

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MANI-PURE: MAGNITUDE-ADAPTIVE NOISE INJECTION FOR ADVERSARIAL PURIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

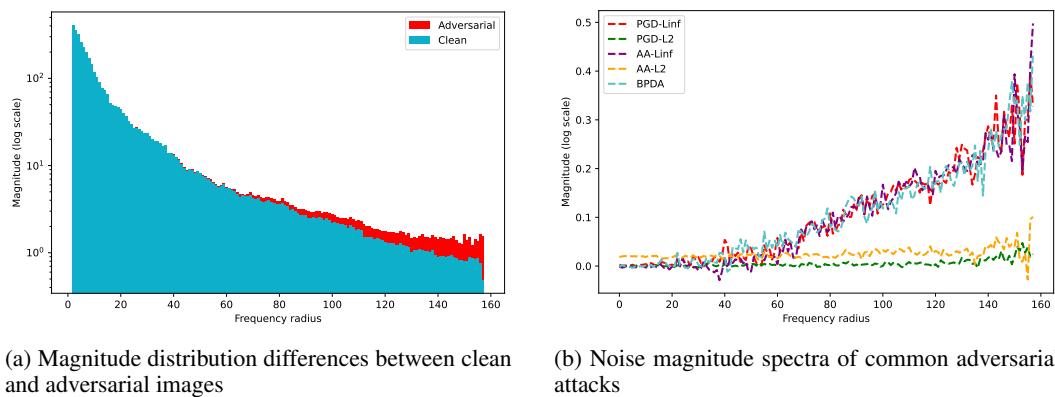
Adversarial purification with diffusion models has emerged as a promising defense strategy, but existing methods typically rely on uniform noise injection, which indiscriminately perturbs all frequencies, corrupting semantic structures and undermining robustness. Our empirical study reveals that adversarial perturbations are not uniformly distributed: they are predominantly concentrated in high-frequency regions, with heterogeneous magnitude intensity patterns that vary across frequencies and attack types. Motivated by this observation, we introduce **MANI-Pure**, a magnitude-adaptive purification framework that leverages the magnitude spectrum of inputs to guide the purification process. Instead of injecting homogeneous noise, MANI-Pure adaptively applies heterogeneous, frequency-targeted noise, effectively suppressing adversarial perturbations in fragile high-frequency, low-magnitude bands while preserving semantically critical low-frequency content. Extensive experiments on CIFAR-10 and ImageNet-1K validate the effectiveness of MANI-Pure. It narrows the clean accuracy gap to within **0.59%** of the original classifier, while boosting robust accuracy by **2.15%**, and achieves the **top-1** robust accuracy on the RobustBench leaderboard, surpassing the previous state-of-the-art method.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse applications. However, their vulnerability to adversarial perturbations remains a critical challenge (Weng et al., 2023; Tao et al., 2024; Goodfellow et al., 2014), particularly in safety-critical domains where reliability is paramount (Bortsova et al., 2021; Shao et al., 2025; Ye et al., 2024). A primary line of defense is adversarial training (AT), which augments training with adversarial examples to enhance robustness (Mao et al., 2023; Schlarbmann et al., 2024). Although effective, AT incurs substantial computational costs and suffers from limited generalization, posing challenges for both large-scale and cross-domain deployment. These limitations have motivated an alternative paradigm: adversarial purification (AP). Unlike AT, AP does not require retraining classifiers; instead purifies adversarial inputs at inference, restoring them to clean representations (Samangouei et al., 2018; Nie et al., 2022). This design offers flexibility, scalability, and compatibility with off-the-shelf models.

Diffusion-based purification (DBP) has become the most effective and widely adopted approach in AP. It suppresses perturbations by injecting uniform noise in the forward process and then reconstructing images via reverse diffusion. Several variants have been proposed, such as the gradual noise scheduling (Lee & Kim, 2023) and the purification-enhanced AT method (Lin et al., 2024).

Despite these advances, existing DBP and related defense methods often assume that adversarial perturbations are uniformly distributed across the frequency domain—an assumption that is contradicted by empirical evidence. As shown in Figure 1a, radial spectral analysis reveals that perturbations are unevenly concentrated in the high-frequency region. Figure 1b reflects the heterogeneity in magnitude intensity across different frequency bands and attack strategies. As a result, uniform noise injection faces a trade-off: strong noise disrupts low-frequency semantics, reducing clean accuracy, whereas weak noise fails to suppress high-frequency perturbations, thereby compromising robustness. This motivates the need for frequency-adaptive purification that targets perturbation-prone regions while preserving semantic fidelity.



(a) Magnitude distribution differences between clean and adversarial images

(b) Noise magnitude spectra of common adversarial attacks

Figure 1: Radial spectrum analysis of adversarial perturbations. Overall, adversarial noise aligns with clean samples in low-to-mid frequencies but diverges in high-frequency bands. Specifically, **Left:** adversarial samples show irregular high-frequency peaks with uneven magnitude distribution. **Right:** common attacks concentrate perturbations in high-frequency regions, yet their spectral distributions and intensities differ significantly. These observations highlight the **limitation of uniform noise injection** and directly motivate our magnitude-adaptive design.

To address this challenge, we propose MANI-Pure, a magnitude-adaptive purification framework that redesigns the diffusion process from the frequency-domain perspective. The framework comprises two complementary modules:

- **MANI** adaptively adjusts the noise injection intensity across different regions based on the magnitude spectrum, ensuring the injected noise aligns with the vulnerability to perturbations while preserving the original image semantics from excessive distortion.
- **FreqPure** (Pei et al., 2025a) employs magnitude–phase decomposition to explicitly distinguish low and high frequency components, preserving low-frequency content while focusing purification on high frequencies.

Together, MANI emphasizes magnitude-aware adaptivity, while FreqPure enforces explicit frequency constraints. Their synergy enables precise suppression of concentrated perturbations while maximally retaining semantic structure, thereby improving robustness across diverse attacks.

We conduct extensive evaluations on CIFAR-10 (Krizhevsky et al., 2010) and ImageNet-1K (Deng et al., 2009) under strong adaptive attacks, including PGD+EOT (Madry et al., 2017; Athalye et al., 2018), AutoAttack (Croce & Hein, 2020), and BPDA+EOT (Hill et al., 2021). Results show that MANI-Pure significantly enhances robustness while maintaining high clean accuracy, consistently outperforming existing DBP methods. Importantly, the framework is plug-and-play, readily applicable to modern architectures such as CLIP (Radford et al., 2021), without additional training cost.

In summary, our main contributions are briefly summarized as follows:

- We empirically verify that adversarial perturbations are concentrated in high-frequency bands and further reveal **distributional differences** between adversarial and clean samples in the magnitude spectrum.
- The proposed MANI-Pure framework combines magnitude-adaptive diffusion with frequency-domain purification, achieving a principled balance between **semantic fidelity** and **perturbation mitigation**, reflected in improvements to both clean and robust accuracy.
- Extensive experiments across datasets, attacks, and backbones demonstrate the superiority of our method in terms of **robustness**, **clean accuracy** and **perceptual quality**, as well as its scalability as a **plug-and-play** module.

108 **2 RELATED WORK**

110 Adversarial purification provides a defense paradigm that restores adversarial inputs to clean representations at inference time, thereby avoiding the retraining cost of adversarial training.

112 **Generative Models for Adversarial Purification.** Early AP methods employed GANs, such as Defense-GAN (Samangouei et al., 2018), which projected adversarial samples onto the manifold of clean data. However, their limited generative fidelity and vulnerability to adaptive attacks significantly hindered their effectiveness. The advent of diffusion models marked a turning point: through stable likelihood-based training and high-quality reconstructions, they became the backbone of modern AP. Representative approaches include DiffPure (Nie et al., 2022), stochastic score-based denoising (Song et al., 2020), and gradient-guided purification like GDMP (Wang et al., 2022).

113 **Precision Noise Injection.** A key limitation of uniform noise injection lies in its disregard for 114 the spectral structure of adversarial noise. Prior studies have shown that perturbations are often 115 concentrate in high-frequency, low-magnitude regions (Yin et al., 2019). Building on this insight, 116 FreqPure (Pei et al., 2025b) preserved low-frequency amplitude during reverse diffusion, effectively 117 protects semantic content while targeting vulnerable high-frequency regions. These results highlight 118 the importance of frequency-aware purification. Another line of research refines the forward noising 119 process itself. Divide-and-Conquer (Pei et al., 2025a) integrates heterogeneous noise to better 120 suppress adversarial perturbations, Sample-Specific Noise Injection (Sun et al., 2025) adapts noise 121 to each input, and DiffCap (Fu et al., 2025) extends such ideas to vision–language models. While 122 promising, these strategies remain largely fixed or heuristic, and they do not explicitly adapt to the 123 actual spectral distribution of adversarial noise.

124 We unify these insights by introducing a magnitude-adaptive noise injection scheme that 125 dynamically allocates noise to spectrally vulnerable regions, coupled with frequency-domain purification. 126 This design enables precise suppression of perturbations while preserving semantic fidelity, thereby 127 advancing AP toward finer-grained and more generalizable defenses.

