted ablation experiments on CIFART-10 to better understand the contributions of different
design choices in MANI-Pure, primarily involving parameter analysis and module ablation.

Effect of hyperparameters. The MANI module mainly involves two hyperparameters: the weight-
ing factor +y and the number of frequency bands n. As shown in Figure 3] both standard and robust
accuracy exhibit a “rise-then-fall” trend as y increases from 1.0. Specifically, standard accuracy
peaks at v = 1.6, while v = 1.8 achieves a more balanced trade-off between clean and robust
performance. A similar trend is observed for n, where n = 8 provides the best overall results.

Effect of different modules. To further assess the contribution of each component, we conduct ab-
lation studies on MANI and FreqPure. As shown in Table[6} both modules individually enhance the
baseline performance. When combined, they yield substantially larger improvements than using ei-
ther module alone, achieving gains of 7.62% in clean accuracy and 5.47% in robust accuracy. These
results highlight the orthogonal benefits of MANI and FreqPure, and their strong complementarity.

650 T Standerd g, ot Table 6: Standard and robust accuracy for dif-
' ferent block combinations. v and X indicate
S 925 926 use or non-use of the module.
g 925
$ 920 924 MANI FreqPure Standard Robust
asb—+——+ 923 X X 86.52 85.55
1.0 1.2 14 16 1.8 2.0 2 4 8 10 12 16
4 n v X 87.30 86.33
Figure 5: Standard accuracy and robust accuracy X 4 91.77 90.17
under different ratio factor ~y (left) and under dif- v v 94.14 91.02

ferent number of frequency band n (right).

5 CONCLUSION

This work systematically analyzes the distribution of adversarial perturbations in the frequency do-
main and shows that existing uniform noise injection strategies may disrupt the semantic structure
of clean images. To address this issue, we propose MANI-Pure, a diffusion-based purification
framework that integrates magnitude-adaptive noise injection to emphasize vulnerable frequency
bands and frequency purification to protect semantic structures. Through extensive experiments on
two benchmark datasets under multiple attacks, MANI-Pure effectively suppresses adversarial noise
while preserving semantic content, achieving a favorable balance between clean and robust accuracy.
Moreover, the plug-and-play design of MANI highlights its compatibility with diverse purification
pipelines, further broadening its applicability.
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APPENDIX OVERVIEW

This appendix provides additional details and analyses to complement the main paper. It is organized
as follows:

* Section [A] Use of Large Language Models. We clarify the extent to how LLMs were
used during the writing and proofreading process, ensuring transparency in compliance
with conference policies.

* Section [B] Background on Adversarial Attacks and Defenses. We review standard ad-
versarial attacks (e.g., PGD, AutoAttack, BPDA) and defense paradigms (adversarial train-
ing, purification), offering context for how our method relates to existing approaches.

* Section [C} Theoretical Supplement. We provide a more complete derivation of diffusion
models, present a unified mathematical framework for adversarial purification, and analyze
the computational complexity and stability of different approaches.

* Section [D} Experimental Settings. We detail the hyperparameter choices for both attacks
and diffusion models, including perturbation budgets, iteration numbers, noise schedules,
and pretrained checkpoints, ensuring reproducibility of all results.

* Section[E} Additional Experimental Results. We extend the evaluations beyond the main
text. This includes: (i) a step-by-step algorithmic workflow of our framework. (ii) classifi-
cation with alternative backbones (CLIP-RN101, WRN-28-10,RN-50), (iii) plug-and-play
integration under /5 attacks, (iv) analysis of PGD iteration numbers, and

* Section [F} Visualization. We provide additional qualitative results, showing purified ver-
sus adversarial samples across multiple datasets, highlighting the semantic preservation and
noise suppression of our method.

A STATEMENT ON THE USE OF LLMS

This study employed LLMs to assist in writing. LLMs were primarily utilized for language refine-
ment, grammatical corrections, and enhancing academic tone. It is crucial to emphasize that all
viewpoints, theoretical frameworks, experimental results, and final conclusions were independently
developed by human authors. LLMs served solely as auxiliary tools for manuscript refinement, with
all final drafts thoroughly reviewed and approved by the authors.

