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ABSTRACT

A distribution shift between the training and test data can severely harm perfor-
mance of machine learning models. Importance weighting addresses this issue by
assigning different weights to data points during training. We argue that existing
heuristics for determining the weights are suboptimal, as they neglect the increase
of the variance of the estimated model due to the finite sample size of the training
data. We interpret the optimal weights in terms of a bias-variance trade-off, and
propose a bi-level optimization procedure in which the weights and model param-
eters are optimized simultaneously. We apply this optimization to existing impor-
tance weighting techniques for last-layer retraining of deep neural networks in the
presence of sub-population shifts and show empirically that optimizing weights
significantly improves generalization performance.

1 INTRODUCTION

Machine learning (ML) models typically are trained to minimize the average loss on training data,
with the implicit aim to generalize well to unseen test data. A distribution shift between the training
and test data can severely harm generalization performance (Alcorn et al., 2018; Quiñonero-Candela
et al., 2022). Distribution shifts come in many forms; a prime example is a so-called sub-population
shift, where the population is dissected in groups and the distribution shift is entirely due to a change
in occurrence frequencies of the different groups (Yang et al., 2023). In ML applications, e.g., in
the medical field (Jabbour et al., 2020), such shifts can negatively impact the average accuracy
on test data and/or the accuracy on specific groups. The latter has implications for algorithmic
fairness (Shankar et al., 2017; Buolamwini & Gebru, 2018; Wilson et al., 2019). Furthermore, sub-
population shifts are also relevant regarding spurious correlations (Gururangan et al., 2018; Geirhos
et al., 2020; DeGrave et al., 2021), where the frequency of occurrence of certain combinations of
the variable of interest (e.g., a medical condition) and non-causally related attributes (e.g., the sex
of the patient) might differ between the training and test distribution.

Importance weighting applied to ML models treats different observations in the training data dif-
ferently, for example, by using a weighted loss or a weighted sampler (Kahn & Marshall, 1953).
It has long been used to address distribution shifts and other issues, including domain adaptation,
covariate shift and class imbalance; see Kimura & Hino (2024) for an overview. In the context of
training deep neural networks (DNNs), it was used in a variety of ways to tackle sub-population
shifts, e.g., Sagawa et al. (2020a); Liu et al. (2021); Idrissi et al. (2022); Kirichenko et al. (2023).

This paper addresses the question of how to weigh each observation in an importance weighting
scheme that aims to mitigate the effects of a distribution shift. Typically, the weights are chosen
based on a heuristic argument. For example, in group-weighted empirical risk minimization (GW-
ERM) they are chosen such that the weighted training loss is unbiased for the expected loss with
respect to the test distribution. We argue that such a choice, to which we will refer as the standard
weights, is usually not optimal: for a limited training sample it does not lead to estimated model pa-
rameters that minimize the expected loss with respect to the test distribution. Because of the limited
size of the sample, standard weights tend to put too much weight on certain observations (usually
the minority groups). They thereby introduce significant variance, due to a strong dependence of
the trained model on the particulars of the training data. We illustrate this bias-variance trade-off for
importance weighting analytically with an example of a linear regression model in the presence of a
sub-population shift.
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Secondly, we introduce an estimation procedure for the optimal weights via a bi-level optimization
problem, where the weights and the model parameters are optimized simultaneously. In the context
of last-layer retraining of DNNs in the presence of sub-population shifts, we show empirically, for
benchmark vision and natural language processing datasets, that existing state-of-the-art importance
weighting methods (see Section 2) can be improved significantly by optimizing for the weights. We
find that both the weighted average and worst-group accuracy generally improve, and that optimized
weights increase robustness against the choice of hyperparameters for training. We show that the
effect of optimizing weights is larger when the limited size of the training sample becomes pressing,
namely in the case of a small total sample size or when the minority groups are small.

We emphasize that the proposed procedure for optimizing weights should not be positioned as a
new importance weighting method. Instead, it should be seen as an addition to existing methods that
typically improves their generalization performance.

2 RELATED WORK

In this section we give a brief overview of importance weighting techniques, the issue of sub-
population shift, and how existing methods aim to address it.

Importance weighting for distribution shifts in deep learning: importance weighting is a clas-
sical tool to estimate a model for a test distribution that differs from the distribution of the training
sample (Kahn & Marshall, 1953; Shimodaira, 2000; Koller & Friedman, 2009). When applied to
training DNNs, importance weighting only has a noticeable effect in the presence of sufficient reg-
ularization (Byrd & Lipton, 2018; Xu et al., 2021). In our applications we focus on the use of
importance weighting for last-layer retraining, as this has been argued to be sufficient for dealing
with sub-population shifts (Kirichenko et al., 2023; LaBonte et al., 2023; Chen et al., 2024).

Sub-population shifts: it has been widely documented that ML models frequently face deteriorating
generalization performance due to sub-population shifts (Cai et al., 2021; Koh et al., 2021; Yang
et al., 2023). There exist different possible definitions of the groups for which the distribution shift
occurs. In the case of a spurious correlation, groups are commonly defined by a combination of
a label and a non-causally related attribute (Joshi et al., 2022; Makar et al., 2022). Alternatively,
groups can be defined exclusively via an attribute (Martinez et al., 2021b) or, in the case of class
imbalance, exclusively via a label (Liu et al., 2019). While our experiments consider spurious
correlations, the methodology also applies to alternative group definitions. Generalizing to groups
which do not occur in the training data (Santurkar et al., 2020) is beyond the scope of this paper.

Existing approaches of importance weighting for training DNNs in the presence of a sub-
population shift: a key method is group-weighted empirical risk minimization (GW-ERM), which
uses a weighted loss and where the weights are determined by the occurrence frequencies of the
groups in the training and test distribution. The weighted sampler analogue subsamples from large
groups (SUBG) to create a novel dataset (Sagawa et al., 2020b). Both methods are strong baselines
for addressing sub-population shifts (Idrissi et al., 2022). An alternative approach is to minimize
the worst-group loss via group distributional robust optimization (GDRO, Sagawa et al. (2020a)).
While these methods require group annotations for all training data, there exist other methods that
require limited group annotations in the form of a validation set. An example is Just Train Twice
(JTT), where the errors of the model are used to identify data points that need to be upweighted (Liu
et al., 2021). Other methods in this realm incorporate errors of a secondary model in their estimation
procedure (Nam et al., 2020; Zhang et al., 2022; Qiu et al., 2023) or estimate group attributes (e.g.,
Nam et al. (2022); Han & Zou (2024); Pezeshki et al. (2024)). These methods typically require a
small validation set for determining hyperparameters. Kirichenko et al. (2023) argue that instead
one should use this validation set for the estimation of an ensemble of models via SUBG, a method
denoted as deep feature reweighting (DFR).

Estimation of optimal weights: a commonly noted downside of importance weighting is that it
reduces the effective sample size available for model training (Martino et al., 2017; Schwartz &
Stanovsky, 2022). In light of this, Cui et al. (2019) and Wen et al. (2020) suggest that the weight
given to a particular label should be based on the effective sample size. Similar to our approach,
Ren et al. (2018) aim to learn weights for neural networks given a validation set.
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3 PROBLEM SETTING

Consider random variables (y,x), where y ∈ Y is the target variable and x ∈ X represents the input
features. Suppose we are dealing with a family of models {fθ : X → Y |θ ∈ Θ} and we aim to find
a model that minimizes E(y,x)∼Pte

[L(y, fθ(x))], where L(·, ·) is some pre-defined loss function and
Pte is a test distribution of interest. Moreover, we have access to a dataset Dn

tr = {yi,xi}ni=1, which
is an i.i.d. sample drawn from a training distribution Ptr that is different from the test distribution.
This distribution shift can be problematic, as the minimum of an empirical loss for the training data
does typically not minimize the expected loss with respect to the test distribution.

One method to address this issue is by estimating the model parameters using a weighted loss,

θ̂n(w) := argmin
θ∈Θ

Ln
train(θ,w), where Ln

train(θ,w) :=
1

n

n∑
i=1

wi L(yi, fθ(xi)). (1)

If there is no unique minimizer, which is often the case for DNNs, the argmin should be interpreted
as drawing randomly one element from the set of minimizers. A standard choice for the weights
w = (w1, w2, . . . wn)

′ ∈ Rn are the likelihood ratios r = (r1, r2, . . . rn)
′, where ri = r(yi,xi)

and r(y,x) := pte(y,x)
ptr(y,x)

is the (assumed to be known) ratio of the probability density functions
(pdfs) associated with the test and training distribution respectively. This is due to a key result in
importance weighting that, assuming ptr(y,x) > 0 when pte(y,x) ̸= 0,

E(y,x)∼Ptr
[r(y,x)L(y, fθ(x))] = E(y,x)∼Pte

[L(y, fθ(x))]. (2)
If we choose the weights w to be equal to the likelihood ratios r, then by the law of large numbers
Ln
train(θ, r) converges in the limit of n to infinity to the expectations in Equation 2. As a conse-

quence, θ̂n(r) minimizes for sample size tending to infinity the expected loss with respect to the
test distribution, E(y,x)∼Pte

[L(y, fθ(x)]. However, in practice one works with a finite amount of
training data and the expectation might be poorly approximated by its sample analogue. Therefore,
the optimal choice w∗

n for the weights should be defined as the one that leads to a “best” parameter
estimate θ̂n(w), in the sense that it minimizes the expected loss with respect to the test distribution,

w∗
n := argmin

w
EDn

tr∼Ptr

[
E(y,x)∼Pte

[L(y, fθ̂n(w)(x))|D
n
tr]
]
. (3)

Note that by marginalizing over Dn
tr the optimal choice for w is not determined by the actual re-

alization of the training data. In practice, with access to only a single dataset Dn
tr, the estimate of

the optimal choice will be optimal given that specific training set, although one might be able to
alleviate this dependence by using a cross-validation or bootstrapping scheme.