135 **3 METHODOLOGY**

136 To eliminate adversarial perturbations while preserving semantic content, we propose **MANI-Pure**,
137 a diffusion-based, frequency-domain purification framework comprising two complementary mod-
138 ules: **Magnitude-Adaptive Noise Injection** (MANI) and **Frequency Purification** (FreqPure). Fig-
139 ure 2 illustrates the overall structure. Before presenting the details, we briefly introduce the nec-
140 essary background information.

141 **3.1 PRELIMINARIES**

142 We briefly introduce diffusion model, adversarial purification, and the frequency-domain theory
143 relevant to our method.

144 **Diffusion Model.** Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) generates
145 data through a two-stage process: a forward noising process and a reverse denoising process.

146 *Forward process.* A sample x_0 is gradually perturbed into Gaussian noise through a Markov chain:

$$147 q(x_t | x_{t-1}) = \mathcal{N}\left(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}\right), \quad t = 1, \dots, T, \quad (1)$$

148 where β_t follows a predefined variance schedule. By marginalization:

$$149 q(x_t | x_0) = \mathcal{N}\left(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t) \mathbf{I}\right), \quad (2)$$

150 with $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$.

151 *Reverse process.* To recover clean samples, the reverse distribution is approximated as

$$152 p_\theta(x_{t-1} | x_t) = \mathcal{N}\left(x_{t-1}; \mu_\theta(x_t, t), \sigma_t^2 \mathbf{I}\right). \quad (3)$$

153 Instead of predicting μ_θ directly, DDPM parameterizes it with a noise predictor $\epsilon_\theta(x_t, t)$:

$$154 \mu_\theta(x_t, t) = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right), \quad (4)$$

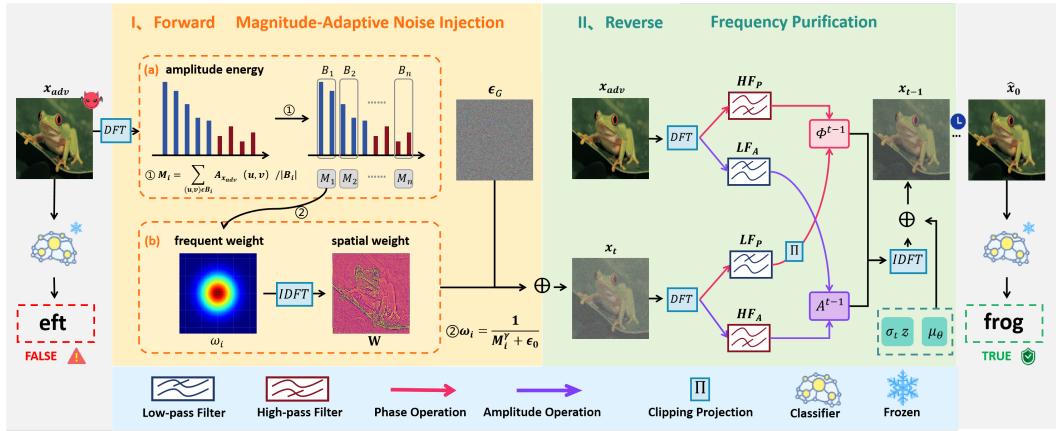


Figure 2: The pipeline of MANI-Pure. (I) **MANI**. Starting from an adversarial sample, we apply DFT to obtain its frequency representation, partition it into bands, compute average magnitudes, and derive band-wise and spatial weights. These weights modulate Gaussian noise to produce heterogeneous perturbations. (II) **FreqPure**. During the reverse process, the magnitude and phase spectra of the adversarial input and generated image are separated and recombined as shown, with the reconstructed image iteratively fed into subsequent denoising steps.

and the variance has a closed form:

$$\sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t. \quad (5)$$

Sampling. Starting from $x_T \sim \mathcal{N}(0, I)$, the model iteratively computes $x_{t-1} = \mu_\theta(x_t, t) + \sigma_t z$ with $z \sim \mathcal{N}(0, I)$ until \hat{x}_0 is obtained.

Frequency-domain Theory. For an image $x \in \mathbb{R}^{H \times W}$, the discrete Fourier transform (DFT) yields

$$\mathcal{F}(x)(u, v) = \sum_{h, w} x(h, w) e^{-2\pi i (uh/H + vw/W)}. \quad (6)$$

Each Fourier coefficient can be expressed in polar form as

$$\mathcal{F}(x)(u, v) = A_x(u, v) \cdot e^{i\Phi_x(u, v)}, \quad (7)$$

where $A_x(u, v) = |\mathcal{F}(x)(u, v)|$ is the magnitude spectrum, reflecting the intensity of frequency components, and $\Phi_x(u, v)$ is the phase spectrum, encoding structural and semantic information.

3.2 MAGNITUDE-ADAPTIVE NOISE INJECTION

Building upon the frequency-domain preliminaries introduced in Section 3.1, we leverage the magnitude spectrum of the adversarial input x_{adv} to capture the uneven distribution of frequency components. Specifically, the spectrum is partitioned into n non-overlapping frequency bands B_i . The average magnitude in each band is computed as

$$M_i = \frac{1}{|B_i|} \sum_{(u, v) \in B_i} A_{x_{\text{adv}}}(u, v), \quad (8)$$

where $|B_i|$ denotes the number of coefficients in band B_i . This corresponds to step (a) of the magnitude-adaptive noise injection on the left in Figure 2.

Low-magnitude bands are empirically more vulnerable to adversarial perturbations, while high-magnitude bands correspond to dominant semantic structures. To emphasize fragile regions, we assign larger weights to lower-magnitude bands:

$$w_i = \frac{1}{M_i^\gamma + \epsilon_0}, \quad (9)$$

216 where γ controls the sharpness of weighting and ϵ_0 prevents numerical instability when M_i is very
 217 small. The band-wise weights produce a frequency-domain weight distribution, which is trans-
 218 formed back to the spatial domain via inverse DFT to obtain a pixel-wise noise intensity map \mathbf{W} . In
 219 Figure 2, step (b) shows a visual representation of these two weights.

220 The spatial map \mathbf{W} modulates Gaussian noise $\epsilon_G \sim \mathcal{N}(0, I)$ by element-wise multiplication:
 221

$$\epsilon_t = \mathbf{W} \odot \epsilon_G, \quad \text{s.t. } \mathbf{W}, \epsilon_G \in \mathbb{R}^{H \times W \times C}. \quad (10)$$

224 Hence, the forward diffusion process becomes:

$$x_t = \sqrt{\bar{\alpha}_t} x_{\text{adv}} + \sqrt{1 - \bar{\alpha}_t} \epsilon_t, \quad (11)$$

227 where $\bar{\alpha}_t$ is the cumulative product of noise scheduling coefficients.

229 3.3 FREQUENCY PURIFICATION

230 To complement MANI, we further adopt a frequency purification strategy (Pei et al., 2025b) during
 231 the reverse diffusion process. The key observation is that low-frequency magnitude components
 232 exhibit strong robustness against adversarial perturbations, whereas the phase spectrum is more
 233 easily affected across all frequencies.

235 For an image x_t generated during the reverse process, its DFT can be decomposed into magnitude
 236 A_t and phase Φ_t , with FreqPure handling them separately.

237 *Magnitude purification.* A low-pass filter \mathcal{H} is applied to retain the low-frequency part of the adver-
 238 sarial input x_{adv} , while the high-frequency part is taken from the current generated image x_t :

$$A^{t-1} = \mathcal{H}(A_{\text{adv}}) + (1 - \mathcal{H})(A_t). \quad (12)$$

241 *Phase purification.* Low-frequency components are preserved through a projection operator $\Pi_\delta(\cdot)$
 242 that restricts the generated phase within a small neighborhood of the adversarial phase:

$$\Phi^{t-1} = \mathcal{H}(\Pi_\delta(\Phi_t, \Phi_{\text{adv}})) + (1 - \mathcal{H})(\Phi_t), \quad (13)$$

245 where $\Pi_\delta(\Phi_t, \Phi_{\text{adv}})$ denotes clipping Φ_t into $[\Phi_{\text{adv}} - \delta, \Phi_{\text{adv}} + \delta]$, and δ is a hyperparameter
 246 controlling projection strength.

247 **Reconstruction.** The purified frequency representation (A^{t-1}, Φ^{t-1}) is then transformed back into
 248 the spatial domain using the inverse discrete Fourier transform (IDFT):
 249

$$x_{t-1} = \mathcal{F}^{-1}(A^{t-1}, \Phi^{t-1}), \quad (14)$$

251 and iteratively participates in the reverse diffusion process until \hat{x}_0 is obtained. The above process
 252 is described in the corresponding module on the right side of Figure 2.

