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ABSTRACT

Since the resurgence of deep learning, vision-language models (VLMs) enhanced
by large language models (LLMs) have grown exponentially in popularity. How-
ever, while LLMs can utilize extensive background knowledge and task infor-
mation with in-context learning, most VLMs still struggle with understanding
complex multi-modal prompts with multiple images, making VLMs less effective
in downstream vision-language tasks. In this paper, we address the limitation
above by 1) introducing vision-language Model with Multi-Modal In-Context
Learning(MMICL), a new approach to allow the VLM to deal with multi-modal
inputs efficiently; 2) proposing a novel context scheme to augment the in-context
learning ability of the VLM; 3) constructing the Multi-modal In-Context Learn-
ing (MIC) dataset, designed to enhance the VLM’s ability to understand com-
plex multi-modal prompts. Our experiments confirm that MMICL achieves new
state-of-the-art zero-shot performance on a wide range of general vision-language
tasks, especially for complex benchmarks, including MME and MMBench. Our
analysis demonstrates that MMICL effectively tackles the challenge of complex
multi-modal prompt understanding and emerges the impressive ICL ability. Fur-
thermore, we observe that MMICL successfully alleviates language bias in VLMs,
a common issue for VLMs that often leads to hallucination when faced with ex-
tensive textual context. Our code, dataset, dataset tool, and model are available at
https://github.com/PKUnlp-icler/MIC.

1 INTRODUCTION

General-purpose vision-language pre-trained models (VLMs) have made significant advancements (Li
et al., 2022; 2023d;g; Zhu et al., 2023; Li et al., 2023b). Recent VLMs mostly augment a large
language model (LLM) with a visual encoder and exhibit impressive zero-shot capacities in various
visual tasks. However, unlike LLMs that can extract rich background knowledge and task information
from the prompt with in-context learning (ICL), most VLMs still struggle to understand complex
multi-modal prompts that include multiple images. Previous studies (Li et al., 2023d;b) primarily
focus on handling the user queries with a single image rather than multi-modal prompts with
interleaved multiple images and text. Although some VLMs like Flamingo (Alayrac et al., 2022) and
Kosmos-1 (Huang et al., 2023b) can handle user queries with multiple images, their pre-training data
can not provide more sophisticated multi-modal prompts than interleaved image and text crawled
from the web (Awadalla et al., 2023). Hence, there is a gap between the prompts used in pre-training
these VLMs and the user queries in real-world scenarios, which always contain multiple images and
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(a)

(c) (d)

A man is seen walking down a street
with a large orange cat. The cat is
sitting on the man's head, and it seems
to be enjoying the walk.

Sporty car on one side of road vs. off-
road jeep with mountainous terrain in
the background on the other hand.

What similarities does the first and
second image have?

They has similarity in size and shape
of vehicle. One is on the road and the
other has mountainous terrain with
snow capped mountains in the
foreground.

It is not possible to tell from the
image a horse is in the image.

Yes, there is a horse in the image and
it's standing on a grassy field.

He falls to the ground in front of a green grassy
area with trees and shrubbery surrounding the
spot where he hit the golf ball.

(e)

The image 0 is just germinating, the image 1 is
only a bare trunk, the image 2 is luxuriant, and
the image 3 is a growing plant.

(f)

(b)

The baby is crying as he broke the
cup.

Carefully analyze the given images
and answer the question:
What differences does

                       and 

 have?

Here are some examples.

There is a horse in                      ,         
 

while there is no horse in                  .

Therefore, please refer to           

and tell me if there is a horse in the
image?

Tell me, is there a horse in                    ?

What happens to the
man after hitting the
ball? 

These images illustrate the growth
phases of the tree, please describe the
contents of each image carefully.

Please take a closer look at the two
images and explain the connection
between them.

Please describe the information of               
            
             , especially the relationship
 
between                 and           .

Figure 1: Examples of vision-language dialogue generated by MMICL typically contain prompts
with interleaved images and text. MMICL understands spatial (a), logical (b), and temporal (e)
relationships among images. MMICL can also grasp text-to-image references as (c),(d) and (f).

more sophisticated text. Specifically, these VLMs may suffer from the following three limitations,
which makes VLMs less effective in downstream vision-language tasks.

Hard to Understand Text-to-Image Reference: Previous studies rarely attempt to address the issue
of text-to-image reference in the multi-modal prompts. However, there are often intricate referential
relationships between the text and images in user queries, with different words mentioning different
images. For example, the user may ask a specific question about multiple images(Fig. 1.c and
Fig. 1.f) or use multiple images as exemplars to ask the question only about a specific image(Fig. 1.d).
However, the training data used in previous studies (Li et al., 2023d; Alayrac et al., 2022; Huang
et al., 2023a) are crawled from the web and may lack explicit text-to-image references. VLMs, thus
might fail to handle user queries involving intricate text-to-image references.

Hard to Understand the Relationships between Multiple Images: There are often spatial, temporal,
and logical relationships between multiple images, and correctly understanding them allows the
model to handle user queries better. However, the pre-training data used by previous VLMs (Alayrac
et al., 2022) are collected from the internet, lacking close connections among images, especially
when these images are far apart on the same webpage. It hampers the ability of VLMs to understand
the intricate relationships among the images and further limits their reasoning ability.

Hard to Learn from In-Context Multi-Modal Demonstrations: Previous studies have shown
that pretrained LLMs can benefit from few in-context demonstrations (Brown et al., 2020; Dong
et al., 2023). However, the ICL ability of current VLMs is rather limited, specifically: 1) VLMs
like BLIP-2 (Li et al., 2023d), LLaVA (Li et al., 2023b) only support multi-modal prompts with a
single image, hampering their abilities to use multiple multi-modal demonstrations to enhance their
performance during the inference; 2)Although VLMs such as Flamingo (Alayrac et al., 2022) support
multi-image inputs during pretraining and emerge ICL abilities, their context schemes fail to provide
text-image references and closely related images. It inhibits them from offering sophisticated enough
prompts to the VLMs, thereby limiting the effectiveness of their ICL ability. Besides, the lack of
further supervised instruction tuning hinders their effectiveness across downstream tasks.

In this paper, to address the aforementioned limitations 1) We present MMICL, a new approach to
allow VLMs to efficiently deal with multi-modal inputs, including relationships among multiple
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Figure 2: Comparison of different VLM architectures: VLMs focused on a single image, VLMs
with few-shot ability, and MMICL with equal treatment of image and text representation.

images and text-to-image references. 2) We propose a novel context scheme in which incorporating
an extra image declaration section, along with the inclusion of image proxy tokens, enhances the ICL
ability of the VLM. 3) We construct a multi-modal in-context learning dataset in accordance with the
proposed scheme. The dataset is adapted from a range of existing datasets and can be used to provide
support for the training of more capable VLMs.

Our experiments show that MMICL achieves new state-of-the-art performance on various of vision-
language benchmarks including MME (Fu et al., 2023) and MMBench (Liu et al., 2023c) 1. Com-
prehensive examinations of the three limitations we aim to address reveal that MMICL exhibits
exceptional ability in understanding text-to-image references (13-points improvement on the vision-
language compositionality benchmark, Winoground (Thrush et al., 2022a)) and intricate relationships
among images(12-points improvement on the multi-image reasoning benchmark, RAVEN (Huang
et al., 2023a)). Moreover, MMICL demonstrates impressive multi-modal ICL performance across var-
ious tasks. We also observe that MMICL efficiently mitigates the language bias, which often causes
VLMs to ignore visual contents when facing extensive textual contexts, leading to hallucinations.

2 MMICL

2.1 MODEL ARCHITECTURE

Most VLMs utilize Visual-Prompt Generators (VPG) (e.g., Resampler (Alayrac et al., 2022), Q-
former (Li et al., 2023d)) to extract visual embeddings from the image features encoded by vision
backbones and use visual embeddings to help LLMs understand visual inputs. The model architecture
shown in Fig. 2.a belongs to VLMs that focus on prompts with a single image, such as Blip-2 (Li
et al., 2023d), which always places the image at the top of the entire input and can not handle the
inputs with multiple images. In Fig. 2.b, VLMs with few-shot ability, such as Flamingo (Alayrac
et al., 2022), encode images into image embeddings with a fixed number of visual tokens and inserts
new gated cross-attention layers into the LLM to inject visual features. Different from previous work,
MMICL shown in Fig. 2.c treats image and text representations equally and establishes the reference
between image and text via image declaration. It enables users to have the flexibility to input multiple
images and text in any desired order, with no restrictions on the quantity or placement of images in
contexts. As shown in Fig. 5, each given image is encoded by a vision encoder (e.g., ViT (Radford
et al., 2021)) to get the image representation. Then, we use the Q-former as the VPG to encode
images into embeddings understandable by the language model. We utilize a fully connected layer as
the projection layer to convert each visual embedding to the same dimension as the text embedding of
the LLM. Finally, we combine the visual and text embeddings into an interleaved style and feed them
into the LLM. This design is a natural extension of the original attention mechanism in LLMs. We set
the weights for mapping query and value vectors in the attention layer of LLM as learnable to better
adapt to multi-modal prompts with multiple images. More details are presented in Appendix E.

2.2 THE DESIGN OF CONTEXT SCHEME OF MMICL

In this section, we outline the design of the Context Scheme for MMICL. The proposed scheme is
devised to proficiently transform the interleaved image-text data into the training context for MMICL.

1Results of MMICL are submitted on August 28th, 2023.
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Figure 3: Context scheme for MMICL, which seamlessly transforms the interleaved image-text data
into training context in a unified format.

2.2.1 IMAGE DECLARATION

Users may use textual descriptions to refer to particular images in their queries. Such reference can
provide information about the visual content mentioned in the text to the VLM, allowing it to learn
alignment between two modalities. To precisely link text and image, we form image declaration
templates for each image in mixed inputs, as shown in Fig. 3.a. Firstly, we allocate a unique image
proxy ([IMGj]) to reference the visual embedding of image j, which provides a unique identifier for
VLMs to index and distinguish between visual and text embeddings. Then, we utilize natural language
prompts to establish references between text and image. Incorporating the explicit text-to-image
reference in the image declaration assists the model in correlating the text with the appropriate image.
Meanwhile, the image declaration, maintained as textual content, can also preserve the flexibility
to appear at any position within the prompt. Each instance Ii follows the structure, where the Xi

symbolizes the set of image decorations that can be placed anywhere within the instance Ii. qi and
ai denote the question with instruction and corresponding answer, respectively.

Ii “ pXi,qi,aiq (1)

2.2.2 MULTI-MODAL DATA WITH INTERCONNECTED IMAGES

To incorporate abundant multi-image information within the context scheme of MMICL, we generate
interconnected multi-image data that includes spatial, logical, and temporal relationships. It aids
MMICL in understanding the intricate relationships among images in user queries. Specifically, we
derive frames from videos to build multi-image data. The frames extracted from video inherently
sustain close temporal and spatial relations, which infuse spatial and temporal correlation information
among images into the context scheme. Besides, we build multi-image data from images depicting
multiple object interactions. We detect the objects within the image and generate bounding boxes for
each object. We acquire multiple sub-images of different objects by cropping the image according
to bounding boxes. We then replace the textual references to these objects with their corresponding
cropped images, thus forming interleaved multi-modal data with logical and causal interconnected
images, as delineated in Fig. 3.b and Fig. 4. Each instance Ii comprises a question-answer text pair
along with K images, where the xi,k P Xi represents the image declaration for the k-th image.

Ii “ ptx1,x2, . . . ,xku,qi,aiq (2)

2.2.3 UNIFIED MULTI-MODAL IN-CONTEXT FORMAT FOR DIFFERENT TASKS

We propose a design for producing multi-modal in-context learning data for different tasks to enrich
the context scheme of MMICL. It aims to improve the instruction-aware ability of VLM and expand
its abilities for proficient multi-modal in-context learning. Specifically, we start by crafting diverse
instructions for each task and generate different templates for the task utilizing these instructions.
We then fill in the randomly selected template with the original task to assemble data equipped with
instructions as Appendix G. Moreover, we convert the data into a multi-modal in-context format by
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Figure 4: Illustration of automatic data construction pipeline for multi-model data with interconnected
images. The automatic construction is based on the existing annotation of VCR dataset (Zellers et al.,
2019) without human involvement. ChatGPT is used for instruction refinement.

constructing few-shot exemplars generated by sampling instances from the data. These exemplars
are combined with the input instance to produce the multi-modal in-context data. In this way, we
can transform all tasks into a unified multi-modal in-context format, as illustrated in Fig. 3.c. This
method facilitates amassing an extensive amount of high-quality data from different tasks, enriching
the context scheme of MMICL with an abundant diversity of multi-modal in-context data teeming
with diverse instructions. Ultimately, this improves the model’s ability to follow instructions and
multi-modal in-context learning ability. Each instance Ii comprises N exemplars.

Ii “ ptP1, ¨ ¨ ¨ ,PNu,Xi,qi,aiq (3)

Each exemplar Pj “ pXj ,qj ,ajq, Xj denotes the image declaration of the j-th exemplar. qj and
aj denote the question and answer for the j-th exemplar, respectively.