The first main claim of this paper is that the optimal weights w∗
n are typically not equal to the

weight choice based on the likelihood ratio, (w∗
n)i ̸= r(yi,xi). Although the likelihood ratio makes

the estimated parameters asymptotically unbiased under certain conditions (Shimodaira (2000)), it
neglects the variance that arises due to a limited size of the training set. More concretely, putting
more weight on certain training data points could lead to overfitting and does not necessarily lead
to better generalization, not even on the test distribution for which the weights are supposed to be a
correction.

The second main contribution of this paper is the introduction of a new estimation procedure for the
optimal weights w∗

n. To address the expectation with respect to Pte in Equation 3, we make use of
Equation 2 and write the optimal weights as

w∗
n = argmin

w
EDn

tr∼Ptr

[
E(y,x)∼Ptr

[r(y,x)L(y, fθ̂n(w)(x))|D
n
tr]
]
. (4)

We propose to estimate the inner expectation using a randomly drawn subset of size nval from the
available training data. We call this subset the validation set. Let n′ = n − nval be the remaining
number of data points. The result is a bi-level optimization problem. The weights are estimated via

ŵ∗
n = argmin

w
Lval(θ̂n′(w), r), (5)

where the validation loss is defined analogously to the training loss in Equation 1. The model
parameters are estimated by minimizing this training loss, using the n′ data points that are not in the
validation set. The creation of the validation set has the advantage of avoiding possible overfitting
of w, but comes at the cost of having fewer data points for estimating θ.
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3.1 OPTIMIZING WEIGHTS FOR SUB-POPULATION SHIFTS

In what follows, we make the previous general claims concrete by focusing on one specific type of
distribution shift that has been studied extensively in the machine learning literature, namely sub-
population shift. Each observation carries an additional random variable g ∈ G, which labels a total
number of |G| = G subgroups that dissect the population. We note that g can depend on y and
x, but this is not necessarily the case. For ease of notation, we assume that g can take the values
1, 2, . . . , G. The distribution shift arises from a difference between the marginal training and test
distributions of g, while the conditional pdf p(x, y|g) remains unchanged:

ptr(y, g,x) = ptr(g)p(y,x|g), pte(y, g,x) = pte(g)p(y,x|g), (6)

where ptr(g) ̸= pte(g). Unless otherwise stated, for the training set defined in Section 3 we presume
access to the subgroup labels {gi}ni=1. We emphasize that, with regards to the test distribution of in-
terest, only the marginal probabilities pte(g) of the subgroups are assumed to be known (see Section
7 for a discussion about this potential limitation).

Since the distribution shift is entirely due to a change in the marginal distribution of g, it is natural
to constrain the weights wi to be determined by the group labels gi. It is convenient to define group
weights pg, where g ∈ G, such that wi = pgi/ptr(gi). Estimating the model parameters can then be
seen as a function of the group weights, i.e., θ̂n(p), where p = (p1, p2, . . . , pG)

′ ∈ RG
+. Instead of

optimal weights w∗
n, one now aims to find optimal group weights p∗

n. Assuming that the number of
groups is much smaller than the size of the training set, this heavily reduces the dimension of the
bi-level optimization problem defined in Equation 5.

4 THEORETICAL ANALYSIS OF LINEAR REGRESSION

The optimal weights, as defined in Equation 3, can be analytically derived for the case of linear
regression with a simple data-generating process (DGP) and sub-population shift. This analysis
provides insight into the nature of optimized weights as a bias-variance trade-off and the conditions
under which optimization of the weights becomes relevant.

We consider a DGP y = x′βg + ε, where y ∈ R is the target variable, x = (1, x̃′)′ represents the
intercept and the feature vector x̃ ∈ Rd, and ε ∈ R is the noise. We take x̃ ∼ N (0, Id) and the noise
to have zero mean, variance σ2 and to be uncorrelated with x. The population consists of two groups
labeled by g ∈ {0, 1}. Group membership determines the value of the intercept, βg = (ag,β

′)′ for
g = 0, 1. Note that the slope coefficients are common among the two groups. The sub-population
shift between training and test data is defined by a change in the marginal distribution of the group
label, ptr := Ptr(g = 1) ̸= Pte(g = 1) =: pte.

Suppose we have a training sample Dn
tr = {yi,xi, gi}ni=1 of size n and we use the weighted least

squares (WLS) estimator

β̂n(p) = (X ′WX)−1X ′Wy, with W = diag(w1, ..., wn), wi =

{
p
ptr

gi = 1,
1−p
1−ptr

gi = 0.
(7)

Here, X ∈ Rn×(d+1) is the design matrix of input features and y ∈ Rn contains the target variables.
The weights wi are parameterized by p ∈ [0, 1]. If we choose the weights to be the likelihood ratio
between the test and training distribution, the WLS estimator asymptotically minimizes the expected
quadratic loss with respect to the test distribution. This choice of the weights corresponds to p = pte.

For large but finite n, the approximate expected loss is given by (see Appendix B for details)

EDn
tr∼Ptr

[
E(y,x)∼Pte

[
(y − x′β̂n(p))

2
∣∣∣Dn

tr

]]
≈ B2(pte, p, a1, a0)+V(σ2, p, ptr, n, d)+σ2, (8a)

where the result is decomposed in the following bias and variance term, respectively,

B2(pte, p, a1, a0) =
[
pte(1− p)2 + (1− pte)p

2
]
(a1 − a0)

2, (8b)

V(σ2, p, ptr, n, d) = σ2

[
p2

ptr
+

(1− p)2

1− ptr

]
d+ 1

n
. (8c)
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Both terms are quadratic with respect to p. The bias term is minimized for p = pte, provided that
a0 ̸= a1, whereas the variance is minimized for p = ptr. The minimum of the expected loss is at

p∗n =
pte + η ptr

1 + η
, where η =

σ2(d+ 1)

n(a1 − a0)2ptr(1− ptr)
. (9)

This is the optimal trade-off between minimizing the bias and variance. In the limit of n → ∞ the
variance disappears and the optimal p is indeed equal to the standard choice pte. However, for finite
n it can differ considerably. This is illustrated in Figure 1. Its impact on the expected loss is shown
in Figure 5 in Appendix B.

(a) For ptr = 0.9 and varying d. (b) For d = 250 and varying ptr.

Figure 1: The optimal choice p∗n, given by Equation 9, as a function of the training dataset size n, for
varying feature dimension d (panel (a)) and training distribution ptr (panel (b)). Other parameters
are fixed at a1 = 1, a0 = 0, σ2 = 1, pte = 0.5. Note that the standard choice for p would be at 0.5.
Also note that Equation 9 is derived approximately for large n (hence the dashed lines for small n).

5 OPTIMIZING WEIGHTS OF EXISTING IMPORTANCE WEIGHTING
TECHNIQUES FOR SUB-POPULATION SHIFTS

Before continuing, we note that the setup described in Section 3, when applied to sub-population
shifts, largely corresponds to GW-ERM. However, as emphasized in Section 1, the methodology
proposed in this paper also applies to other importance weighting methods. They differ from GW-
ERM in terms of, e.g., the use of a weighted sampler instead of a weighted loss (SUBG, DFR), the
overall objective (GDRO) or the inference of groups (JTT). For all these cases, optimal weights can
be defined and subsequently found through a bi-level optimization problem. In what follows, we
discuss the details of optimizing weights for the different existing importance weighting techniques.

5.1 GROUP-WEIGHTED EMPIRICAL RISK MINIMIZATION

The optimal group weights p∗
n are estimated by solving a bi-level optimization problem that for

GW-ERM consists of parameter estimation as in Equation 1, with the difference that the estimates
are a function of p instead of w, and group weights optimization

p̂∗
n = argmin

p∈PG

Lval(θ̂n′(p), r), (10)

where the likelihood ratios r are given by ri =
pte(gi)
ptr(gi)

. Also note that the group weights are restricted
to the G-dimensional probability simplex PG. This normalization conveniently prevents modifying
the effective learning rate of the optimization procedure (Ren et al., 2018).

We solve the bi-level optimization problem iteratively. We find p̂∗
n in Equation 10 by means of

exponentiated gradient descent (Nemirovsky & Yudin, 1983; Kivinen & Warmuth, 1997), where the
parameter estimates θ̂n′(p) are kept fixed. After each weight update, we re-calibrate the parameter
estimates of Equation 1.

Although convergence to the optimal group weights is not guaranteed due to potential non-convexity,
gradient-based optimization of hyperparameters has previously been applied successfully (Pe-
dregosa, 2016). Details of the optimization procedure can be found in Algorithm 1.