253 Overall, FreqPure leverages the stability of low-frequency magnitudes while constraining the phase
 254 distribution, preventing structural distortions. In contrast, MANI avoids redundant noise in robust
 255 regions and focuses perturbations on vulnerable frequency bands, enabling effective denoising with
 256 minimal semantic loss. Together, they are complementary: MANI selectively **suppresses adversar-
 257 ial signals** in the forward process, while FreqPure ensures frequency stability and semantic consis-
 258 tency in the reverse process. The above methods are summarized in Appendix E.1.

260 4 EXPERIMENTS

262 4.1 EXPERIMENTAL SETUP

264 **Datasets and Model Architectures.** We conduct experiments on two widely used datasets of dif-
 265 ferent resolutions: CIFAR-10 and ImageNet-1K. Following the settings in prior works (Pei et al.,
 266 2025a; Zhang et al., 2025b), we randomly select 512 samples from CIFAR-10 and 1,000 samples
 267 from ImageNet-1K for evaluation. To better align with the development of large-scale multimodal
 268 models, we adopt CLIP as the frozen classifier to accomplish zero-shot classification tasks. For the
 269 diffusion models, we use the publicly released unconditional CIFAR-10 checkpoint of EDM (Karras
 et al., 2022) for CIFAR-10, and 256x256 unconditional diffusion checkpoint for ImageNet-1K.

270 **Evaluation Metrics.** We report both standard accuracy and robust accuracy. This dual evaluation
 271 provides a comprehensive view of the trade-off between preserving performance on clean data and
 272 enhancing resilience against attacks.

273 **Attack Settings.** In our experiments, we evaluate all defenses under strong adaptive attacks across
 274 both ℓ_∞ and ℓ_2 threat models. Concretely, we employ PGD and AutoAttack as primary evalua-
 275 tion tools, covering both ℓ_∞ and ℓ_2 perturbations. Following Lee & Kim (2023), we adopt
 276 PGD combined with expectation over transformations (PGD+EOT) to mitigate variability caused
 277 by stochastic components in the defense. In addition, we test BPDA+EOT to evaluate attacks that
 278 approximate gradients through non-differentiable or randomized components. For computational
 279 tractability while retaining attack strength, PGD and BPDA are run for 10 iterations, and EOT uses
 280 10 samples per gradient estimate. AutoAttack is executed in its standard version. The perturbation
 281 budgets are specified as $\epsilon = 8/255$ for ℓ_∞ attacks on CIFAR-10, $\epsilon = 4/255$ for ℓ_∞ attacks on
 282 ImageNet, and $\epsilon = 0.5$ for ℓ_2 attacks on both datasets. Further experimental settings can be found
 283 in Appendix D.

284
 285 4.2 MAIN RESULTS
 286

287 This section presents a comprehensive evaluation of MANI-Pure across multiple datasets, attack set-
 288 tings, and metrics, with a focus on **robustness, perceptual quality, and plug-and-play flexibility**.

290
 291 4.2.1 CLASSIFICATION ACCURACY UNDER ADAPTIVE ATTACKS
 292

293 **MANI-Pure consistently achieves the best trade-off between standard and robust accuracy**
 294 **across datasets and backbones.** As summarized in Table 1 (CIFAR-10, ViT-L/14), Table 2
 295 (CIFAR-10, RN50), and Table 3 (ImageNet-1K, ViT-L/14), we evaluate against strong adaptive
 296 attacks including PGD+EOT, AutoAttack under both ℓ_∞ and ℓ_2 norms, and BPDA+EOT.

297 On CIFAR-10, MANI-Pure improves robust accuracy by **2.15%** under AutoAttack (ℓ_∞) and by
 298 **2.54%** under BPDA+EOT when using ViT-L/14. Consistent improvements are also observed
 299 on RN50, confirming the backbone-agnostic nature of our framework. On ImageNet-1K, espe-
 300 cially, MANI-Pure achieves the highest robust accuracy, outperforming all baselines by **3.8%** under
 301 BPDA+EOT, while maintaining competitive clean accuracy.

302 These results demonstrate that MANI-Pure not only surpasses existing AP and AT baselines (in-
 303 cluding recent leaders on RobustBench), but also exhibits strong cross-dataset generalization and
 304 backbone versatility. More results on different backbones can be found in the Appendix. E.2.

306
 307 Table 1: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP ViT-L/14. Zero-
 308 shot CLIP (w/o defense) is denoted by \dagger , its standard accuracy as the upper bound. Methods from
 309 the Robustbench leaderboard are denoted by \ddagger . AT and AP methods are marked accordingly.

310 Type	311 Algorithm	312 Standard	313 PGD		314 AutoAttack		315 BPDA
			ℓ_∞	ℓ_2	ℓ_∞	ℓ_2	
316 AT	<i>DHAT</i> (Zhang et al., 2025a)	85.45	63.14	66.91	56.77	57.40	54.84
	<i>DIAT</i> (Wang et al., 2023) \ddagger	92.69	71.38	85.12	70.53	84.03	69.76
	<i>MeanSparse</i> (Amini et al., 2024) \ddagger	92.98	74.02	86.41	68.85	85.98	72.87
317 AP	Zero-shot (w/o defense) \dagger	94.73	2.15	55.86	0.00	0.00	0.78
	+ <i>DiffPure</i> (Nie et al., 2022)	86.52	85.55	85.74	85.35	85.55	84.96
	+ <i>DDPM++</i> (Song et al., 2020)	86.33	84.77	85.16	85.74	85.74	86.13
	+ <i>REAP</i> (Lee & Kim, 2023)	81.45	79.69	79.87	80.08	80.18	80.86
	+ <i>FreqPure</i> (Pei et al., 2025b)	91.77	90.17	91.41	90.82	91.99	87.89
	+ <i>CLIPure</i> (Zhang et al., 2025b)	93.55	89.06	92.19	90.04	92.38	83.01
	+ <i>Ours</i>	94.14	91.02	92.58	92.19	93.16	88.67

324
 325 Table 2: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP RN50. Zero-
 326 shot CLIP (w/o defense) is denoted by \dagger , its standard accuracy as the upper bound. Only AP-based
 327 methods are included.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Algorithm	Standard	PGD		AutoAttack		BPDA
			ℓ_∞	ℓ_2	ℓ_∞	ℓ_2	
Zero-shot (w/o defense) \dagger		69.92	0.00	19.73	0.39	0.39	3.32
+ <i>DiffPure</i> (Nie et al., 2022)		61.91	59.77	61.13	59.77	60.64	60.16
+ <i>DDPM++</i> (Song et al., 2020)		56.64	56.25	56.64	56.05	56.34	55.27
+ <i>REAP</i> (Lee & Kim, 2023)		58.59	56.84	58.40	55.66	58.40	56.25
+ <i>FreqPure</i> (Pei et al., 2025b)		62.70	59.38	60.55	61.52	62.56	58.79
+ <i>CLIPure</i> (Zhang et al., 2025b)		61.33	53.71	60.55	56.84	60.55	53.32
+ <i>Ours</i>		65.23	61.91	62.50	62.70	64.84	60.16

Table 3: Classification accuracy on ImageNet-1K under adversarial attacks using CLIP ViT-L/14. Zero-shot CLIP (w/o defense) is denoted by \dagger , its standard accuracy as the upper bound. Only AP-based methods are included.

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Algorithm	Standard	PGD		AutoAttack		BPDA
			ℓ_∞	ℓ_2	ℓ_∞	ℓ_2	
Zero-shot (w/o defense) \dagger		74.90	1.20	31.60	0.10	0.10	0.00
+ <i>DiffPure</i> (Nie et al., 2022)		71.10	43.00	43.40	42.90	44.20	42.50
+ <i>DDPM++</i> (Song et al., 2020)		70.70	66.00	70.00	68.10	70.40	63.50
+ <i>REAP</i> (Lee & Kim, 2023)		51.30	48.90	49.90	48.40	50.10	48.50
+ <i>OSCP</i> (Lei et al., 2025)		71.60	65.70	69.00	68.30	70.10	66.00
+ <i>Ours</i>		73.10	67.30	70.80	68.90	70.90	67.30

4.2.2 PERCEPTUAL QUALITY EVALUATION

MANI-Pure produces purified images that are perceptually closest to clean images across different backbones. Since diffusion-based purification is inherently generative, we complement robustness evaluation with perceptual quality metrics, conducted on the CIFAR-10 dataset. Table 4 reports results on SSIM (Wang et al., 2004) (higher is better) and LPIPS (Zhang et al., 2018) (lower is better). On RN50, MANI-Pure achieves an SSIM of **0.9274** and an LPIPS of **0.1136**, both outperforming all baselines. Similar trends are observed with ViT-L/14. Overall, MANI-Pure consistently achieves the highest perceptual similarity, underscoring its ability to defend against adversarial perturbations while preserving image fidelity.

Table 4: To evaluate the quality of the generated images, we compute the SSIM and LPIPS scores between the images purified by different AP methods and the clean images.