2.3 MULTIMODALITY IN-CONTEXT LEARNING (MIC) DATASET CONSTRUCTION

To help VLMs understand the complex prompts, we construct MIC dataset by gathering data from
public data resources and converting them based on the context scheme. It has three key aspects: 1)
image declaration, 2) multi-modal data with closely related images, and 3) multi-modal in-context
data for different tasks. Training set of MIC comes from 16 datasets across 8 categories, while the
test set comes from 18 datasets across 10 categories.

Our dataset is automatically constructed based on existing datasets. Firstly, we created an image
declaration for each instance in all datasets to produce datasets with explicit text-to-image reference.
Secondly, we created an instruction template for each dataset and asked Chatgpt to rewrite instructions,
filling in the data from the existing datasets to obtain a dataset with diverse instruction formats. Finally,
we used those datasets with instructions to construct the MIC dataset according to our proposed
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Figure 5: Illustration of MMICL architecture and training paradigm. The upper part denotes the
overview of model architecture, and the bottom denotes the pipeline of two-stage training paradigm.

context scheme. For the example presented in Fig. 3 and Fig. 4 (e.g., two people quarreling with
each other), we constructed the data based on existing annotations (i.e., bounding boxes and the
relation between bounding boxes) provided by the VCR dataset (Zellers et al., 2019). Additionally,
we also constructed an in-context learning dataset by sampling examples from the original dataset.
We also extracted eight frames per video from video datasets to generate the multi-modal data with
interconnected images. Details are presented at Appendix D.

We convert all data into a vision-language Q&A format to create high-quality multi-modal training
data and accumulate 5.8M samples in MIC dataset. Due to resource constraints, we use approximately
10% of the data with the sampling strategy described in Appendix F to finetune MMICL. It is
anticipated that a larger model trained on all of our data would yield a more promising result.

2.4 TRAINING PARADIGM

Stage I: Pretraining. This stage aims to assist the model in aligning the image and text embeddings.
During this stage, both the vision encoder and the LLM remain frozen. The VPG (i.e., Q-Former)
and projection layer are trained to learn visual embeddings that can be interpreted by the LLM.

Stage II: Multi-Modal In-Context Tuning. In this stage, we aim to address the aforementioned
limitations and take our model a step further by extending it to multi-modal in-context learning.
Specifically, we aim to make the model understand the intricate referential relationships between
the text and images and the complex relationships among multiple images and ultimately acquire a
proficient multi-modal in-context learning ability. Therefore, we perform multi-modal In-Context
Tuning on MIC dataset. During the stage II, we freeze the image encoder, Q-former, and LLM while
jointly training the projection layer and query and value vectors. Details can be found in Appendix H.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Evaluation Setup. We aim to develop general-purpose VLMs that can generally adapt to diverse,
challenging multi-modal prompts. Therefore, we evaluate our models in several vision-language
benchmarks, including tasks that involve images and videos. The metrics used in these benchmarks
and further details are shown in Appendix M.

Models and Baselines. We provide two versions of MMICL: (1) MMICL (FLAN-T5) which uses
BLIP-2 (Li et al., 2023d) as the backbone and (2) MMICL (Instruct-FLAN-T5) which uses Instruct-
BLIP (Dai et al., 2023) as the backbone. We also adopt XL and XXL of FLANT5 (Chung et al., 2022)
model for both versions. We compare MMICL with following strong baselines: Flamingo (Alayrac
et al., 2022), KOSMOS-1 (Huang et al., 2023a), BLIP-2-FLAN-T5, InstructBLIP-FLAN-T5,
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Cognition Perception
Model Model Size Comm. Num. Text. Code. Existen. Count Pos. Color OCR Poster Cele. Scene Land. Art. Total Avg.

LLaVA 13B 57.14 50.00 57.50 50.00 50.00 50.00 50.00 55.00 50.00 50.00 48.82 50.00 50.00 49.00 51.25
MiniGPT-4 13B 59.29 45.00 0.00 40.00 68.33 55.00 43.33 75.00 57.50 41.84 54.41 71.75 54.00 60.50 51.85
MultiModal-GPT 9B 49.29 62.50 60.00 55.00 61.67 55.00 58.33 68.33 82.50 57.82 73.82 68.00 69.75 59.50 62.97
VisualGLM-6B 6B 39.29 45.00 50.00 47.50 85.00 50.00 48.33 55.00 42.50 65.99 53.24 146.25 83.75 75.25 63.36
VPGTrans 7B 64.29 50.00 77.50 57.50 70.00 85.00 63.33 73.33 77.50 84.01 53.53 141.75 64.75 77.25 74.27
LaVIN 13B 87.14 65.00 47.50 50.00 185.00 88.33 63.33 75.00 107.50 79.59 47.35 136.75 93.50 87.25 86.66
LLaMA-Adapter-V2 7B 81.43 62.50 50.00 55.00 120.00 50.00 48.33 75.00 125.00 99.66 86.18 148.50 150.25 69.75 87.26
mPLUG-Owl 7B 78.57 60.00 80.00 57.50 120.00 50.00 50.00 55.00 65.00 136.05 100.29 135.50 159.25 96.25 88.82
InstructBLIP 12.1B 129.29 40.00 65.00 57.50 185.00 143.33 66.67 153.33 72.50 123.81 101.18 153.00 79.75 134.25 107.47
BLIP-2 12.1B 110.00 40.00 65.00 75.00 160.00 135.00 73.33 148.33 110.00 141.84 105.59 145.25 138.00 136.50 113.13
Lynx 7B 110.71 17.50 42.50 45.00 195.00 151.67 90.00 170.00 77.50 124.83 118.24 164.50 162.00 119.50 113.50
GIT2 5.1B 99.29 50.00 67.50 45.00 190.00 118.33 96.67 158.33 65.00 112.59 145.88 158.50 140.50 146.25 113.85
Otter 9B 106.43 72.50 57.50 70.00 195.00 88.33 86.67 113.33 72.50 138.78 172.65 158.75 137.25 129.00 114.19
Cheetor 7B 98.57 77.50 57.50 87.50 180.00 96.67 80.00 116.67 100.00 147.28 164.12 156.00 145.73 113.50 115.79
LRV-Instruction 7B 100.71 70.00 85.00 72.50 165.00 111.67 86.67 165.00 110.00 139.04 112.65 147.98 160.53 101.25 116.29
BLIVA 12.1B 136.43 57.50 77.50 60.00 180.00 138.33 81.67 180.00 87.50 155.10 140.88 151.50 89.50 133.25 119.23

MMICL 12.1B 136.43 82.50 132.50 77.50 170.00 160.00 81.67 156.67 100.00 146.26 141.76 153.75 136.13 135.50 129.33

Table 1: Evaluation results on the MME. Top two scores are highlighted and underlined, respectively.

Q1: Is the Caption1 matches the image1? 
Q2: Is the Caption1 matches the image2?
Q3: Is the Caption2 matches the image1? 
Q4: Is the Caption2 matches the image2? 

Q: Do you agree the following image is: C1:  Some plants surrounding a lightbulb.

C2:  A lightbulb surrounding some plants.

Correct? Correct? Correct?... ...

Answer: P{Yes|Q}

s(C0, I0)       s(C0, I1)       s(C1, I0)    s(C1, I1) A              B            C             D            E

Figure 6: Illustration of two complex vision language reasoning tasks: Winoground (Thrush et al.,
2022b) (Left) and RAVEN (Zhang et al., 2019) (Right).

Shikra (Chen et al., 2023a), Otter (Li et al., 2023a), Ying-VLM (Li et al., 2023e). The details of
MMICL and baselines are shown in Appendix H, and Appendix O.

3.2 GENERAL PERFORMANCE EVALUATIONS

We evaluate the general performance of MMICL on both MME (Fu et al., 2023) and MMBench (Liu
et al., 2023c) benchmarks2. MME evaluates VLMs with 14 sub-tasks that encompass cognition and
perception abilities. Results in Table 1 show that MMICL can achieve the best average scores com-
pared with current VLMs on cognition and perception tasks. MMICL also demonstrates outstanding
performance and significantly surpasses other VLMs on the MMBench benchmark, which thoroughly
evaluates the diverse skills of VLMs. The detailed results are presented in Table 22. See Appendix I
and J for MMICL’s evaluation detail and comparisons with other VLMs.

3.3 PERFORMANCE PROB

3.3.1 UNDERSTANDING TEXT-TO-IMAGE REFERENCE

Table 2: Results on Winoground across text, image
and group score metrics.

Model Text Image Group

MTurk Human 89.50 88.50 85.50

VQ2 (Yarom et al., 2023) 47.00 42.20 30.50
PALI (Chen et al., 2022) 46.50 38.00 28.75
Blip-2 (Li et al., 2023d) 44.00 26.00 23.50
GPT4-V (Wu et al., 2023) 69.25 46.25 39.25
MMICL (FLAN-T5-XXL) 45.00 45.00 43.00

The Winoground (Thrush et al., 2022b) pro-
poses a task of correctly matching two given
images and captions, as depicted in the left of
Fig. 6. The challenge lies in the fact that both
captions consist of the exact same words, albeit
in a different order. VLMs must compare both
images and texts to discern their subtle differ-
ences and capture the implicit reference between
them. Therefore, we select the Winoground to
evaluate whether VLMs understand the text-to-
image reference. MMICL is given two images and two captions in each prompt during evaluation.
Results in Table 2 demonstrate that MMICL captures the referential relationship between image and
text, surpassing previous baselines.

2All the reported performance for the baseline methods is from the leaderboard of MME (Fu et al., 2023) and
MMBench (Liu et al., 2023c). We report the result of MMICL with InstructBlip-FLANT5-XXL backbone.
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Model Flickr 30K WebSRC VQAv2 Hateful Memes VizWiz

Flamingo-3B (Alayrac et al., 2022) (w/o ICL example) 60.60 - 49.20 53.70 28.90
Flamingo-3B (Alayrac et al., 2022) (w/ ICL examples (4)) 72.00 - 53.20 53.60 34.00

Flamingo-9B (Alayrac et al., 2022) (w/o ICL example) 61.50 - 51.80 57.00 28.80
Flamingo-9B (Alayrac et al., 2022) (w/ ICL examples (4)) 72.60 - 56.30 62.70 34.90

KOSMOS-1 (Huang et al., 2023b) (w/o ICL example) 67.10 3.80 51.00 63.90 29.20
KOSMOS-1 (Huang et al., 2023b) (w/ ICL examples (4)) 75.30 - 51.80 - 35.30

w/o ICL example

BLIP-2 (Li et al., 2023d) (FLANT5-XL) 64.51 12.25 58.79 60.00 25.52
BLIP-2 (Li et al., 2023d) (FLANT5-XXL) 60.74 10.10 60.91 62.25 22.50

InstructBLIP (Dai et al., 2023) (FLANT5-XL) 77.16 10.80 36.77 58.54 32.08
InstructBLIP (Dai et al., 2023) (FLANT5-XXL) 73.13 11.50 63.69 61.70 15.11

ICL example Evaluation

MMICL (FLAN-T5-XL) (w/o ICL example) 83.47 12.55 62.17 60.28 25.04
MMICL (FLAN-T5-XL) (w/ ICL examples (4)) 83.84 12.30 62.63 60.80 50.17

MMICL (FLAN-T5-XXL) (w/o ICL example) 85.03 18.85 69.99 60.32 29.34
MMICL (FLAN-T5-XXL) (w/ ICL examples (4)) 89.27 18.70 69.83 61.12 33.16

MMICL (Instruct-FLAN-T5-XL) (w/o ICL example) 82.68 14.75 69.13 61.12 29.92
MMICL (Instruct-FLAN-T5-XL) (w/ ICL examples (4)) 88.31 14.80 69.16 61.12 33.16

MMICL (Instruct-FLAN-T5-XXL) (w/o ICL example) 73.97 17.05 70.30 62.23 24.45
MMICL (Instruct-FLAN-T5-XXL) (w/ ICL examples (4)) 88.79 19.65 70.56 64.60 50.28

Table 4: Main results illustrating the multi-modal in-context learning ability of MMICL across
various vision-language tasks4. All metrics employed in the evaluations are introduced in Table 25.

Model Model Size Average
Performance

Don’t Require
Visual Infomation

Require
Visual Infomation

Performance
Gap

Random Guess - 35.50 35.80 34.90 -
Ying-VLM (Li et al., 2023e) 13.6B 55.70 66.60 44.90 21.70
InstructBLIP (Dai et al., 2023) 12.1B 71.30 82.00 60.70 21.30
Otter (Li et al., 2023a) 9B 63.10 70.90 55.70 15.20
Shikra (Chen et al., 2023a) 7.2B 45.80 52.90 39.30 13.60
MMICL 12.1B 82.10 82.60 81.70 0.90

Table 5: Zero-shot performance of different VLMs on ScienceQA-IMG dataset in different split.
MMICL outperforms other VLMs by successfully alleviating language bias.