5
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A step in this algorithm that requires extra attention is the computation of the gradient of the vali-
dation loss with respect to the group weights, commonly referred to as the hyper-gradient. For this,
we use the chain rule

∇pLval(θ̂n′(p), r) = ∇θ̂n′ (p)
Lval(θ̂n′(p), r) · ∇pθ̂n′(p)

and note that the first factor can typically be computed in a straightforward manner. For the gradient
of the parameters with respect to the weights, we use the implicit function theorem. The idea of
using the implicit function theorem for gradient-based optimization of hyperparameters was origi-
nally introduced by Bengio (2000). For the details of calculating the hyper-gradient, including its
algorithmic complexity, see Appendix A.

We also note that the initial value p0 of the optimal weights is motivated by the fact that this choice
is optimal for infinite sample size, making it a reasonable starting point of the iterative algorithm.
Furthermore, Algorithm 1 introduces two new training hyperparameters: the learning rate η and
momentum γ. These can be tuned via a gridsearch using the weighted validation loss. See Appendix
F.4 for an example, which also shows the robustness of Algorithm 1 to the choice of η and γ.

Algorithm 1: Estimation of the optimal weights p̂∗
n for GW-ERM

Input: data {yi, gi,xi}ni=1, training set size n′ < n, maximum steps T , learning rate η,
momentum γ and likelihood ratios r.

Initialize p0 such that p0,g = pte(g) ∀g ∈ G.
Split the data into a training set of size n′ and a validation set.
for t = 1, . . . , T do

Estimate θ̂n′(pt−1) as in Equation 1.
Compute hyper-gradient ζt = −∇pt−1

Lval(θ̂n′(pt−1), r) with implicit function theorem.
Update weights pt,g = pt−1,g exp(ηut,g), with ut,g = γut−1,g + (1− γ)ζt,g, for all g ∈ G.
Normalize pt,g =

pt,g∑
g′∈G pt,g′

for all g ∈ G.
end
Return p̂∗

n = argminpt∈{p0,p1,...,pT } Lval(θ̂n′(pt), r).

5.2 SUBSAMPLING LARGE GROUPS

In the case of SUBG (Sagawa et al., 2020b), the weighted loss in Equation 1 is replaced by a
training loss on a subset of the data created by subsampling without replacement. Let s = {sgi |g ∈
G, i = 1, ..., ng}, where sgi ∈ {0, 1} is a random variable denoting whether data point i from group
g is included in the sample. The weights vg ∈ [0, 1] represent the fraction of data points to be
subsampled, such that a total of ⌈vgng⌉ observations of group g is drawn randomly and included in
the training loss

LSUBG,n
train (θ,v) :=

1

m

∑
g∈G

ng∑
i=1

sgi L(y
g
i , fθ(x

g
i )), (11)

where ygi ,x
g
i are observations belonging to group g;m =

∑
g∈G⌈vgng⌉ and v = (v1, v2, . . . , vG)

′.
This training loss is not differentiable with respect to v, which poses a problem for the bi-level
optimization procedure. This is resolved by using parameter estimates obtained by averaging over
the random subsampling process,

θ̂SUBG
n (v) := argmin

θ∈Θ
Es

[
LSUBG,n
train (θ,v)

]
≈ argmin

θ∈Θ

1

m

∑
g∈G

ng∑
i=1

vg L(ygi , fθ(x
g
i )), (12)

where the approximation ⌈vgng⌉/ng ≈ vg was used. The optimized weights are still esti-
mated with a weighted validation loss, v̂∗

n = argminv∈VG
Lval(θ̂

SUBG
n′ (v), r), where VG ={

v ∈ [0, 1]G | ∃g ∈ G : vg = 1
}
. Note that the weights v are not required to be normalized, but

to avoid unnecessary loss of training data at least one of them must be equal to one. Apart from this
and some minor differences in the computation of the hyper-gradient (see Appendix A), the bi-level
optimization procedure for SUBG is similar to the one for GW-ERM as described in Algorithm 1.
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A closely related method is DFR (Kirichenko et al., 2023), in which an ensemble of models trained
on subsampled groups is used to estimate the model parameters by averaging Equation 12. Typically,
this is done on a validation set. Per model, the hyper-gradient is the same as for SUBG.

5.3 GROUP DISTRIBUTIONAL ROBUST OPTIMIZATION

Instead of minimizing the overall expected loss with respect to a test distribution, GDRO aims to
minimize the largest expected loss per group. This also means that in this case no specification of
a test distribution of interest is needed. The associated training procedure minimizes a weighted
sum of expected losses per group, where the loss weights q = (q1, q2, . . . , qG)

′ are updated dur-
ing training and larger weights are given to groups with a larger expected loss (Oren et al., 2019;
Sagawa et al., 2020a). We apply the framework of optimized importance weighting to the GDRO
objective. As in Section 5.1, we work with group weights p. The model parameters are estimated
via a weighted loss as in Equation 1, whereas the optimal weights are found by minimizing

p∗
n = argmin

p∈PG

EDn
tr∼Ptr

[
sup
q∈PG

G∑
g=1

qg E(y,x|g)∼Ptr

[
L(y, fθ̂n(p)

(x))
∣∣∣Dtr

]]
, (13)

where (recall that) PG is the G-dimensional probability simplex. The inner expectation of Equa-
tion 13 is estimated with a validation set that is withheld from the data used to train the model
parameters. The bi-level optimization procedure now consists of updating three quantities per up-
date step: the model parameters θ, the group weights p and the loss weights q. See Algorithm 2 in
Appendix E for details.

In the standard GDRO setting, the coefficients of the logistic regression are trained to minimize
worst-group loss. This makes GDRO prone to overfitting (Sagawa et al., 2020a). We, instead,
optimize the weights to minimize worst-group loss, whereas the model parameters are trained via
Equation 1. In typical cases, because of the (much) lower dimension of the group weights, overfitting
is less likely to be a problem, giving optimized weights an edge over standard GDRO.

5.4 GROUP INFERENCE METHODS

Acquiring group labels is often costly. Several methods (see Section 2) resolve this by estimating
group membership. Methods in this realm, such as Just Train Twice (Liu et al., 2021), require a
validation set with the ground-truth group labels to tune hyperparameters. A key hyperparameter
of JTT is the extent to which misclassified observations should be upweighted, which is optimized
via a grid search on a validation set. We replace this single upweighting factor by multiple group
weights, leading to higher flexibility. Furthermore, we optimize them via gradient descent instead
of grid search. Like JTT, we use estimated group labels instead of ground-truth group labels, and
aim to find weights that minimize the worst-group loss.

6 EXPERIMENTS

The goal of this section is to verify empirically that existing state-of-the-art methods for addressing
sub-population shifts benefit from using optimized group weights. We use benchmark classification
datasets for studying sub-population shifts: two from computer vision (Waterbirds, CelebA) and one
from natural language processing (MultiNLI). Groups are defined via a combination of the target
label and a spurious attribute. The training and validation set are randomly split. For Waterbirds,
this is different from previous implementations, where the validation set is balanced in terms of
the groups (Sagawa et al., 2020a). We deviate from this, since it is more realistic that the training
and validation sets are drawn from the same distribution. The distribution shift is established by
measuring the generalization performance on a test set for which all groups have an equal weight.
For details on the datasets, including group sizes, see Appendix F.1.

We use last-layer retraining as introduced by Kirichenko et al. (2023). We use this procedure be-
cause of computational feasibility and because it has been shown to be sufficient for addressing
sub-population shifts (Izmailov et al., 2022; Kirichenko et al., 2023). Last-layer retraining con-
sists of several steps. We first finetune a pre-trained DNN on the respective datasets. This is a
ResNet50 model (He et al., 2016) for Waterbirds and CelebA, and a BERT model (Devlin et al.,
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2019b) for MultiNLI. Secondly, we train a logistic regression on the last-layer embeddings of the
finetuned DNN. For this step, we apply five existing importance weighting methods that address
sub-population shifts (GW-ERM, SUBG, DFR, GDRO, JTT), using the standard weights prescribed
by the respective methods. Thirdly, we optimize the weights for each importance weighting method
via the procedures described in Section 5. For each importance weighting method with standard
weights, we use a grid search to optimize the respective hyperparameters, including an L1 penalty
for sufficient regularization. To get a fair comparison, we use the same hyperparameters for opti-
mized weights. This likely gives an advantage to the standard weights.

We repeat the above procedure, starting from a pre-trained DNN, five times for each dataset, im-
portance weighting method and weights choice approach (standard vs. optimized). For each run,
we use the test set to compute two metrics for generalization performance: weighted average accu-
racy, which is the equal-weight average of the accuracy per group, and worst-group accuracy. We
compare the difference in generalization performance between the standard weights choice and op-
timized weights via a one-sided t-test of paired samples. See Appendix F for details, including a
discussion of the computational resources used.

Figure 2: Estimated generalization performance (averaged over 5 runs) of standard weights choice
(squares) versus optimized weights (triangles). Error bars reflect the paired-sample 90% confidence
interval of the difference.