366 367 368 369 370 371 372 373 374 375 376 377	Backbone	Metric	Methods				
			Adversarial	DiffPure	REAP	FreqPure	Ours
ViT-L/14		SSIM \uparrow	0.8204	0.8342	0.8044	0.9172	0.9270
		LPIPS \downarrow	0.4403	0.2110	0.2553	0.1214	0.1133
RN50		SSIM \uparrow	0.8180	0.8344	0.8045	0.9176	0.9274
		LPIPS \downarrow	0.3907	0.2110	0.2551	0.1217	0.1136

4.2.3 QUALITATIVE VISUALIZATION

Visualizations confirm that MANI-Pure selectively suppresses adversarial perturbations while preserving semantics. To better validate the effectiveness of adaptive noise injection, we visual-

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 ize the difference between the injected noise and adversarial noise. Figure 3 clearly shows that adaptive noise aligns much better with adversarial perturbations than uniform noise, especially in high-frequency regions that are most vulnerable to attacks. Quantitatively, KL divergence further confirms this observation: adaptive noise (**0.1628**) is substantially closer to adversarial noise than uniform noise (**0.4988**).

These findings highlight our core advantage—precise suppression of adversarially vulnerable regions while preserving semantic fidelity elsewhere.

We further compare purified samples from DDPM++ and MANI-Pure, together with pixel-wise difference heatmaps relative to clean images. Our method introduces smaller modifications in low-frequency background regions, while applying targeted changes in high-frequency regions most affected by perturbations, which provides direct evidence of MANI-Pure’s frequency-adaptive design.

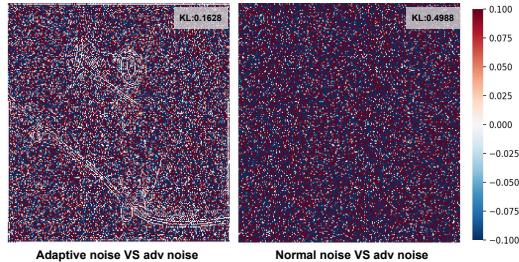


Figure 3: Difference heatmaps between adaptive noise (left) / uniform noise (right) and adversarial noise. Lighter colors indicate smaller differences.

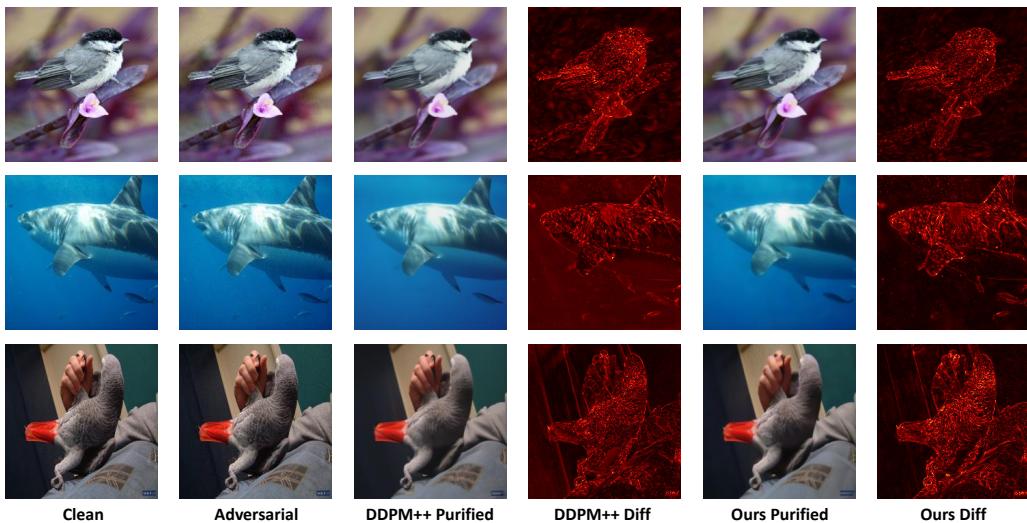


Figure 4: Visualization of purification before and after defense. The figure compares purified results from DDPM++ and MANI-Pure, together with pixel-wise difference heatmaps relative to clean images. **Overall:** MANI-Pure introduces smaller modifications in low-frequency background regions, avoiding unnecessary semantic loss. **Key effect:** it selectively alters high-frequency vulnerable regions, providing direct evidence of its frequency-adaptive design.

4.2.4 PLUG-AND-PLAY COMPATIBILITY

As a modular noise injection strategy, MANI can be seamlessly combined with various existing DBP methods. Table 5 reports results under ℓ_∞ attacks (results under ℓ_2 are listed in Appendix E.3).

We observe that **MANI consistently improves both clean and robust accuracy** across all tested AP baselines. In particular, REAP benefits the most, with its clean accuracy increased by **4.10%** and robust accuracy under AutoAttack improved by **1.95%**. More importantly, the combination of MANI with FreqPure yields the overall best performance, highlighting the **complementary design philosophy** between the two modules. These results validate MANI as a general and effective plug-in for enhancing diverse purification pipelines.

432 **Table 5: Plug-and-play validation of the MANI module under ℓ_∞ attacks.** We integrated MANI
 433 into various diffusion-based purification frameworks and evaluated them on CIFAR-10. Results are
 434 reported both without MANI (w/o) and with MANI (w/).

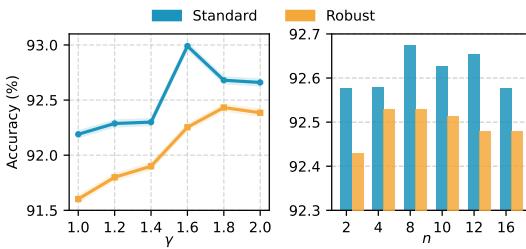
Algorithm	Standard		PGD		AutoAttack		BPDA	
	w/o	w/	w/o	w/	w/o	w/	w/o	w/
+DiffPure (Nie et al., 2022)	86.52	87.72	85.55	86.82	85.35	86.91	84.96	85.43
+DDPM++ (Song et al., 2020)	86.33	87.30	84.77	86.33	85.74	86.52	86.13	86.33
+REAP (Lee & Kim, 2023)	81.45	85.55	79.69	81.45	80.08	82.03	80.86	82.42
+FreqPure (Pei et al., 2025b)	91.77	94.14	90.17	91.02	90.82	92.19	87.89	88.67

445 4.3 ABLATION STUDIES

446 We conducted ablation experiments on CIFART-10 to better understand the contributions of different
 447 design choices in MANI-Pure, primarily involving parameter analysis and module ablation.

448 **Effect of hyperparameters.** The MANI module mainly involves two hyperparameters: the weight-
 449 ing factor γ and the number of frequency bands n . As shown in Figure 5, both standard and robust
 450 accuracy exhibit a “rise-then-fall” trend as γ increases from 1.0. Specifically, standard accuracy
 451 peaks at $\gamma = 1.6$, while $\gamma = 1.8$ achieves a more balanced trade-off between clean and robust
 452 performance. A similar trend is observed for n , where $n = 8$ provides the best overall results.

453 **Effect of different modules.** To further assess the contribution of each component, we conduct ab-
 454 lation studies on MANI and FreqPure. As shown in Table 6, both modules individually enhance the
 455 baseline performance. When combined, they yield substantially larger improvements than using ei-
 456 ther module alone, achieving gains of 7.62% in clean accuracy and 5.47% in robust accuracy. These
 457 results highlight the orthogonal benefits of MANI and FreqPure, and their strong complementarity.



460
 461 Figure 5: Standard accuracy and robust accuracy
 462 under different ratio factor γ (left) and under dif-
 463 ferent number of frequency band n (right).

464 **Table 6: Standard and robust accuracy for dif-
 465 ferent block combinations. ✓ and ✗ indicate
 466 use or non-use of the module.**

MANI	FreqPure	Standard	Robust
✗	✗	86.52	85.55
✓	✗	87.30	86.33
✗	✓	91.77	90.17
✓	✓	94.14	91.02

475 5 CONCLUSION

476 This work systematically analyzes the distribution of adversarial perturbations in the frequency do-
 477 main and shows that existing uniform noise injection strategies may disrupt the semantic structure
 478 of clean images. To address this issue, we propose **MANI-Pure**, a diffusion-based purification
 479 framework that integrates magnitude-adaptive noise injection to emphasize vulnerable frequency
 480 bands and frequency purification to protect semantic structures. Through extensive experiments on
 481 two benchmark datasets under multiple attacks, MANI-Pure effectively suppresses adversarial noise
 482 while preserving semantic content, achieving a favorable balance between clean and robust accuracy.
 483 Moreover, the plug-and-play design of MANI highlights its compatibility with diverse purification
 484 pipelines, further broadening its applicability.

486 REFERENCES
487

488 Sajjad Amini, Mohammadreza Teymoorianfard, Shiqing Ma, and Amir Houmansadr. Meansparse:
489 Post-training robustness enhancement through mean-centered feature sparsification. *arXiv*
490 *preprint arXiv:2406.05927*, 2024.

491 Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
492 examples. In *ICML*, 2018.