3.3.2 UNDERSTANDING COMPLEX IMAGE-TO-IMAGE RELATIONSHIP

Table 3: Zero-shot generalization on Raven IQ test.
Model Accuracy

Random Choice 17
InstructBlip (Dai et al., 2023) 10.00
Otter (Li et al., 2023a) 22.00
KOSMOS-1 (Huang et al., 2023a) 22.00
MMICL (FLAN-T5-XXL) 34.00

RAVEN (Zhang et al., 2019; Huang et al.,
2023a) test is widely used to evaluate the nonver-
bal reasoning ability of VLMs. Each instance
has 3 or 8 images as inputs and 6 candidate im-
ages with a unique answer, and the goal is to
predict the right image as shown in the right of
Fig. 6. It requires visual and logical skills to
understand the relationships among images. We
conduct zero-shot experiments on the Raven test to evaluate VLM’s ability to understand image-
to-image relationships. The result in Table 3 shows that MMICL achieves 12 points improvement
compared to KOSMOS-1. It indicates that MMICL is able to capture the complex image-to-image
relationships and conduct nonverbal visual reasoning tasks.

3.4 LEARNING FROM IN-CONTEXT MULTI-MODAL DEMONSTRATIONS

As shown in Table 4, we evaluate the multi-modal in-context learning ability of MMICL across
various vision-language tasks. MMICL outperforms other VLMs on both the held-in and held-out
datasets and achieves the state-of-the-art few-shot performance. For example, few-shot evaluation
(4-shot) of MMICL on the VizWiz benchmark outperforms the baseline Flamingo-9B (Alayrac et al.,
2022) and KOSMOS-1 (Huang et al., 2023b) by 15.38 and 14.98 points, respectively. Since VizWiz
has never been exposed in the training data, this superior suggests the ability of MMICL to generalize
to new tasks with a few exemplars. The few-shot performance of Flickr30K decreases with examples
given because the captions examples may provide noise for the VLM to finish the task(i.e., in-context
exemplars generally do not provide hints for models to perform image captioning tasks).

4The anomalous score of InstructBlip on the Vizwiz dataset results from correct outputs not being calculated
by the VQA accuracy metric due to the exact match failure.
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Model VSR IconQA text VisDial IconQA img Bongard HOI

Stage I

Stage I (Blip-2-FLANT5-XL) 61.62 45.44 35.43 48.42 52.75
Stage I (Blip-2-FLANT5-XXL) 63.18 50.08 36.48 48.42 59.20

Stage I (InstructBLIP-FLANT5-XL) 61.54 47.53 35.36 50.11 53.15
Stage I (InstructBLIP-FLANT5-XXL) 65.06 51.39 36.09 45.10 63.35

Stage I + Stage II

Stage I + Stage II (BLIP-2-FLAN-T5-XL) 62.85 47.23 35.76 51.24 56.95
Stage I + Stage II (BLIP-2-FLAN-T5-XXL) 64.73 50.55 37.00 34.93 68.05
Stage I + Stage II (InstructBLIP-FLAN-T5-XL) 70.54 52.55 36.87 47.27 74.20
Stage I + Stage II (InstructBLIP-FLAN-T5-XXL) 66.45 52.00 37.98 60.85 67.20

Table 6: Ablation study on Training Paradigm across five datasets: VSR (Liu et al., 2022), IconQA-
text (Lu et al., 2021), VisDial (Das et al., 2017), IconQA-img, and Bongard-HOI (Jiang et al., 2022).

Model MMEPerception MMECognition Icon-QA NLVR2 Raven Winoground

- w/o context scheme 1238.99 316.79 52.80 56.65 8.00 6.00
- w/o image declaration 1170.87 341.07 47.15 61.00 18.00 3.00
- w/o in-context format 1141.02 345.36 51.95 62.63 28.00 20.00
- w/o interrelated images 1207.70 333.21 54.35 59.60 16.00 25.75
MMICL 1303.59 370.71 58.12 72.45 32.00 38.75

Table 7: Ablation study on Context Scheme across different tasks. We only report the overall
perception and cognition score of MME and the Group score of Winoground.

3.5 HALLUCINATION AND LANGUAGE BIAS OF VLMS

Current VLMs have significant visual hallucinations (Li et al., 2023f), preventing VLMs from
benefiting from multi-modal ICL. Especially when dealing with complex prompts with multiple
images (e.g., multi-modal chain of thoughts (Zhang et al., 2023b)), VLMs often overlook visual
content when facing extensive text. This language bias reduces their efficiency in answering questions
that require both images and text. ScienceQA-IMG (Lu et al., 2022) is a challenging task that requires
a model to use both modalities to answer the question. We manually split the dataset into two groups:
questions needing images to answer and those not. Details are presented in Appendix Q. Extensive
experiments in Table 5 demonstrate that MMICL effectively mitigates language bias as it performs
equally well in both groups. We also examined object hallucination in MMICL in Appendix L, which
shows impressive performance.

3.6 ABLATION STUDY

Ablation Study on Training Paradigm: We conduct an ablation study on various tasks to evaluate
the effect of multi-modal in-context tuning. Table 6 displays a significant enhancement due to
multi-modal in-context tuning. It can be observed across all types and sizes of models, especially
for tasks that involve multiple images. This indicates that with the help of Stage II, MMICL can
handle complex multi-modal prompts and accomplish challenging tasks with multiple images. Result
in Appendix K also confirms this point with the outstanding performance of MMICL across video
datasets.

Ablation Study on Context Scheme: We conducted ablation experiments using the InstructBLIP-
FLANT5-XL as the backbone model in various settings to verify the effectiveness of the context
scheme, aiming at pinpointing the exact source driving improvements in certain capabilities of our
model. As shown in Table 7, the superiority of MMICL is driven by the collective impact of our
design elements—removing any component cannot guarantee the superior performance of our model.
Each component of our design significantly contributes to different aspects of our model. Details and
further analysis are available in Appendix N.

4 CONCLUSION

In this paper, we highlight the limitations of VLMs handling the complex multi-modal prompts
with multiple images, which makes VLMs less effective in downstream vision-language tasks. We
introduce MMICL to address the aforementioned limitations and take our model a step further by
extending it to multi-modal in-context learning. This breakthrough enables VLMs to better understand
complex multi-modal prompts. Furthermore, MMICL sets a new state-of-the-art performance on the
general VLM benchmarks and complex multi-modal reasoning benchmarks.
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A RELATED WORK

A.1 VISION-LANGUAGE PRETRAINING

Model Multi-Image Inputs Multi-modal Instruction Tuning Text-to-Image Reference

Flamingo ✓ ✗ ✗
Meta learner ✓ ✗ ✗
BLIP-2 ✗ ✗ ✗
LLAVA ✗ ✓ ✗
MiniGPT-4 ✗ ✓ ✗
InstructBLIP ✗ ✓ ✗
Shikra ✗ ✓ ✓
Kosmos-1 ✓ ✗ ✗
Otter ✓ ✓ ✗
MMICL ✓ ✓ ✓

Table 8: Summary of Vision-Language Pre-Trained Models.

Our work is inspired by recent vision-language pre-training works (Zhu et al., 2023; Liu et al., 2023b;
Li et al., 2022; 2023d), which have been proven effective for aligning visual inputs and frozen LLMs
to obtain cross-modal generalization ability.

BLIP-2 BLIP-2 (Li et al., 2023d) bridges the modality gap with a lightweight Querying Transformer,
which is pre-trained in two stages. The first stage bootstraps vision-language representation learning
from a frozen image encoder. The second stage bootstraps vision-to-language generative learning
from a frozen language model.

InstructBLIP InstructBLIP (Dai et al., 2023) performs vision-language instruction tuning based
on the pre-trained BLIP-2 models with converted multi-modal datasets and the LLaVA (Liu et al.,
2023b) dataset generated by GPT-4.

MiniGPT-4 MiniGPT-4 (Zhu et al., 2023)aligns a CLIP visual encoder with a frozen Vincuna (Chi-
ang et al., 2023) with an artificially collected dialog dataset

Shikra Shikra (Chen et al., 2023a), a VLM which can handle spatial coordinate inputs and outputs
in natural language. It makes Shikra excel at referential dialogue and general vision-language tasks,
resulting in outstanding performance.

However, there is still less work focusing on VLMs with multi-image inputs.

Flamingo Flamingo (Tsimpoukelli et al., 2021) achieves multi-visual inputs based on self-attention
for images but performs poorly in downstream tasks. Flamingo supports Few-Shot Learning (FSL) in
VLM via ICL by leveraging its robust capability to handle multi-visual inputs and uses cross-attention
instead of self-attention to get better performance. However, it still suffers from the unableness to
explicitly point images, so they introduce a hacky cross-attention mask.

Kosmos-1 Kosmos-1 (Huang et al., 2023a), is trained from scratch on billion-scale multi-modal
corpora, including interleaved text-image web page data, image-text caption, and language-only
instruction tuning data. It can multi-modal Few-Shot Learning and Chain-of-Thought processes,
thereby achieving formidable performance.

Otter Otter (Li et al., 2023a), an open-source implementation of flamingo and trained with multi-
modal instruction in-context tuning data.

Meta learner Najdenkoska et al. (2023) uses meta-learning objective to train an adapter that
aggregates multiple image features so the original VLM and adapter become a better few-shot learner.

Recent VLMs (Zhu et al., 2023; Liu et al., 2023b; Li et al., 2022; Alayrac et al., 2022; Dai et al., 2023;
Chen et al., 2024b) have been proven effective for aligning visual inputs and frozen LLMs to obtain
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cross-modal generalization ability. However, previous works overlooked multi-image VLMs, mainly
focusing on handling single-image prompts. Tsimpoukelli et al. (2021) supports multi-image inputs
using self-attention for images but performs poorly in downstream tasks. Although Flamingo (Alayrac
et al., 2022) supports Few-Shot Learning in VLMs and uses cross-attention to capture text-image
relationships, it still suffers from exact reference to specific images.

A.2 MULTI-MODAL INSTRUCTION TUNING

Pre-trained language models have achieved great success in both natural language understanding
(Si et al., 2022b; 2023a; An et al., 2023; Hu et al., 2023a; Chen et al., 2023b) and natural language
generation (Si et al., 2022a; 2023b; Cai et al., 2023; Liu et al., 2023d). Recently, instruction
tuning (Kung & Peng, 2023; Li et al., 2024; Wei et al., 2022) has attracted more and more attention
in order to enable LLMs to follow natural language instructions and complete real-world tasks.
However, multi-modal instruction tuning still requires further exploration. Multiinstruct (Xu et al.,
2023) introduces instruction tuning to enhance the performance of VLMs in instruction-following
ability. Due to the architectural design, Multiinstruct still struggles with complex contexts containing
multiple images. Otter (Li et al., 2023a) fine-tunes Openflamingo (Awadalla et al., 2023) to augment
its instruction comprehension capabilities. However, Otter’s dataset lacks text-to-image references
and interconnected image-to-image data. This limitation hinders its capability to handle complex
contexts that involve visual-textual relationships.

A.3 IN-CONTEXT LEARNING

It has been well-explored to enable ICL in pre-trained language models (PLM). MetaICL (Min et al.,
2021) proposes a meta-training framework for few-shot learning to tune a PLM to do in-context
learning on a large set of training tasks. LM-BFF (Gao et al., 2020) studies few-shot fine-tuning of
PLMs. However, ICL in VLM is still less explored. Recent works in VLM mainly focus on zero-shot
evaluation with single image input.

B MULTI-MODAL ICL DATA

We construct two training datasets, text-image interleaved data and in-context learning data, for
the text-image relationship challenge and image-image relationship challenge, respectively. In this
section, we will cover the data resources.

C DATA RESOURCE

The data resource used in constructing the MIC dataset is displayed in Fig. 7. Our training dataset
comes from 8 task categories and 16 datasets.

Image Captioning aims to produce descriptions of the given images according to different needs. Our
training dataset includes MS COCO (Lin et al., 2014), DiffusionDB (Wang et al., 2022b), and Flickr
30K (Young et al., 2014).

Knowledgeable Visual Question Answering (KVQA) requires the model to make use of commonsense
knowledge outside the input image to answer questions. Our training dataset includes OK-VQA
(Marino et al., 2019).

Image Question Answering (IQA) requires the model to answer the questions based on the image
correctly. Our training dataset includes VQAv2 (Goyal et al., 2017), ST-VQA (Biten et al., 2019),
Text-VQA (Singh et al., 2019), WikiART (Saleh & Elgammal, 2015) and RefCOCO (Yu et al.,
2016).

Video Question Answering (VideoQA) requires the model to answer questions based on the video
correctly. We extract eight frames per video as visual inputs for Video QA tasks. Our training dataset
includes MSRVTTQA (Xu et al., 2016).