Improving existing importance weighting methods: Figure 2 compares the expected generaliza-
tion performance of the standard weights choice and optimized weights. For a correct interpretation
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of the results, recall that for GW-ERM, SUBG and DFR, the objective of optimized weights is the
weighted average accuracy, whereas for GDRO and JTT this is the worst-group accuracy. We ob-
serve that our approach consistently improves on the objective for which the weights are optimized,
and is at least as good as standard weights with the exception of JTT on CelebA. Out of the 15 cases,
we observe 12 times an increase that is statistically significant at the 10% level, and 8 times at the
5% level. Regarding the size of the improvements, in 5 cases there is an increase greater than 1%,
with a maximum of 5.61%. To explain the case of JTT on CelebA, we note that even on the valida-
tion set optimizing weights did not improve the worst-group accuracy. This indicates that here, our
bi-level optimization procedure was unable to find better weights than the grid search of JTT.

Furthermore, we find that optimizing weights often also improves the metric for which the weights
were not optimized (worst-group accuracy for GW-ERM, SUBG and DFR; weighted average accu-
racy for GDRO and JTT). The only exception is SUBG on CelebA. In 10 cases, there is an improve-
ment greater than 1%, with a maximum of 4.03%. This result was not necessarily expected, since
weighted average accuracy and group robustness are often opposed objectives (Agarwal et al., 2018;
Martinez et al., 2021a). See appendix C for numerical details of the results.

Figure 3: Estimated generalization performance (averaged over 5 runs) of standard weights choice
(squares) versus optimized weights (triangles) for GW-ERM as a function of the sizes of the training
and validation set. Error bars reflect the paired-sample 90% confidence interval of the difference.

Figure 4: Estimated generalization performance (averaged over 5 runs) of standard weights choice
(squares) versus optimized weights (triangles) for GW-ERM as a function of the L1 regularization
parameter. Error bars reflect the paired-sample 90% confidence interval of the difference.

Role of the dataset size: it can be observed in Figure 2 that the improvement due to optimized
weights is less pronounced for CelebA and MultiNLI than for Waterbirds. One possible explanation

9
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is that the Waterbirds dataset is much smaller, leading to (very) small minority groups (see Appendix
F.1). We have argued in Sections 3 and 4 that it is in particular this situation where the effect of
optimized weights is expected to be large.

We test this for GW-ERM on CelebA in Figure 3, where we show the effect of optimized weights
using only fractions of the original training and validation set (while keeping the ratio of the sizes
the same). The improvement due to optimizing weights peaks when around 10% of the original data
is used. Note that for smaller fractions of the data (5%) the effect decreases again. This is likely
due to the validation set becoming (very) small, increasing the chance of overfitting on this data. We
further investigate the effect of the relative sizes of the training and validation set in Appendix D.

Robustness to other hyperparameters: an additional benefit of optimizing weights is an improved
robustness to the choice of the L1 penalty. We illustrate this in Figure 4 for GW-ERM and the Wa-
terbirds dataset. Both generalization metrics vary less with optimized weights. We believe this is
because optimized weights improve on the bias-variance trade-off, thereby compensating for subop-
timal regularization choices in the hyperparameters.

7 CONCLUSION AND DISCUSSION

This paper has shown that the standard choice of weights for importance weighting in the presence
of sub-population shifts is often not optimal, due to the finite sample size of the training data. We
have provided an estimation procedure for the optimal weights, which generally improves existing
importance weighting methods in the case of last-layer retraining of DNNs.

Although last-layer retraining is known to be sufficient for addressing sub-population shifts (Iz-
mailov et al., 2022; Kirichenko et al., 2023), it might be that retraining the whole DNN is the
preferred option. In that case computational costs can become an issue, as calculating the hyper-
gradient requires optimizing the model on the training data and computing the inverted Hessian of
the training loss with respect to the model parameters. To alleviate this, one might resort to several
existing approaches to reduce computational costs for optimizing the model (Maclaurin et al., 2015)
or calculating the inverted Hessian (Lorraine et al., 2020).

The optimization properties of our method are another potential topic for future research. Although,
with the exception of JTT on CelebA in Figure 2, the bi-level optimization procedure seems to
converge well, formal convergence guarantees or the conditions under which the optimization in
Equation 10 is convex were not investigated here.

One limitation of optimizing weights for sub-population shifts as described in Algorithm 1, is that
it presumes some knowledge of the test distribution of interest, namely the marginal probabilities
pte(g) of the subgroups. This can be based on the practitioner’s knowledge of the problem, or their
preferences. For example, if one cares to an equal extent about prediction errors in two groups (e.g.,
male and female patients), this can be specified via a test distribution in which the groups have an
equal marginal probability. If a small subset of labels from the test distribution is available, a prac-
titioner could use density estimation techniques to find the probability of certain groups occurring
(Sugiyama et al., 2012). Another alternative is to optimize the weights for worst-group loss, which
does not require knowledge of a test distribution.

The application to more challenging data-generating processes and models could lead to additional
benefits of our approach. One example is concept bottleneck models, which are known to suffer
from spurious correlations (Margeloiu et al., 2021; Heidemann et al., 2023). The existence of many
concepts, and thus groups, leads to a severe reduction in the effective sample size. This is problem-
atic for existing importance weighting techniques and gives our approach of optimizing weights the
potential to lead to big improvements. We leave this for future work.
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A CALCULATION OF THE HYPER-GRADIENT

The goal of this section is to provide further details on the calculation of the hyper-gradient, which
is the gradient of the validation loss with respect to our hyperparameter p, introduced in Section 5.1.
This section should be read in conjunction with Section 5. Recall that the chain rule gives

∂Lval(θ̂n′(p), r)

∂p
=

∂Lval(θ̂n′(p), r)

∂θ̂n′(p)

∂θ̂n′(p)

∂p
. (14)

Suppose we have a function h(θ,p) which is twice differentiable, which will play the role of an
(expected) training loss. Assume that the gradient of h(θ,p) with respect to θ is zero at the point
θ̂n′(p). We can then apply the implicit function theorem to this gradient at the point θ = θ̂n′(p),
and write

∂θ̂n′(p)

∂p
= −

[
∂2h(θ,p)

∂θ∂θT

∣∣∣∣
θ=θ̂n′ (p)

]−1
∂2h(θ,p)

∂θ∂pT

∣∣∣∣
θ=θ̂n′ (p)

. (15)

The gradient in Equation 15 depends on the form of h, and thus the estimation procedure of the
parameters. Here, we discuss two such estimation procedures: (1) a group-weighted loss, and (2)
subsampling per group without replacement.

Group-weighted loss: for simplicity of notation, assume that the group label g takes values
1, 2, . . . , G. The group-weighted training loss is defined as

h(θ,p) =
1

n

(
G∑

g=1

pg
ptr,g

ng∑
i=1

L(ygi , fθ(x
g
i ))

)
. (16)

The partial derivative of h(θ,p) with respect to pg becomes a novel (weighted) loss function,

∂h(θ,p)

∂pg
=

1

n

(
1

ptr,g

ng∑
i=1

L(ygi , fθ(x
g
i ))−

1

(1−
∑G−1

g′=1 ptr,g′)

nG∑
i=1

L(yGi , fθ(xG
i ))

)
, (17)

where we used that pG = 1 −
∑G

g′=1 pg′ due to normalization. Then, in order to determine
∂2h(θ,p)
∂θ∂pT

∣∣∣
θ=θ̂n′ (p)

, we can calculate the derivative with respect to the estimated parameters for the

novel loss function in Equation 17 for each pg .

Subsampling large groups: here, we are interested in the hyper-gradient for the hyperparameter v
instead of p, as defined in Section 5.2. The parameters θ̂n′(v) are not determined via a weighted
loss, but rather by minimizing the training loss on a subsample of the data. However, the expected
training loss can be rewritten as a weighted loss. To mimic the procedure of subsampling without
replacement, we say that for each g = 1, . . . , G the random variables sgi are identically distributed
Bern(vg) random variable with constraint

ng∑
i=1

sgi = mg, where mg = ⌈vgng⌉. (18)

Recall from the main text that 0 ≤ vg ≤ 1, the fraction of samples used from the training data in our
subsample. The expected training loss is then

Es

[
LSUBG,n
train (θ,v)

]
= Es

[
1

m

G∑
g=1

ng∑
i=1

sgiL(y
g
i , fθ(x

g
i ))

]
(19)

=
1

m

G∑
g=1

ng∑
i=1

L(ygi , fθ(x
g
i ))

⌈vgng⌉
ng

(20)

where m =
∑G

g=1 mg is the total number of samples in our subsample. By fixing the value of each
mg beforehand, m is not stochastic. As explained in Section 5.2, we approximate this expected loss

17
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via h̃(θ,v) = 1
m

∑G
g=1

∑ng

i=1 vg L(y
g
i , fθ(x

g
i )). The partial derivative of h̃(θ,v) with respect to vg

again becomes a novel loss function

∂h̃(θ,v)

∂vg
=

1

m

G∑
g=1

ng∑
i=1

L(ygi , fθ(x
g
i )). (21)

Note the difference with Equation 17, because the v are not normalized. To determine
∂2h̃(θ,v)
∂θ∂vT

∣∣∣
θ=θ̂n′ (v)

, we can (again) calculate the derivative with respect to the estimated parameters

for the novel loss function in Equation 21 for each vg . In addition to the change in the calculation of
the hyper-gradient, the only change to Algorithm 1 is that we do not normalize the weights v.