493 Mingyuan Bai, Wei Huang, Tenghui Li, Andong Wang, Junbin Gao, Cesar F Caiafa, and Qibin
494 Zhao. Diffusion models demand contrastive guidance for adversarial purification to advance. In
495 *ICML*, 2024.

496 Gerda Bortsova, Cristina González-Gonzalo, Suzanne C Wetstein, Florian Dubost, Ioannis Katra-
497 mados, Laurens Hogeweg, Bart Liefers, Bram Van Ginneken, Josien PW Pluim, Mitko Veta, et al.
498 Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. *Medical*
499 *Image Analysis*, 73:102141, 2021.

500 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
501 of diverse parameter-free attacks. In *ICML*, 2020.

502 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
503 hierarchical image database. In *CVPR*, 2009.

504 Jia Fu, Yongtao Wu, Yihang Chen, Kunyu Peng, Xiao Zhang, Volkan Cevher, Sepideh Pashami, and
505 Anders Holst. Diffcap: Diffusion-based cumulative adversarial purification for vision language
506 models. *arXiv preprint arXiv:2506.03933*, 2025.

507 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
508 examples. *arXiv preprint arXiv:1412.6572*, 2014.

509 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
510 nition. In *CVPR*, 2016.

511 Mitch Hill, Jonathan Craig Mitchell, and Song-Chun Zhu. Stochastic security: Adversarial defense
512 using long-run dynamics of energy-based models. In *ICLR*, 2021.

513 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
514 2020.

515 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
516 based generative models. In *NeurIPS*, 2022.

517 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
518 search). *URL http://www.cs.toronto.edu/kriz/cifar.html*, 5(4):1, 2010.

519 Minjong Lee and Dongwoo Kim. Robust evaluation of diffusion-based adversarial purification. In
520 *ICCV*, 2023.

521 Chun Tong Lei, Hon Ming Yam, Zhongliang Guo, Yifei Qian, and Chun Pong Lau. Instant adver-
522 sarial purification with adversarial consistency distillation. In *CVPR*, 2025.

523 Guang Lin, Chao Li, Jianhai Zhang, Toshihisa Tanaka, and Qibin Zhao. Adversarial training on
524 purification (atop): Advancing both robustness and generalization. In *ICLR*, 2024.

525 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
526 Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*,
527 2017.

528 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-shot
529 adversarial robustness for large-scale models. In *ICLR*, 2023.

530 Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
531 Diffusion models for adversarial purification. In *ICML*, 2022.

540 Gaozheng Pei, Shaojie Lyu, Gong Chen, Ke Ma, Qianqian Xu, Yingfei Sun, and Qingming Huang.
 541 Divide and conquer: Heterogeneous noise integration for diffusion-based adversarial purification.
 542 In *CVPR*, 2025a.

543 Gaozheng Pei, Ke Ma, Yingfei Sun, Qianqian Xu, and Qingming Huang. Diffusion-based adversar-
 544 ial purification from the perspective of the frequency domain. In *ICML*, 2025b.

545 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 546 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 547 models from natural language supervision. In *ICML*, 2021.

548 Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting classifiers
 549 against adversarial attacks using generative models. In *ICLR*, 2018.

550 Christian Schlarbmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust clip: un-
 551 supervised adversarial fine-tuning of vision embeddings for robust large vision-language models.
 552 In *ICML*, 2024.

553 Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
 554 Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In
 555 *NeurIPS*, 2019.

556 Kele Shao, Keda Tao, Can Qin, Haoxuan You, Yang Sui, and Huan Wang. Holitom: Holistic token
 557 merging for fast video large language models. *arXiv preprint arXiv:2505.21334*, 2025.

558 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 559 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2020.

560 Yuhan Sun, Jiacheng Zhang, Zesheng Ye, Chaowei Xiao, and Feng Liu. Sample-specific noise
 561 injection for diffusion-based adversarial purification. In *ICML*, 2025.

562 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
 563 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2013.

564 Keda Tao, Jinjin Gu, Yulun Zhang, Xiucheng Wang, and Nan Cheng. Overcoming false illu-
 565 sions in real-world face restoration with multi-modal guided diffusion model. *arXiv preprint
 566 arXiv:2410.04161*, 2024.

567 Jinyi Wang, Zhaoyang Lyu, Dahua Lin, Bo Dai, and Hongfei Fu. Guided diffusion model for
 568 adversarial purification. *arXiv preprint arXiv:2205.14969*, 2022.

569 Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion
 570 models further improve adversarial training. In *ICML*, 2023.

571 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 572 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 573 612, 2004.

574 Juanjuan Weng, Zhiming Luo, Zhun Zhong, Dazhen Lin, and Shaozi Li. Exploring non-target
 575 knowledge for improving ensemble universal adversarial attacks. In *AAAI*, 2023.

576 Peng Ye, Yuanfang Chen, Sihang Ma, Feng Xue, Noel Crespi, Xiaohan Chen, and Xing Fang.
 577 Security in transformer visual trackers: A case study on the adversarial robustness of two models.
 578 *Sensors (Basel, Switzerland)*, 24(14):4761, 2024.

579 Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
 580 perspective on model robustness in computer vision. In *NeurIPS*, 2019.

581 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint
 582 arXiv:1605.07146*, 2016.

583 Kejia Zhang, Juanjuan Weng, Shaozi Li, and Zhiming Luo. Towards adversarial robustness via
 584 debiased high-confidence logit alignment. In *ICCV*, 2025a.

594 Mingkun Zhang, Keping Bi, Wei Chen, Jiafeng Guo, and Xueqi Cheng. Clipure: Purification in
595 latent space via clip for adversarially robust zero-shot classification. In *ICLR*, 2025b.
596

597 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
598 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 APPENDIX OVERVIEW
649650 This appendix provides additional details and analyses to complement the main paper. It is organized
651 as follows:
652

- 653 • **Section A. Use of Large Language Models.** We clarify the extent to how LLMs were
654 used during the writing and proofreading process, ensuring transparency in compliance
655 with conference policies.
- 656 • **Section B. Background on Adversarial Attacks and Defenses.** We review standard ad-
657 versarial attacks (e.g., PGD, AutoAttack, BPDA) and defense paradigms (adversarial train-
658 ing, purification), offering context for how our method relates to existing approaches.
- 659 • **Section C. Theoretical Supplement.** We provide a more complete derivation of diffusion
660 models, present a unified mathematical framework for adversarial purification, and analyze
661 the computational complexity and stability of different approaches.
- 662 • **Section D. Experimental Settings.** We detail the hyperparameter choices for both attacks
663 and diffusion models, including perturbation budgets, iteration numbers, noise schedules,
664 and pretrained checkpoints, ensuring reproducibility of all results.
- 665 • **Section E. Additional Experimental Results.** We extend the evaluations beyond the main
666 text. This includes: (i) a step-by-step algorithmic workflow of our framework. (ii) classifi-
667 cation with alternative backbones (CLIP-RN101, WRN-28-10,RN-50), (iii) plug-and-play
668 integration under ℓ_2 attacks, (iv) analysis of PGD iteration numbers, and
- 669 • **Section F. Visualization.** We provide additional qualitative results, showing purified ver-
670 sus adversarial samples across multiple datasets, highlighting the semantic preservation and
671 noise suppression of our method.

673 A STATEMENT ON THE USE OF LLMs
674675 This study employed LLMs to assist in writing. LLMs were primarily utilized for language refine-
676 ment, grammatical corrections, and enhancing academic tone. It is crucial to emphasize that all
677 viewpoints, theoretical frameworks, experimental results, and final conclusions were independently
678 developed by human authors. LLMs served solely as auxiliary tools for manuscript refinement, with
679 all final drafts thoroughly reviewed and approved by the authors.
680681 B SUPPLEMENT RELATED WORK
682683 **Adversarial Attacks & Robustness.** Adversarial attacks have long revealed the fragility of neural
684 networks, beginning with the discovery of imperceptible perturbations by Szegedy et al. (2013) and
685 the efficient one-step FGSM attack (Goodfellow et al., 2014). Iterative methods such as PGD (Madry
686 et al., 2017) established strong benchmarks for robustness evaluation, later extended by efficient
687 variants like FreeAT (Shafahi et al., 2019) and AutoAttack (Croce & Hein, 2020). The use of EOT
688 (Expectation over Transformation) (Athalye et al., 2018) was further emphasized to mitigate ran-
689 domness and non-differentiability in gradients, ensuring accurate robustness assessment. On the
690 defense side, adversarial training (Schlarmann et al., 2024; Mao et al., 2023) remains the most
691 widely used strategy. By incorporating adversarial examples into the training process, AT explicitly
692 improves the decision boundary against perturbations, thereby enhancing robustness. However, AT
693 requires significant computational resources and often generalizes poorly to unseen attacks, moti-
694 vating research into alternative approaches. AP emerged in response to this situation.
695696 C THEORETICAL SUPPLEMENT
697698 C.1 UNIFIED FRAMEWORK FOR ADVERSARIAL PURIFICATION
699700 We can unify diffusion-based adversarial purification methods into the following generalized for-
701 mulation:

$$x_t = f(x_0; \bar{\alpha}_t) + g(\epsilon; \mathbf{W}), \quad (15)$$

702 where $f(x_0; \bar{\alpha}_t) = \sqrt{\bar{\alpha}_t} x_0$ denotes the signal decay term, $g(\epsilon; \mathbf{W})$ represents noise injection, and
 703 \mathbf{W} is a weighting or transformation operator.