Video Captioning requires the model to give the caption based on the video. We extract eight frames
per video as visual inputs for Video Captioning tasks. Our training dataset includes MSRVTT (Xu
et al., 2016).
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Task Dataset Used #samples LicenseTrain Val Test

Captioning

MS COCO (Lin et al., 2014) Yes 413,952 202,496 0 Custom
DiffusionDB (Wang et al., 2022b) Yes 19,963 0 0 MIT

Flickr (Young et al., 2014) Yes 144,896 4,864 4,864 Custom
NoCaps (Agrawal et al., 2019) Yes 0 45,000 0 CC BY 2.0

Classification MiniImage (Russakovsky et al., 2015) Yes 38,400 9,600 12,000 CC0 1.0

VQA

VQA v2 (Goyal et al., 2017) Yes 592,998 26,173 25,747 CC BY 4.0
ST-VQA (Biten et al., 2019) Yes 78,222 0 4,070 CC BY 4.0

Text-VQA (Singh et al., 2019) Yes 34,602 0 0 CC BY 4.0
NLVR2 (Suhr et al., 2018) Yes 86,373 6,982 6,967 CC BY 4.0
RefCOCO (Yu et al., 2016) Yes 141,968 0 0 Custom

KVQA OK-VQA (Marino et al., 2019) Yes 9,009 5,046 0 CC BY 4.0

Reasoning
GQA (Hudson & Manning, 2019) Yes 943,000 132,062 12,578 CC BY 4.0

VCR (Zellers et al., 2019) Yes 118,156 14,472 5,000 Custom
Winoground (Thrush et al., 2022a) No 0 0 400 Custom

video MSRVTT-QA (Xu et al., 2016) Yes 158,581 12,278 72,821 MIT
MSRVTT (Xu et al., 2016) Yes 130,260 9,940 59,800 MIT

Others WikiART (Saleh & Elgammal, 2015) Yes 13,000 5,500 0 Custom
LLAVA-Instruct-150K (Liu et al., 2023b) Yes 236,564 0 0 CC BY 4.0

Table 9: Detailed task descriptions and statistics of our instruction tuning tasks, including all datasets
in all types of tasks. The column “Used” indicates whether we use this dataset in the multi-modal
in-context tuning stage.

Figure 7: Illustration of the data resource used to construct MIC dataset. It consists of 11 tasks and 33
different datasets. The held-in datasets are indicated by white and the held-out datasets are indicated
by yellow.

Visual Reasoning requires the model to correctly perform image reasoning and answer questions. Our
training dataset includes GQA (Hudson & Manning, 2019), VCR (Zellers et al., 2019), and NLVR2
(Suhr et al., 2018).

Image Classification involves classifying an image based on a given set of candidate labels. Our
training dataset includes MiniImage (Russakovsky et al., 2015).

Visual Dialog requires the model to hold a meaningful dialog about visual content with humans in
natural, conversational language. Our training dataset includes LLAVA-Instruct-150K (Liu et al.,
2023b).

Our testing dataset comes from 10 task categories and 18 datasets.

Image Captioning includes the Nocaps (Agrawal et al., 2019) dataset.
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Knowledgeable Visual Question Answering (KVQA) includes the ScienceQA (Lu et al., 2022) and
A-OKVQA (Schwenk et al., 2022) datasets.

Image Question Answering (IQA) includes the VizWiz (Bigham et al., 2010) dataset.

Visual Reasoning includes the Winoground (Thrush et al., 2022b), VSR (Liu et al., 2022) and
IconQA (Lu et al., 2021) dataset. Winoground proposes a task of matching two given images and
two captions correctly. The challenge of this task is that both captions contain a completely identical
set of words, only in a different order. VSR describes the spatial relation of two individual objects in
the image, and a VLM needs to judge whether the caption correctly describes the image (True) or
not (False). The IconQA dataset has two sub-datasets: image question answering with multiple text
choice and image question answering with multiple image choice.

Web Page Question Answering (Web QA) includes the Websrc (Chen et al., 2021a; Huang et al.,
2023a) datasets. The model must answer questions based on the web image and the optional extracted
texts. We sampled 2000 instances from Websrc for the evaluation. To align with KOSMOS-1 (Huang
et al., 2023a), we only use the web image as input.

Video Question Answering (VideoQA) includes the iVQA (Yang et al., 2021), MVSD (Chen & Dolan,
2011), and NextQA (Xiao et al., 2021) dateset. The NextQA dataset has two sub-datasets: video
question answering with multiple choice and open-domain video question answering.

Few-shot Image Classification includes the HatefulMemes (Kiela et al., 2020) and Bonard-HOI (Jiang
et al., 2022) dataset. HatefulMemes requires the model to determine if a meme is hateful based
on the image and explanation provided. Bonard-HOI is the benchmark for evaluating the model’s
ability in Few-Shot Visual Reasoning for Human-Object Interactions. It provides few-shot examples
with challenging negatives, where positive and negative images only differ in action labels. The
model is then asked whether the final image is positive or negative. We sampled 2000 instances from
Bonard-HOI for the evaluation.

Nonverbal Reasoning includes the Raven IQ test (Huang et al., 2023a). Each instance in the Raven
IQ test has 3 or 8 images as inputs and six candidate images with a unique correct completion, and
the goal is to predict the next image from the candidates.

Visual Dialog includes the visual dialog dataset (Das et al., 2017). We use the question of the final
dialogue as the question for instance and take all preceding dialogues as the context to perform
open-domain image question answering.

OOD Generalization includes the Minecraft dataset that we construct using Minecraft (Cipollone
et al., 2014) game which requires the VLM to identify whether an animal (i.e., cow, llama, chicken,
donkey, and so on) is present in a picture.

More detailed task descriptions and statistics about the datasets are shown in Table 9.

D DATA CONSTRUCTION

Firstly, we create an image declaration per instance in all datasets to generate datasets with explicit
text-to-image reference. We then have annotators scrutinize every dataset’s samples and provide task
instructions. This practice aids in gaining a comprehensive understanding of the task and helps craft
high-quality templates.

Next, we employ ChatGPT5 to rewrite the instructions to describe the key characteristics of each task
accurately. After ChatGPT generates the instructions, we undergo a manual review to guarantee the
high quality of the instructions.

We select ten suitable templates matching as candidates, then merge the original dataset’s input
into a randomly chosen template. We assemble demonstrations for each instance from the dataset
by selecting a small amount of data and arranging them sequentially. These demonstrations are
integrated with the input instance to generate multi-modal contextual data6.

5We use the gpt-3.5-turbo version of ChatGPT.
6Except for the video datasets, vcr dataset, and LLaVa dataset.
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We construct multi-image data by extracting eight frames per video from MSRVTT (Xu et al., 2016)
and MSRVTTQA (Xu et al., 2016) datasets. We also crop images from the VCR (Zellers et al., 2019)
dataset using object bounding boxes to produce intertwined multi-modal data with closely related
images. We convert all data into a vision-language Q&A format to create high-quality multi-modal
training data and accumulate 5.8M samples in MIC dataset. Due to resource constraints, we use
approximately 10% of the data with the sampling strategy described in Appendix F to finetune
MMICL. It is anticipated that a larger model trained on all of our data would yield a more promising
result.

Algorithm 1 Image Declaration
Require: Interleaved multi-modal input: X , containing visual embedding: V “ tv1, v2, . . .u and text embed-

ding H “ th1, h2, . . .u, where vi represents the image embedding and hi represents the span between the
image embeddings.

Ensure: Interleaved multi-modal input with image declaration: X̂
1: for each interleaved multi-modal input X do
2: n Ð number of images in X
3: Initialize image proxy tokens rIMG1s, rIMG2s, . . .
4: for each image i in X do
5: Refi Ð "image i is rIMGisvi" or "image i: rIMGis vi"
6: end for
7: R Ð tRef1, Ref2, . . .u

8: Replace vi in X with Refi: X̂ “ rRef1, h1, Ref2, h2, . . .s
9: end for

D.1 MULTI-MODAL DATA WITH INTERCONNECTED IMAGES

The data construction framework for Multi-modal Data with Interconnected Images as Sec. 2.2.2
is developed through an automated process that leverages existing dataset annotations (i.e. Visual
Commonsense Reasoning dataset (VCR) (Zellers et al., 2019)). This approach obviates the necessity
for supplementary manual annotation efforts.

The original annotations of VCR dataset comprise raw images, bounding boxes, and a set of questions
and answers that specifically reference these bounding boxes as the left part of Fig. 8. This structured
annotation approach facilitates a comprehensive understanding of the image context. Leveraging
the existing annotations, we develop an automated workflow, including extracting sub-images from
raw images based on bounding boxes and employing ChatGPT to formulate a variety of instructions.
Initially, we manually craft a set of instruction templates, which, alongside the dataset description, are
inputted into ChatGPT. Subsequently, ChatGPT is asked to expand the templates, thereby yielding a
diverse set of instruction templates.

D.2 UNIFIED MULTI-MODAL IN-CONTEXT FORMAT FOR DIFFERENT TASKS

The data construction framework for the multi-modal in-context format data as Sec. 2.2.3 is
developed through an automated process that leverages existing dataset annotations. The used dataset
are presented as Appendix F.

Through selective sampling within the dataset, we have formulated in-context examples for each
respective task. These examples encompass a range of elements, including images, questions, and
answers. ChatGPT is used to formulate a variety of instructions. The formulated instruction templates
are presented in Appendix G.

D.3 MULTI-MODAL DATA WITH VIDEO FRAMES

The data construction framework for Video Data is developed through an automated process that
leverages existing dataset annotations. The used dataset are MSRVTT (Xu et al., 2016) and MSRVT-
TQA (Xu et al., 2016) datasets as Appendix F.
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Figure 8: Illustration of automatic data construction pipeline for multi-model data with interconnected
images. The automatic construction is based on existing annotation of VCR dataset (Zellers et al.,
2019) without human involvement. ChatGPT is used for instruction refinement.

E MODEL STRUCTURE

As shown in Fig. 11, MMICL treats the image and language representations equally and combines
them into interleaved image-text representations, similar to the original input. Each given image is
encoded by a vision encoder (e.g., ViT (Radford et al., 2021; Fang et al., 2023)) to get the vision
representation of the image. Then, we use the Q-former as the VPG to extract the visual embedding.
We utilize a fully connected layer as the projection layer to convert each visual embedding to the
same dimension as the text embedding of the LLMs. This alignment helps the LLM to understand the
images. Our approach treats the visual and text embedding equally, enabling a flexible combination
of visual and textual content. Finally, we combine the visual embeddings of multiple images with
text embeddings in an interleaved style and then feed them into the LLM. We set the weights for
mapping query and value vectors in the attention layer of LLM as learnable to better adapt to the
multi-modal context with multiple images. During the pre-training, we freeze the image encoder,
Q-former, and the backbone LLM while jointly training the language projection and the query and
value vectors of the LLM.

F DATA BALANCE

Previous studies have shown that the data balance of training data could significantly influence the
model performance (Dai et al., 2023). Mixing the training data of each dataset uniformly could
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Figure 9: Illustration of automatic data construction pipeline for multi-model data with in-context
examples. The automatic construction is based on existing annotation without human involvement.
ChatGPT is used for instruction refinement. Data source can be found at Appendix F. The formulated
instruction templates are presented in Appendix G.

Figure 10: Illustration of automatic data construction pipeline for multi-model data with video. The
automatic construction is based on existing annotation without human involvement. ChatGPT is used
for instruction refinement.
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Figure 11: Illustration of the MMICL structure.

cause the model to overfit smaller datasets and underfit larger datasets, causing poor performance. In
order to alleviate this problem, we employ a sampling strategy to sample datasets with probabilities
proportional to the square root of the number of training samples following Dai et al. (2023).
Formally, given D datasets with N¨ training samples tN1, N2, . . . , NDu, the probability pd of data
samples being selected from a dataset during training is as follows.

pd “

?
Nd

řD
i“1

?
Ni

(4)

G INSTRUCTION TEMPLATE FOR DATA CONSTRUCTION

As Sec. 2.2.3, the constructions of MIC require carefully designed templates. The instruction
templates for each task are presented in this section. The templates for tasks MSCOCO, Flick30k,
Nocaps, and Diffusiondb are presented in Table 10. The templates for tasks MiniImagenet are
presented in Table 11. The templates for tasks VQAv2, S-VQA, WikiART, and RefCOCO are
presented in Table 13. The templates for task OKVQA are presented in Table 14. The templates
for task MSRVTT are presented in Table 15. The templates for tasks MSRVTTQA and MSVD are
presented in Table 16.

H EXPERIMENT DETAILS

Following Chung et al. (2022), we use FLANT5-XL and FLANT5-XXL (Chung et al., 2022) as
the backbone LLMs. In Stage I, we set the vision encoder and language model to be frozen and
utilize the images from COCO(Lin et al., 2014), CC3M(Sharma et al., 2018), Visual Genome(Krishna
et al., 2017), CC12M(Changpinyo et al., 2021), SBU(Ordonez et al., 2011) and LAION-400M
data(Schuhmann et al., 2021), as well as the captions generate by BLIPlarge (Li et al., 2022) to
perform feature alignment training on the Q-former. We keep the other part of the VLM frozen and
jointly train the Q-former and projection layer. The Q-former’s visual embedding output occurs
in 32-token size of the backbone language model. To benefit from BLIP-2’s significant visual
representation extraction ability, we integrate its powerful vision encoder to initialize the Q-former
and projection layer. 7. In Stage II, we train the model for three epochs with a lower learning rate of
1e ´ 5. The weights of mapping query and value vectors in the attention layer of LLMs are learnable
in this stage to better adapt to the multi-modal prompts with multiple images. In this stage, we freeze
the visual encoder, Q-former, and the backbone LLM and jointly train the projection layer, the query
vectors, and the value vectors of the LLM.