Algorithmic complexity of the hyper-gradient calculation: Equation 14 shows there are two fac-
tors that make up the derivative of the validation loss with respect to p. Suppose that we have
dmodel parameters in θ̂n′(p). Calculating the first factor then has an algorithmic complexity of
O(nvaldmodel). Calculating the second factor (including its inversion) has an algorithmic complex-
ity of O(n′d2model + d3model). This makes the current version of the algorithm impractical when the
number of trainable parameters dmodel is very large, e.g., when training an entire DNN with archi-
tectures that are commonly used in computer vision and NLP. For a logistic regression, analytical
solutions to both factors are available, allowing for fast computation.

B THEORETICAL ANALYSIS FOR LINEAR REGRESSION

The goal of this section is to derive the approximate expected loss given the data-generating process
described in Section 4. It consists of four parts.

• In Section B.1 we give a description how EDn
tr∼Ptr

[
E(y,x)∼Pte

[(y − xT β̂(w))2|Dtr]
]

can
be decomposed into a bias and variance term in the case of linear regression, and data
stemming from G groups.

• In Section B.2 we provide the approximations of the OLS coefficients for large but finite n,
given the data-generating process described in Section 4.

• In Section B.3, combining the results of the previous two sections, we derive the (approxi-
mate) bias-variance decomposition for our data-generating process.

• Finally, in Section B.4 we provide a numerical comparison between simulations and our
approximation.

B.1 THE BIAS-VARIANCE TRADEOFF

For clarity, throughout the next three sections we will use the subscript tr to indicate if random
variables are drawn from the training distribution, and the subscript te that they are drawn from the
test distribution. We use the mean-squared error as the loss function, and use a linear regression
where the coefficients depend on our weights.

EDn
tr∼Ptr

[
Eyte,xte [(yte − fθ̂n(w)(x))

2|Dtr]
]
= EDn

tr∼Ptr

[
Eyte,xte [(yte − xT

teβ̂(w))2|Dtr]
]
.

The following only requires the assumptions stated in Section 4 regarding the independence of xte

from ϵte. The expected mean squared error over a test distribution, conditional on the data coming
from group g, can be written as

EDn
tr∼Ptr

[
Exte,yte

[(yte − xT
teβ̂(w))2|g,Dtr]

]
= EDn

tr∼Ptr

[
Exte,yte

[y2te − 2ytex
T
teβ̂(w) + (xT

teβ̂(w))2|g,Dtr]
]

= Eyte
[y2te|g]− 2EDn

tr∼Ptr

[
Exte,yte

[
ytex

T
teβ̂(w)|g,Dtr

]]
+ EDn

tr∼Ptr

[
Ep(xte)

[
(xT

teβ̂(w))2|g,Dtr

]]
.
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For each group g, the following holds:

Eyte [y
2
te|g] = Exte [(x

T
teβ

g + ϵte)
2|g] = Exte [(x

T
teβ

g)2|g] + σ2,

EDn
tr∼Ptr

[
Exte,yte

[
yxT

teβ̂(w)|g,Dtr

]]
= EDn

tr∼Ptr

[
Exte,yte

[
(xT

teβ
g + ϵte)x

T
teβ̂(w)|g,Dtr

]]
= Exte [x

T
teβ

g|g]EDn
tr∼Ptr

[
Exte

[
xT
teβ̂(w)|g,Dtr

]]
,

EDn
tr∼Ptr

[
Exte,yte

[
(xT

teβ̂(w))2|g,Dtr

]]
= EDn

tr∼Ptr

[
Var

(
xT
teβ̂(w)|g,Dtr

)
+ Exte

[
xT
teβ̂(w)|g,Dtr

]2
|Dtr

]
.

We can then write the expected loss conditional on g as:

EDn
tr∼Ptr

[
Exte,yte

[(yte − xT
teβ̂(w))2|g,Dtr]

]
= Exte

[(xT
teβ

g)2|g]− 2Exte
[xT

teβ
g|g]EDn

tr∼Ptr

[
Exte

[
xT
teβ̂(w)|g,Dtr

]]
+ EDn

tr∼Ptr

[
Exte

[
xT
teβ̂(w)|g,Dtr

]2
|Dtr

]
+ EDn

tr∼Ptr

[
Var

(
xT
teβ̂(w)|g,Dtr

)∣∣∣Dtr] + σ2.

Suppose we write this expected loss conditional on both xte and g. Then, it can be written as:

EDn
tr∼Ptr

[
Eyte

[(yte − xT
teβ̂(w))2|xte, g]

]
= (xT

teβ
g − xT

teEDn
tr∼Ptr

[
β̂(w)

]
)2 + xT

teEDn
tr∼Ptr

[
Var(β̂(w)|Dtr)

]
xte + σ2

g .

To further specify the expected loss, we will use the data-generating process specified in Section 4.
Most notably, we will use that the xte does not change with the group g, that there are only two
groups, and our definition of the coefficients per group.

By the law of total probability, the expected loss conditional on only xte can be written as a sum of
of the expected losses conditional on xte, g.

EDn
tr∼Ptr

[
Eyte,gte [(yte − xT

teβ̂(w))2|xte]
]

=

G∑
g=1

p(gte = g)EDn
tr∼Ptr

[
Eyte

[(yte − xT
teβ̂(w))2|xte, g]

]
= pte((x

T
teβ

1 − xT
teEDn

tr∼Ptr
[β̂(w)])2 + (1− pte)((x

T
teβ

0 − xT
teEDn

tr∼Ptr
[β̂(w)])2

+ xT
teEDn

tr∼Ptr

[
Var(β̂(w)|Dtr)

]
xte + σ2. (22)

B.2 THE ASYMPTOTIC BIAS AND VARIANCE OF THE COEFFICIENTS

The goal of this subsection is to define the expectation and variance of the WLS estimator as defined
per equation 7. Because we have fixed the amount of observations per group, we can state the
following

n1

n
=

nptr
n

= ptr, ,
n0

n
=

n(1− ptr)

n
= (1− ptr), (23)

w1
n1

n
=

p

ptr
ptr = p, w0

n0

n
=

(1− p)

(1− ptr)
(1− ptr) = (1− p). (24)

This means we can write

XT
trWXtr = w1X

T
tr,1Xtr,1 + w0X

T
tr,0Xtr,0, XT

trWytr = w1X
T
tr,1y1 + w0X

T
tr,0y0, (25)
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and similarly XT
trWWXtr = w2

1X
T
tr,1Xtr,1 + w2

0X
T
tr,0Xtr,0, where Xtr,1 ∈ Rn1×d,Xtr,0 ∈

Rn0×d are matrices where for the observations holds that gi = 1, gi = 0 respectively, and similarly
y1 ∈ Rn1 ,y0 ∈ Rn0 .

In the following analysis we will use that(
1

n
(w1X

T
tr,1Xtr,1 + w0X

T
tr,0Xtr,0)

)−1

=

(
1

n
(w1

n1

n1
XT

tr,1Xtr,1 + w0
n0

n0
XT

tr,0Xtr,0)

)−1

=

(
p
1

n1
XT

tr,1Xtr,1 + (1− p)
1

n0
XT

tr,0Xtr,0

)−1

.

(26)

And similarly,

1

n

(
w2

1X
T
tr,1Xtr,1 + w2

0X
T
tr,0Xtr,0

)
=

1

n

(
w2

1

n1

n1
XT

tr,1Xtr,1 + w2
0

n0

n0
XT

tr,0Xtr,0

)
=

(
p2

ptr

1

n1
XT

tr,1Xtr,1 +
(1− p)2

(1− ptr)

1

n0
XT

tr,0Xtr,0

)
. (27)

Finally, we will use that

1

n
(w1X

T
tr,1y1 + w0X

T
tr,0y0) =

1

n
(w1

n1

n1
XT

tr,1y1 + w0
n0

n0
XT

tr,0y0)

= p
1

n1
XT

tr,1y1 + (1− p)
1

n0
XT

tr,0y0. (28)

Using Equation 26 and Equation 28, the WLS estimator can be re-written as

(XT
trWXtr)

−1XT
trWytr = (

1

n
XT

trWXtr)
−1 1

n
XT

trWytr

=

(
1

n
XT

trWXtr

)−1(
p
1

n1
XT

tr,1y1 + (1− p)
1

n0
XT

tr,0y0

)
.

The expectation of this estimator, conditional on g,X becomes

E[β̂(p)|gtr,Xtr] = E
[
(
1

n
XT

trWXtr)
−1 1

n
XT

trWytr|gtr,Xtr

]
= E

[(
1

n
XT

trWXtr

)−1(
p
1

n1
XT

tr,1y1 + (1− p)
1

n0
XT

tr,0y0

)
|gtr,Xtr

]

=

(
1

n
XT

trWXtr

)−1(
p
1

n1
XT

tr,1E[y1|X] + (1− p)
1

n0
XT

tr,0E[y0|X]

)
=

(
1

n
XT

trWXtr

)−1(
p
1

n1
XT

tr,1Xtr,1β
1 + (1− p)

1

n0
XT

tr,0Xtr,0β
0

)
.