704

- 705 • **Adversarial Training:** robustness stems from model parameters; no explicit $g(\cdot)$ is introduced.
- 706 • **DiffPure:** $g(\epsilon; \mathbf{W}) = \sqrt{1 - \bar{\alpha}_t} \epsilon$, where $\mathbf{W} = I$.
- 707 • **MANI-Pure:** $g(\epsilon; \mathbf{W}) = \sqrt{1 - \bar{\alpha}_t} (\mathbf{W} \odot \epsilon)$, where \mathbf{W} is derived from frequency magnitudes.
- 708 • **FreqPure:** constraints are imposed in the *reverse* step, by spectral recombination rather
 709 than forward-side weighting.
- 710
- 711
- 712

713 This unified framework highlights a key dichotomy: *forward-side approaches* redesign $g(\cdot)$ to better
 714 mimic adversarial distributions, while *reverse-side approaches* constrain the reconstruction trajectory.
 715 MANI-Pure naturally combines both perspectives, explaining its superior performance.

717 C.2 COMPLEXITY AND STABILITY ANALYSIS

719 Time Complexity:

720

- 721 • **DiffPure:** $O(T \cdot HW)$ per reverse trajectory, dominated by neural network inference.
- 722 • **MANI-Pure:** adds DFT/IDFT operations of $O(HW \log(HW))$ per step, negligible com-
 723 pared to network cost.
- 724 • **FreqPure:** incurs extra spectral recombination and projection, but all operations are
 725 element-wise or FFT-based, remaining parallelizable on GPUs.
- 726 • **Hybrid methods (e.g., MANI+FreqPure):** maintain linear scaling in T and near-constant
 727 overhead relative to the diffusion backbone.
- 728

729 Space Complexity:

730

- 731 • All methods store $O(HW)$ activations per step.
- 732 • Frequency-based approaches require one additional complex-valued copy of the spectrum,
 733 i.e., $O(2HW)$, which is marginal compared with feature maps inside the denoiser.

734 Numerical Stability:

735

- 736 • FFT and inverse FFT are unitary transforms, introducing no instability.
- 737 • MANI’s band-wise weighting may amplify small magnitudes, but normalization with ϵ
 738 ensures bounded variance.
- 739 • FreqPure’s projection operator $\Pi(\cdot)$ restricts phase drift, effectively stabilizing the reverse
 740 trajectory under strong attacks.
- 741

742 **Scalability.** Since the extra overhead scales sub-linearly with resolution ($\log(HW)$), frequency-
 743 domain operations remain efficient even for high-resolution ImageNet-1K images. Therefore, the
 744 proposed MANI-Pure achieves robustness gains without sacrificing efficiency.

746 D PARAMETERS AND SETTINGS

747 D.1 ATTACK SETUP

750 We adopt three types of strong adaptive attacks: PGD+EOT, AutoAttack, and BPDA+EOT. For
 751 PGD and BPDA, the number of iterations is set to 10 (the rationale for this choice is discussed in
 752 Appendix E.4), while the number of EOT samples is also set to 10. AutoAttack is executed in its
 753 standard version, which integrates APGD-CE, APGD-DLR, FAB, and Square Attack, with 100
 754 update iterations. The perturbation budget is $\epsilon = 8/255$ for ℓ_∞ attacks on CIFAR-10 and $\epsilon = 4/255$
 755 on ImageNet-1K, while ℓ_2 attacks use $\epsilon = 0.5$ for both datasets. Unless otherwise specified, the step
 size is set to 0.007 for all attacks.

756 D.2 DIFFUSION SETUP
757

758 Our purification framework is based on DDPM++ (Song et al., 2020) with a linear variance schedule,
759 where the noise variance increases from $\beta_1 = 10^{-4}$ to $\beta_T = 0.02$ over $T = 1000$ steps (Ho et al.,
760 2020). In all experiments, we set the forward noising steps to 100 and the reverse denoising steps
761 to 5, unless otherwise specified. For DiffPure, we follow the original implementation and use 100
762 reverse steps. The pretrained diffusion weights are taken from public releases: the unconditional
763 CIFAR-10 checkpoint of EDM (Karras et al., 2022) and the 256×256 unconditional diffusion
764 checkpoint for ImageNet-1K, consistent with prior works.

765 D.3 NOISE DIFFERENCE HEATMAP COMPUTATION
766

767 To analyze the similarity between injected noise N_{inj} and adversarial noise N_{adv} , we compute their
768 pixel-wise difference:

$$769 D = N_{\text{inj}} - N_{\text{adv}}. \quad (16)$$

770 Here D contains both positive and negative values, where the sign indicates whether the injected
771 noise is larger or smaller than the adversarial noise at each pixel. For visualization, we normalize
772 D and render it with a diverging colormap, where red/blue colors represent positive/negative
773 differences, respectively.

774 E ADDITIONAL RESULTS
775776 E.1 THE ALGORITHM WORKFLOW OF MANI-PURE
777

778 This section presents the **MANI-PURE** algorithm flowchart (Algorithm 1), which comprehensively
779 illustrates the entire processing workflow. This contrasts with the section-by-section module intro-
780 ductions in Sec. 3.2 and the abstract representation in Figure 2.

781 **Algorithm 1** Adversarial Purification with MANI and FreqPure

782 **Require:** Adversarial input x_{adv} , Diffusion steps T , Band number n , Weighting factor γ

783 **Ensure:** Purified image x_0

```

784 1:  $(A_{\text{adv}}, \Phi_{\text{adv}}) = \mathcal{F}(x_{\text{adv}})$ 
785 2: Partition  $M_{\text{adv}}$  into  $n$  frequency bands  $\{B_i\}$  // Forward Progress:MANI
786 3: for each band  $B_i$  do
787 4:    $M_i = \frac{1}{|B_i|} \sum_{(u,v) \in B_i} A_{\text{adv}}(u, v)$ 
788 5:    $w_i = (M_i + \epsilon_0)^{-\gamma}$ 
789 6: end for
790 7: Construct spatial weight map  $W$  via IDFT
791 8:  $\epsilon_t = W \odot \epsilon_G$ , with  $\epsilon_G \sim \mathcal{N}(0, I)$ 
792 9:  $x_t = \sqrt{\alpha_t} x_{\text{adv}} + \sqrt{1 - \alpha_t} \epsilon_t$  // Reverse Progress:FreqPure
793 10: Initialize  $x_T \sim \mathcal{N}(0, I)$ 
794 11: for  $t = T \rightarrow 1$  do
795 12:    $x_{0|t} = \frac{1}{\sqrt{\alpha_t}} (x_t - \sqrt{1 - \alpha_t} \epsilon_\theta(x_t, t))$ 
796 13:    $(A_t, \Phi_t) = \mathcal{F}(x_{0|t})$ 
797 14:    $A^{t-1} = \mathcal{H}(A_{\text{adv}}) + (1 - \mathcal{H})(A_t)$ 
798 15:    $\Phi^{t-1} = \mathcal{H}(\Pi(\Phi_t, \Phi_{\text{adv}}, \delta)) + (1 - \mathcal{H})(\Phi_t)$ 
799 16:    $x_{t-1} = \mathcal{F}^{-1}(A^{t-1}, \Phi^{t-1})$ 
800 17: end for
801 18: return  $x_0$ 
802
803
804
805
806
807
808
809
```

E.2 ROBUSTNESS UNDER DIFFERENT BACKBONES

In this section, we further supplement classification experiments with CLIP (RN101), WRN-28-10 (Zagoruyko & Komodakis, 2016) and ResNet-50 (He et al., 2016), following the same settings as Sec. 4.1 in the main text. As shown in Table 1, Table 2, Table 7, Table 8 and Table 9, **MANI-PURE**

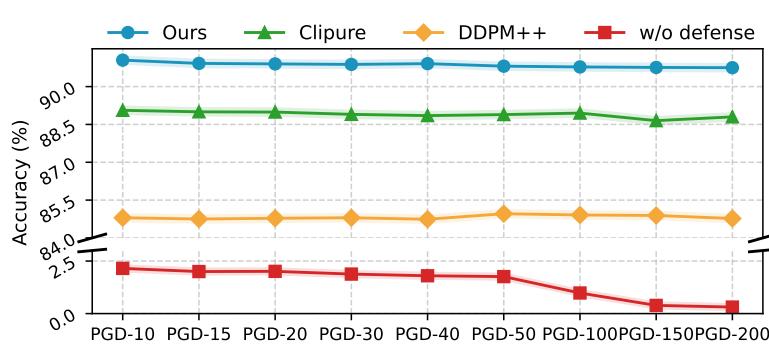


Figure 6: Robust accuracy of several purification methods across different PGD iteration counts (All attacks with EOT=10).

consistently achieves the best performance across different classifier architectures, demonstrating its versatility and robustness.