7In practice, we use checkpoint of BLIP-2 and InstructBlip as the backbone for MMICL, so Stage I is
skipped.
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Templates of Image Captioning (MSCOCO, Flick30k, Nocaps, Diffusiondb)

(1) Carefully analyze image 0: [IMG0] {image} to generate a concise and accurate description that accurately represents the objects, people,
and scenery present.
(2) Use clear and concise language that accurately describes the content of image 0: [IMG0] {image}.
(3) Your caption should provide sufficient information about image 0: [IMG0] {image} so that someone who has not seen the image can
understand it.
(4) image 0 is [IMG0] {image}. Be specific and detailed in your description of image 0, but also try to capture the essence of image 0 in a
succinct way.
(5) image 0 is [IMG0] {image}. Based on the image 0, describe what is contained in this photo. Your caption should be no more than a few
sentences and should be grammatically correct and free of spelling errors.
(6) Include information in your caption that is specific to image 0: [IMG0] {image} and avoid using generic or ambiguous descriptions.
(7) image 0 is [IMG0] {image}. Based on the image 0, give a caption about this image. Think about what message or story image 0 is
conveying, and try to capture that in your image caption.
(8) Based on the image 0, give a caption about this image. Your caption should provide enough detail about image 0: [IMG0] {image} to
give the viewer a sense of what is happening in the image.
(9) Give a caption about this image. Avoid using overly complex language or jargon in your caption of image 0: [IMG0] {image} that might
confuse the viewer.
(10) Be creative in your approach to captioning image 0: [IMG0] {image} and try to convey a unique perspective or story.

Table 10: Instruction templates used for transforming datasets into instruction tuning data. (I) {image}
denotes image embedding encoded by image encoder, image embedding will be concatenated with
language embedding as input. <imagej> denotes image token to exact reference the j-th image in an
instance as described in Sec. 2.2.1.

Templates of Image Classification (MiniImagenet, etc)

(1) image 0 is [IMG0] {image}. Please identify the object or concept depicted in image 0.
(2) image 0 is [IMG0] {image}. What is the main subject of image 0?
(3) image 0 is [IMG0] {image}. Can you recognize and label the object shown in image 0?
(4) image 0 is [IMG0] {image}. Identify the category or class to which image 0 belongs.
(5) image 0 is [IMG0] {image}. Based on the visual content, determine what image 0 represents.
(6) image 0 is [IMG0] {image}. What is the name or label of the item captured in image 0?
(7) image 0 is [IMG0] {image}. Please provide a description or identification of the subject in image 0.
(8) image 0 is [IMG0] {image}. From the visual cues, determine the object or entity depicted in image 0.
(9) image 0 is [IMG0] {image}. Can you recognize and name the primary element shown in image 0?
(10) image 0 is [IMG0] {image}. Identify the object or concept that best describes what is depicted in image 0.

Table 11: Instruction templates used for transforming datasets into instruction tuning data. (I) {image}
denotes image embedding encoded by image encoder, image embedding will be concatenated with
language embedding as input. <imagej> denotes image token to exact reference the j-th image in an
instance as described in Sec. 2.2.1.

Templates of Knowledge Visual Question Answering (OK-VAQ)

(1) Look at image 0 labeled [IMG0] {image} carefully and read question: question. Try to understand what is being asked before selecting
an answer.
(2) image 0 is [IMG0] {image}. Consider all of the information in image 0 labeled [IMG0] when answering question. Look at objects,
colors, shapes, and other details that may be relevant to question: question Answer:
(3) image 0 is [IMG0] {image}. Read each answer choice carefully and answers question : question based on the information provided in
image 0.
(4) image 0 is [IMG0] {image}. Given the picture [IMG0], pay attention to the wording of question and answer the following question:
question Answer:
(5) Read the question carefully and look at image 0 labeled [IMG0] {image}. Use your intuition and common sense when answering the
question: question
(6) Consider all of the information in image 0 labeled [IMG0] {image} when answering the question: question
(7) Take your time when answering each question. Don’t rush through the questions, and make sure you have carefully considered all of the
information provided in image 0 labeled [IMG0] {image} and the question before making your selection. Question: question Answer:
(8) Make sure your answers are based on the information presented in the image 0: [IMG0] {image}. Question:question Answer:
(9) Carefully examine image 0 labeled [IMG0] {image} before answering the question. Question:question Answer:
(10) Please refer to image 0: [IMG0] {image} when answering the following questions: question Answer:

Table 12: Instruction templates for task OKVQA.
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Templates of Image Question Answering (VQAv2, ST-VQA, WikiART, RefCOCO, etc)

VQAv2

(1) image 0 is [IMG0] {image}. For the question, carefully examine the image and use your knowledge to determine the correct answer.
Question: question Answer:
(2) image 0 is [IMG0] {image}. Given the picture [IMG0], pay attention to the wording of question and answer the following question:
question Answer:
(3) Read the question carefully and look at image 0 labeled [IMG0] {image}. Use your intuition and common sense when answering the
question: question
(4) Answer each question based on the information presented in image 0: [IMG0] {image}. Given the picture [IMG0], what is the answer to
the question: question Answer:
(5) Please refer to image 0: [IMG0] {image} when answering the following questions: question Answer:
(6) Questions is related to image 0: [IMG0] {image}. Please analyze the image and provide the correct answer for the question: question
(7) Read the question carefully and look at image 0 labeled [IMG0] {image}. Use your intuition and common sense when answering the
question: question
(8) Consider all of the information in image 0 labeled [IMG0] {image} when answering the question: question
(9) Take your time when answering each question. Don’t rush through the questions, and make sure you have carefully considered all of the
information provided in image 0 labeled [IMG0] {image} and the question before making your selection. Question: question Answer:
(10) Use the image 0: [IMG0] {image} as a visual aid to help you answer the questions accurately. Question:question Answer:

ST-VQA

(1) Answer each question based on the information presented in image 0: [IMG0] {image}. Given the picture [IMG0], what is the answer to
the question: question Answer:
(2) Please refer to image 0: [IMG0] {image} when answering the following questions: question Answer:
(3) Questions is related to image 0: [IMG0] {image}. Please analyze the image and provide the correct answer for the question: question
(4) For each question, use the image 0: [IMG0] {image} as a reference to answer the question: question
(5) Make sure your answers are based on the information presented in the image 0: [IMG0] {image}, and any OCR text associated with it.
Question:question Answer:
(6) Answer the question as accurately as possible using the information provided in the image 0: [IMG0] {image}, and any OCR text
associated with it. Question:question Answer:
(7) Please ensure that you are answering the question based on the information presented in the image 0: [IMG0] {image}.Question:question
Answer:
(8) The image 0: [IMG0] {image} is the primary source of information for answering the questions. Please refer to it carefully when
answering question: question Answer:
(9) Pay close attention to the details in image 0: [IMG0] {image}, as they may provide important information for answering the questions.
Question:question Answer:
(10) Use the image 0: [IMG0] {image} as a visual aid to help you understand the context and answer the questions accurately. Ques-
tion:question Answer:

WikiART

(1) image 0 is [IMG0] {image}. Please provide information about the artist, genre, and style of this artwork.
(2) image 0 is [IMG0] {image}. I would like to know the artist’s name, the genre, and the specific style depicted in this painting.
(3) image 0 is [IMG0] {image}. Could you identify the artistic genre, the artist, and the style portrayed in this artwork?
(4) image 0 is [IMG0] {image}. In this painting, which genre does it belong to, who is the artist, and what is the predominant style?
(5) image 0 is [IMG0] {image}. Tell me about the artist, genre, and style associated with this particular artwork.
(6) image 0 is [IMG0] {image}. This piece of art seems intriguing. Can you provide details about the genre, the artist, and the style it
represents?
(7) image 0 is [IMG0] {image}. Identify the genre, artist, and style of this captivating artwork, please.
(8) image 0 is [IMG0] {image}. I’m curious to learn about the artist’s name, the genre, and the distinctive style showcased in this artwork.
(9) image 0 is [IMG0] {image}. Could you enlighten me about the genre, artist, and the artistic style that characterizes this beautiful piece?
(10) image 0 is [IMG0] {image}. In terms of genre, artist, and style, what information can you provide regarding this fascinating artwork?

RefCOCO

(1) image 0 is [IMG0] {image}.Given image 0, create a descriptive caption that accurately represents the content of the image, including the
item located in the {quadrant} of the image.
(2) Use your knowledge of the image 0 and the {quadrant} location to generate a detailed and accurate caption that captures the essence of
the scene. Keep in mind that image 0 is [IMG0] {image}.
(3) image 0 is [IMG0] {image}. When writing your caption, be sure to include specific details about the item located in the {quadrant} of
the image 0, such as its size, shape, color, and position.
(4) Think about the intended audience for your caption and use appropriate language and tone. Consider the context of the image: [IMG0]
{image} and the {quadrant} location when creating your caption, and make sure that it accurately reflects the content of the image.
(5) Your caption should be concise and to the point, while still capturing the essence of the image 0 and the item located in the {quadrant} of
the image. Avoid including irrelevant information in your caption that detracts from the main content of the image. Remember that image 0
is [IMG0] {image}.
(6) image 0 is [IMG0] {image}. Check your caption for accuracy and grammatical errors before submitting. Be creative in your approach to
captioning the image and the item located in the {quadrant}.
(7) image 0 is [IMG0] {image}. Given image 0, describe the item in the {quadrant} of the image.
(8) image 0 is [IMG0] {image}. Using image 0, provide a caption for the object located in the {quadrant} of the image.
(9) For image 0: [IMG0] {image}, describe the object in the {quadrant} of the image.
(10) Given the image 0: [IMG0] {image}. Generate a description for the item located in the {quadrant} of the image.
(11) image 0 is [IMG0] {image}. Using the provided image 0, describe the object located in the {quadrant} of the image.

Table 13: Instruction templates for tasks VQAv2, ST-VQA, WikiART, and RefCOCO.
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Templates of Video Question Captioning (MSRVTT)

(1) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Watch the images carefully and write a
detailed description of what you see.
(2) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. After viewing the images, provide a
summary of the main events or key points depicted.
(3) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Pay close attention to the details in the
images and provide accurate description to the images based on what you see.
(4) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Utilize your comprehension skills to
describe the context and events depicted in the images.
(5) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Reflect on the images’s narrative structure
and identify any storytelling techniques or narrative devices used. Write a detailed description of what you see.
(6) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Consider both the explicit and implicit
information conveyed in the images to provide comprehensive description of the images.

Table 14: Instruction templates for task MSRVTT.

Templates of Video Question Answering (MSRVTT QA, MSVD, etc)

(1) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Watch the provided images carefully and
answer the following questions based on your understanding of the images content. Qusetion: {question}. Answer:
(2) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Carefully analyze the visual elements of
the images and answer the questions based on your observations. Qusetion: {question}. Answer:
(3) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Pay close attention to the details in the
images and provide accurate answers to the questions based on what you see. Qusetion: {question}. Answer:
(4) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Utilize your comprehension skills to
answer the questions based on the context and events depicted in the images. Qusetion: {question}. Answer:
(5) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Consider the relationships between the
images frames, scenes, and the provided questions to formulate accurate answers. Qusetion: {question}. Answer:
(6) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Use your knowledge of the images’s
content to answer the questions by recalling specific details and events. Qusetion: {question}. Answer:
(7) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Make logical inferences based on the
information presented in the images to answer the questions with reasoned explanations. Qusetion: {question}. Answer:
(8) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. While answering the questions, consider
both the explicit and implicit information conveyed in the images to provide comprehensive responses. Qusetion: {question}. Answer:
(9) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Formulate your answers by considering the
temporal context of the images and the chronological order of events. Qusetion: {question}. Answer:
(10) image 0 is [IMG0] {image}. image 1 is [IMG1] {image}. image 2 is [IMG2] {image}. image 3 is [IMG3] {image}. image 4 is [IMG4]
{image}. image 5 is [IMG5] {image}. image 6 is [IMG6] {image}. image 7 is [IMG7] {image}. Take into account the emotions, actions,
and interactions of the characters in the images when answering the questions. Qusetion: {question}. Answer:

Table 15: Instruction templates for task MSRVTT QA and MSVD.
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Templates of Visual Reasoning (GQA, VCR, NLVR v2, etc)

GQA

(1) image 0 is [IMG0] {image}. For the question, carefully examine the image and use your knowledge to determine the correct answer.
Question: {question} Answer:
(2) image 0 is [IMG0] {image}. Given the picture [IMG0], pay attention to the wording of question and answer the following question:
{question} Answer:
(3) Read the question carefully and look at image 0 labeled [IMG0] {image}. Use your intuition and common sense when answering the
question: {question}
(4) Consider all of the information in image 0 labeled [IMG0] {image} when answering the question: {question}
(5) The image 0: [IMG0] {image} is the primary source of information for answering the questions. Please refer to it carefully when
answering question: {question} Answer:
(6) Pay close attention to the details in image 0: [IMG0] {image}, as they may provide important information for answering the questions.
Question:{question} Answer:
(7) image 0 is [IMG0] {image}. Make sure your answer is relevant to the question and the image 0. Question:{question} Answer:
(8) image 0 is [IMG0] {image}. Do not provide answers based on assumptions or personal opinions; only use the information presented in
the image 0 and the question. Question:{question} Answer:
(9) Look at image 0 labeled [IMG0] {image} carefully and read question: {question}. Try to understand what is being asked before selecting
an answer.
(10) image 0 is [IMG0] {image}. Consider all of the information in image 0 labeled [IMG0] when answering question. Look at objects,
colors, shapes, and other details that may be relevant to question: {question} Answer:

VCR

(1) {prompt}. Given the options below, based on the photo [IMG0], select the most suitable answer for the following question: {question}.
Options: {options}
(2) Please read the question and answer choices carefully. Select the option that best answers the question. {prompt}. Given the images,
select the best option that answers the question from the available answer choices. Question: {question} Options: {options} Answer:
(3) Choose the answer that best fits the description or action in the image. {prompt}. Consider the scene depicted in the images, choose the
answer that best fits the description or action in the image from the available answer choices. Question: {question} Options: {options}
Answer:
(4) {prompt}. Examine the details in the pictures and use them to inform your answer to the question. Choose the best answer from the
available options. Question: {question} Options: {options} Answer:
(5) Look closely at the images and think about what is happening in the scene. {prompt}. Given the pictures, carefully examine the images
and select the best answer that describes what is happening in the scene from the available answer choices. Question: {question} Options:
{options} Answer:
(6) Consider all of the details in the image and the wording of the question before making your selection. {prompt}. Given the pictures,
consider all of the details in the image and the wording of the question before selecting the best answer choice from the available options.
Question: {question} Options: {options} Answer:
(7) Remember to use your common sense and reasoning skills to choose the best answer. {prompt}. Think about the images, use your
common sense and reasoning skills to select the best answer choice from the available options. Question: {question} Options: {options}
Answer:
(8) {prompt}. Select the answer that most closely matches the description or action in images, based on the available options. Given
the picture [IMG0], select the answer choice that most closely matches the description or action in the image from the available options.
Question: {question} Options: {options} Answer:
(9) Choose the option that provides the most accurate and complete answer to the question, based on the available information. {prompt}
Given the images, select the option that provides the most accurate and complete answer to the question from the available answer choices.
Question: {question} Options: {options} Answer:
(10) {prompt}. Use the information in the images to help you make the best choice from the available answer options for the question
Question: {question} Options: {options} Answer:

NLVR v2

(1) image 0 is [IMG0] {image}. Given the picture [IMG0], answer the following question: {question} Is this correct? True or False. Answer:
(2) For the question: {question}, carefully examine image 0: [IMG0] {image} and use your knowledge to determine if the statement is True
or False.
(3) Please refer to image 0: [IMG0] {image} when answering the question: {question} Is this correct? True or False. Answer:
(4) Remember to consider both the question and the information presented in image 0: [IMG0] {image} when answering the True or False
question: {question}
(5) image 0 is [IMG0] {image}.Answer the question: {question} based on the information presented in the image 0 and determine if the
statement is True or False.
(6) Carefully examine the image 0: [IMG0] {image} and use your knowledge to determine whether the statement is True or False. Question:
{question}
(7) Remember that the answer to each question is either True or False, so make sure you choose the correct option based on the information
presented in image 0: [IMG0] {image}. Question: {question}
(8) Make sure your answers are based on the information presented in the image 0: [IMG0] {image}. Question:{question} Is this
correct?True or False. Answer:
(9) Carefully examine image 0 labeled [IMG0] {image} before answering the question. Question:{question} True or False? Answer:

Table 16: Instruction templates for tasks GQV, VCR and NLVR v2.
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Model Commonsense
Reasoning

Numerical
Calculation

Text
Translation

Code
Reasoning Avg.

MiniGPT-4 (Zhu et al., 2023) 59.29 45.00 0.00 40.00 36.07
VisualGLM-6B (Du et al., 2021) 39.29 45.00 50.00 47.50 45.45
LLaVA (Liu et al., 2023b) 57.14 50.00 57.50 50.00 53.66
Lynx (Zeng et al., 2023) 110.71 17.50 42.50 45.00 53.93
MultiModal-GPT (Gong et al., 2023) 49.29 62.50 60.00 55.00 56.70
LLaMA-Adapter-V2 (Gao et al., 2023) 81.43 62.50 50.00 55.00 62.23
VPGTrans (Zhang et al., 2023a) 64.29 50.00 77.50 57.50 62.32
LaVIN (Luo et al., 2023) 87.14 65.00 47.50 50.00 62.41
GIT2 (Wang et al., 2022a) 99.29 50.00 67.50 45.00 65.45
mPLUG-Owl (Ye et al., 2023) 78.57 60.00 80.00 57.50 69.02
BLIP-2 (Li et al., 2023d) 110.00 40.00 65.00 75.00 72.50
InstructBLIP (Dai et al., 2023) 129.29 40.00 65.00 57.50 72.95
Otter (Li et al., 2023a) 106.43 72.50 57.50 70.00 76.61
Cheetor (Li et al., 2023c) 98.57 77.50 57.50 87.50 78.02
LRV-Instruction (Liu et al., 2023a) 100.71 70.00 85.00 72.50 82.05
BLIVA (Hu et al., 2023b) 136.43 57.50 77.50 60.00 82.86

MMICL 136.43 82.50 132.50 77.50 107.23

Table 17: Evaluation of cognition. In the MME benchmark, each image will have two questions,
with answers restricted to ’yes’ or ’no’. The evaluation metrics for this benchmark include ACC and
ACC+. ACC refers to the accuracy calculated for each question, while ACC+ represents the accuracy
for each image, where both questions must be answered correctly. The Avg. metric denotes the
average value across all numbers. It is important to note that all the reported figures for the baseline
methods are obtained from the MME benchmark (Fu et al., 2023). We use the FLAN-T5-XXL
version of MMICL to evaluate the performance.

All experiments are conducted with 6 NVIDIA A40 GPUs with the zero2-offload (Rajbhandari et al.,
2020) of Deepspeed (Rasley et al., 2020) with the trainer of huggingface transformers (Wolf et al.,
2020). The batch size is 10 and 4 for MMICL (FLAN-T5-XL) and MMICL (FLAN-T5-XXL),
respectively. The largest MMICL (FLAN-T5-XXL) requires about two days for the Stage II.

I MME BENCHMARK

Model Existen. Count Pos. Color OCR Poster Cele. Scene Land. Art. Avg.
LLaVA 50.00 50.00 50.00 55.00 50.00 50.00 48.82 50.00 50.00 49.00 50.28
MiniGPT-4 68.33 55.00 43.33 75.00 57.50 41.84 54.41 71.75 54.00 60.50 58.17
MultiModal-GPT 61.67 55.00 58.33 68.33 82.50 57.82 73.82 68.00 69.75 59.50 65.47
VisualGLM-6B 85.00 50.00 48.33 55.00 42.50 65.99 53.24 146.25 83.75 75.25 70.53
VPGTrans 70.00 85.00 63.33 73.33 77.50 84.01 53.53 141.75 64.75 77.25 79.05
LaVIN 185.00 88.33 63.33 75.00 107.50 79.59 47.35 136.75 93.50 87.25 96.36
LLaMA-Adapter-V2 120.00 50.00 48.33 75.00 125.00 99.66 86.18 148.50 150.25 69.75 97.27
mPLUG-Owl 120.00 50.00 50.00 55.00 65.00 136.05 100.29 135.50 159.25 96.25 96.73
InstructBLIP 185.00 143.33 66.67 153.33 72.50 123.81 101.18 153.00 79.75 134.25 121.28
BLIP-2 160.00 135.00 73.33 148.33 110.00 141.84 105.59 145.25 138.00 136.50 129.38
Lynx 195.00 151.67 90.00 170.00 77.50 124.83 118.24 164.50 162.00 119.50 137.32
GIT2 190.00 118.33 96.67 158.33 65.00 112.59 145.88 158.50 140.50 146.25 133.21
Otter 195.00 88.33 86.67 113.33 72.50 138.78 172.65 158.75 137.25 129.00 129.23
Cheetor 180.00 96.67 80.00 116.67 100.00 147.28 164.12 156.00 145.73 113.50 130.00
LRV-Instruction 165.00 111.67 86.67 165.00 110.00 139.04 112.65 147.98 160.53 101.25 129.98
BLIVA 180.00 138.33 81.67 180.00 87.50 155.10 140.88 151.50 89.50 133.25 133.77

MMICL 170.00 160.00 81.67 156.67 100.00 146.26 141.76 153.75 136.13 135.50 138.17

Table 18: Evaluation of coarse-grained and fine-grained recognition and OCR. The settings are
the same as Table 17. It is important to note that all the reported figures for the baseline methods
are obtained from the MME benchmark (Fu et al., 2023). We use the FLAN-T5-XXL version of
MMICL to evaluate the performance.
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Model Existence Count Position Color OCR Avg.ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

BLIP-2 86.67 73.33 75.00 60.00 56.67 16.67 81.67 66.67 70.00 40.00 62.67
LLaVA 50.00 0.00 50.00 0.00 50.00 0.00 51.67 3.33 50.00 0.00 25.49
MiniGPT-4 75.00 60.00 66.67 56.67 56.67 33.33 71.67 53.33 62.50 35.00 57.08
mPLUG-Owl 73.33 46.67 50.00 0.00 50.00 0.00 51.67 3.33 55.00 10.00 34.00
LLaMA-Adapter-V2 76.67 56.67 58.33 6.67 43.33 3.33 55.00 16.67 57.50 15.00 38.92
VisualGLM-6B 61.67 23.33 50.00 0.00 48.33 0.00 51.67 3.33 42.50 0.00 28.08
Otter 53.33 6.67 50.00 0.00 50.00 0.00 51.67 3.33 50.00 0.00 26.50
Multimodal-GPT 46.67 10.00 51.67 6.67 45.00 13.33 55.00 13.33 57.50 25.00 32.42
PandaGPT 56.67 13.33 50.00 0.00 50.00 0.00 50.00 0.00 50.00 0.00 27.00

MMICL 90.00 80.00 86.67 73.33 55.00 26.67 88.33 73.33 60.00 40.00 67.33

Table 19: Fine-grained result of MME benchmark

Model Poster Celebrity Scene Landmark Artwork Avg.ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC+

BLIP-2 79.25 62.59 58.53 37.06 81.25 64.00 79.00 59.00 76.50 60.00 66.72
LLaVA 50.00 0.00 48.82 0.00 50.00 0.00 50.00 0.00 49.00 0.00 24.78
MiniGPT-4 49.32 19.73 58.82 24.71 68.25 45.50 59.75 30.50 56.25 27.00 44.00
mPLUG-Owl 77.89 57.14 66.18 34.12 78.00 57.50 86.25 73.00 63.25 33.00 62.63
LLaMA-Adapter-V2 52.72 10.88 55.00 21.18 68.75 44.50 53.00 9.00 52.50 14.50 38.2
InstructBLIP 74.15 49.66 67.06 34.12 84.00 69.00 59.75 20.00 76.75 57.50 59.20
VisualGLM-6B 54.42 12.24 50.88 2.35 81.75 64.50 59.75 24.00 55.75 20.00 42.56
Otter 45.24 0.00 50.00 0.00 55.00 14.50 52.00 4.50 48.00 5.50 27.47
Multimodal-GPT 45.24 17.01 49.12 24.12 50.50 17.50 50.50 23.00 46.00 12.00 33.50
PandaGPT 56.80 19.73 46.47 10.59 72.50 45.50 56.25 13.50 50.25 1.00 37.26

MMICL 81.63 64.63 79.41 62.35 83.75 70.00 76.96 59.16 76.50 59.00 71.04

Table 20: Fine-grained result of MME benchmark

MME comprehensively evaluates VLMs with 14 sub-tasks that encompass perception and cognition
abilities. Other than OCR, perception ability includes the recognition of coarse-grained and fine-
grained objects. The former identifies the existence, count, position, and color of objects. The latter
recognizes movie posters, celebrities, scenes, landmarks, and artworks. The cognition includes
commonsense reasoning, numerical calculation, text translation, and code reasoning.

MME evaluates a wide range of multi-modal abilities. The compared baselines include LLaVA (Liu
et al., 2023b), MiniGPT-4 (Zhu et al., 2023), MultiModal-GPT (Gong et al., 2023), VisualGPM-
6B (Du et al., 2021), VPGTrans (Zhang et al., 2023a) , LaVIN (Luo et al., 2023), mPLUG-Owl (Ye
et al., 2023), LLaMA-Adapter-V2 (Gao et al., 2023), InstructBLIP (Dai et al., 2023), Otter (Li et al.,
2023a), BLIP-2 (Li et al., 2023d), LRV-Instruction (Liu et al., 2023a), Cheetor (Li et al., 2023c),
GIT2 (Wang et al., 2022a), Lynx (Zeng et al., 2023), BLIVA (Hu et al., 2023b). We also provide
more detail evaluation results for MMICL at Table 18, Table 19, Table 20, and Table 21. Results
show that MMICL can achieve the best average scores in comparisons with current VLMs.

J MMBENCH BENCHMARK

MMBench (Liu et al., 2023c) is a thoughtfully designed benchmark that thoroughly evaluates the
diverse skills of vision-language models. The results of all different VLMs from the test set are
presented in Table 22.