Given our DGP we can write the variance of ytr conditional on gtr,Xtr as

Var(ytr|gtr,Xtr) = σ2I. (29)

We can then define the variance of the WLS estimator conditional on g,X:

Var(β̂(p)|gtr,Xtr) = Var((XT
trWXtr)

−1XT
trWytr|gtr,Xtr)

= (XT
trWXtr)

−1XT
trWVar(ytr|gtr,Xtr)WXtr(X

T
trWXtr)

−1

= σ2(XT
trWXtr)

−1XT
trWWXtr(X

T
trWXtr)

−1 (30)
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Similar to the data-generating process in Section 4, we assume here that each x follows the same dis-
tribution regardless of the group. Given this, we can state E[ 1

n1
XT

tr,1Xtr,1] = E[ 1
n0

XT
tr,0Xtr,0] =

Σ, e.g. they have the same expectation. Assuming Σ is a positive definite matrix with finite ele-
ments, 1

n1
XT

1 X1,
1
n0

XT
0 X0 converge in probability to it, e.g.

plim
n1→∞

1

n1
XT

1 X1 = plim
n0→∞

1

n0
XT

0 X0 = Σ. (31)

Since we assume each of our observations of x are identically and independently distributed (IID),
we can write

1

n1
XT

tr,1Xtr,1 =
1

n0
XT

tr,1Xtr,1 = Σ+Op(
1√
n
). (32)

See Equation 14.4-7 of Bishop et al. (2007) for a general version of this result. We can thus write(
p
1

n1
XT

tr,1Xtr,1 + (1− p)
1

n0
XT

tr,0Xtr,0

)
= pΣ+ (1− p)Σ+Op(

1√
n
) = Σ+Op(

1√
n
),

and also, (
p
1

n1
XT

tr,1Xtr,1 + (1− p)
1

n0
XT

tr,0Xtr,0

)−1

=

(
Σ+Op(

1√
n
)

)−1

= Σ−1 −Σ−1Op(
1√
n
)Σ−1

= Σ−1 −Op(
1√
n
).

The Op(
1√
n
) indicates 1

n1
XT

tr,1Xtr,1,
1
n0

XT
tr,1Xtr,1 are bounded in probability (see Vaart (1998)

Section 2.2). Thus, for a large n, we can approximate E
[(
XT

trWXtr

)−1
]

using Σ−1.

We use the following approximation

EDn
tr∼Ptr [β̂(w) (33)

= Egtr,Xtr

[
E
[(
XT

trWXtr

)−1
(
p
1

n1
XT

tr,1Xtr,1β
1 + (1− p)

1

n0
XT

tr,0Xtr,0β
0

)]]
= Σ−1(pΣβ1 + (1− p)Σβ0) +Op(

1√
n
)

≈ pβ1 + (1− p)β0. (34)

Similarly, we can define an approximation for the conditional variance. First, we define

plim
n→∞

1

n
XT

trWWXtr =

(
p2

ptr
+

(1− p)2

(1− ptr)
)Σ

)
. (35)

We can now state

EDn
tr∼Ptr

[
Var(β̂(w)|Dtr)

]
= Egtr,Xtr

[
σ2(XT

trWXtr)
−1XT

trWWXtr(X
T
trWXtr)

−1
]

≈ σ2

(
p2

ptr
+

(1− p)2

(1− ptr)

)
Σ−1. (36)

B.3 THE EXPECTED LOSS

If we substitute in our approximations derived in Equation 36, Equation 34 in Equation 22, we get

EDn
tr∼Ptr

[
Epte(y)[(y − xT

teβ̂(w))2|xte]
]
≈

(
G∑

g=1

pte,g((x
T
teβ

g − xT
te(pβ

1 + (1− p)β0))2 + σ2
g

)

+ xT
te

1

n
σ2

(
p2

ptr,1
+

(1− p)2

(1− ptr,1)

)
Σ−1xte.
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Now, we will define the expected loss unconditional of xte. We will start to generally define the
squared bias

E[(xT
teβ

g − xT
te

(
pβ1 + (1− p)β0

)
])2] = E[(xT

teβ
g
d)

2],

where βg
d is the difference between the coefficients in the data-generating process of group g and

estimated coefficients. Note that in general

(xT
teβ

g
d)

2 = (

p∑
j=1

xjβ
g
d,j)(

p∑
j=1

xjβ
g
d,j) = Tr(xtex

T
teβ

g
dβ

gT

d ),

E[(xT
teβ

g
d)

2] = Tr(E[xtex
T
te]E[β

g
dβ

gT

d ]), (Since they are independent)

E[xtex
T
te] =

(
1 0T

0 Σ.

)
.

Now, the challenge is to define βg
d . To do so, we define the difference between the coefficients as

βd = (β1 − β0). We can then define

(pβ1 + (1− p)β0) = p(β1 − β0) + β0,

β
(1)
d = β1 − p(β1 − β0)− β0 = (1− p)(β1 − β0),

β
(0)
d = β0 − p(β1 − β0)− β0 = −p(β1 − β0),

β
(1)
d β

(1)T

d = (1− p)2βdβ
T
d

β
(0)
d β

(0)T

d = p2βdβ
T
d .

Because the difference in the coefficients is only in the intercepts, we can write

E[(xT
teβ

(1)
d )2] = (1− p)2(a1 − a0)

2,

E[(xT
teβ

(0)
d )2] = p2(a1 − a0)

2.

Suppose that we define Σ−1 = 1
γ I . Note our DGP as defined in Section 4 uses γ = 1. We can now

write

E[xT
te

σ2

n
(
p2

ptr
+

(1− p)2

(1− ptr)
)Σ−1xte] = σ2

(
p2

ptr
+

(1− p)2

(1− ptr)

)
1

n
E[xT

te

(
1 0T

0 1
γ I

)
xte]

= σ2

(
p2

ptr
+

(1− p)2

(1− ptr)

)
d+ 1

n
.

Now that we have defined the bias and variance terms, we can combine these with the noise term σ2

into the expected loss.

B2(pte, p, a1, a0) = pte(1− p)2(a1 − a0)
2 + (1− pte)p

2(a1 − a0)
2,

V(σ2, p, ptr, n, d) = σ2(
p2

ptr
+

(1− p)2

(1− ptr)
)
d+ 1

n
,

EDn
tr∼Ptr

[
E(y,x)∼Pte

[(y − xT
teβ̂(w))2|Dtr]

]
≈ B2(pte, p, a1, a0) + V(σ2, p, ptr, n, d) + σ2.

(37)

We then take the derivative of p with respect to the bias,

∂B2(pte, p, a1, a0)

∂p
= 2(a1 − a0)

2(p− pte),

2(a1 − a0)
2(p− pte) = 0 =⇒ p = pte.
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In the case that a1 ̸= a0, the bias is uniquely minimized when p = pte. If we take the derivative of
p with respect to the variance, it is uniquely minimized at p = ptr if n(ptr − 1)ptr ̸= 0.

∂V(σ2, p, ptr, n, d)

∂p
= −2(d+ 1)σ2(p− ptr)

n(ptr − 1)ptr
, (38)

n(ptr − 1)ptr ̸= 0,
2(d+ 1)σ2(p− ptr)

n(ptr − 1)ptr
= 0 =⇒ p = ptr. (39)

For the variance, if n → ∞, V(σ2, p, ptr, n, d) → 0. Hence, if our sample is large enough, the
optimal p will be p for which the bias is minimal. The p∗n as per Equation 9 is derived by taking the
derivative of the approximate expected loss with respect to p, and setting it to 0

n(ptr − 1)ptr ̸= 0, 2(a1 − a0)
2(p− pte)−

2(d+ 1)σ2(p− ptr)

n(ptr − 1)ptr
= 0, (40)

=⇒ p =
pte + η ptr

1 + η
, where η =

σ2(d+ 1)

n(a1 − a0)2ptr(1− ptr)
. (41)

B.4 NUMERICAL COMPARISON

To illustrate the validity of the approximation used in the previous section, we compare it to the
actual mean squared error via simulation. We simulate the mean squared error for the given DGP
for the following values: a1 = 1, a0 = 0, σ2 = 1, γ = 1, ptr = 0.9, pte = 0.5. We compare this to
our approximation of the expected loss for several values of n, d. In addition, we plot the bias and
variance. For 1,000 simulations, and several values of n, d, the results are shown in Figure 5.

We can observe again in this figure that as n decreases or d increases, the variance becomes a greater
share of the expected loss. This variance can be reduced by selecting a p closer to the original ptr.
However, this this subsequently leads to an increase in the bias. The optimal p provides a trade-off
between these two objectives.

(a) n = 1.000, d = 10 (b) n = 5.000, d = 10 (c) n = 5.000, d = 100

Figure 5: Illustration of the bias-variance trade-off for ptr = 0.9, pte = 0.5, a1 = 1, a0 = 0, σ2 =
1, γ = 1, and different values of n and d. The simulated MSE is averaged over 1,000 runs. Error
bars reflect the 95% Confidence interval.
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C FULL SET OF RESULTS

Method Weighted Average Accuracy (%) Worst Group Accuracy (%)

GW-ERM 90.863 (0.351) 82.556 (1.196)
+Optimized weights 91.998 (0.092) 85.435 (0.507)
Difference 1.134 (0.287)∗∗ 2.879 (0.878)∗∗

SUBG 90.892 (0.382) 81.908 (1.503)
+Optimized weights 91.709 (0.167) 85.497 (0.543)
Difference 0.817 (0.269)∗∗ 3.589 (1.268)∗∗

DFR 90.629 (0.207) 82.333 (0.735)
+Optimized weights 91.039 (0.225) 84.028 (0.978)
Difference 0.410 (0.212)∗ 1.695 (0.706)∗∗

GDRO 91.523 (0.188) 84.306 (0.445)
+Optimized weights 92.595 (0.139) 88.481 (0.551)
Difference 1.072 (0.258)∗∗ 4.175 (0.393)∗∗

JTT 88.542 (0.326) 79.319 (0.566)
+Optimized weights 91.408 (0.396) 84.925 (2.202)
Difference 2.866 (0.466)∗∗ 5.606 (1.986)∗∗

Table 1: Results for Waterbirds dataset of comparison between optimized and standard choice of
weights: we report the average over 5 runs, with the standard error in parentheses. The ∗/∗∗ indicate
statistical significance at a 10%/5% significance level respectively for a paired sample one-sided
t−test.