Table 7: Classification accuracy on CIFAR-10 under adversarial attacks using CLIP RN101. Zero-shot CLIP (w/o defense) is denoted by \dagger ; its standard accuracy as the upper bound. Only AP-based methods are included.

Algorithm	Standard	PGD		AutoAttack		BPDA
		ℓ_∞	ℓ_2	ℓ_∞	ℓ_2	
Zero-shot (w/o defense) \dagger	78.32	0.00	26.56	0.20	0.20	2.73
+ <i>DiffPure</i> (Nie et al., 2022)	67.58	65.98	66.60	65.62	66.60	66.01
+ <i>DDPM++</i> (Song et al., 2020)	68.95	65.62	66.99	64.45	66.80	65.62
+ <i>REAP</i> (Lee & Kim, 2023)	62.30	61.33	61.72	61.91	61.13	61.91
+ <i>FreqPure</i> (Pei et al., 2025b)	70.70	68.55	68.95	67.97	68.75	66.80
+ <i>CLIPure</i> (Zhang et al., 2025b)	68.95	62.89	68.75	64.26	68.84	59.18
+Ours	71.88	68.75	70.12	69.43	70.12	69.53

E.3 PLUG-AND-PLAY RESULTS UNDER ℓ_2 ATTACKS

In addition to the ℓ_∞ setting reported in the main text, we also evaluate the plug-and-play integration of MANI with existing AP methods under ℓ_2 attacks. Following the same configurations as Sec. 4.1, we consider PGD+EOT and AutoAttack with perturbation budget $\epsilon = 0.5$. The results, summarized in Table 10, show that MANI consistently improves both clean and robust accuracy when combined with different AP backbones.

E.4 EFFECT OF ATTACK ITERATIONS

We also examine the impact of the number of PGD iterations on robust accuracy. In our main experiments, we set PGD iterations to 10. Since prior works adopt different iteration counts, we perform an ablation to validate this choice. As illustrated in Figure 6, the robust accuracy of undefended models decreases sharply with more iterations and converges near zero, while defense methods remain relatively stable with only minor fluctuations. Therefore, we adopt 10 iterations as a practical **balance between robustness evaluation and computational efficiency**. Additionally, for EOT iterations, we follow the setting in Nie et al. (2022), which shows that robustness converges once EOT exceeds 10.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917Table 8: Classification accuracy on CIFAR-10 under adversarial attacks using WRN-28-10. WRN-28-10(w/o defense) is denoted by \dagger ; its standard accuracy as the upper bound. Results marked with \ddagger are reported in Bai et al. (2024). Only AP-based methods are included.

Algorithm	Standard	PGD	AutoAttack
WRN-28-10 (w/o defense) \dagger	96.48	0.00	0.00
+Diffpure(Nie et al., 2022)	90.07	56.84	63.30
+REAP(Lee & Kim, 2023)	90.16	55.82	70.47
+CGDM(Bai et al., 2024) \ddagger	91.41	49.22	77.08
+FreqPure(Pei et al., 2025b)	92.19	59.39	77.35
+Ours	92.57	61.32	78.69

Table 9: Classification accuracy on CIFAR-10 under adversarial attacks using ResNet-50. ResNet-50(w/o defense) is denoted by \dagger ; its standard accuracy as the upper bound. Results marked with \ddagger are reported in Bai et al. (2024). Only AP-based methods are included.

Algorithm	Standard	PGD	AutoAttack
ResNet-50 (w/o defense) \dagger	76.01	0.00	0.00
+Diffpure(Nie et al., 2022)	67.84	42.58	41.53
+REAP(Lee & Kim, 2023)	68.72	43.19	44.67
+CGDM(Bai et al., 2024) \ddagger	68.98	41.80	-
+FreqPure(Pei et al., 2025b)	69.53	59.77	63.49
+Ours	70.31	60.03	61.79

Table 10: **Plug-and-play validation of the MANI module under ℓ_2 attacks.** We integrated MANI into various diffusion-based purification frameworks and evaluated them on CIFAR-10. Results are reported both without MANI (w/o) and with MANI (w/).

Algorithm	PGD		AutoAttack	
	w/o	w/	w/o	w/
+ DiffPure (Nie et al., 2022)	85.74	87.08	85.55	87.50
+ DDPM++ (Song et al., 2020)	85.16	86.72	85.74	87.11
+ REAP (Lee & Kim, 2023)	79.87	81.64	80.18	81.84
+ FreqPure (Pei et al., 2025b)	91.41	92.58	92.00	93.16

F VISUALIZATION

To intuitively illustrate the purification effect, we present qualitative results on randomly selected samples from CIFAR-10 (Figure 7, Figure 8, Figure 9) and ImageNet-1K (Figure 10, Figure 11, Figure 12), including clean images, adversarial images, and purified images.