K UNDERSTANDING MULTIPLE IMAGES IN THE MULTI-MODAL PROMPT

Videos contain more temporal information compared to static images. We test MMICL across
different video-languages tasks to evaluate whether the MMICL is able to support the multiple
images in the complex prompts. The result is present in Table 23. Our model, MMICL, achieved
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Model Common. Reason. Numerical Calculation Text Translation Code Reason. Avg.ACC ACC+ ACC ACC+ ACC ACC+ ACC ACC

BLIP-2 68.57 41.43 40.00 0.00 55.00 10.00 55.00 20.00 36.25
LLaVA 49.29 11.43 50.00 0.00 52.50 5.00 50.00 0.00 27.27
MiniGPT-4 58.57 34.29 47.50 20.00 42.50 15.00 67.50 45.00 41.30
mPLUG-Owl 59.29 24.29 50.00 10.00 60.00 20.00 47.50 10.00 35.14
LLaMA-Ada.-V2 54.29 14.29 52.50 5.00 52.50 5.00 52.50 10.00 30.76
InstructBLIP 75.00 54.29 35.00 5.00 55.00 10.00 47.50 0.00 35.22
VisualGLM-6B 45.71 12.86 45.00 0.00 55.00 10.00 50.00 0.00 27.32
Otter 48.57 10.00 47.50 10.00 55.00 10.00 50.00 0.00 28.88
MultiModal-GPT 45.71 5.71 50.00 20.00 50.00 5.00 45.00 10.00 28.93
PandaGPT 56.43 17.14 50.00 0.00 52.50 5.00 47.50 0.00 28.67

MMICL 76.43 60.00 47.50 35.00 72.50 60.00 47.50 30.00 53.62

Table 21: Fine-grained result of MME benchmark

Method Language Model Vision Model Overall LR AR RR FP-S FP-C CP

MMGPT LLaMA-7B CLIP ViT-L/14 16.0 1.1 23.8 20.7 18.3 5.2 18.3
MiniGPT-4 Vincuna-7B EVA-G 12.0 13.6 32.9 8.9 28.8 11.2 28.3
PandaGPT Vincuna-13B ImageBind ViT-H/14 30.6 15.3 41.5 22.0 20.3 20.4 47.9
VisualGLM ChatGLM-6B EVA-CLIP 33.5 11.4 48.8 27.7 35.8 17.6 41.5
InstructBLIP Vincuna-7B EVA-G 33.9 21.6 47.4 22.5 33.0 24.4 41.1
LLaVA LLaMA-7B CLIP ViT-L/14 36.2 15.9 53.6 28.6 41.8 20.0 40.4
G2PT LLaMA-7B ViT-G 39.8 14.8 46.7 31.5 41.8 34.4 49.8
Otter-I LLaMA-7B CLIP ViT-L/14 48.3 22.2 63.3 39.4 46.8 36.4 60.6
Shikra Vincuna-7B CLIP ViT-L/14 60.2 33.5 69.6 53.1 61.8 50.4 71.7
LMEye Flan-XL CLIP ViT-L/14 61.3 36.9 73.0 55.4 60.0 68.0 68.9
mPLUG-Owl LLaMA-7B CLIP ViT-L/14 62.3 37.5 75.4 56.8 67.3 52.4 67.2
JiuTian FLANT5-XXL EVA-G 64.7 46.6 76.5 66.7 66.5 51.6 68.7

MMICL FLAN-T5-XXL EVA-G 65.24 44.32 77.85 64.78 66.5 53.6 70.64

Table 22: Evaluation of MM benchmark dev set. All the reported performance for the baseline
methods is from the leaderboard of MM benchmark (Liu et al., 2023c). We use the FLAN-T5-XXL
version of MMICL to evaluate the performance.

significant improvement of 10.86, 4.53, and 2.45 points for MSVD-QA (Chen & Dolan, 2011),
NExT-QA (Xiao et al., 2021), and iVQA (Yang et al., 2021) respectively, when compared to the
strongest baselines. It is important to note that our training dataset did not include any videos. This
indicates that MMICL effectively enhances the model’s ability to understand temporal information
in videos.

L OBJECT HALLUCINATION EVALUATION

We test the following VLMs on the POPE benchmark to evaluate their object hallucination perfor-
mance: MMICL, Shikra (Chen et al., 2023a), InstructBLIP (Dai et al., 2023), MiniGPT-4 (Zhu et al.,
2023), LLaVA (Liu et al., 2023b), MM-GPT (Gong et al., 2023) and mPLUG-Owl (Ye et al., 2023).
The result is present in the Table 24.

M DETAILS FOR EVALUATION

In this Section. we provide details for evaluation in our experiments as Sec. 3.

M.1 EVALUATION METRICS

We provide evaluation metrics as Table 25
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Model MSVD QA NExT QA
Multi-choice iVQA

Flamingo-3B (Alayrac et al., 2022) (Zero-Shot) 27.50 - 32.70
Flamingo-3B (Alayrac et al., 2022) (4-Shot) 33.00 - 35.20
Flamingo-9B (Alayrac et al., 2022) (Zero-Shot) 30.20 - 35.20
Flamingo-9B (Alayrac et al., 2022) (4-Shot) 36.20 - 37.70
Flamingo-80B (Alayrac et al., 2022) (Zero-Shot) 35.60 - 40.70
Flamingo-80B (Alayrac et al., 2022) (4-Shot) 41.70 - 44.10

R2A (Pan et al., 2023) 37.00 - 29.30

BLIP-2 (Li et al., 2023d) (FLANT5-XL) 33.70 61.73 37.30
BLIP-2 (Li et al., 2023d) (FLANT5-XXL) 34.40 61.97 49.38

InstructBLIP (Dai et al., 2023) (FLANT5-XL) 43.40 36.10 25.18
InstructBLIP (Dai et al., 2023) (FLANT5-XXL) 44.30 64.27 36.15

MMICL (FLAN-T5-XL) 47.31 66.17 41.68
MMICL (FLAN-T5-XXL) 55.16 64.67 41.13
MMICL (Instruct-FLAN-T5-XL) 53.68 65.33 49.28
MMICL (Instruct-FLAN-T5-XXL) 52.19 68.80 51.83

Table 23: Results of MMICL compared with other VLMs across different video-languages tasks.
For Blip-2 and Instructblip, We concatenate the visual embeddings of all frames and place them on
the top of the textual prompts following Dai et al. (2023).

Table 24: Performance result of different VLMs on the POPE benchmark

Dataset Metric Models

MMICL Shikra InstructBLIP MiniGPT-4 LLaVA MM-GPT mPLUG-Owl

Random

Accuracy 87.29 86.90 88.57 79.67 50.37 50.10 53.97
Precision 94.63 94.40 84.09 78.24 50.19 50.05 52.07

Recall 79.87 79.27 95.13 82.20 99.13 100.00 99.60
F1-Score 86.62 86.19 89.27 80.17 66.64 66.71 68.39

Yes 43.51 43.26 56.57 52.53 98.77 99.90 95.63

Popular

Accuracy 82.70 83.97 82.77 69.73 49.87 50.00 50.90
Precision 85.11 87.55 76.27 65.86 49.93 50.00 50.46

Recall 79.27 79.20 95.13 81.93 99.27 100.00 99.40
F1-Score 82.08 83.16 84.66 73.02 66.44 66.67 66.94

Yes 46.57 45.23 62.37 62.20 99.40 100.00 98.57

Adversarial

Accuracy 80.97 83.10 72.10 65.17 49.70 50.00 50.67
Precision 81.88 85.60 65.13 61.19 49.85 50.00 50.34

Recall 79.53 79.60 95.13 82.93 99.07 100.00 99.33
F1-Score 80.69 82.49 77.32 70.42 66.32 66.67 66.82

Yes 48.57 46.50 73.03 67.77 99.37 100.00 98.67

M.2 VQA TOOLS

We use the same VQA Tools as the original VQA paper (Agrawal et al., 2016) and use it in all metrics
using the VQA accuracy.

N ABLATION STUDY

N.1 ABLATION STUDY ON CONTEXT SCHEME

We conduct ablation experiments using the InstructBLIP-FLANT5-XL as the backbone model in the
following settings to verify the effectiveness of our proposed context scheme:
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Dataset Metrics

MSVD (Chen & Dolan, 2011) Top-1 Acc.
iVQA (Yang et al., 2021) iVQA Acc.
NExT-QA-multiple-choice (Xiao et al., 2021) Top-1 Acc.
NExT-QA-opendomain (Xiao et al., 2021) WUPS Score.

Hateful Memes (Kiela et al., 2020) AUC Score
WebSRC (Chen et al., 2021b) Exact Match
VSR (Liu et al., 2022) Top-1 Acc.
˚VQAv2 (Goyal et al., 2017) VQA Acc.
VizWiz (Bigham et al., 2010) VQA Acc.
IconQA-text (Lu et al., 2021) Top-1 Acc.
IconQA-img (Lu et al., 2021) Top-1 Acc.
ScienceQA-IMG (Lu et al., 2022) Top-1 Acc.
Bongard-HOI (Jiang et al., 2022) Top-1 Acc.
VisDial (Das et al., 2017) Exact Match
NoCaps (Agrawal et al., 2019) Cider Score
A-OKVQA (Agrawal et al., 2019) Top-1 Acc.
˚Flickr (Young et al., 2014) Cider Score
Winoground (Thrush et al., 2022b) Winoground mertic.
Raven IQ Test (Huang et al., 2023a) Top-1 Acc.
Minecraft Top-1 Acc.

Table 25: Summary of the evaluation datasets and metrics. These datasets are used to validate the
general design of MMICL. The datasets marked with ˚ are the hold-in datasets, where their training
set is used in training the MMICL.

Winoground Image-score Text-score Group-score

w/o context scheme 12.25 17.25 6.00
w/o image declaration 4.00 22.25 3.00
w/o in-context format 31.25 25.75 20.00
w/o interrelated images 36.50 31.25 25.75
MMICL 46.00 39.25 38.75

Table 26: Ablation study on Context Scheme for different scores on Winoground.

• w/o context scheme: This model is trained only with instructions using all datasets from
stage 2 of MMICL, without any additional design in context format and model architecture.
It aims to ablate the contribution of the multi-modal instruction tuning.

• w/o image declaration: This model is trained without image declaration but includes
multi-modal data with interconnected images and in-context data. It utilizes all datasets
used in stage 2 of MMICL and intends to evaluate the impact of image declaration design.

• w/o in-context format: This model, devoid of in-context format data, comprises of multi-
modal data with related images and image declaration. It uses all datasets found in stage 2
of MMICL with a single image-text pair and aims to assess the effectiveness of multi-modal
in-context data design.

• w/o interrelated images: This version of the model is trained without any interconnected
images. Its training pipeline contains multi-modal in-context data and image declaration.
It utilizes all datasets used in stage 2 of MMICL, excluding the video/VCR datasets. It
aims to evaluate the contribution of the design which incorporates multi-modal data with
interrelated images

We use the equivalent amount of data as in the stage II of MMICL for the ablation models. We
employ the ablation study on both the general benchmark(MME), Winoground (Thrush et al., 2022b)
and multi-image datasets(IconQA img (Lu et al., 2021) & NLVR2 (Suhr et al., 2018), Raven IQ-
test (Huang et al., 2023a)) to comprehensively evaluate the sources of the observed performance
improvement in MMICL.
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The ablation results in Table 7 affirm that the superiority of MMICL is driven by the collective impact
of our design elements—removing any component cannot guarantee superior performance of our
model. Each component of our design significantly contributes to different aspects of our model.

Ablation of Context Scheme: Our improved results demonstrate the effectiveness of our context
scheme design rather than merely aggregating more pretraining data into the pipeline. The substantial
improvements across all tasks when compared to the w/o context scheme further substantiate its
effectiveness. Lacking the context scheme and our model architecture supporting the scheme, the
model performed poorly across most datasets, except performance on the single image task focusing
on specific object perception (such as Existence, Count). This is presumably due to the alignment of
the additional single image-text pair training with the task’s evaluation format.

Ablation of Interrelated Images: The exclusion of this design leads to a significant decrease in
multi-image understanding ability, evidenced in the NLVR2 and Raven datasets. However, multi-
modal in-context training pipeline still enabled the model to retain the multi-image understanding
ability, achieving an advantage over datasets with multiple images (IconQA img, NLVR2, Raven)
compared to the w/o context scheme. At the same time, the design of multi-modal in-context data
still improves the model on single image understanding over the w/o in-context format, particularly
in understanding the task about specific object perception (Perception), but performed poorly in
more abstract tasks involving recognition and cognition(Cognition). When compared to the w/o
in-context format, it demonstrates a superior understanding of paired image and text data, evident
in the performance in Winoground. This suggests that multi-modal data with interrelated images
provide some assistance in understanding multiple images. However, without the help of multi-modal
ICL data, it will not display superior performance. It aligns with our initial insight.

Ablation of In-context Format: Excluding this design revealed that even with the introduction
of extra datasets, performance improvement on the single image tasks was not achieved. Compared
to other ablation settings, despite the w/o in-context format receiving a noticeable improvement in
tasks related to comprehension and inference(Cognition) compared to other ablation settings, we
observed a significant drop in the task about specific object perception (Perception). Training with
multiple images enhanced its ability to better understand abstract logic information within a single
image and to perform better in downstream tasks(Cognition). However, the model lost its ability
to analyze and recognize specific objects in a single image, leading to a significant decrease in the
perception score of MME. We found out that, by benefiting from learning on interrelated image data,
its understanding ability on multiple images has not significantly declined, exhibiting its superiority
over other settings. The performance in the MME also confirms this, indicating that multi-modal
in-context data offers significant advantages for comprehending multiple images and enhancing the
model’s ability to understand abstract information in the signal image.