Method Weighted Average Accuracy (%) Worst Group Accuracy (%)

GW-ERM 90.471 (0.120) 85.667 (0.539)
+Optimized weights 90.700 (0.062) 87.000 (0.136)
Difference 0.229 (0.114)∗ 1.333 (0.487)∗∗

SUBG 89.141 (0.111) 87.598 (0.284)
+Optimized weights 89.238 (0.162) 83.333 (0.731)
Difference 0.097 (0.185) -4.265 (0.734)
DFR 88.320 (0.195) 81.000 (0.920)
+Optimized weights 88.299 (0.176) 81.171 (1.698)
Difference -0.021 (0.092) 0.171 (1.118)
GDRO 89.113 (0.173) 85.333 (0.648)
+Optimized weights 90.712 (0.083) 89.667 (0.222)
Difference 1.599 (0.203)∗∗ 4.333 (0.727)∗∗

JTT 88.496 (0.121) 79.222 (0.716)
+Optimized weights 88.243 (0.165) 75.556 (0.680)
Difference -0.253 (0.139) -3.667 (0.372)

Table 2: Results for CelebA dataset of comparison between optimized and standard choice of
weights: we report the average over 5 runs, with the standard error in parentheses. The ∗/∗∗ indicate
statistical significance at a 10%/5% significance level respectively for a paired sample one-sided
t−test.
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Method Weighted Average Accuracy (%) Worst Group Accuracy (%)

GW-ERM 83.967 (0.192) 72.087 (0.779)
+Optimized weights 84.315 (0.238) 76.114 (0.660)
Difference 0.349 (0.106)∗∗ 4.027 (0.185)∗∗

SUBG 84.100 (0.233) 73.058 (1.085)
+Optimized weights 84.287 (0.169) 74.163 (0.798)
Difference 0.187 (0.092)∗ 1.105 (0.621)∗

DFR 84.281 (0.109) 78.207 (0.313)
+Optimized weights 84.654 (0.216) 79.740 (0.130)
Difference 0.373 (0.162)∗∗ 1.533 (0.367)∗∗

GDRO 84.452 (0.208) 75.654 (0.585)
+Optimized weights 84.400 (0.190) 76.350 (0.472)
Difference -0.051 (0.085) 0.696 (0.338)∗

JTT 84.071 (0.205) 72.427 (0.680)
+Optimized weights 84.374 (0.257) 76.226 (0.698)
Difference 0.303 (0.081)∗∗ 3.799 (0.211)∗∗

Table 3: Results for MultiNLI dataset of comparison between optimized and standard choice of
weights: we report the average over 5 runs, with the standard error in parentheses. The ∗/∗∗ indicate
statistical significance at a 10%/5% significance level respectively for a paired sample one-sided
t−test.

D THE EFFECT OF THE SIZES OF THE TRAINING AND VALIDATION SET

In this section we investigate how our procedure for optimizing weights is affected by the interaction
between 1) the amount of available data, and 2) the ratio between the training and validation set. It
should be read in conjunction with Section 6.

In general, there is a trade-off between increasing the size of the validation set relative to the size of
the training set. Because the validation loss is used to optimize the weights, a small validation set
might lead to overfitting of the weights, especially if there are very few samples from certain groups.
The validation loss might then not be a good estimate of the expected loss. On the other hand, a large
validation set size relative to the training set size also has disadvantages. First, if n′ is too small,
then this might lead to overfitting on the parameters θ. Second, after optimizing the weights, the
model gets fitted on the entire dataset of size n (as commonly done after selecting hyperparameters).
However, the weights are optimized for a training set of size n′. A big difference between n′ and n
could lead to weights that are not optimal for the size of the dataset used to optimize the parameters.

In order to investigate this trade-off, we conduct an experiment on the CelebA dataset. We vary the
ratio between the training and validation set (50/50, 80/20, 95/5). We also vary the amount of total
available data, similar to what we did for the original training and validation split of about 90/10 in
Figure 3. For the current experiment, we use the last-layer embeddings a DNN that was finetuned
on the original training and validation split. This keeps the training conditions and learned represen-
tations the same for each ratio of the training and validation split, ensuring a fair comparison.

The results of the experiment are shown in Figure 6. Firstly, we observe that the performance of
our optimization procedure is robust against changes in the total amount of available data and in
the ratio of the training and validation split. Within the bounds of statistical uncertainty, optimized
weights either outperform standard weights or are on par with them.

We also observe the trade-off described above. When using a smaller validation set (e.g., a 95/5
split), the confidence intervals of the difference between standard and optimized weights become
wider. We attribute this to overfitting on the validation set. Especially when we have a relatively
small dataset (e.g., 5% of the original size), this overfitting can result in a more uncertainty in the
performance of optimized weights when compared to standard weights. In such cases, it appears
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worthwhile to increase the relative size of the validation set. For instance, having a 50/50 or 80/20
split leads to less uncertainty and a better average performance of the optimized weights when only
5% of the original data is available.

Figure 6: Estimated generalization performance (averaged over 5 runs) of standard weights choice
(squares) versus optimized weights (triangles) for the CelebA dataset and GW-ERM as a function
of the sizes of the training and validation set, and the ratio between the two. Error bars reflect the
paired-sample 90% confidence interval of the difference.

We also observe that the relative benefit of using optimized weights is lower with a large dataset and
a 50/50 split. We suspect this is because the large validation set allows for a better selection of the
L1 penalty, which benefits the generalization performance of the standard weights.

E OPTIMIZING THE WEIGHTS FOR THE WORST-GROUP LOSS

Here we present the algorithm for GDRO with optimized weights. It should be read in conjunction
with Section 5.3. As is common with exponential gradient descent, the initial values are uniform,
e.g., p0,g = 1

|G| ∀g ∈ G.
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Algorithm 2: Estimation of the optimal weights p̂∗
n for GDRO

Input: data {yi, gi,xi}ni=1, training set size n′ < n, maximum steps T , learning rates ηp, ηq
and momentum γ.

Initialize p0, q0 such that p0,g = 1
|G| ∀g ∈ G, q0,g = 1

|G| ∀g ∈ G .
Split the data into a training set of size n′ and a validation set.
for t = 1, . . . , T do

Estimate θ̂n′(pt−1) as in Equation 1.
Compute hyper-gradient ζt = −∇pt−1

Lval(θ̂n′(pt−1), qt−1) with implicit function
theorem.

Update weights pt,g = pt−1,g exp(ηut,g), with ut,g = γut−1,g + (1− γ)ζt,g, for all g ∈ G.
Normalize pt,g =

pt,g∑
g′∈G pt,g′

for all g ∈ G.

Update loss weights qt,g = qt−1,g exp
(
ηqLg(θ̂n′(pt−1)))

)
for all g ∈ G, where

Lg(θ) :=
1
ng

∑ng

i=1 L(y
g
i , fθ(x

g
i )) and with ng, y

g
i and xg

i as in Section 5.2.
Normalize qt,g =

qt,g∑
g′∈G qt,g′

for all g ∈ G.
end
Return p̂∗

n = argminpt∈{p0,p1,...,pT } maxg∈G Lg(θ̂n′(pt)).

F EXPERIMENTAL DETAILS

F.1 DATASETS

An overview of the datasets, their group definitions and sizes, as well as the train/validation split
used in the experiments, can be found in Table 4.

Target variable Counts (training set) Percentage Dataset size

Waterbirds
Water Land Train Val

Water bird 1,057 56 22.04% 1.17% 4,795 1,199
Land bird 184 3,498 3.84% 72.95%

CelebA
Female Male Train Val

Blonde 22,880 1,387 14.06% 0.85% 162,770 19,867
Not blonde 71,629 66,874 44.01% 41.08%

MultiNLI
No negation Negation Train Val

Entailment + Neutral 24,362 638 48.72% 1.28% 50,000 20,000
Contradiction 20,930 4,070 41.86% 8.14%

Table 4: Overview of all datasets and their respective group sizes.

Waterbirds: this dataset from Sagawa et al. (2020a) is a combination of the Places dataset (Zhou
et al., 2016) and the CUB dataset (Welinder et al., 2010). A ‘water background’ is set by selecting
an image from the lake and ocean categories in the places dataset, and the ‘land background’ is set
based on the broadleaf and bamboo forest categories. A waterbird/land is then pasted in front of the
background. The goal is to predict whether or not a picture contains a waterbird or landbird.