B SUPPLEMENT RELATED WORK

Adversarial Attacks & Robustness. Adversarial attacks have long revealed the fragility of neural
networks, beginning with the discovery of imperceptible perturbations by [Szegedy et al.|(2013)) and
the efficient one-step FGSM attack (Goodfellow et al.,2014). Iterative methods such as PGD (Madry
et al., 2017) established strong benchmarks for robustness evaluation, later extended by efficient
variants like Free AT (Shafahi et al., 2019) and AutoAttack (Croce & Hein, [2020). The use of EOT
(Expectation over Transformation) (Athalye et al., 2018) was further emphasized to mitigate ran-
domness and non-differentiability in gradients, ensuring accurate robustness assessment. On the
defense side, adversarial training (Schlarmann et al) [2024; Mao et al.| 2023) remains the most
widely used strategy. By incorporating adversarial examples into the training process, AT explicitly
improves the decision boundary against perturbations, thereby enhancing robustness. However, AT
requires significant computational resources and often generalizes poorly to unseen attacks, moti-
vating research into alternative approaches.AP emerged in response to this situation.

C THEORETICAL SUPPLEMENT

C.1 UNIFIED FRAMEWORK FOR ADVERSARIAL PURIFICATION

We can unify diffusion-based adversarial purification methods into the following generalized for-
mulation:
zr = f(wo; ) + g(6 W), (15)
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where f(xo;a¢) = v/t xo denotes the signal decay term, g(e; W) represents noise injection, and
W is a weighting or transformation operator.

* Adversarial Training: robustness stems from model parameters; no explicit g(-) is intro-
duced.

* DiffPure: g(e; W) = /1 — & ¢, where W = [.

MANI-Pure: g(e; W) = /1 — a:(W © €), where W is derived from frequency magni-
tudes.

* FreqPure: constraints are imposed in the reverse step, by spectral recombination rather
than forward-side weighting.

This unified framework highlights a key dichotomy: forward-side approaches redesign g(-) to better
mimic adversarial distributions, while reverse-side approaches constrain the reconstruction trajec-
tory. MANI-Pure naturally combines both perspectives, explaining its superior performance.

C.2 COMPLEXITY AND STABILITY ANALYSIS
Time Complexity:

* DiffPure: O(T - HW) per reverse trajectory, dominated by neural network inference.

* MANI-Pure: adds DFT/IDFT operations of O(HW log(HW)) per step, negligible com-
pared to network cost.

* FreqPure: incurs extra spectral recombination and projection, but all operations are
element-wise or FFT-based, remaining parallelizable on GPUs.

* Hybrid methods (e.g., MANI+FreqPure): maintain linear scaling in 7" and near-constant
overhead relative to the diffusion backbone.

Space Complexity:

* All methods store O(H W) activations per step.

* Frequency-based approaches require one additional complex-valued copy of the spectrum,
i.e., O(2HW), which is marginal compared with feature maps inside the denoiser.

Numerical Stability:

* FFT and inverse FFT are unitary transforms, introducing no instability.

* MANT’s band-wise weighting may amplify small magnitudes, but normalization with €
ensures bounded variance.

* FreqPure’s projection operator II(-) restricts phase drift, effectively stabilizing the reverse
trajectory under strong attacks.

Scalability. Since the extra overhead scales sub-linearly with resolution (log( HW)), frequency-
domain operations remain efficient even for high-resolution ImageNet-1K images. Therefore, the
proposed MANI-Pure achieves robustness gains without sacrificing efficiency.

D PARAMETERS AND SETTINGS

D.1 ATTACK SETUP

We adopt three types of strong adaptive attacks: PGD+EOT, AutoAttack, and BPDA+EOT. For
PGD and BPDA, the number of iterations is set to 10 (the rationale for this choice is discussed in
Appendix [E.4), while the number of EOT samples is also set to 10. AutoAttack is executed in its
standard version, which integrates APGD-CE, APGD-DLR, FAB, and Square Attack, with 100
update iterations. The perturbation budget is ¢ = 8/255 for £, attacks on CIFAR-10 and € = 4/255
on ImageNet-1K, while ¢5 attacks use ¢ = 0.5 for both datasets. Unless otherwise specified, the step
size is set to 0.007 for all attacks.
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D.2 DIFFUSION SETUP

Our purification framework is based on DDPM++ (Song et al.,2020) with a linear variance schedule,
where the noise variance increases from 8; = 10~% to 8 = 0.02 over T = 1000 steps (Ho et al.,
2020). In all experiments, we set the forward noising steps to 100 and the reverse denoising steps
to 5, unless otherwise specified. For DiffPure, we follow the original implementation and use 100
reverse steps. The pretrained diffusion weights are taken from public releases: the unconditional
CIFAR-10 checkpoint of EDM (Karras et al.l [2022) and the 256 x 256 unconditional diffusion
checkpoint for ImageNet-1K, consistent with prior works.

D.3 NOISE DIFFERENCE HEATMAP COMPUTATION

To analyze the similarity between injected noise Vi, and adversarial noise V,qy, We compute their
pixel-wise difference:
D :Ninj *Nadv- (16)

Here D contains both positive and negative values, where the sign indicates whether the injected
noise is larger or smaller than the adversarial noise at each pixel. For visualization, we normal-
ize D and render it with a diverging colormap, where red/blue colors represent positive/negative
differences, respectively.

E ADDITIONAL RESULTS

E.1 THE ALGORITHM WORKFLOW OF MANI-PURE

This section presents the MANI-Pure algorithm flowchart (Algorithm [I]), which comprehensively
illustrates the entire processing workflow. This contrasts with the section-by-section module intro-
ductions in Sec. and the abstract representation in Figure

Algorithm 1 Adversarial Purification with MANI and FreqPure

Require: Adversarial input x,q4., Diffusion steps 7', Band number n, Weighting factor
Ensure: Purified image z(
I: (Aadva (I)adv) = F(Z‘adv)
2: Partition M, 4, into n frequency bands {B;} // Forward Progress:MANI
3: for each band B; do
4: M, = ﬁ E(u’v)eBi Asav(u,v)
5: w; = (M7 + 60)77
6: end for
7. Construct spatial weight map W via IDFT
8: ¢ = W ®eg, witheg ~ N (0, )
9: Ty = /0t Taav + V1 — &
10: Initialize z7 ~ N(0, 1) /I Reverse Progress:FreqPure
11: fort =T — 1do
12: xo‘t = \/%(mt — 1-— Qi Go(l't,t))
13: (Ag, @) = ]:(IOH,)
14: A7 =H(Awav) + (1 —H)(Ay)
150 @ = H(I(Py, Paay,0)) + (1 — H)(Py)
16:  xy_ 1 = F YA oL
17: end for
18: return z

E.2 ROBUSTNESS UNDER DIFFERENT BACKBONES
In this section, we further supplement classification experiments with CLIP (RN101), WRN-28-

10 (Zagoruyko & Komodakis|, 2016 and ResNet-50 (He et al., 2016)), following the same settings as
Sec. 4.1 in the main text. As shown in Table[T} Table 2] Table[7] Table[8]and Table[0] MANI-Pure
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Figure 6: Robust accuracy of several purification methods across different PGD iteration counts (All
attacks with EOT=10).

consistently achieves the best performance across different classifier architectures, demonstrat-
ing its versatility and robustness.

Table 7: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP RN101. Zero-
shot CLIP (w/o defense) is denoted by f; its standard accuracy as the upper bound. Only AP-based
methods are included.

PGD AutoAttack

Algorithm Standard BPDA
goo 62 Eoo 62

Zero-shot (w/o defense) 78.32 0.00 26.56 0.20 0.20 2.73
+ DiffPure (Nie et al.|[2022) 67.58 6598 66.60 65.62 66.60 66.01
+ DDPM++ (Song et al.[[2020) 68.95 65.62 6699 6445 6680 65.62
+ REAP (Lee & Kim/[2023) 62.30 61.33 61.72 6191 61.13 61.91
+ FreqPure (Pei et al.||2025b) 70.70 68.55 6895 6797 68.75 66.80
+ CLIPure (Zhang et al.|[2025b) 68.95 62.89 68.75 64.26 68.84 59.18

+Ours 71.88 68.75 70.12 6943 70.12 69.53

E.3 PLUG-AND-PLAY RESULTS UNDER /5 ATTACKS

In addition to the /., setting reported in the main text, we also evaluate the plug-and-play integration
of MANI with existing AP methods under /5 attacks. Following the same configurations as Sec. 4.1}
we consider PGD+EOT and AutoAttack with perturbation budget € = 0.5. The results, summarized
in Table [I0] show that MANI consistently improves both clean and robust accuracy when combined
with different AP backbones.

E.4 EFFECT OF ATTACK ITERATIONS

We also examine the impact of the number of PGD iterations on robust accuracy. In our main exper-
iments, we set PGD iterations to 10. Since prior works adopt different iteration counts, we perform
an ablation to validate this choice. As illustrated in Figure [6] the robust accuracy of undefended
models decreases sharply with more iterations and converges near zero, while defense methods re-
main relatively stable with only minor fluctuations. Therefore, we adopt 10 iterations as a practical
balance between robustness evaluation and computational efficiency. Additionally, for EOT it-
erations, we follow the setting in |[Nie et al.[ (2022), which shows that robustness converges once
EOT exceeds 10.
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Table 8: Classification accuracy on CIFAR-10 under adversarial attacks using WRN-28-10. WRN-
28-10(w/o defense) is denoted by f; its standard accuracy as the upper bound. Results marked with
1 are reported in|Bai et al.|(2024). Only AP-based methods are included.

Algorithm Standard PGD AutoAttack

WRN-28-10 (w/o defense) T 96.48 0.00 0.00
+Diffpure(Nie et al.,[2022) 90.07 56.84 63.30
+REAP(Lee & Kiml, 2023) 90.16 55.82 70.47
+CGDM(Bai et al.| 2024)* 91.41 49.22 77.08
+FreqPure(Pei et al.||2025b) 92.19 59.39 77.35

+Ours 92.57 61.32 78.69

Table 9: Classification accuracy on CIFAR-10 under adversarial attacks using ResNet-50. ResNet-
50(w/o defense) is denoted by f; its standard accuracy as the upper bound. Results marked with {
are reported in|Bai et al.|(2024)). Only AP-based methods are included.

Algorithm Standard PGD AutoAttack

ResNet-50 (w/o defense) T 76.01 0.00 0.00
+Diffpure(Nie et al., [2022) 67.84 42.58 41.53
+REAP(Lee & Kiml 2023) 68.72 43.19 44.67
+CGDM(Bai et al | 2024)* 68.98 41.80 -
+FreqPure(Pei et al.||2025b) 69.53 59.77 63.49

+Ours 70.31 60.03 61.79

Table 10: Plug-and-play validation of the MANI module under /- attacks. We integrated MANI
into various diffusion-based purification frameworks and evaluated them on CIFAR-10. Results are
reported both without MANI (w/0) and with MANI (w/).

PGD AutoAttack
w/o w/ w/o w/

+ DiffPure (Nie et al.,[2022) 85.74 87.08 85.55 87.50
+ DDPM++ (Song et al.,2020) 85.16 86.72 85.74 87.11
+ REAP (Lee & Kim, 2023) 79.87 81.64 80.18 81.84
+ FreqPure (Pei et al.;[2025b) 9141 9258 92.00 93.16

Algorithm
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F VISUALIZATION

To intuitively illustrate the purification effect, we present qualitative results on randomly selected
samples from CIFAR-10 (Figure [7] Figure [8] Figure 0) and ImageNet-1K (Figure [I0] Figure [T1]
Figure[T2), including clean images, adversarial images, and purified images.

Figure 8: Adversarial CIFAR-10 images randomly selected for visualization
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Figure 9: Purified CIFAR-10 images randomly selected for visualization
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Figure 11: Adversarial ImageNet-1K images randomly selected for visualization
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