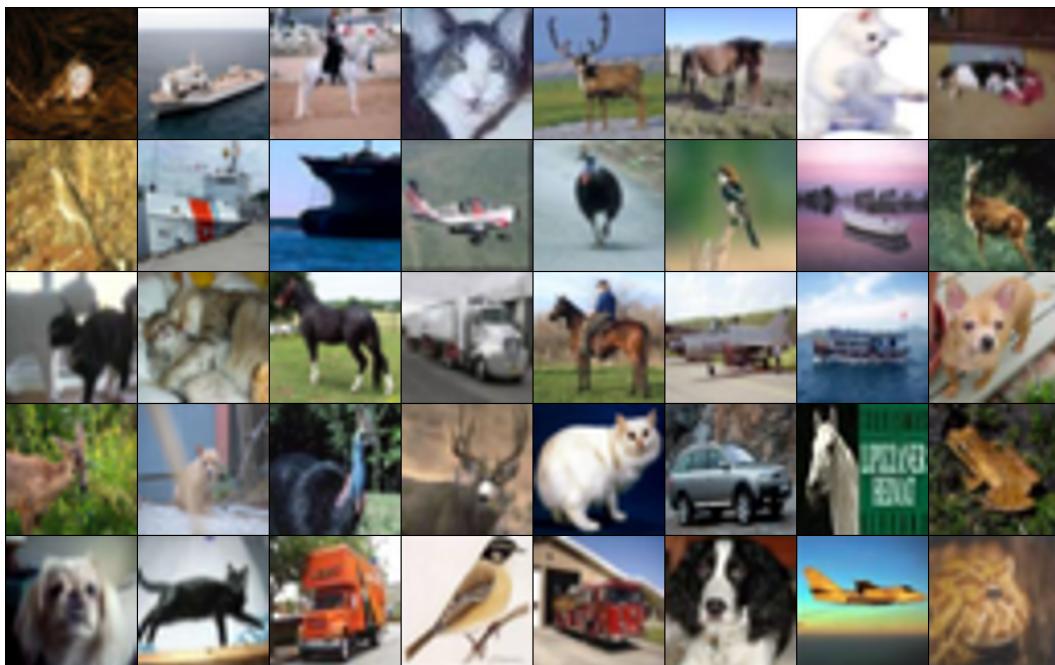


Figure 7: **Clean** CIFAR-10 images randomly selected for visualization

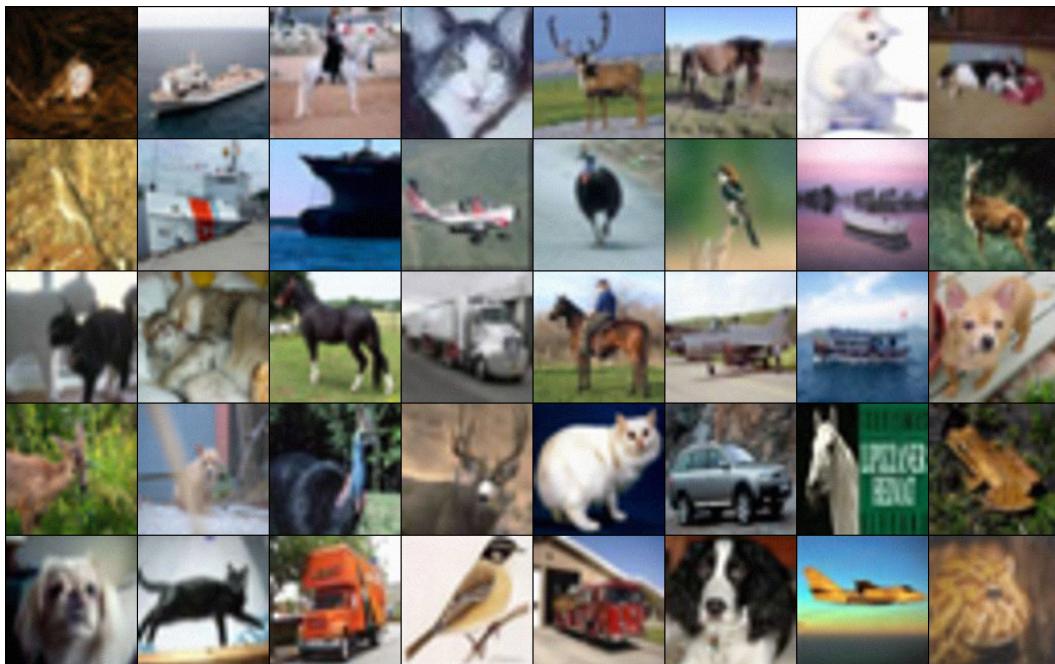


Figure 8: **Adversarial** CIFAR-10 images randomly selected for visualization

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

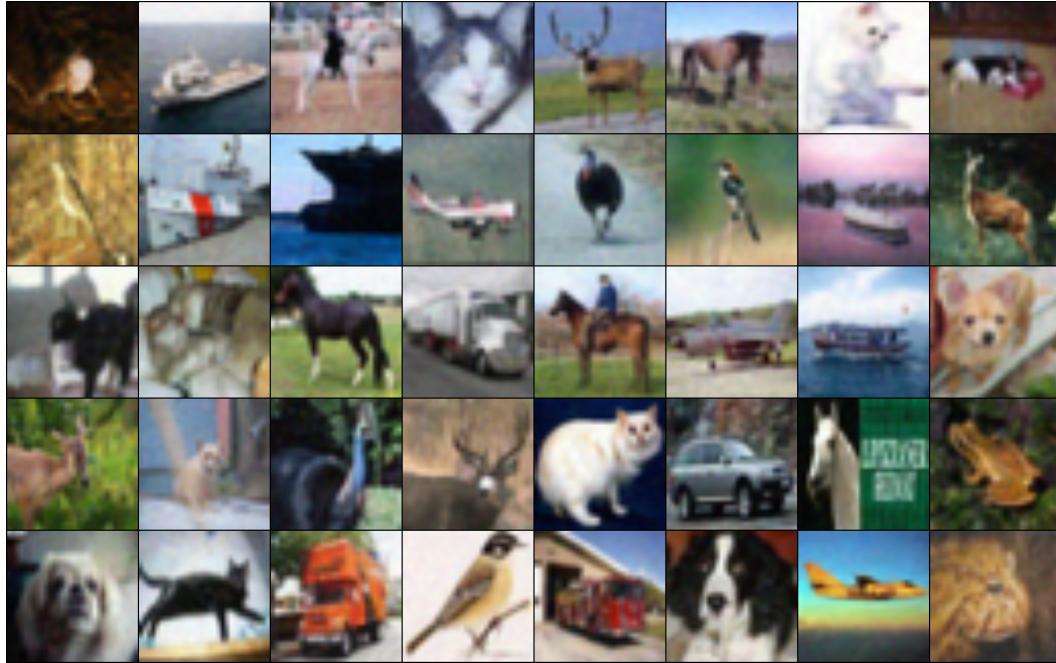


Figure 9: **Purified** CIFAR-10 images randomly selected for visualization

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

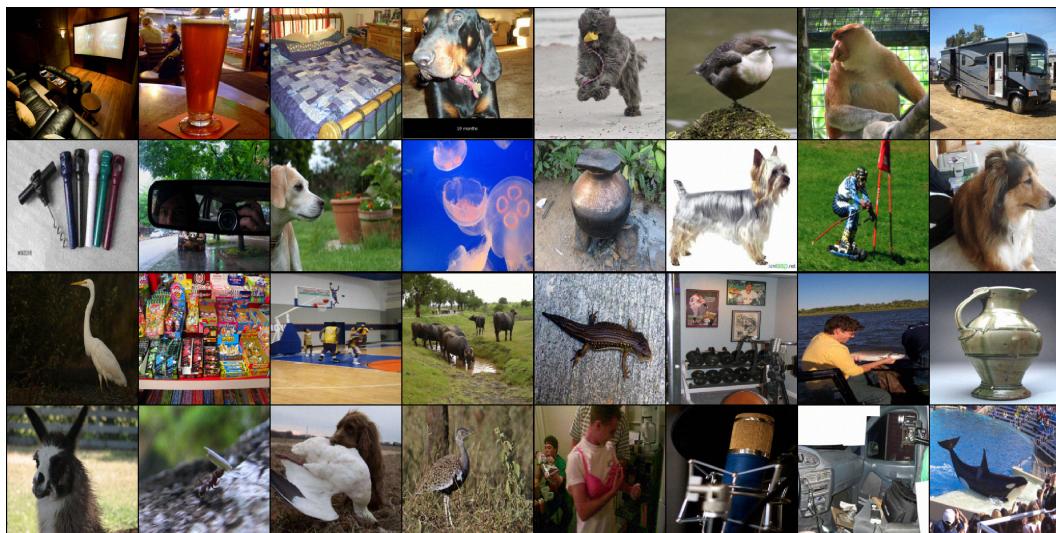


Figure 10: **Clean** ImageNet-1K images randomly selected for visualization

1026

1027

1028

1029

1030

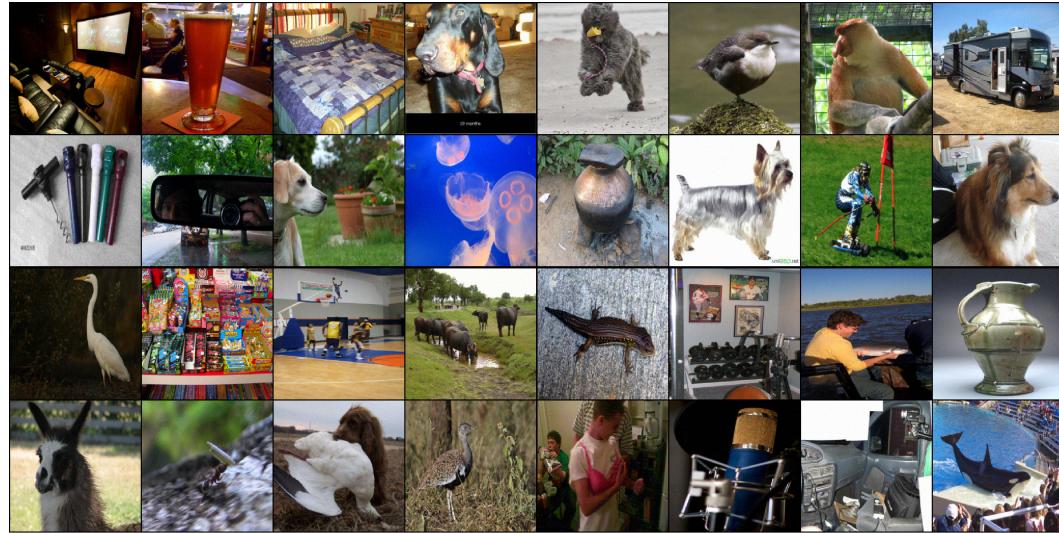


Figure 11: **Adversarial** ImageNet-1K images randomly selected for visualization

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

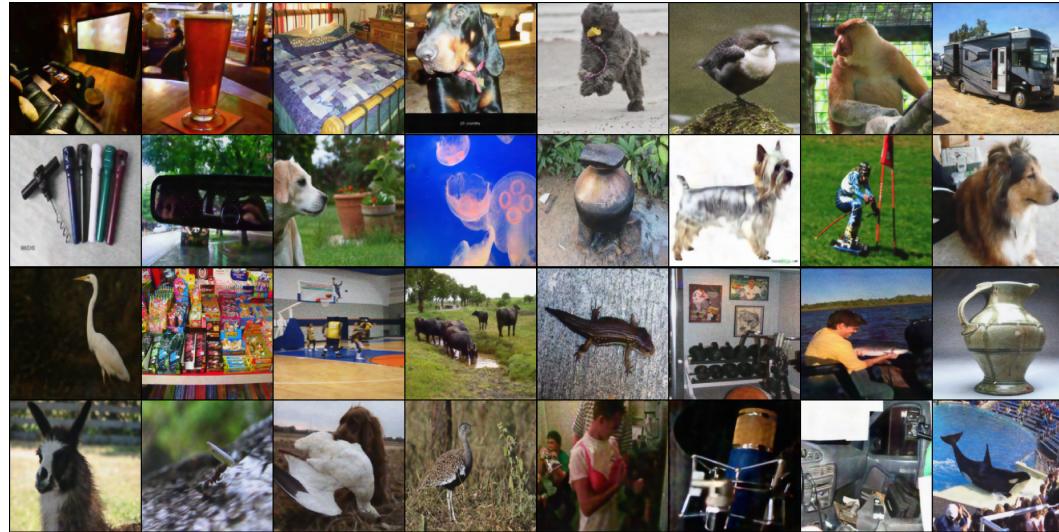


Figure 12: **Purified** ImageNet-1K images randomly selected for visualization

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079