As explained in Section 6, we deviate from Sagawa et al. (2020a) in that our validation set is not
balanced for all groups. This setup of Sagawa et al. (2020a) gives an advantage to methods that only
train on the validation set, such as DFR.
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Figure 7: Examples of the different images in the Waterbirds dataset.

CelebA: this dataset contains images of celebrity faces (Liu et al., 2015). The goal is to predict
whether or not a picture contains a celebrity with blonde or non-blonde hair. This is spuriously
correlated with the sex of the celebrity.

Figure 8: Examples of the different images in the CelebA dataset.

MultiNLI: the MultiNLI dataset (Williams et al., 2018) contains pairs of hypotheses and premises.
The sentences are pasted together with a [SEP] token in between. The original dataset contains three
label types: negation, entailment, and neutral. We follow a procedure that is similar to Kumar et al.
(2022) and Holstege et al. (2024) and create a smaller binary version of the dataset (50.000 samples
in training, 20.000 in validation, 30.000 in test), with only negations (y = 0) or entailment or neutral
(y = 1). This version of the dataset is class balanced, similar to the original MultiNLI dataset. It
has been reported that the negation label is spuriously correlated with negation words like nobody,
no, never and nothing (Gururangan et al., 2018). A binary label is created to denote the presence of
these words in the hypothesis of a given hypothesis-premise pair.

F.2 TRAINING OF DNNS

Models: for the Waterbirds and CelebA dataset, we use the Resnet50 architecture implemented
in the torchvision package: torchvision.models.resnet50(pretrained=True).
More details on the model can be found in the original paper from He et al. (2016). For Waterbirds,
this means using a learning rate of 10−3, a weight decay of 10−3, a batch size of 32, and for 100
epochs without early stopping. For CelebA, this means using a learning rate of 10−3, a weight
decay of 10−4, a batch size of 128, and for 50 epochs without early stopping. We use stochastic
gradient descent (SGD) with a momentum parameter of 0.9. For simplicity, we perform no data
augmentation for both datasets.

For the MultiNLI dataset, we use the base BERT model implemented in the transformers pack-
age (Wolf et al., 2019): BertModel.from_pretrained("bert-base-uncased"). The
model was pre-trained on BookCorpus, a dataset consisting of 11,038 unpublished books, as well
as the English Wikipedia (excluding lists, tables and headers). More details on the model can be
found in the original paper: Devlin et al. (2019a). For finetuning the BERT model on MultiNLI, we
use the AdamW optimizer (Loshchilov & Hutter, 2017) with the standard settings in Pytorch. When
finetuning, we use the hyperparameters of Izmailov et al. (2022), training for 10 epochs with a batch
size of 16, a learning rate of 10−5, and a weight decay of 10−4, and linear learning rate decay.

We set the seed before finetuning each DNN. Per seed, the ordering of batches and which samples
are contained in them changes. After the DNN was finetuned, we stored the embeddings of the last
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layer for each seed. Then, a logistic regression is trained on these embeddings - both with standard,
and optimized weights. The seeds are not varied between pairs of standard and optimal weights.

F.3 IMPLEMENTATION DETAILS OF EXISTING METHODS

For all methods, unless otherwise mentioned, we use a logistic regression with the
sklearn.LogisticRegression class with the Liblinear solver to optimize the logistic
regression, with a tolerance of 10−4.

In each case, we demean the training data and scale it such that each column has a variance of 1. We
use the estimated mean and variances of the training data to apply the same transformations to the
validation and test data.

For each run, the hyperparameters are selected based on the worst-group accuracy on the
respective validation set. For the L1 penalty, we select it from the following values:
0.1, 1.0, 3.3, 10.0, 33.33, 100, 300, 500. In the case that an multiple L1 penalties lead to the same
worst-group accuracy, we select the highest one.

GW-ERM and SUBG: we only optimize the L1 penalty.

GDRO: we follow the implementation of Sagawa et al. (2020a). We optimize two hyperparameters:
the L1 penalty, and the hyperparameter C used in adapted worst-group loss from Sagawa et al.
(2020a), with the possible values of C being 0, 1, 2, 3. Instead of the Liblinear solver, we use
gradient descent with a learning rate of 10−5. After observing that the standard options for the L1
penalty often led to poor performance, we add the values 0.01, 0.05, 0.2 to the possible L1 penalties.

DFR: we follow the implementation of Kirichenko et al. (2023). We use the validation set of each
dataset for training the model. For hyperparameter selection, we split this validation set in half, and
use one half for selecting the L1 penalty. After this, the entire validation set is used to train the
model. Parameters are estimated by averaging over 10 logistic regression models.

JTT: similar to Liu et al. (2021) we train a DNN, of which the errors are used to identify the groups.
For Waterbirds and CelebA, we train a Resnet50 model using the hyperparameters chosen by Liu
et al. (2021). In the case of Waterbirds, this means a learning rate of 10−5 and a weight decay of 1.
In the case of CelebA this means a learning rate of 10−5 and a weight decay of 0.1. In the case of
MultiNLI, we train a BERT model with the same hyperparameters that were used for finetuning. In
all cases, we use early stopping.

After getting the errors from the respective model, we define the groups accordingly and retrain the
last layer on the embeddings that are used for all other methods. This is in order to ensure a fair
comparison between methods. We optimize over both the L1 penalty and the upweighting factor
λJTT . For the latter hyperparameter, we select from the values 1, 2, 5, 10, 25.

F.4 IMPLEMENTATION DETAILS OF OPTIMIZING THE WEIGHTS

Hyperparameters used in experiments: following the notation in Algorithm 1. We use a learning
rate η of 0.1 for each dataset and method, except in two cases: optimizing the weights for DFR on
Waterbirds and MultiNLI, where we use a learning rate of 0.01 and 0.2 respectively. This was done
after observing that the optimization procedure did not converge to a lower validation loss for the
original choice of the learning rate. In the case of Waterbirds, we run Algorithm 1 for T = 200
steps, and for T = 100 in the case of CelebA and MultiNLI. For each dataset and method, we use a
momentum parameter of γ = 0.5, after observing this helped with escaping local minima.

In the case of optimizing the worst-group loss, we use ηq = 0.1, following Sagawa et al. (2020a),
and use Algorithm 2 while using GW-ERM as our method for determining the parameters.

In the case of optimizing the weights of SUBG and DFR, we set vg = 1 for the group g with the
smallest number of samples. We then optimize the other fractions of groups.

Considerations for hyperparameter selection: it is likely that for each dataset, the ‘best’ learning
rate η and momentum parameter γ in terms of the loss on the test distribution will likely differ. In
order to determine these hyperparameters, one can select the combination with the lowest weighted
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validation loss. One risk of this approach is that one might ‘overfit’ on the validation set. This issue
can be remedied by existing approaches for preventing overfitting, such as early stopping.

In Table 5 we show the effect of different values for the learning rate η and momentum γ parameter
for the Waterbirds dataset, when optimizing the weights of GW-ERM. We observe that the perfor-
mance of optimized weights is relatively robust to the choice of η, γ. Even the worst combination
of η, γ would result in an average improvement of weighted loss compared to standard weights. By
selecting η and γ based on the weighted validation loss, this would even lead to an improvement
compared to our choice of hyperparameters and the results presented in Figure 2 and Table 1.

Val. Test
η γ Weighted loss Weighted Loss Weighted Acc. Worst-group Acc.

0.01
0.0 0.224 (0.014) 0.259 (0.018) 91.100 (0.313) 82.991 (0.873)
0.5 0.226 (0.013) 0.261 (0.018) 91.141 (0.310) 82.928 (0.924)
0.9 0.225 (0.013) 0.260 (0.019) 91.102 (0.322) 83.084 (0.982)

0.10
0.0 0.206 (0.016) 0.223 (0.010) 92.173 (0.165) 86.160 (0.396)
0.5 0.205 (0.016) 0.229 (0.010) 91.998 (0.092) 85.435 (0.507)
0.9 0.206 (0.015) 0.222 (0.011) 92.211 (0.201) 86.494 (1.050)

0.20
0.0 0.204 (0.016) 0.217 (0.012) 92.479 (0.139) 87.431 (0.811)
0.5 0.205 (0.016) 0.219 (0.011) 92.326 (0.191) 86.698 (0.777)
0.9 0.205 (0.016) 0.217 (0.012) 92.430 (0.158) 87.477 (1.055)

Selection via
0.204 (0.016) 0.222 (0.011) 92.144 (0.163) 86.339 (0.757)

Weighted val. loss

Table 5: Effect of the learning rate η and momentum γ of the optimization procedure on the general-
ization performance of optimized weights. We report the average over 5 runs with the standard error
in parentheses. The reported loss is the binary cross-entropy. Results are shown for the Waterbirds
dataset when optimizing the weights for GW-ERM. The last row reports the results when selecting
per seed the η and γ which have the lowest weighted validation loss.

Computational resources: we use a single GPU (NVIDIA A100) for fine-tuning and a single CPU
of a Macbook M2 for the existing importance weighting methods and optimizing their weights. The
computational resources required for optimizing the weights are relatively manageable. To give
an indication, optimizing the weights for group-weighted ERM for the Waterbirds dataset (d =
2048, n′ = 4, 795) takes approximately 2 minutes. For a bigger dataset such as CelebA (d =
2048, n′ = 162, 770), this takes approximately 60 minutes.
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