Ablation of Image Declaration: The removal of image declaration led to a stark decline in
performance in understanding complex image-text relationships (Winoground) due to a lack of
explicit modeling between image-text references. This phenomenon was also observed in tasks
that involved understanding multiple image relations(Raven, IconQA img, NLVR2). However, it
can be observed lacking interrelated images harms the model’s multi-image understanding more
than missing image declarations, given the relatively better performance of model without image
declarations. This indicates the importance of image declaration in handling the multi-image and
image-text relationships.

Ablation of In-context Learning Ability: The ablation results in Table 27 clarify the significance of
the proposed context scheme for boosting the in-context learning ability of MMICL. The effectiveness
of MMICL in improving the in-context learning ability of the VLM is attributed to the integration of
all three designs in the context scheme, not merely the in-context learning format in the designed
scheme. Notably, ICL-only achieves the most substantial enhancements compared to the other
settings in the Vizwiz dataset. This highlights the efficacy of tuning with in-context format data to
augment the model’s comprehension of in-context instances. However, the modest advancements
on the Flickr dataset indicate that, in the absence of multi-image instruction tuning, the model finds
it challenging to effectively leverage in-context examples for enhancing its performance in tasks
without fixed output formats, such as image captioning.
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Task ICL example MMICL w/o context scheme w/o in-context format w/o interrelated images

VizWiz
w/o ICL example 27.10 28.13 15.90 23.43
w ICL example(5) 42.66 36.23 28.33 37.13

∆ 15.56 8.10 12.43 13.70

Flickr
w/o ICL example 83.94 77.84 65.33 76.88
w ICL example(5) 88.11 79.38 65.95 77.09

∆ 4.17 1.54 0.62 0.18

Table 27: An Ablation Study of the Contribution of the Context Scheme to the Model’s In-Context
Learning Ability

O BASELINES

Baselines We primarily compare MMICL with recently proposed powerful multi-modal approaches,
including:

(1) Flamingo (Alayrac et al., 2022) where a VLM is trained on large-scale multi-modal- web corpora
containing arbitrarily interleaved text and images;

(2) KOSMOS-1 (Huang et al., 2023a) which is trained from scratch on web-scale multi-modal
corpora;

(3) BLIP-2-FLAN-T5 (Li et al., 2023d) where an instruction-tuned Flan-T5 (Chung et al., 2022) is
connected with a powerful visual encoder to perform a series of multi-modal tasks;

(4) InstructBLIP-FLAN-T5 (Dai et al., 2023), a recently proposed instruction tuning enhanced
multi-modal agents with FLAN-T5 with converted multi-modal datasets and the LLaVA (Liu et al.,
2023b) dataset generated by GPT-4 (OpenAI, 2023);

(5) Shikra (Chen et al., 2023a), a VLM that can handle spatial coordinate inputs and outputs in
natural language without the need for extra vocabularies or external plugin models. All inputs and
outputs of Shikra are in natural language form.

(6) Otter (Li et al., 2023a), an open-source implementation of flamingo (Alayrac et al., 2022). By
utilizing multi-modal instruction in-context tuning data, Otter fine-tunes Openflamingo to augment
its instruction comprehension capabilities while maintaining its ability to learn in context;

(7) Ying-VLM (Li et al., 2023e), a VLM model trained on Multi-Modal multilingual instruction
tuning dataset, showcasing its potential to answer complex questions requiring world knowledge,
generalize to unseen video tasks, and comprehend unseen instructions in Chinese.

P OOD GENERALIZATION TO UNSEEN DOMAIN

Method Shot Top-1 Acc.

MiniGPT-4 (Vincuna-7B) Zero-Shot 35.10
MiniGPT-4 (Vincuna-13B) Zero-Shot 48.40

MMICL (FLAN-T5-XL) Zero-Shot 55.41
MMICL (FLAN-T5-XL) 4-Shot 64.05
MMICL (FLAN-T5-XXL) 8-Shot 65.41

Table 28: Results of generalization of MMICL to unseen domain in Minecraft. Results show that
MMICL is able to generalize to unseen domains and tasks given a few examples.

In an unseen challenging domain with limited exemplars, analyzing regular patterns, reasoning, and
learning new knowledge (OOD Generalization to unseen domain) is a great way to test multi-modal
ICL ability.

We construct a task using Minecraft (Chen et al., 2024a; 2023c; Cipollone et al., 2014), which requires
the VLM to identify whether an animal (i.e., cow, llama, chicken, donkey, and so on) is present in
case (d) of Fig. 1.
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Model rec ocr know gen spat math total

InstructBlip(Flant5-XXL) 17.10 8.40 5.50 2.60 8.00 3.80 14.10
MMICL(InstructBlip-Flant5-XXL) 29.90 14.00 17.40 11.20 18.10 3.80 24.80

Table 29: Performance metrics for different models.

We collect 550 cases and transfer the task to a vision-to-text question-answering task to evaluate
the performance of OOD generalization of MMICL. The results are shown in Table 28. Results
demonstrate that MMICL is able to generalize to the Minecraft domain even if the images are
extremely different compared to the images used by training at Stage I and II as Sec. 2.4.

Q DETAILS OF SCIENCEQA

In the test set of Science-QA, each item consists of a question and several choices. Out of 4221 items,
we sampled 2017 instances that contain multimodal information incorporating both text and image, a
subset we refer to as ScienceQA-IMG, while the remainder only includes text. However, we observe
that not all questions within these 2017 items necessarily require answers based on image information.
The standard for annotation is whether an understanding of the image sample is essential to answer
the questions in the test set. 8

To illustrate this, we provide two examples of questions and their corresponding choices:

• Question: Which animal is also adapted to be camouflaged among dead leaves? Choices: [
"strawberry poison frog", "Surinam horned frog" ];

• Question: Which property do these three objects have in common? Choices: [’shiny’,
’slippery’, ’opaque’].

Clearly, the first question can be answered without reference to image, while the second can not. As
such, ScienceQA-IMG can be divided into two groups: questions that require images for answers
(1012) and those that do not (1005).

R FREE-FORM ANSWERING EVALUATION

MM-VET (Yu et al., 2023) is an evaluation benchmark that examines VLMs on complex multi-modal
tasks. It requires free-form answers and is evaluated by GPT-4, providing a different perspective on
the model’s capabilities.

It’s worth noting that compared to the Flant5 backbone’s instructblip model in table 29, MMICL,
with the identical backbone, shows significant improvement on MM-VET. This demonstrates that
our proposed method prevents the model from overfitting to a specific data structure and substan-
tially enhances the model’s free-form answering capability. Meanwhile, we can observe that the
performance of MMICL on MM-VET is relatively low, which is due to MMICL using the Flant5
backbone model. As T5 is mainly fine-tuned on NLP benchmarks containing many multi-choice QA
and classification datasets, it tends to output shorter content during free-form question answering,
which is disadvantageous when evaluated with GPT4.

S PERFORMANCE COMPARISON ON THE MULTI-IMAGE DATASETS

We evaluated the MMICL model against other models with multi-modal instruction tuning on various
multi-image datasets, including the Raven-IQ dataset and a random sample of 2000 instances from
Nlvr2 and IconQA-img datasets. The query prompts for different methods are available in Table ??.
Our results in Table 30 demonstrate that our approach consistently outperforms others.

8The minimum hourly wage in the United States is near $7.5, which can be found at https://www.worker.
gov/. On average, annotating an example takes 30 seconds. Consequently, the cost per annotator amounts to
$262.5.
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Method NLVR2 IconQA-img Raven

InstructionBlip 53.95 45.10 10.00

OTTER 47.2 34.10 22.0

MMICL 66.6 60.85 34.00

Table 30: Performance comparison of different models on multi-image databases

Method Tasks Query prompt

InstructionBlip

NLVR2 <image><image>Carefully read the statement and evaluate the associated
images, based on your analysis of the two images and statement, can you
confirm if the statement: {Question} is correct? True or False?

IconQA-img <image>...<image> Use the images as a visual aid to help you answer the
questions accurately. Given the options blow, based on the first image,
from the following images, select the most suitable image for the question:
{Question}. Options: {Options}. Select the right image.

Raven <image>...<image>User: Here are j images. Consider the relationships
of the images to infer the pattern and make the correct decision. Is the
last image follows the pattern. Yes or No?

Winoground <image><image>User: caption 0 is {Caption 0}.zn caption 1 is {Caption
1}.zn Given the images and captions, determine image 0 match caption
1? Yes or no?

Otter

NLVR2 <image><image>User: Carefully read the statement and evaluate the as-
sociated images, based on your analysis of the two images and statement,
can you confirm if the statement: {Question} is correct? True or False?
GPT:<answer>

IconQA-img <image>...<image>User: Use the images as a visual aid to help you
answer the questions accurately. Given the options blow, based on the
first image, from the following images, select the most suitable image for
the question: {Question}. Options: {Options}. Select the right image.
GPT:<answer>

Raven <image>...<image>User: Here are j images. Consider the relationships
of the images to infer the pattern and make the correct decision. Is the
last image follows the pattern. Yes or No? GPT:<answer>

Winoground <image><image>User: caption 0 is {Caption 0}.zn caption 1 is {Caption
1}.zn Given the images and captions, determine image 0 match caption
1? Yes or no? GPT:<answer>

MMICL

NLVR2 The image 0 is [IMG0]{image}.zn The image 1 is [IMG1]{image}.zn
The image 0 is the on the left and the image 1 is on the right.zn Given
the image 0 and image 1 as visual aid to answer the following question:
{Question} is correct? True or False?

IconQA-img The image 0 is [IMG0]{image}.zn ... The image j is [IMGj]{image}.zn
Given the options blow, based on the photo [IMG0], select the most suit-
able image for the following question: {Question}. Options: {Options}.
Select the right image.

Raven Here are j images.zn image 0: [IMG0]{image}...image j: [IMGj]{image}
Consider the relationships of images to infer the pattern and make correct
decision whether the image 0: [IMG0] follows the pattern. Yes or No?

Winoground image 0 is [IMG0]{image}.zn image 1 is [IMG1]{image}.zn
caption 0 is {Caption 0}.zn caption 1 is {Caption 1}.zn Given the images
and captions, determine if image 0 matches caption 1? Yes or no?

POPE Questions is related to image 0: [IMG0]{image}.
Please analyze the image 0 and pay attention to the objects in the image
0 for the question:{Question}

Table 31: Query Prompt of different methods on different tasks
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T LIMITATIONS

T.1 POTENTIAL OVERFITTING:

We mitigate the risk of overfitting specific data structures by expanding the instruction templates with
ChatGPT, ensuring diversity in the MIC dataset. The result in Table 28 demonstrates the generalization
ability of MMICL to an unseen domain in Minecraft. This out-of-domain understanding ability
demonstrates that MMICL does not overfit a specific data structure.

T.2 CONTEXT LENGTH CONSTRAINTS:

The context length of the backbone language model imposes restrictions on the number of images that
can be included in the input. This limitation renders MMICL unable to accommodate an unlimited
number of images. Consequently, during MIC tuning, we integrate up to eight images per instance.
Notably, MMICL demonstrates robust generalization capabilities beyond this constraint. For instance,
in the context of video datasets, MMICL maintains excellent performance with inputs of up to 12/16
frames. We attribute this impressive generalization to the utilization of relative position embeddings
in the architecture, as employed by Flant5 (Chung et al., 2022).

T.3 MODEL EXPLORATION ON DECODER-ONLY ARCHITECTURES:

We acknowledge that our exploration has primarily focused on the T5 (Raffel et al., 2023) series
models, and the effectiveness of our proposed approach with decoder-only architectures has not been
comprehensively investigated.

39


	Introduction
	MMICL
	Model Architecture
	The Design of Context Scheme of MMICL
	Image Declaration
	Multi-modal Data with Interconnected Images
	Unified Multi-modal In-Context Format for Different Tasks

	Multimodality In-Context Learning (MIC) Dataset Construction
	Training Paradigm

	Experiment
	Experimental Setup
	General Performance Evaluations
	Performance Prob
	Understanding Text-to-Image Reference
	Understanding Complex Image-to-Image Relationship

	Learning from In-Context Multi-Modal Demonstrations
	Hallucination and Language Bias of VLMS
	Ablation Study

	Conclusion
	Acknowledgement
	Related Work
	Vision-Language Pretraining
	Multi-Modal Instruction Tuning
	In-Context Learning

	Multi-modal ICL Data
	Data Resource
	Data Construction
	Multi-modal Data with interconnected images
	Unified Multi-Modal In-Context Format For Different Tasks
	Multi-modal Data with Video Frames

	Model structure
	Data Balance
	Instruction template for Data construction
	Experiment Details
	MME Benchmark
	MMBench benchmark
	Understanding Multiple Images in the Multi-Modal Prompt
	Object Hallucination Evaluation
	Details for Evaluation
	Evaluation Metrics
	VQA Tools

	Ablation Study
	Ablation Study on Context Scheme

	Baselines
	OOD Generalization to Unseen Domain
	Details of ScienceQA
	Free-form Answering Evaluation
	Performance comparison on the Multi-image Datasets 
	Limitations
	Potential Overfitting:
	Context Length Constraints:
	Model Exploration on Decoder-Only Architectures:


