
Published as a conference paper at ICLR 2025

SOLVING DIFFERENTIAL EQUATIONS WITH
CONSTRAINED LEARNING

Viggo Moro
University of Oxford
viggo.moro@cs.ox.ac.uk

Luiz F. O. Chamon
École polytechnique
luiz.chamon@polytechnique.edu

ABSTRACT

(Partial) differential equations (PDEs) are fundamental tools for describing natu-
ral phenomena, making their solution crucial in science and engineering. While
traditional methods, such as the finite element method, provide reliable solutions,
their accuracy is often tied to the use of computationally intensive fine meshes.
Moreover, they do not naturally account for measurements or prior solutions, and
any change in the problem parameters requires results to be fully recomputed.
Neural network-based approaches, such as physics-informed neural networks and
neural operators, offer a mesh-free alternative by directly fitting those models to the
PDE solution. They can also integrate prior knowledge and tackle entire families
of PDEs by simply aggregating additional training losses. Nevertheless, they are
highly sensitive to hyperparameters such as collocation points and the weights
associated with each loss. This paper addresses these challenges by developing
a science-constrained learning (SCL) framework. It demonstrates that finding a
(weak) solution of a PDE is equivalent to solving a constrained learning problem
with worst-case losses. This explains the limitations of previous methods that
minimize the expected value of aggregated losses. SCL also organically integrates
structural constraints (e.g., invariances) and (partial) measurements or known solu-
tions. The resulting constrained learning problems can be tackled using a practical
algorithm that yields accurate solutions across a variety of PDEs, neural network
architectures, and prior knowledge levels without extensive hyperparameter tuning
and sometimes even at a lower computational cost.

1 INTRODUCTION

(Partial) differential equations (PDEs) are key tools in science and engineering, playing a central
role in the solution of inverse problems, systems engineering, and the description of natural phenom-
ena (Lustig et al., 2008; Potter et al., 2010; Molesky et al., 2018; Evans, 2010). As such, a variety
of numerical methods have been developed to approximate their solutions, such as the well-known
finite element method (FEM). Despite their celebrated precision and approximation guarantees, these
methods provide solutions to a single PDE at a time. Any change to the problem, from boundary con-
dition to mesh size, requires the solution to be recomputed. They are therefore unable to incorporate
prior knowledge, such as real-world measurements or known solutions to similar equations (Brenner
& Scott, 2007; LeVeque, 2007; Katsikadelis, 2016).

Methods based on neural networks (NNs), such as physics-informed NNs (PINNs) (Lagaris et al.,
1998; Raissi et al., 2019; Lu et al., 2021b) and neural operators (NOs) (Li et al., 2021; Lu et al., 2021a;
Rahman et al., 2023), have been developed with these challenges in mind. Rather than discretizing
the PDE, they directly fit a NN to its solution. They can therefore be trained to simultaneously solve
entire families of PDEs and interpolate known solutions by simply incorporating additional losses
to their training objectives (Li et al., 2021; Cho et al., 2024; Li et al., 2024). Yet, these methods
are highly sensitive to hyperparameters such as the weights used to combine the training losses
and the collocation points used to evaluate the PDE residuals, which often leads to low quality or
trivial solutions (Krishnapriyan et al., 2021; Wight & Zhao, 2021; Wang et al., 2022b;a). This has
prompted a variety of heuristics to be proposed based on ad hoc weight updates (Wang et al., 2021a;
Maddu et al., 2022) and adaptive or causal sampling Nabian et al. (2021); Krishnapriyan et al. (2021);
McClenny & Braga-Neto (2023); Penwarden et al. (2023) (see Appendix G for further related works).

1

Published as a conference paper at ICLR 2025

This paper shows that these limitations are not methodological, but epistemological. It is not an issue
of how the problem is solved, but which problem is being solved. To do so, it

• proves that obtaining a (weak) solution of a PDE requires solving a constrained learning problem
with worst-case losses (Prop. 3.1), i.e., it is not enough to use either constrained formulations (Lu
et al., 2021b; Basir & Senocak, 2022) or worst-case losses (Wang et al., 2022a; Daw et al., 2023);

• incorporates prior scientific knowledge on the structure (e.g., invariance) and value (e.g., measure-
ments, set points) of the solution without resorting to specialized models or data transforms (Sec. 3).
We therefore dub this approach science-constrained learning (SCL);

• develops a practical algorithm that foregoes the careful selection of loss weights and collocation
points. Contrary to other methods, it explicitly approximates the (weak) solution of PDEs and
yields reliability metrics that capture the difficulty of fitting specific PDE parameters and/or data
points (Sec. 4);

• illustrates the effectiveness (accuracy and computational cost) of SCL (Sec. 5) for a diverse set of
PDEs, NN architectures (e.g., MLPs and NOs), and problem types (solving a single or a parametric
family of PDEs; interpolating known solutions; identifying settings that are difficult to fit).

2 PROBLEM FORMULATION

2.1 BOUNDARY VALUE PROBLEMS

Consider a (bounded, connected, open) region Ω ⊂ Rd with (smooth) boundary ∂Ω and a (partial) dif-
ferential operator Dπ with coefficients π ∈ Π ⊂ Rq defined on the domain D = Ω× (0, T]. Here, π
captures a (finite) set of parameters of the phenomenon, such as the diffusion rate or viscosity. Given
a space F of functions mapping D to R, we define a boundary value problem (BVP) as

find u ∈ F
such that Dπ[u](x, t) = τ(x, t), (x, t) ∈ Ω× (0, T] (PDE)

u(x, 0) = h(x, 0), x ∈ Ω̄ (IC)
u(x, t) = h(x, t), (x, t) ∈ ∂Ω× (0, T] (BC)

(BVP)

where τ : D → R is a forcing function and h : B → R describes the boundary (BC) and initial (IC)
conditions over B = (Ω̄×{0})∪(∂Ω×(0, T]) for Ω̄ = Ω∪∂Ω. In what follows, we always consider
the initial condition as part of the boundary conditions and refer to them jointly as BC. Note that the
developments in this paper also apply to formulations of (BVP) involving other BCs (e.g., Neumann,
periodic), parameterized BCs, and vector-valued PDEs. We showcase a variety of phenomena that
can be described by (BVP) in App. A and refer to, e.g., (Evans, 2010), for a more detailed treatment.

In general, a (strong) solution of (BVP) need not exist in any function space F . This motivates the
rise of relaxations such as the weak formulation that replaces the pointwise equation (PDE) in (BVP)
by the integral equation1∫

D
Dπ[u](x, t)φ(x, t) dxdt =

∫
D
τ(x, t)φ(x, t) dxdt, for all φ ∈ T . (1)

The φ are known as test functions and T is typically taken to be a Sobolev space due to its natural
compatibility with this setting (see App. B for further details). The name weak formulation comes
from the fact that a solution of (BVP) (when it exists) is also a solution of (1), although the converse
is not necessarily true. Indeed, (1) allows for a wider range of solutions with less stringent regularity
requirements, particularly with respect to continuity and differentiability (Evans, 2010). The BCs
of (BVP) can often be homogeneized (i.e., h ≡ 0) and imposed implicitly through T , thus fully
describing its weak solution by (1) (Brenner & Scott, 2007; LeVeque, 2007; Katsikadelis, 2016).

2.2 SOLVING BOUNDARY VALUE PROBLEMS

There exists a wide range of numerical methods for solving BVPs, most of which rely on dis-
cretizing (BVP) (e.g., finite difference method, FDM) or its weak formulation (e.g., FEM). Their

1Typically, the weak formulation only considers the spatial domain x, handling t separately using time-
stepping methods (Thomee, 2013). Still, (1) is not uncommon and can be used to obtain weak formulations for
parabolic PDEs (see, e.g., (Knabner & Angerman, 2003; Evans, 2010; Steinbach & Zank, 2020)).

2

Published as a conference paper at ICLR 2025

well-established approximation guarantees, accuracy, and stable implementations make them ubiqui-
tous in scientific and engineering applications (Brenner & Scott, 2007; LeVeque, 2007; Katsikadelis,
2016). These classical methods, however, only tackle one BVP at a time and do not naturally
incorporate prior knowledge, such as measurements or known (partial) solutions. These challenges
can be addressed by directly parameterizing the solution u of BVPs, most notably using NNs. While
this approach may not achieve the precision of classical methods (Krishnapriyan et al., 2021; Wight
& Zhao, 2021; Grossmann et al., 2024; McGreivy & Hakim, 2024), they are able to simultaneously
provide solutions for entire families of BVPs and extrapolate new solutions from existing ones.
Generally speaking, these methods can be separated into unsupervised, that seek to solve (BVP)
directly, and supervised, that leverage previously computed or measured solutions.

Unsupervised methods. These approaches train a model uθ : D × Π → R with parameters θ ∈
Θ ⊂ Rp (e.g., a multilayer perceptron, MLP) to fit (BVP). This is the case, for instance, of physics-
informed neural networks (PINNs) that train uθ by solving, for fixed weights µpde, µbc ≥ 0,

minimize
θ∈Θ

µpdeℓpde(θ) + µbcℓbc(θ), (PI)

ℓpde(θ) ≜
I∑
i=1

[
1

M

M∑
m=1

(
Dπi [uθ(πi)](xm, tm)− τ(xm, tm)

)2
]

, (xm, tm) ∈ D, πi ∈ Π,

ℓbc(θ) ≜
1

N

N∑
n=1

(
uθ(xn, tn)− h(xn, tn)

)2

, (xn, tn) ∈ B.

We write uθ(π)(x, t) to emphasize that we evaluate uθ(π), which approximates the solution of (BVP)
with coefficients π, at (x, t) ∈ D. In practice, the input of the model uθ is simply (x, t, π) ∈ D ×Π.
The losses ℓpde and ℓbc promote the requirements in (PDE) and (IC)–(BC) from (BVP), respectively,
although the former is computed using automatic differentiation rather than discretization. Though
the majority of PINNs target a single BVP, i.e., I = 1 in (PI), their extension to parameterized
families of BVPs has been explored (Cho et al., 2024).

Supervised methods. Rather than directly solving the BVP, these approaches fit the model uθ to
a set of (partial) solutions u†n of (BVP). In this setting, uθ is often a neural operator (NO) capable
of handling infinite-dimensional (functional) inputs and outputs, such as forcing functions τ and
ICs h(x, 0). Given, e.g., forcing-solution pairs (τj , u

†
j), these NOs are trained by solving

minimize
θ∈Θ

1

J

J∑
j=1

∥∥uθ(τj)− u†j
∥∥2
L2(D)

. (PII)

In practice, the functions τn and u†n are discretized (in the time or spectral domain) to enable
computations (Li et al., 2021; Lu et al., 2021a; Hao et al., 2023; Wei & Zhang, 2023). While it is not
uncommon to combine (PI) and (PII), these semi-supervised methods typically rely on MLPs (Raissi
et al., 2019; Lu et al., 2021b), since it can be challenging to evaluate D[uθ] for NOs (Li et al., 2024).

Limitations. Though effective in many applications, these methods are very sensitive to their hyper-
parameters. Indeed, the choice of collocation points (x, t), PDE coefficients πi, and weights µpde, µbc
affect both the quality and computational complexity of (PI) (Krishnapriyan et al., 2021; Wight &
Zhao, 2021; Wang et al., 2021a). The same holds for the discretization of the objective in (PII) (Li
et al., 2021; Hao et al., 2023; Wei & Zhang, 2023). Supervised methods face the additional challenge
that acquiring the PDE solutions {u†n} used in (PII) can be expensive (relying on, e.g., classical
methods) and it is challenging to obtain good performance from small datasets. This issue is aggra-
vated by the heterogeneous difficulty of fitting each solution. A variety of heuristics for collocation
points (Nabian et al., 2021; Daw et al., 2023; Penwarden et al., 2023), weights (Wang et al., 2021a;
Maddu et al., 2022; McClenny & Braga-Neto, 2023), and PDE solutions (Pestourie et al., 2023;
Musekamp et al., 2024) have been put forward to mitigate these challenges. Yet, they generally
focus on specific “failure modes” or BVPs and seldom address the non-trivial interactions of these
yperparameters, limiting their effectiveness.

3 SCIENCE-CONSTRAINED LEARNING

In this section, we argue that the challenges faced by previous NN-based BVP solvers arise not
because of how (PI) and (PII) are solved, but because they are not the appropriate problems to solve in

3

Published as a conference paper at ICLR 2025

the first place. To do so, we show that obtaining a (weak) solution of (BVP) is equivalent to solving a
constrained learning problem with worst-case losses. Hence, it is not enough to use (approximations
of) worst-case losses as in, e.g., (Wang et al., 2022a; Daw et al., 2023), or adapting loss weights as
in, e.g., (Wang et al., 2021a; Lu et al., 2021b; McClenny & Braga-Neto, 2023). Building on this
result, we show how to incorporate other forms of scientific knowledge that are not mechanistic (i.e.,
PDEs) without resorting to specialized models, including structural information (e.g., invariances)
and observations (measurements, simulations) of the solution. The resulting science-constrained
learning (SCL) problem accommodates a variety of knowledge settings, from unsupervised to
supervised, and is amenable to a practical algorithm capable of effectively tackling entire families of
BVPs and extrapolating solutions from existing ones (Sec. 4 and 5).

In the remainder of this paper, we use uθ to refer to any parameterized model (MLP, NO, etc.). For
clarity, we derive our results for a single BVP instance, omitting the dependence on π and/or τ . We
consider these extensions at the end of the section.

Mechanistic (PDE) knowledge. We begin by showing how weak solutions of (BVP) can be
obtained using constrained learning. To do so, we relax the BCs of (BVP) to relate the weak
formulation (1) to a distributionally robust constraint. The BCs are then reintroduced using a
constrained formulation. We start with the following proposition, where W k,p refers to the (k, p)-th
order Sobolev space (see App. B) and P2(S) denotes the space of square-integrable probability
distributions supported on S.

Proposition 3.1. Let u† ∈W k′,2(D), where k′ ≥ 1 is the degree of the differential operator D, be

such that supψ∈P2(D) E(x,t)∼ψ

[(
D[u†](x, t)− τ(x, t)

)2]
= 0. If the dimension d of Ω satisfies d ≤

4k′ − 1 , then u† satisfies (1) with T =W k′,2(D).

A proof is provided in Appendix B. The equality constraint suggested by Prop. 3.1 enforces (1), but
does not impose the BCs of (BVP). Since they must hold for all (x, t) ∈ B, it is more appropriate
to incorporate them using a worst-case loss, namely, sup(x,t)∈B(uθ(x, t)− h(x, t))2, rather than an
average loss as in (PI). As long as (x, t) 7→ (uθ(x, t)−h(x, t))2 is a function in L2, this is equivalent
to a distributionally robust loss similar to the one from Prop. 3.1 (see Appendix B). We therefore
conclude that a weak solution of (BVP) is obtained by solving

minimize
θ∈Θ

sup
ψ∈P2(B)

E(x,t)∼ψ

[(
uθ(x, t)− h(x, t)

)2]
subject to sup

ψ∈P2(D)

E(x,t)∼ψ

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵ,
(PIII)

where ϵ ≥ 0 controls the trade-off between fitting the PDE and the BCs when uθ is not expressive
enough to satisfy both.

Prop. 3.1 elucidates the challenges arising from the choice of collocation points in the unsupervised
approach (PI), most notably PINNs. Indeed, it is not enough to use a fixed distribution (e.g., uniform):
satisfying (1) requires training against all distributions ψ ∈ P2. The use of worst-case losses in a
constrained formulation is what makes (PIII) considerably different from previous adaptive sampling
methods and loss-weighting schemes. In fact, contrary to previous approaches, by (approximately)
solving (PIII) (as detailed in Sec. 4), we indeed (approximately) solve (BVP). At the same time,
Prop. 3.1 establishes a limitation of learning-based solvers by restricting the smoothness of their
solutions (essentially, solutions in W (d+1)/4,2). This can be an issue for large-scale dynamical
systems, such as those found in smart grid applications, or when transforming higher-order PDEs
in higher-dimensional first-order systems. While Prop. 3.1 describes a sufficient condition for u† to
satisfy (1), a necessary condition can be obtained by restricting P2 to sufficiently smooth distributions,
namely, those belonging to a Sobolev space.

Structural knowledge. The constrained form of (PIII) suggests that other information can be
incorporated as long as they can be formulated as learning objectives, i.e., statistical losses. This is
the case of certain forms of structural knowledge. Indeed, it is often possible to obtain information
about the structure of the solution of a BVP, such as invariances or symmetries, without explicitly
solving it (Olver, 1979; Akhound-Sadegh et al., 2023). While this structural information is already

4

Published as a conference paper at ICLR 2025

encoded in (PIII), using it explicitly can reduce training time as well as the number of both collocation
points and/or observations [as in (PII)] needed. It also helps ensure the physical validity of outcomes
by explicitly avoiding degenerate solutions, a common failure mode of unsupervised methods such
as PINNs (Krishnapriyan et al., 2021) (we do not observe such issues with (PIII), see Sec. 5.1).
Structural knowledge can also be used to remove solution ambiguities, e.g., for the eikonal equation
that is invariant to the sign of the solution (see App. A).

While structural knowledge can sometimes be incorporated into the model uθ, e.g., using equivariant
architectures (Cohen & Welling, 2016; Batzner et al., 2022), it can also be imposed as a worst-
case constraint. This is convenient for when such models are intricate to design. Consider, for
example, a (finite) invariance group G whose elements γi act on the domain (x, t) ∈ D such
that u†(x, t) = u†[γi(x, t)], where u† is a solution of (BVP). This invariance can be enforced by

sup
ψ∈P2(D)

E(x,t)∼ψ

[(
uθ(x, t)− uθ[γi(x, t)]

)2] ≤ ϵ, γi ∈ G. (2)

Notice that we use the same distributionally robust formulation as for the BCs in (PIII). Similar
constraints can be constructed for other structures, such as equivariance. In contrast to (PIII), where
we want ϵ ≈ 0, it can be beneficial to use a larger values in (2) to accommodate models uθ that
cannot fully capture the solution invariances.

Observational knowledge. In addition to mechanistic (i.e., PDEs) and structural knowledge,
we also consider (partial, noisy) observations of the BVP solution, obtained either via classical
methods (e.g., FEM) or real-world measurements. Although this type of information is commonly
associated with NOs, seen as they are typically trained in a supervised manner as in (PII), it is not
limited to that architecture. Given observations u†j , j = 1, . . . , J , of solutions of (BVP), we may
formulate constraints of the kind

E(x,t)∼m

[(
uθ(x, t)− u†j(x, t)

)2] ≤ ϵ, j = 1, . . . , J , (3)

where m is some distribution (typically uniform) of points on D. Note that (3) is simply a different
way of writing the L2-norm from the objective of (PII). However, rather than averaging L2 losses,
(3) constraints the maximum error across data points. By considering each sample individually, it
accounts for the heterogeneous difficulty of fitting them and enables the tolerance ϵ to be adjusted
individually for each observation, e.g., using larger values for noisier samples.

Science-constrained learning. Combining (PIII) with (2) and (3), we are able to formulate a
general SCL problem accommodating all knowledge sources considered so far. Explicitly,

minimize
θ∈Θ

sup
ψ∈P2(B)

E(x,t)∼ψ

[(
uθ(x, t)− h(x, t)

)2]
(M)

subject to sup
ψ∈P2(D)

E(x,t)∼ψ

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵpde (M)

sup
ψ∈P2(D)

E(x,t)∼ψ

[(
uθ(x, t)− uθ[γi(x, t)]

)2] ≤ ϵs, γi ∈ G (S)

E(x,t)∼m

[(
uθ(x, t)− u†j(x, t)

)2] ≤ ϵo, j = 1, . . . , J . (O)

(SCL)

Note that any subset of the constraints in (SCL) can be used depending on the available information.
The objective of (SCL) is also not restricted to the BCs and can be replaced by any of the other terms.
In fact, (SCL) can be formulated without an objective, i.e., as a feasibility problem.

It is straightforward to extend (SCL) to simultaneously solve a parameterized family of BVPs.
However, rather than discretizing the parameter space as in (PI), we rely on a worst-case formulation

5

Published as a conference paper at ICLR 2025

that considers all of its possible values rather than only a finite subset. Explicitly, we rewrite (SCL) as

minimize
θ∈Θ

sup
ψ∈P2

E(x,t,π)∼ψ, τ∼p

[(
uθ(π, τ)(x, t)− h(x, t)

)2]
(M)

subject to sup
ψ∈P2

E(x,t,π)∼ψ, τ∼p

[(
Dπ[uθ(π, τ)](x, t)− τ(x, t)

)2] ≤ ϵpde (M)

sup
ψ∈P2

E(x,t,π)∼ψ, τ∼p

[(
uθ(π, τ)(x, t)− uθ(π, τ)

[
γi(π)(x, t)

])2
]
≤ ϵs, γi ∈ G (S)

E(x,t)∼m

[(
uθ(πj , τj)(x, t)− u†j(x, t)

)2] ≤ ϵo, j = 1, . . . , J , (O)
(SCL′)

where m, p are fixed distributions (e.g., uniform), u†j is a solution of (BVP) with coefficients πj
and forcing function τj , and the invariance γi is now parametrized to account for the fact that its
action may depend on π (e.g., translation invariance with different strides). Note that the ψ are
now supported on B × Π or D × Π, which we omit in (SCL′) for clarity. Hence, they target not
only BVPs (parameters π) that are hard to fit, but also the regions of the domain responsible for
this difficulty, enabling performances that would require fine discretizations (see Sec. 5). Yet, this
approach is not directly applicable to infinite-dimensional parameters (e.g., τ) as it requires sampling
from a function space. We leave this extension for future work, considering here a fixed distribution p.

In the next section, we develop a practical algorithm to tackle (SCL) and (SCL′) by (i) leveraging
non-convex duality results from constrained learning (Chamon & Ribeiro, 2020; Chamon et al., 2023)
and (ii) deriving explicit approximations of the suprema over ψ from which we can sample efficiently.

4 ALGORITHM

To develop a practical algorithm for (SCL) [and (SCL′)], we need to overcome the fact that it is (i) a
non-convex constrained optimization problem involving (ii) worst-case losses. A typical approach
to (i) is to combine the all losses as penalties into a single training objective as in (PI). Though
penalties and constraints are essentially equivalent in convex optimization (strong duality, (Bertsekas,
2009)), this is not the case in the non-convex setting of (SCL). Hence, regardless of how the weights µ
in (PI) are adapted (e.g., Wang et al. (2021a); Wight & Zhao (2021); Lu et al. (2021b); Basir &
Senocak (2022)), it need not provide a solution of (SCL).

We overcome this issue by first tackling (ii) using the following proposition:
Proposition 4.1. Let z 7→ ℓ(z) ∈ L2. Then, for all δ > 0 there exists α < supz ℓ(z) such that
supψ∈P2 Ez∼ψ

[
ℓ(z)

]
≤ Ez∼ψα

[
ℓ(z)

]
+δ, where P2 ∋ ψα(z) ∝

[
ℓ(z)−α

]
+

for [a]+ = max(0, a).

A proof based on Robey* et al. (2021) can be found in App. B. Prop. (4.1) shows that the worst-case
losses in (SCL)/(SCL′) can be approximated arbitrarily well by an expectation with respect to ψα, a
distribution proportional to a truncation of the underlying loss. For clarity, we consider (SCL) with
only constraint (M), but similar manipulations hold for the constraints (S) and (O) as well as (SCL′).
Explicitly, (SCL)(M) can be written as

minimize
θ∈Θ

E(x,t)∼ψbc
α

[(
uθ(x, t)− h(x, t)

)2]
subject to E(x,t)∼ψpde

α

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵ,
(PIV)

for ψbc
α (x, t) ∝

[(
uθ(x, t) − h(x, t)

)2 − α
]
+

and ψpde
α (x, t) ∝

[(
D[uθ](x, t) − τ(x, t)

)2 − α
]
+

supported on B and D respectively.

Observe that (PIV) now has the form of a constrained learning problem, i.e., a constrained optimiza-
tion problem with statistical losses. We can therefore use non-convex duality results from (Chamon &
Ribeiro, 2020; Chamon et al., 2023; Elenter et al., 2024) to show that, under typical conditions from
(unconstrained) learning theory and for rich enough parametrization, its solution can be approximated
by solving the empirical dual problem

maximize
λ≥0

min
θ∈Θ

L̂(θ, λ), (DIV)

6

Published as a conference paper at ICLR 2025

where L̂ is the empirical Lagrangian of (PIV) based on samples (xbc
n , t

bc
n) ∼ ψbc

α and (xpde
n , tpde

n) ∼
ψpde
α , namely,

L̂(θ, λ) ≜
1

Nbc

Nbc∑
n=1

(
uθ(x

bc
n , t

bc
n)− h(xbc

n , t
bc
n)

)2
+ λ

[
1

Npde

Npde∑
n=1

(
D[uθ](x

pde
n , tpde

n)− τ(xpde
n , tpde

n)
)2 − ϵ

]
.

(4)

Contrary to previous approaches based on (PI), such as (Wang et al., 2021a; Wight & Zhao, 2021;
Daw et al., 2023), (DIV) truly approximates the solution of (BVP). Indeed, (Chamon et al., 2023,
Thm. 1) and (Elenter et al., 2024, Thm. 3.1) guarantee that solutions of (DIV) are near-optimal
and near-feasible for (PIV) and, in view of Prop. 3.1 and (4.1), (BVP) (see App. D for details). It
is worth noting that this is only possible because (PIV) is a statistical problem. Although similar
Lagrangian formulations have been used in Lu et al. (2021b); Basir & Senocak (2022), they deal with
deterministic constrained problem (fixed collocation points) for which this duality does not hold.

From a practical perspective, (DIV) does not require extensive hyperparameter tuning [such as µ
in (PI)], seen as λ is an optimization variable. What is more, despite non-convexity, the duality
between (PIV) and (DIV) allows the solution λ⋆ of (DIV) to be interpreted as a sensitivity of the
objective (BC residuals) to small relaxations of ϵ (Chamon & Ribeiro, 2020; Chamon et al., 2023;
Hounie et al., 2023b). This information can be used to evaluate the fit of noisy measurements
in (SCL)(O) or the reliability of solutions for different parameters π in (SCL′) (see Sec. 5). Finally,
(DIV) is amenable to practical algorithms such as dual ascent, which updates λ0 = 0 as

λk+1 = λk + η

[
1

Npde

Npde∑
n=1

(
D[uθ†k

](xpde
n , tpde

n)− τ(xpde
n , tpde

n)
)2 − ϵ

]
+

, for θ†k ∈ argmin
θ∈Θ

L̂(θ, λk).

(5)
Even if the empirical Lagrangian minimizer θ†k is only computed approximately, (5) can be shown to
converge to a neighborhood of a solution of (DIV) (Chamon et al., 2023; Elenter et al., 2024).

Still, to turn (5) into a practical algorithm, we need to obtain samples from ψα, which is only
known implicitly [see (PIV)]. Nevertheless, since the losses in (PIV) are non-negative, the ψα are
smooth, fully-supported, square-integrable distributions for α = 0. They are therefore amenable to
be sampled using Markov Chain Monte Carlo (MCMC) techniques (Robert & Casella, 2004). We
use the Metropolis-Hastings (MH) algorithm in our experiments since it avoids additional backward
passes and higher-order derivatives resulting from differentiating Dπ while still providing strong
empirical results (see App. C and Sec. 5). Exploring first-order methods (e.g., Langevin Monte Carlo)
and algorithms adapted to discontinuous distributions (e.g., (Nishimura et al., 2020)) to enable faster
convergence (reduce N) and better approximations (increase α) is left for future work.

It is possible to replace ψα by a fixed distribution (e.g., uniform) or even fixed points for some of
the constraints in (SCL)/(SCL′) at negligible accuracy costs. We find this is consistently the case for
the BC objective, although we emphasize that this is application-dependent. Additionally, certain
architectures, such as FNOs (Li et al., 2021), cannot make predictions at arbitrary points of the
domain. It is then more appropriate to take ψα to be a uniform distribution over equispaced points.

The resulting method for solving (SCL′) is summarized in Alg. 1. Note that rather than obtaining
Lagrangian minimizers as in (5), Alg. 1 alternates between optimizing for θ (step 8) and λ (step 9).
Such gradient descent-ascent schemes are commonly used in convex optimization (Arrow et al., 1958;
Bertsekas, 2015), although their convergence is less well understood in non-convex settings Lin et al.
(2020); Fiez et al. (2021); Yang et al. (2022). The convergence guarantees for (5) can be recovered
by repeating step 8 (θ-update) multiple times before updating λ. Note that Alg. 1 does not rely on
training heuristics, such as adaptive or causal sampling Krishnapriyan et al. (2021); McClenny &
Braga-Neto (2023); Daw et al. (2023); Penwarden et al. (2023); Wang et al. (2024), ad hoc weight
updates (Wang et al., 2021a; Maddu et al., 2022), and conditional updates (Lu et al., 2021b; Basir
& Senocak, 2022). Indeed, steps 4-7 are empirical estimates of expectations with respect to ψ0 that
themselves approximate the worst-case losses in SCL′ (Prop. 4.1). Steps 8-9 describe a traditional
primal-dual (gradient descent-ascent) algorithm for solving problems such as (DIV), which itself
yields approximate solutions of (SCL′) (Chamon & Ribeiro, 2020; Chamon et al., 2023; Elenter et al.,
2024) and, consequently, (BVP) (Prop. 3.1).

7

Published as a conference paper at ICLR 2025

Algorithm 1 Primal-dual method for (SCL)

1: Inputs: Differential operator Dπ , invariant transformations γi ∈ G, observations set (πj , τj , u
†
j),

parameterized model uθ0 , and λpde
0 = λsi

0 = λ
oj
0 = 0

2: for k = 1, . . . ,K

3: ℓbc
k =

1

NBC

NBC∑
n=1

(
uθk(π

bc
n)(x

bc
n , t

bc
n)− h(xbc

n , t
bc
n)

)2

, (xbc
n , t

bc
n , π

bc
n) ∼ ψBC

0

4: ℓpde
k =

1

Npde

Npde∑
n=1

(
Dπpde

n

[
uθk(π

pde
n)

]
(xpde
n , tpde

n)− τ(xpde
n , tpde

n)
)2

, (xpde
n , tpde

n , πpde
n) ∼ ψPDE

0

5: ℓsi
k =

1

Ns

Ns∑
n=1

(
uθk(π

si
n)(x

si
n , t

si
n)− uθk(π

si
n)

[
γi(π

si
n)(x

si
n , t

si
n)

])2

, (xsi
n , t

si
n , π

si
n) ∼ ψSTi

0

6: ℓ
oj
k =

1

No

No∑
n=1

(
uθk(πj , τj)(x

oj
n , t

oj
n)− u†j(x

oj
n , t

oj
n)

)2

, (x
oj
n , t

oj
n) ∼ m

7: θk+1 = θk − ηp

[
∇θℓ

bc
k + λpde∇θℓ

pde
k +

I∑
i=1

λsi
k∇θℓ

si
k +

J∑
j=1

λ
oj
k ∇θℓ

oj
k

]
8: λpde

k+1 =
[
λpde
k +ηd(ℓ

pde
k −ϵpde)

]
+

; λs
k+1 =

[
λs
k+ηd(ℓ

s
k−ϵs)

]
+

; λoj
k+1 =

[
λ

oj
k +ηd(ℓ

oj
k −ϵo)

]
+

9: end

5 EXPERIMENTS

In this section, we showcase the use of SCL by training MLPs and FNOs (Li et al., 2021) to
solve six PDEs (convection, reaction-diffusion, eikonal, Burgers’, diffusion-sorption, and Navier-
Stokes). We consider different subsets of constraints from (SCL)/(SCL′) to illustrate a variety of
knowledge settings, but train only the most suitable model in each case since our goal is to illustrate
the natural uses of SCL rather than exhaust its potential. Detailed descriptions are provided in the
appendices, including BVPs (App. A), training procedures (App. E), and further results (App. F). Code
to reproduce these experiments is available at https://github.com/vmoro1/scl. In the
sequel, we use fixed points (x, t) for the BC objective rather than ψBC

0 to illustrate how computational
complexity can be reduced without significantly affecting the results. We still use ψBC

0 for π.

5.1 SOLVING A SPECIFIC BVP

We begin by solving (BVP) for fixed parameters π, forcing function τ , and BCs. Though this may
not be the best application for NN-based solvers [see, e.g., McGreivy & Hakim (2024)], it remains
a valid demonstration. We use (SCL)(M) to train MLPs to solve convection, reaction-diffusion,
and eikonal problems, comparing the results to PINNs [i.e., (PI) with weights chosen as in (Daw
et al., 2023)]. All experiments use 1000 collocation points per epoch obtained by (PINN) sampling
uniformly (we find this performs better than using fixed points as in, e.g., (Raissi et al., 2019; Lu et al.,
2021b)), (R3) using the adaptive heuristic from (Daw et al., 2023), and (SCL) using MH after 4000
burn-in steps. Table 1 shows that SCL matches and often outperforms other methods, particularly

Table 1: Relative L2 error for solving specific BVPs (average ± standard deviation across 10 seeds).

PINN (PI) R3 (Daw et al., 2023) (SCL)(M)

Convection
β = 30 1.17± 0.65% 0.999± 0.53% 0.971± 0.30%

β = 50 56.5± 20% 29.0± 33% 3.74± 0.87%

React.-Diff.
(ν, ρ) = (3, 3) 0.745± 0.014% 0.736± 0.068% 1.82± 0.74%

(ν, ρ) = (3, 5) 79.6± 0.27% 0.665± 0.046% 0.762± 0.11%

Eikonal 87.1± 39% 85.5± 27% 9.95± 1.9%

8

https://github.com/vmoro1/scl

Published as a conference paper at ICLR 2025

1 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e

L 2
 e

rr
or

(PI) - 4k
(PI) - 7k

(PI) - 30k
(SCL′)(M) - 5k

(a)

0.0 0.5 1.0
t

0

1

2

D
en

si
ty

1 10 20 30
0.00

0.02

0.04

0.06

Epoch: 0.5k-1k 30k-30.5k Last 0.5k

(b)

Figure 1: Solving parametric convection BVPs: (a) relative L2 error vs. β (legend reports number of
differential operator evaluations per epoch). (b) Samples from ψPDE

0 at different training stages.

in challenging scenarios (e.g., convection with β = 50 or non-linear eikonal). This is because it
jointly adapts the weight of each loss and the points used to evaluate them during training (see Alg. 1).
Although R3 also targets points with high PDE residuals, it does not approximate the worst-case loss
needed to guarantee a (weak) solution (Prop. 3.1). The improved performance of SCL comes at a
higher computational cost (≈ 5x), although this is largely offset when solving parametric problems.

5.2 SOLVING PARAMETRIC FAMILIES OF BVPS

A key advantages of NN-based approaches is their ability to solve entire families of BVPs at once.
Consider fitting an MLP uθ(x, t, β) to solve convection problems for β ∈ [1, 30] using (SCL′)(M)
and (PI) as in Cho et al. (2024). We do not use their tailored “P2INN” architecture, although it would
be compatible with SCL. The πj = βj are taken to be 4, 7, and 30 equispaced values in [1, 30]. Fig. 1a
shows that (PI) can only achieve the error of (SCL′)(M) for the finest discretization, at which point it
evaluates the PDE loss 6 times more per epoch. The same pattern holds for reaction-diffusion (4–7
times) and 2D Helmholtz (4–5 times) problems (App. F). This effectiveness is due to the worst-case
loss of (SCL′)(M) jointly selecting (x, t, β) to target challenging coefficients as well as the domain
regions responsible for that difficulty. In fact, inspecting ψPDE

0 at different stages of training (Fig. 1b)
shows that SCL first fits the solution “causally,” focusing on smaller values of t. While this has been
proposed in (Krishnapriyan et al., 2021; Penwarden et al., 2023; Wang et al., 2024), it arises naturally
by solving (SCL′)(M). As training advances, however, Alg. 1 shifts focus to fitting higher convection
speeds β. This occurs without any prior knowledge of the problems or manual tuning.

As we have argued, this is a use case for which SCL is particularly well-suited. Indeed, consider
solving a 2D Helmholtz equation for parameters (a1, a2) ∈ [1, 2]2 using an FEM solver with mesh
size chosen to obtain a similar accuracy as SCL. Across 100 experiments, the average relative L2

error for the FEM solver was 0.036 for an average runtime of 4.3 minutes per solution (see App. F).
Hence, in the time it took to train the SCL model (31.1 hours), we could evaluate less than 440
parameters combinations using the FEM solver. This is 20 times less than the 104 combinations used
to evaluate the error of (SCL′)(M) (average error 0.013 for a runtime of 4 minutes). It is worth noting
that these numbers are for a highly-optimized FEM implementation (Baratta et al., 2023).

5.3 LEVERAGING INVARIANCE WHEN SOLVING BVPS

Next, we showcase how SCL can be used to overcome computational limitations or scarce mechanistic
knowledge. Consider training an MLP to solve a convection BVP with β = 30 and periodic initial
condition h(0, x) = sin(x). This problem is commonly used to showcase a “failure mode” of (PI)
since it yields degenerate solutions when using fixed collocation points (Fig. 2a) (Krishnapriyan et al.,
2021). Note that the constrained (SCL)(M) also fails when using fixed collocations points (Fig. 2b),
even though its stochastic version finds accurate solutions (Table 1). One way to overcome this
limitation is by leveraging additional knowledge. In this case, we know from the BVP structure that
its solution must be periodic with period π/15. By incorporating this invariance using (SCL)(S), we

9

Published as a conference paper at ICLR 2025

0.0 0.5 1.0
t

0.0

2.5

5.0
x

(PI)

0.0 0.5 1.0
t

(SCL)(M)

0.0 0.5 1.0
t

(SCL)(M+S)

0.0 0.5 1.0
t

Analytical Solution

1

0

1

M
ag

ni
tu

de

Figure 2: Using invariance in convection BVPs (BC and PDE losses in (PI) and (SCL) are evaluated
using a fixed set of collocation points).

Table 2: Relative L2 error on test set (average
across 10 seeds, see App. F for standard deviation).

ν (PII) (SCL)(O)
Burgers’ 10−3 0.0540% 0.0444%

Navier-Stokes
10−3 4.29% 3.31%

10−4 32.2% 29.9%

10−5 27.6% 26.0%

Diffusion-Sorption 0.274% 0.218%

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Magnitude of Initial Condition

0.04

0.05

0.06

0.07

D
ua

l V
ar

ia
bl

e
(

)
Figure 3: Final value of dual variables (λOBj)
vs. magnitude of IC for Burgers’ equation.

can obtain accurate solutions despite our use of fixed collocation points for (SCL)(M) (Fig. 2c). Note
that the worst-case loss in (SCL)(S) is fundamental to avoid degenerate solutions.

5.4 SUPERVISED SOLUTION OF BVPS

We conclude by exploring supervised methods that rely only on pairs of initial conditions hj(x, 0)
and corresponding (weak) solutions u†j . To showcase the versatility of SCL, we train FNOs rather
than MLPs, fixing m to a uniform distribution over a regular grid to accommodate their predictions.
We also cast the SCL problem using only the observational constraints (SCL)(O), i.e., without
any objective. In contrast to (PII), which minimizes the average error, this formulation enforces a
maximum error of ϵo across samples. Though apparently minor, this leads to better prediction quality,
as shown in Table 2. This occurs because the difficulty of fitting PDE solutions varies across ICs.
While the average tends to emphasize the majority of “easy-to-fit samples,” enforcing a maximum
error gives more weight to challenging data points. This becomes clear in Fig. 3, which compares the
magnitude of each IC in the training set with its final dual variables λOBj for the Burgers’ equation.
Immediately, we notice a trend where ICs with either small or large magnitudes appear harder to fit.
This information can be leveraged to guide the collection of additional data points or improve the
NO architecture. Indeed, any model improvement can immediately take advantage of SCL since it is
(virtually) independent of the choice of uθ. The benefits of having λOB are clear when predicting
which IC is hard to fit is intricate, as is the case for the Navier-Stokes equation (see App. F).

6 CONCLUSION

This paper developed SCL, a technique for solving BVPs based on constrained learning. It demon-
strated that finding (weak) solutions of PDEs is equivalent to solving constrained learning problems
with worst-case losses, which also allows prior knowledge to be naturally incorporated to the solution
of the BVP, e.g., structural constraints (e.g., invariances), real-world measurements, and previously
known solutions. It developed a practical algorithm to tackle SCL problems and showcased its
performance across a variety of PDEs and NN architectures. SCL not only yields accurate solutions,
but also tackles many challenges faced by previous methods, such as extensive hyperparameter tuning,
degenerate solutions, and fine discretizations of domain and/or coefficients. Future work includes
exploring worst-case losses for functional parameters such as τ and the use of SCL for active learning.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC 2075-390740016). It was performed in
part on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-
Württemberg and by the Federal Ministry of Education and Research. Viggo Moro thanks the
International Max Planck Research School for Intelligent Systems (IMPRS-IS) for their support and
G-Research for supporting the travel costs.

REFERENCES

Tara Akhound-Sadegh, Laurence Perreault-Levasseur, Johannes Brandstetter, Max Welling, and
Siamak Ravanbakhsh. Lie point symmetry and physics informed networks, 2023.

K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear programming. Stanford
University Press, 1958.

Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N. Richardson,
Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N. Wells. DOLFINx: the next
generation FEniCS problem solving environment, 2023.

Shamsulhaq Basir and Inanc Senocak. Physics and equality constrained artificial neural networks: Ap-
plication to forward and inverse problems with multi-fidelity data fusion. Journal of Computational
Physics, 463:111301, 2022.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):2453, 2022.

D. P. Bertsekas. Convex optimization theory. Athena Scientific, 2009.

D. P. Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.

Morteza Boroun, Zeinab Alizadeh, and Afrooz Jalilzadeh. Accelerated primal-dual scheme for a
class of stochastic nonconvex-concave saddle point problems. In American Control Conference,
pp. 204–209, 2023.

S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods. Texts in Applied
Mathematics. Springer New York, 2007.

Souvik Chakraborty. Transfer learning based multi-fidelity physics informed deep neural network.
Journal of Computational Physics, 426:109942, 2021.

Nithin Chalapathi, Yiheng Du, and Aditi S. Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. In International Conference on Learning Representations, 2024.

L. F. O. Chamon and A. Ribeiro. Probably approximately correct constrained learning. In Advances
in Neural Information Processing, 2020.

L. F. O. Chamon, S. Paternain, M. Calvo-Fullana, and A. Ribeiro. Constrained learning with
non-convex losses. IEEE Trans. on Inf. Theory, 69[3]:1739–1760, 2023.

Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural networks
for inverse problems in nano-optics and metamaterials. Opt. Express, 28(8):11618–11633, 2020.

Minhao Cheng, Qi Lei, Pin-Yu Chen, Inderjit Dhillon, and Cho-Jui Hsieh. CAT: Customized
adversarial training for improved robustness. In International Joint Conference on Artificial
Intelligence, pp. 673–679, 2022.

Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn:
A fast physics-informed neural network based on coupled-automatic–numerical differentiation
method. Computer Methods in Applied Mechanics and Engineering, 395:114909, 2022.

11

Published as a conference paper at ICLR 2025

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong
Park. Parameterized physics-informed neural networks for parameterized PDEs. In International
Conference on Machine Learning, 2024.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference
on Machine Learning, pp. 2990–2999, 2016.

Andrew Cotter, Heinrich Jiang, Maya Gupta, Serena Wang, Taman Narayan, Seungil You, and
Karthik Sridharan. Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 20(172):1–59, 2019.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (R3) sampling. In International
Conference on Machine Learning, pp. 7264–7302, 2023.

Shaan Desai, Marios Mattheakis, Hayden Joy, Pavlos Protopapas, and Stephen J. Roberts. One-shot
transfer learning of physics-informed neural networks. In AI for Science Workshop (ICML), 2022.

Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran Khanna,
Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation pruning for robust adver-
sarial defense. In International Conference on Learning Representations, 2018.

Mahesh Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving
partial differential equations. Communications in Numerical Methods in Engineering, 10:195–201,
1994.

J. Elenter, L. F. O. Chamon, and A. Ribeiro. Near-optimal solutions of constrained learning problems.
In International Conference on Learning Representations, 2024.

L.C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathematical
Society, 2010.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In International Conference on Learning Representations, 2021.

Tanner Fiez, Lillian Ratliff, Eric Mazumdar, Evan Faulkner, and Adhyyan Narang. Global conver-
gence to local minmax equilibrium in classes of nonconvex zero-sum games. In Advances in
Neural Information Processing Systems, pp. 29049–29063, 2021.

Alberto Fiorenza, Maria Rosaria Formica, Tomáš G. Roskovec, and Filip Soudskỳ. Detailed proof
of classical Gagliardo-Nirenberg interpolation inequality with historical remarks. Zeitschrift für
Analysis und ihre Anwendungen, 40(2):217–236, 2021.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive
convolutional neural networks for solving parameterized steady-state pdes on irregular domain.
Journal of Computational Physics, 428:110079, 2021.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Somdatta Goswami, Cosmin Anitescu, Souvik Chakraborty, and Timon Rabczuk. Transfer learning
enhanced physics informed neural network for phase-field modeling of fracture. Theoretical and
Applied Fracture Mechanics, 106:102447, 2020.

Tamara G Grossmann, Urszula Julia Komorowska, Jonas Latz, and Carola-Bibiane Schönlieb. Can
physics-informed neural networks beat the finite element method? IMA Journal of Applied
Mathematics, 89(1):143–174, 2024.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized PDE
modeling. Transactions on Machine Learning Research, 2023.

12

Published as a conference paper at ICLR 2025

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. GNOT: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569, 2023.

Jacob Helwig, Xuan Zhang, Cong Fu, Jerry Kurtin, Stephan Wojtowytsch, and Shuiwang Ji.
Group equivariant Fourier neural operators for partial differential equations. arXiv preprint
arXiv:2306.05697, 2023.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

I. Hounie, L. F. O. Chamon, and A. Ribeiro. Automatic data augmentation via invariance-constrained
learning. In International Conference on Machine Learning, 2023a.

I. Hounie, A. Ribeiro, and L. F. O. Chamon. Resilient constrained learning. In Advances in Neural
Information Processing, 2023b.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020.

Søren Fiig Jarner and Ernst Hansen. Geometric ergodicity of metropolis algorithms. Stochastic
Processes and their Applications, 85(2):341–361, 2000.

Namgyu Kang, Byeonghyeon Lee, Youngjoon Hong, Seok-Bae Yun, and Eunbyung Park. Pixel:
Physics-informed cell representations for fast and accurate pde solvers. In AAAI Conference on
Artificial Intelligence, pp. 8186–8194, 2023.

J.T. Katsikadelis. The Boundary Element Method for Engineers and Scientists: Theory and Applica-
tions. Elsevier Science, 2016.

Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness Gerrymandering:
Auditing and learning for subgroup fairness. In International Conference on Machine Learning,
pp. 2564–2572, 2018.

Ehsan Kharazmi, Zhongqiang Zhang, and George E.M. Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics
and Engineering, 374:113547, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
arXiv:1412.6980v9.

P. Knabner and L. Angerman. Numerical Methods for Elliptic and Parabolic Partial Differential
Equations. Texts in Applied Mathematics. Springer New York, 2003.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. In Advances in Neural
Information Processing, volume 34, pp. 26548–26560, 2021.

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Trans. Neural Netw., 9(5):987–1000, 1998.

Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations.
Society for Industrial and Applied Mathematics, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In Advances in Neural Information Processing Systems, pp. 6755–6766,
2020.

13

Published as a conference paper at ICLR 2025

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM / IMS J. Data Sci., 1(3), 2024.

Tianyi Lin, Chi Jin, and Michael I. Jordan. Near-optimal algorithms for minimax optimization. In
Conference on Learning Theory, pp. 2738–2779, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021a.

Lu Lu, Raphaël Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G. Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b.

Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. Compressed sensing MRI.
IEEE signal processing magazine, 25(2):72–82, 2008.

Suryanarayana Maddu, Dominik Sturm, Christian L Müller, and Ivo F Sbalzarini. Inverse Dirichlet
weighting enables reliable training of physics informed neural networks. Machine Learning:
Science and Technology, 3(1):015026, 2022.

Stefano Markidis. The old and the new: Can physics-informed deep-learning replace traditional
linear solvers? Frontiers in Big Data, 4, 2021.

Levi D. McClenny and Ulisses M. Braga-Neto. Self-adaptive physics-informed neural networks.
Journal of Computational Physics, 474:111722, 2023.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in
machine learning for fluid-related partial differential equations. Nature Machine Intelligence, 6
(10):1256–1269, 2024.

Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković, and Alejandro W.
Rodriguez. Inverse design in nanophotonics. Nature Photonics, 12(11):659–670, 2018.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (FBPINNs): A scalable domain decomposition approach for solving differential equations.
Advances in Computational Mathematics, 49(4):62, 2023.

Daniel Musekamp, Marimuthu Kalimuthu, David Holzmüller, Makoto Takamoto, and Mathias
Niepert. Active learning for neural PDE solvers. In Advances in Neural Information Processing.
Workshop on Data-driven and Differentiable Simulations, Surrogates, and Solvers., 2024.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure
Engineering, 36(8):962–977, 2021.

Louis Nirenberg. On elliptic partial differential equations. Annali della Scuola Normale Superiore di
Pisa-Scienze Fisiche e Matematiche, 13(2):115–162, 1959.

Akihiko Nishimura, David B Dunson, and Jianfeng Lu. Discontinuous Hamiltonian Monte Carlo for
discrete parameters and discontinuous likelihoods. Biometrika, 107(2):365–380, 2020.

14

Published as a conference paper at ICLR 2025

Peter J. Olver. Symmetry groups and group invariant solutions of partial differential equations. J.
Differential Geometry, 14:497–542, 1979.

Ravi G. Patel, Indu Manickam, Nathaniel A. Trask, Mitchell A. Wood, Myoungkyu Lee, Ignacio
Tomas, and Eric C. Cyr. Thermodynamically consistent physics-informed neural networks for
hyperbolic systems. Journal of Computational Physics, 449:110754, 2022.

Michael Penwarden, Ameya D. Jagtap, Shandian Zhe, George Em Karniadakis, and Robert M. Kirby.
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks
(PINNs) and their temporal decompositions. Journal of Computational Physics, 493, 2023.

Raphaël Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, and Steven G. Johnson. Physics-
enhanced deep surrogates for partial differential equations. Nature Machine Intelligence, 5[12]:
1458–1465, 2023.

Lee C. Potter, Emre Ertin, Jason T. Parker, and Müjdat Cetin. Sparsity and compressed sensing in
radar imaging. Proceedings of the IEEE, 98(6):1006–1020, 2010.

Dimitris C. Psichogios and Lyle H. Ungar. A hybrid neural network-first principles approach to
process modeling. Aiche Journal, 38:1499–1511, 1992.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural
operators. Transactions on Machine Learning Research, 2023.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, 2004.

A. Robey*, L. F. O. Chamon*, G. J. Pappas, H. Hassani, and A. Ribeiro. Adversarial robustness with
semi-infinite constrained learning. In Advances in Neural Information Processing, 2021.

R. T. Rockafellar and R. J-B Wets. Variational Analysis, volume 317. Springer Science & Business
Media, 2004.

Hwijae Son, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. Sobolev training for physics
informed neural networks. arXiv:2101.08932, 2021.

Olaf Steinbach and Marco Zank. Coercive space-time finite element methods for initial boundary
value problems. Electronic Transactions on Numerical Analysis, 52:154–194, 2020.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. PDEBench: An extensive benchmark for scientific machine learning.
In Advances in Neural Information Processing Track on Datasets and Benchmarks, 2022.

V. Thomee. Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computa-
tional Mathematics. Springer Berlin Heidelberg, 2013.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized Fourier neural
operators. In International Conference on Learning Representations, 2023.

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L2 physics informed loss always suitable for
training physics informed neural network? In Advances in Neural Information Processing, 2022a.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of Fourier feature networks:
From regression to solving multi-scale PDEs with physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 384:113938, 2021b.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022b.

15

Published as a conference paper at ICLR 2025

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024.

Min Wei and Xuesong Zhang. Super-resolution neural operator. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18247–18256, 2023.

Colby L. Wight and Jia Zhao. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive
physics informed neural networks. Communications in Computational Physics, 29(3):930–954,
2021.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. In Advances in Neural Information Processing, pp. 2958–2969, 2020.

Chen Xu, Ba Trung Cao, Yong Yuan, and Günther Meschke. Transfer learning based physics-
informed neural networks for solving inverse problems in engineering structures under different
loading scenarios. Computer Methods in Applied Mechanics and Engineering, 405:115852, 2023.

Junchi Yang, Negar Kiyavash, and Niao He. Global convergence and variance reduction for a class
of nonconvex-nonconcave minimax problems. In Advances in Neural Information Processing
Systems, pp. 1153–1165, 2020.

Junchi Yang, Xiang Li, and Niao He. Nest your adaptive algorithm for parameter-agnostic nonconvex
minimax optimization. In Advances in Neural Information Processing Systems, 2022.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics
and Engineering, 393, 2022.

16

Published as a conference paper at ICLR 2025

A APPLICATIONS OF (BVP)

We showcase here a variety of phenomena that can be described using (BVP). The PDEs detailed in
this section are used throughout our experiments to illustrate the performance of SCL.

A.1 CONVECTION EQUATION

The one-dimensional convection equation models the transport of a scalar quantity u(x, t), such as
temperature or concentration, along the spatial dimension x. We consider the convection problem

∂u(x, t)

∂t
+ β

∂u(x, t)

∂x
= 0, (x, t) ∈ (0, 2π)× (0, 1] (6a)

u(x, 0) = sin(x), x ∈ [0, 2π] (6b)
u(0, t) = u(2π, t), t ∈ (0, 1] (6c)

where the coefficient β denotes the convection speed. Despite its use of periodic BCs, namely, (6c),
this problem (and its variations) can be cast as a straightforward extension of (BVP).

A.2 REACTION-DIFFUSION EQUATION

The one-dimensional reaction-diffusion equation describes a variety of phenomena, including chemi-
cal reactions, population dynamics, and heat transfer, depending on the form of its reaction term. In
this paper, we consider the reaction-diffusion problem with periodic BC and Gaussian IC. Explicitly,

∂u(x, t)

∂t
− ν

∂2u(x, t)

∂x2
= ρu(x, t)

(
1− u(x, t)

)
, (x, t) ∈ (0, 2π)× (0, 1] (7a)

u(x, 0) = exp

(
− 1

2

(x− π

π/4

)2
)
, x ∈ [0, 2π] (7b)

u(0, t) = u(2π, t), t ∈ (0, 1] (7c)
where ν > 0 and ρ are the diffusion and reaction coefficients, respectively.

A.3 EIKONAL EQUATION

The eikonal equation is encountered in many applications involving wave propagation, e.g., elec-
tromagnetism. It also describes the (signed) distance between any point x ∈ Ω and some fixed
boundary ∂S, hence its usage in vision applications. In this case, we consider the BVP

∥∇u(x, y)∥ = 1, (x, y) ∈ Ω (8a)
u(x, y) = 0, (x, y) ∈ ∂S (8b)

where Ω = (−1, 1)2 and ∂S is a complex shape, in our case, the gears figure from (Daw et al., 2023).
In order to ensure that negative (positive) distances are assigned to the interior (exterior) of the shape,
we add a structural constraint to the solution which enforces that u is non-negative on the boundary
of Ω. Explicitly, we enforce that

u(x, y) ≥ 0, (x, y) ∈ ∂Ω. (9)
This can be done by adding a structural constraint to (SCL), i.e., by replacing (SCL)(S) with a loss
that induces (9), explicitly

sup
ψ∈P2(∂Ω)

E(x,y)∼ψ

[[
− uθ(x, y)

]
+

]
≤ ϵs. (10)

In our experiments, we find that this constraint is not particularly difficult to enforce and that we can
obtain good results by replacing the worst-case ψα by fixed, equispaced points on ∂Ω.

A.4 HELMHOLTZ EQUATION

The two-dimensional Helmholtz equation models wave propagation and vibration phenomena in
various physical contexts. Here, we consider the problem

∇2u(x, y) + k2u(x, y) = τ(x, y, π), (x, y) ∈ interior(S) (11a)
u(x, y) = sin(πa1x) sin(πa2y), (x, y) ∈ ∂S (11b)

17

Published as a conference paper at ICLR 2025

where S = [0, 1]2; k > 0 is the wave number; coefficients π = (a1, a2) represent the spa-
tial frequencies in the x and y directions, respectively; and the forcing function is τ(x, y, π) =(
k2 − π2a21 − π2a22

)
(sin(πa1x) sin(πa2y)).

A.5 BURGERS’ EQUATION

The one-dimensional Burgers’ equation models the behavior of a scalar field u(x, t) under the
combined effects of nonlinear convection and diffusion. It is commonly used in fluid dynamics and
traffic flow to describe shock waves and turbulence. In particular, we consider the following BVP
with periodic BCs

∂u(x, t)

∂t
+

1

2

∂u2(x, t)

∂x
= ν

∂2u(x, t)

∂x2
, (x, t) ∈ (0, 1)× (0, 1] (12a)

u(x, 0) = h0(x), x ∈ [0, 1] (12b)
u(0, t) = u(1, t), t ∈ (0, 1] (12c)

where ν > 0 is the viscosity coefficient, which governs the strength of the diffusion term. We consider
ICs h0 from the same distribution as Li et al. (2021).

A.6 DIFFUSION-SORPTION EQUATION

The diffusion-sorption equation models the transport of a scalar field u(x, t) (e.g., a contaminant
concentration) in a porous medium. It is commonly used in environmental science and chemical
engineering. In terms of this PDE, we consider the following BVP

∂u(x, t)

∂t
=

ν

R
(
u(x, t)

) ∂2u(x, t)
∂x2

, (x, t) ∈ (0, 1)× (0, 500] (13a)

u(x, 0) = h0(x), x ∈ [0, 1] (13b)

u(0, t) = 1, u(1, t) = ν
∂u(1, t)

∂x
, t ∈ (0, 500] (13c)

where ν = 5× 10−4 is the diffusion coefficient and R is the retardation factor defined as

R(u) = 1 +
(1− ϕ)

ϕ
ρsknfu

nf−1,

where ρs = 2880 is the bulk density, ϕ = 0.29 is the medium porosity, k = 3.5×10−4 is Freundlich’s
sorption parameter, and nf = 0.874 is Freundlich’s exponent. We consider the distribution of ICs h0
from Takamoto et al. (2022).

A notable aspect of (13) is its nonlinearity due to the dependence on u(x, t) of the effective diffusion
coefficient ν

R(u) . What is more, it can become singular when u = 0, making this equation particularly
challenging to solve.

A.7 NAVIER-STOKES EQUATION

The two-dimensional, incompressible Navier-Stokes equation in vorticity form removes the pressure
term and focuses on the dynamics of rotational flow. It is used to describe the local rotation of a fluid,
i.e., the vorticity ω(x, t) = ∇× u(x, t), where u is the two-dimensional velocity field and ∇× f
denotes the curl of f . Although vorticity is more challenging to model than velocity, it offers a deeper
understanding of the flow dynamics. The velocity field can be recovered from the vorticity using
Poisson’s equation.

Explicitly, for x = [x1, x2]
⊤, we consider the BVP

∂ω(x, t)

∂t
+ u(x, t)⊤∇ω(x, t) = ν∇2ω + τ(x), (x, t) ∈ (0, 1)2 × (0, T] (14a)

ω(x, 0) = ω0, x ∈ [0, 1]2, (14b)

∇ · u(x, t) = 0, (x, t) ∈ (0, 1)2 × (0, T] (14c)

18

Published as a conference paper at ICLR 2025

where ν > 0 is the viscosity coefficient and ∇ · f denotes the divergence of f . The forcing function
is taken to be

τ(x) = 0.1
(
sin

(
2π(x1 + x2)

)
+ cos

(
2π(x1 + x2)

))
and the ICs ω0 are taken from the same distribution as in Li et al. (2021). We consider three settings,
namely, ν = 10−3 with T = 50, ν = 10−4 with T = 30, and ν = 10−5 and T = 20.

19

Published as a conference paper at ICLR 2025

B WEAK SOLUTIONS AND ROBUST LEARNING

The space T of test functions plays a fundamental role when defining the weak formulations (1).
Typically, it is chosen to be a Sobolev space due to its natural compatibility with BVPs and the fact
that it leads to less stringent differentiability requirements on u. It therefore overcomes the main
issues with the strong formulation (BVP). A Sobolev space consists of functions in some Lebesgue
space Lp whose weak derivatives are also in Lp. Recall that Lp is the space of p-integrable functions.
To define a Sobolev space, we therefore need to start by defining a weak derivative.

A locally integrable function f defined on an open set Z ⊂ Rd is weakly differentiable with respect
to zi if there exists Df also locally integrable (i.e., f,Df ∈ L1

loc(Z)) such that∫
Z
Df(z)ξ(z)dz = −

∫
D
φ(z)

∂ξ(z)

∂zi
dz, for all ξ ∈ C∞

c (Z), (15)

where C∞
c (Z) is the space of infinitely differentiable, compactly supported functions. We say Df

is the weak derivative of f . To generalize (15) to higher-order derivatives, consider the multi-
index α = (α1, . . . , αd) to be a d-tuple of non-negative integers and let |α| =

∑d
i=1 αi. We then

define the α-weak derivatives of f , denoted Dαf , as∫
Z
Dαf(z)ξ(z)dz = −

∫
D
φ(z)

∂|α|ξ(z)

∂zα1
1 · · · ∂zαd

d

dz, for all ξ ∈ C∞
c (Z). (16)

We can now define what we mean by Sobolev space (Evans, 2010).

Definition B.1 (Sobolev space). For an integer k ≥ 0 and 1 ≤ p ≤ ∞, we define the Sobolev
space W k,p(Z) = {f ∈ Lp(Z) | Dαf ∈ Lp(Z) for all multi-indices α with |α| ≤ k}.

We write W k,p whenever the set Z is clear from the context. Note that since Lp ⊂ L1
loc for p ≥ 1,

Sobolev spaces impose more restrictions than weak differentiability. Also, while W k,p is in general a
Banach space, W k,2 is a Hilbert space (Evans, 2010).

Having set the groundwork, we can now proceed with the proof of Prop. 3.1.

B.1 PROOF OF PROP. 3.1

The proof follows by constructing a measure of the deviation from the weak formulation (1) and
showing that it is dominated by the proposed worst-case statistical loss. This immediately implies
Prop. (3.1). Explicitly, note that the weak formulation (1) can equivalently be expressed as[∫

D

(
D[u](x, t)− τ(x, t)

)
φ(x, t)dxdt

]2
= 0, for all φ ∈W k′,2 (17)

where we omitted the dependence on the coefficients π for conciseness. Using Jensen’s inequality,
we can upper bound (17) for any φ as in[∫

D

(
D[u](x, t)− τ(x, t)

)
φ(x, t)dxdt

]2
≤

∫
D

(
D[u](x, t)− τ(x, t)

)2

φ2(x, t)dxdt. (18)

Since φ ∈W k′,2 ⊂ L2, the partition function Zψ =
∫
D φ(x, t)

2dxdt = ∥φ∥2L2 <∞ is well-defined.
We can therefore consider the normalized ψ = φ2/Zψ in (18) to get[∫

D

(
D[u](x, t)− τ(x, t)

)
φ(x, t)dxdt

]2
≤ Zψ

∫
D

(
D[u](x, t)− τ(x, t)

)2

ψ(x, t)dxdt. (19)

Since ψ is a non-negative, normalized function, it is the density of a probability measure, i.e., ψ ∈ P .
The following technical lemma shows that it is in fact in P2, i.e., it is a square-integrable probability
density.

Lemma B.2. Let φ ∈W k′,2 and ψ ∝ φ2 be a probability distribution. Then, ψ ∈ P2.

20

Published as a conference paper at ICLR 2025

Before proving Lemma B.2, let us conclude the proof. The hypothesis on u† implies that

sup
ψ∈P2

∫
D

(
D[u†](x, t)− τ(x, t)

)2

ψ(x, t)dxdt = 0

and since Zψ is bounded, we obtain from (19) that[∫
D

(
D[u†](x, t)− τ(x, t)

)
φ(x, t)dxdt

]2
≤ 0.

Noticing that this holds for all ψ ∈W k′,2, we recover (17), which concludes the proof. ■

Proof of Lemma B.2. To show ψ ∈ P2, we must show that ϕ ∈ L4. Indeed,∫
D
ψ(x, t)2dxdt =

1

Z2

∫
D
φ(x, t)4dxdt =

(
∥φ∥L4

∥φ∥L2

)4

. (20)

Since φ ∈ W k′,2 ⊂ L2, suffices it to show that the numerator is finite. To do so, we can use the
Gagliardo-Nirenberg interpolation inequality (Nirenberg, 1959; Fiorenza et al., 2021) to write

∥φ∥L4 ≤ C
(
∥Dmφ∥αL2 ∥φ∥1−αL2 + ∥φ∥L2

)
, for α ∈ [0, 1], (21)

as long as (i) k′ ≥ m ∈ N and (ii) 4αm = d + 1. An additional condition must hold in particular
cases:

(iii) if m− d+ 1

2
is a non-negative integer, then α < 1.

Note that d + 1 is the dimension of the space-time domain D. Since φ ∈ W k′,2, the right-hand
of (21) is finite. We therefore only need to show that (i)–(iii) are satisfied under the hypothesis of the
theorem. To do so, we consider three cases:

(a) d = 0: in this case, d+ 1 is odd so that condition (iii) does not apply. Immediately, (21) holds
for m = 1 and α = 0.25.

(b) d = 1: since (ii) requires m ≥ 1, we now have that m− d+1
2 is a non-negative integer. Hence,

condition (iii) applies. Nevertheless, we can still take m = 1 and α = 0.5 in (21).

(c) d ≥ 2: we can now consider all other cases by taking

m =

⌈
d+ 1

4

⌉
and α =

d+ 1

4m
.

Indeed, (ii) holds by construction. Additionally, from the hypothesis of the theorem, we
have d+ 1 ≤ 4k′, which by the monotonicity of the ceiling operation implies that (i) holds. It
suffices to show that (iii) never applies. For 2 ≤ d ≤ 3, we have m = 1 and (d+ 1)/2 > 1. For
d > 3, we have ⌈

d+ 1

4

⌉
− d+ 1

2
≤

(
d+ 1

4
+ 1

)
− d+ 1

2
< 0. (22)

Thus, under the hypothesis of the theorem, (21) implies that ∥φ∥L4 < ∞. From (20), this in turn
implies that ψ ∈ P2. ■

B.2 PROP. 4.1

For the sake of completeness, we provide a short discussion of the preliminary material needed to
prove this proposition.

21

Published as a conference paper at ICLR 2025

B.2.1 PRELIMINARIES

We begin by showing that the supremum can be written as a distributionally robust optimiza-
tion problem. Indeed, consider the worst-case loss ℓ̄(θ) = sup(x,t)∈D ℓ(uθ(x, t)) and assume
that (x, t) 7→ ℓ(uθ(x, t)) is a function in L2. This loss can be written in epigraph form as

ℓ̄(θ) = inf
t∈R

t subject to ℓ(uθ(x, t)) ≤ t, for all (x, t) ∈ D. (PV)

Writing (PV) in Lagragian form (Bertsekas, 2009, Ch. 4), we obtain

ℓ̄(θ) = inf
t∈R

sup
ψ∈L2

+

LPV(θ, t, ψ), (PVI)

where L2
+ denotes the subspace of almost everywhere non-negative functions of L2. Here, the

Lagrangian LPV(θ, t, ψ) is defined as

LPV(θ, t, ψ) = t+

∫
D
ψ(x, t)

[
ℓ(uθ(x, t))− t

]
dxdt

= t

[
1−

∫
D
ψ(x, t)dxdt

]
+

∫
D
ψ(x, t)ℓ(uθ(x, t))dxdt,

(23)

Since (23) is a linear function of t, ℓ̄(θ) is the optimal value of a linear program parametrized by θ.
Hence, strong duality holds (Bertsekas, 2009, Ch. 4) and we obtain that

ℓ̄(θ) = sup
ψ∈L2

+

dPV(ψ) where dPV(ψ) ≜ min
t∈R

LPV(θ, t, ψ). (24)

Since t is unconstrained and LPV is linear in t, the dual function diverges to −∞ un-
less

∫
D ψ(x, t)dxdt = 1. From (23) and (24), we thus obtain that

ℓ̄(θ) = sup
ψ∈P2

∫
D
ψ(x, t)ℓ(uθ(x, t))dxdt (25)

We also quickly review the necessary variational results for normal integrands. The majority of this
exposition is adapted from Rockafellar & Wets (2004). Throughout, we let the tuple (T,A) denote a
measurable space, where T is a nonempty set and A is a σ-algebra of measurable sets belonging to T .
Definition B.3 (Carathéodory integrand). A function f : T × Rn → R is called a Carathéodory
integrand if it is measurable in t for each x and continuous in x for each t.
Definition B.4 (Decomposable space). A space F of measurable functions g : T → Rn is
decomposable in association with a measure µ on A if for every function g0 ∈ F , for every set
A ∈ A with µ(A) < ∞, and for every bounded, measurable function g1 : A → Rn, the space F
contains the function g : T → Rn defined by

g(t) =

{
g0(t) for t ∈ T\A,
g1(t) for t ∈ A.

(26)

Note that Lebesgue spaces Lp are decomposable for all p ∈ [1,∞] (see, e.g., (Rockafellar & Wets,
2004, Ch. 14)). We can now state a crucial result concerning the interchangability of maximization
and integration.
Theorem B.5 (Thm. 14.60 in Rockafellar & Wets (2004)). Let F be a decomposable space of measur-
able functions and F : T × Rn be a Carathéodory integrand. Then, as long as

∫
T
f(τ, ϕ(τ))dτ ̸= 0

for all ϕ ∈ F ,

inf
ϕ∈F

∫
T

f(τ, ϕ(τ))dτ =

∫
T

[
inf
x∈Rn

f(τ, x)

]
dτ. (27)

Moreover, as long as this common value is not −∞, one has that

ϕ̄ ∈ argmin
ϕ∈F

∫
T

f(τ, ϕ(τ))dτ ⇐⇒ ϕ̄(τ) ∈ argmin
x∈Rn

f(τ, x) for almost every τ ∈ T. (28)

22

Published as a conference paper at ICLR 2025

B.3 PROOF OF PROPOSITION 3.2

Proof. Consider a sequence ψ⋆n ∈ P2 converging to ℓ̄(θ) in L2, i.e., a solution of (25). In other
words, for every δ > 0, there exists Nδ <∞ such that

ℓ̄δ(θ) ≜
∫
D
ψ⋆n(x, t)ℓ(uθ(x, t))dxdt ≥ ℓ̄(θ)− δ, for all n ≥ Nδ . (29)

Consider now cδ = minn≤Nδ
∥ψ⋆n∥

2
L2 . Since ψ⋆n ∈ P2 ⊂ L2, ∥ψ⋆n∥

2
L2 is finite for all n. And

since Nδ is finite, so is cδ . We can therefore rewrite (29) as

ℓ̄δ(θ) = sup
ψ∈L2

+

∫
D
ψ(x, t)ℓ(uθ(x, t))dxdt

subject to

∫
D
ψ(x, t)dxdt = 1, ∥ψ∥2L2 ≤ cδ,

(PVII)

where we rewrote P2 as {ψ ∈ L2
+ |

∫
D ψ(x, t)dxdt = 1}. Notice that (PVII) is a convex quadratic

program in ψ. Furthermore, note that a zero-mean normal distribution with variance c2/2 is strictly
feasible for (PVII) (it belongs to P2 and strictly satisfies the L2-norm constraint). Hence, Slater’s
condition holds and we find that (PVII) is strongly dual (Bertsekas, 2009, Ch. 4). We therefore
conclude that for every cδ > 0, there exists µδ ∈ R and 0 ≤ γδ <∞ such that

ℓ̄δ(θ) = sup
ψ∈L2

+

∫
D
ψ(x, t)ℓ(uθ(x, t))dxdt+ αδ

[∫
D
ψ(x, t)dxdt− 1

]
+ γδ

[
∥ψ∥2L2 − cδ

]
= sup
ψ∈L2

+

∫
D

[
ψ(x, t)ℓ(uθ(x, t)) + γδψ(x, t)

2 + αδψ(x, t)
]
dxdt− γδcδ − αδ .

To conclude, we use the fact that L2
+ is decomposable and since that the integrand is Carathéodory to

exchange the supremum and the integral to obtain that

ℓ̄δ(θ) =

∫
D

[
sup
ψ∈R

ψℓ(uθ(x, t)) + γδψ
2 + αδψ

]
dxdt− γδcδ − αδ

A straightforward calculation of the inner maximization problem shown above yields that the solution
to (PVII) is given by

ψα(x, t) =

[
ℓ(uθ(x, t))− α

]
+

2γ
, (30)

where [z]+ = max(0, z) denotes the projection onto the non-negative orthant and α, γ are chosen so
that ∫

D
ψ⋆α(x, t)dxdt = 1 and ∥ψα∥2L2 ≤ cδ .

Hence, for any δ > 0 in (29), we can find α such that (30) approximates ℓ̄. ■

23

Published as a conference paper at ICLR 2025

C SAMPLING WITH THE METROPOLIS-HASTINGS ALGORITHM

Algorithm 1 uses samples from one or more ψ0 in order to compute the losses in steps 4–7. This is,
however, not straightforward unless those distributions are fixed to, e.g., a uniform (as we typically do
for the BCs). That is because we only know ψ0 up to a normalization factor. We overcome this issue
using MCMC techniques, more specifically, the Metropolis-Hastings algorithm (Robert & Casella,
2004). In Alg. 2, we consider the general case of sampling from ψ0 ∝ ℓ, where ℓ is a non-negative,
scalar-valued loss. We denote by zn the desired samples and R their support. In Alg. 1, for instance,
we would take zn = (xpde

n , tpde
n , πpde

n), R = D ×Π, and

ℓ(zn) =
(
Dπpde

n

[
uθk(π

pde
n)

]
(xpde
n , tpde

n)− τ(xpde
n , tpde

n)
)2

(31)

in step 5 and zn = (x
oj
n , t

oj
n), R = D, and

ℓ(zn) =
(
uθk(πj , τj)(x

oj
n , t

oj
n)− u†j(x

oj
n , t

oj
n)

)2

in step 7.

Typically, the covariance Σ is taken to be diagonal (independent proposals), e.g., σ2I . The choice of
parameter σ2 of the proposal (step 3) affects the mixing rate, i.e., how fast the samples converge to
the desired distribution. Smaller values of σ2 will lead to slower mixing chains since the algorithm
will not explore the space efficiently. On the other hand, large values will cause the acceptance
probability in step 4 to be too small, so that the algorithm will remain stuck (step 5). Oftentimes,
the parameter σ2 is adapted during a burn-in phase to hit a specific acceptance rate, around 30% as
a rule-of-thumb (Robert & Casella, 2004). In our experiments, we find a reasonable value for σ2

and keep it fixed throughout training. We also consider a burn-in period by using only the last N0

samples generated by Alg. 2. For the single BVP experiments in Sec. 5.1 we use N0 = 1000 and for
the parameterized BVPs in Sec. 5.2 we use N0 = 2500.

Given that we sample only from bounded domains (i.e., some subset of D × Π), the target dis-
tribution ψα has finite tails for any α, satisfying sufficient conditions for uniform ergodicity [see,
e.g., (Jarner & Hansen, 2000)]. The law of the samples obtained from Alg. 2 therefore converge (in
Kullback-Leibler divergence) to ψα. Additionally, since we prove in Prop. 3.1 and 4.1 that ψ0 (and
more generally, ψα) are square-integrable, alternative sampling technique with faster mixing rates
can be used. That is the case, for instance, of Langevin Monte Carlo (LMC) (Robert & Casella,
2004). Yet, the LMC algorithm uses first-order information of ℓ. For the PDE loss in (31), this means
higher-order space-time derivatives of uθ and thus, additional backward passes. It is not clear that the
benefits of faster mixing outweigh the increase in computational complexity, especially given that
good results can be obtained using Alg. 2.

Algorithm 2 Metropolis-Hastings algorithm with Gaussian proposal

1: z0 ∼ Uniform(R) ▷ Sample initial state
2: for n = 0, . . . , N − 1
3: ẑ ∼ Gaussian (zn,Σ) ▷ Draw proposal

4: pn = min

(
1,

ℓ(ẑ)

ℓ(zn)

)
I(ẑ ∈ R) ▷ Evaluate acceptance probability

5:

{
zn+1 = ẑ, with probability pn
zn+1 = zn, with probability 1− pn

▷ Update state

6: end
7: return {z1, . . . , zN}

24

Published as a conference paper at ICLR 2025

D GENERALIZATION RESULTS

Here, we formalize the generalization guarantees for when solutions of the empirical dual problem
are (probably approximately) near-optimal and near-feasible for the statistical primal problem. These
were first detailed in Chamon & Ribeiro (2020); Chamon et al. (2023). As done in Sec. 4, for
simplicity and clarity, we consider (SCL)(M). Specifically, we are interested when solutions of (DIV)
are (probably approximately) near-optimal and near-feasible for (PIV). Generalization guarantees for
the for the complete (SCL) as well as its parametric extension (SCL′) follow in the same way.

We begin with the essential (non-convex) duality assumptions. In particular, we assume that the
hypothesis space Fθ = {uθ : θ ∈ Θ} is sufficiently expressive (Assumption D.1) and that there
exists a function uθ ∈ Fθ that is strictly feasible (Assumption D.2). For NNs in particular, universal
approximation theorems indicate that these assumptions are satisfied for large enough models (see,
e.g., (Hornik, 1991)). Finally, we impose a learning theoretic limit on the complexity of the hypothesis
space Fθ in order to ensure that our empirical approximations are well-posed (Assumption D.3). The
main theorem our results are based on, namely (Chamon et al., 2023, Thm. 1), also require the losses
to be convex, M -Lipschitz continuous, and [0, B] bounded. Since we only consider quadratic losses
on the bounded domain D, these assumptions hold immediately.
Assumption D.1. The parametrization uθ is rich enough that for each θ1, θ2 ∈ Θ and β ∈ [0, 1],
there exists θ ∈ Θ such that sup(x,t)∈D |βuθ1(x, t) + (1− β)uθ2(x, t)− uθ(x, t)| ≤ ν.

Assumption D.2. There exist θ′ such that uθ′ is strictly feasible for PIV, i.e., such that

E(x,t)∼ψpde
α

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵ−Mν.

Assumption D.3. There exist ζ(N, δ) monotonically decreasing with N such that with probability
1− δ over samples (xbc

n , t
bc
n) ∼ ψbc

α and (xpde
n , tpde

n) ∼ ψpde
α , it holds for all θ ∈ Θ that∣∣∣∣∣E(x,t)∼ψbc

α

[(
uθ(x, t)− h(x, t)

)2 − 1

N

N∑
n=1

(
uθ(x

bc
n , t

bc
n)− h(xbc

n , t
bc
n)

)2∣∣∣∣∣ ≤ ζ(N, δ)∣∣∣∣∣E(x,t)∼ψpde
α

[(
D[uθ](x, t)− τ(x, t)

)2]− 1

N

N∑
n=1

(
D[uθ](x

pde
n , tpde

n)− τ(xpde
n , tpde

n)
)2∣∣∣∣∣ ≤ ζ(N, δ).

Under these assumptions, we can bound the empirical duality gap between (PIV) and (DIV), i.e.,
∆ = |P ⋆ −D⋆|, where

P ⋆ = minimize
θ∈Θ

E(x,t)∼ψbc
α

[(
uθ(x, t)− h(x, t)

)2]
subject to E(x,t)∼ψpde

α

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵ

and
D⋆ = max

λ≥0
min
θ∈Θ

L̂(θ, λ).

Proposition D.4. Under Assumptions D.1–D.3, it holds with probability 1− (3m+ 2)δ that

∆ ≤ O
(
λ⋆(Mν + ζ)

)
,

where λ⋆ is a solution of (DIV).

Prop. D.4 is obtained directly from (Chamon et al., 2023, Thm. 1). This duality gap bound is
enough to guarantee that the dual ascent algorithm in (5) provides a near-optimal and near-feasible
randomized solution of (PIV). Since all our losses are strongly convex (quadratic), we can further
show that randomization is not necessary using the last iterate guarantees from (Elenter et al., 2024,
Prop. 4.1). This is in spite of the fact that (PIV) is a non-convex optimization problem.

On the other hand, the convergence of primal-dual methods such as Alg. 1 in non-convex settings is
the subject of active research, see, e.g., (Yang et al., 2020; Lin et al., 2020; Fiez et al., 2021; Boroun
et al., 2023). Transferring the guarantees from (5) to Alg. 1 requires additional conditions, e.g., step
size separation as in (Yang et al., 2020). Such convergence guarantees are, however, beyond the scope
of this paper and left for future work.

25

Published as a conference paper at ICLR 2025

E EXPERIMENTAL DETAILS

E.1 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Throughout our experiments, we use the relative L2 error as a performance metric, which we define
as

erel(π, h) =

√√√√∑N
n=1

[
uθ(π, h)(xn, tn)− u†(π, h)(xn, tn)

]2∑N
n=1

[
u†(π, h)(xn, tn)

]2 , (32)

where u† is the solution of (BVP) obtained either analytically or by using classical numerical methods.
For MLPs, the collocation points {(xn, tn)} are taken from a dense regular grid of points (see exact
numbers below), and for FNOs, they are determined by the test sets from (Li et al., 2021; Takamoto
et al., 2022). For parametrized problems, we report the average error

ērel =
1

J

J∑
j=1

erel(πj , hj),

evaluated either on a dense regular grid of points (for coefficients π, see exact numbers below) or
based on the test sets from (Li et al., 2021; Takamoto et al., 2022).

To provide sensitivity measures, we run all experiments for 10 different seeds and report average
and standard deviations of the results. We find that for certain difficult problem (e.g., diffusion with
β = 50 or reaction-diffusion with (ν, ρ) = (3, 5)) the hyperparameters of SCL and R3 sometimes
need to be adjusted for certain seeds. This occurs rarely, but shows that there may not be one-size-
fits-all hyperparameter settings. For PINNs in (PI), we were unable to find any hyperparameters that
solved those problems.

E.1.1 SOLVING A SPECIFIC BVP (SEC. 5.1)

In this section, we formulated SCL problems of the form (SCL)(M) in order to use the same
information that PINNs traditionally rely on. Recall that we do use the worst-case distribution ψ0 (or
even random points) for the BCs, but instead consider fixed, regularly distributed points. This reduces
the overall computational complexity of the problem at essentially no performance cost. Explicitly,
we consider the following problem

minimize
θ∈Θ

1

N

N∑
n=1

(
uθ(x

bc
n , t

bc
n)− h(xbc

n , t
bc
n)

)2

subject to E(x,t)∼ψPDE
0

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵpde.

To compute the objective for the convection and reaction-diffusion PDEs, we use 256 points (xbc, 0),
xbc ∈ [0, 2π], for the IC and 100 points equally spaced in t ∈ (0, 1] to evaluate the period BC. For
the eikonal PDE, recall from (10) we use an additional structural constraint. In this case, we therefore
formulate the SCL problem

minimize
θ∈Θ

1

M

M∑
m=1

[
uθ(xm, ym)

]2
subject to E(x,t)∼ψPDE

0

[(
D[uθ](x, t)− τ(x, t)

)2] ≤ ϵpde

1

N

N∑
n=1

[
− uθ(xn, yn)

]
+
≤ ϵs,

where we use fixed collocation points for the BCs and structural constraint, namely, M = 2234
points on ∂S (the gears figure from (Daw et al., 2023)) and N = 40 points on ∂Ω. We use the exact
same points for (PI).

26

Published as a conference paper at ICLR 2025

Problem hyperparameters. For SCL, the tolerance ϵpde was selected by starting with a small
value (e.g., 10−4) and increasing it when the dual variables became too large during training to
accommodate difficult problems. After a coarse hyperparameter search, we kept the weights µ in (PI)
used in (Daw et al., 2023). Note that we used different weights for the BC and IC to solve the
eikonal PDE, since in this case the BCs play a less critical role. All values are displayed in Table 3.
When solving the Eikonal equation with SCL, we used ϵs = 10−3 as the tolerance for the structural
constraint.

Model. We used MLPs with 4 hidden layers for uθ each with 50 neurons for the convection and
reaction-diffusion equations or 128 neurons for the eikonal equation and hyperbolic tangent activation
function.

Training. To evaluate the PDE loss, all methods used 1000 collocation points sampled uniformly at
random at the beginning of each epoch (PINN), obtained using the R3 from (Daw et al., 2023) (R3),
or using Alg. 2 (SCL). For R3, we use the hyperparameters from (Daw et al., 2023). For Alg. 2, we
use Σ = diag(0.25, 0.01) for drawing proposals for x and t respectively for both convection and
reaction-diffusion. For the eikonal PDE, we use Σ = 0.04× I . In both cases, we run the algorithm
for N = 5000 and use only the last 1000 samples. All methods were trained using Adam with the
default parameters from (Kingma & Ba, 2017) and learning rates described in Table 4. Note that the
baselines only use learning rate ηp, since they do not use dual methods.

Testing. The solution of the convection and reaction-diffusion PDEs were tested on a dense regular
grid of 256 × 100 points (x, t) ∈ D against their analytical solutions. The solution of the eikonal
PDE was tested on a dense regular grid of 384 × 384 points (x, y) ∈ Ω against the ground truth
predictions from (Daw et al., 2023).

E.1.2 SOLVING PARAMETRIC FAMILIES OF BVPS (SEC. 5.2)

The SCL problem we formulate here is similar to the previous section, although we used the
parameterized version (SCL′)(M). Once again, we replace the (x, t) marginals of the worst-case
distribution ψBC

0 by a fixed, uniform distribution. Note, however, that we keep the worst-case
formulation for the coefficients π. Explicitly, we consider the SCL problem

minimize
θ∈Θ

Eπ∼ψBC
0

[
1

Nbc

Nbc∑
n=1

(
uθ(π)(x

bc
n , t

bc
n)− h(π)(xbc

n , t
bc
n)

)2
]

subject to E(x,t,π)∼ψPDE
0

[(
Dπ[uθ(π)](x, t)− τ(π)(x, t)

)2] ≤ ϵpde

Once again, we compute the objective for the convection and reaction-diffusion PDEs using 256
points (x, 0), x ∈ [0, 2π], for the IC and 100 points equally spaced in t ∈ (0, 1] to evaluate the period
BC. For the Helmholtz PDE, we use 4× 256 points equally space around ∂Ω to evaluate the BC. We
use the exact same points for (PI). Note that we include the coefficients π in the forcing function to
account for the Helmholtz BVP (see Sec. A).

Problem hyperparameters. Once again, the tolerance ϵpde were selected by starting with a small
value (e.g., 10−4) and increasing when the dual variables achieved too large a value during training
to accommodate difficult problems. The weights µ in (PI) for the baselines were taken from (Daw
et al., 2023). Exact values are displayed in Table 5.

Table 3: Problem hyperparameters for solving a specific BVP

µD µBC µIC ϵpde

Convection: β = 30 1 100 100 10−3

Convection: β = 50 1 100 100 5× 10−3

Reaction-diffusion: (ν, ρ) = (3, 3) 1 100 100 10−2

Reaction-diffusion: (ν, ρ) = (3, 5) 1 100 100 5× 10−3

Eikonal 1 10 500 5× 10−1

27

Published as a conference paper at ICLR 2025

Table 4: Training hyperparameters for solving a specific BVP

ηp
ηd

(only SCL) Learning rate decay Iterations

Convection: β = 30 10−3 10−4 0.9η every 5 000 iter. 175 000

Convection: β = 50 10−3 10−4 0.9η every 5 000 iter. 200 000

Reaction-diffusion: (ν, ρ) = (3, 3) 10−3 10−4 — 200 000

Reaction-diffusion: (ν, ρ) = (3, 5) 10−3 10−4 — 200 000

Eikonal 10−3 10−4 0.9η every 5 000 iter. 60 000

Model. We used MLPs with 4 hidden layers of 50 neurons.

Training. When training using (PI), we used 1000 collocation points per coefficient value, sampled
uniformly at random at the beginning of each epoch. For (SCL′)(M), we used Alg. 2. For the PDE
loss, we used Σ = diag(0.25, 0.01, σ2

π) to sample from (x, t, π) for both the convection (σpi2 = 9
for coefficient β) and reaction-diffusion [σpi2 = (1, 1) for coefficients (ν, ρ)] equations. For the
Helmholtz PDE, we used Σ = 0.04× I to sample from (x, t, π) for coefficients π = (a1, a2). The
same variances σ2

π were used to sample worst-case coefficients for the BC (recall that the distribution
over collocation points is fixed). In all cases, SCL uses the last 2500 out of 5000 samples generated
by the MH algorithm, except for the Helmholtz PDE with (a1, a2) ∈ [1, 3]2, where we use all 5, 000
samples to account for the additional difficulty of the problem.

All models were trained for 200, 000 using Adam with the default parameters from (Kingma & Ba,
2017) and learning rate of 10−3 for (PI). For SCL, the dual learning rate was ηd = 10−4. In all
cases, we decayed the learning rates by a factor of 0.9 every 5000 epochs, with the exception of the
reaction-diffusion PDE where we found it better to keep the learning rate constant.

Testing. The solution of the convection and reaction-diffusion PDEs were tested on a dense regular
grid of 256×100×1000 points (x, t, π) ∈ D×Π and 256×100×100×100 points (x, t, ν, ρ) ∈ D×Π,
respectively, against their analytical solutions. The solution of the Helmholtz PDE was tested on
a dense regular grid of 256× 256× 100× 100 points (x, y, a1, a2) ∈ Ω×Π against its analytical
solution.

E.1.3 LEVERAGING INVARIANCE WHEN SOLVING BVPS (SEC. 5.3)

The SCL problems formulated in this section are of the form (SCL)(M+I). To showcase the advantages
of integrating additional knowledge, such as the structure of the BVP solution, we consider fixed
collocation points for the constraints (SCL)(M). This is in fact not uncommon for PINNs, see, e.g.,
(Raissi et al., 2019; Lu et al., 2021b). These points are sampled uniformly at random once and
then kept constant throughout training. Recall that for our convection BVP (Sec. A), the solution is

Table 5: Problem hyperparameters for solving a parametric family of BVPs

µD µBC ϵpde

Convection 1 100 10−3

Reaction-diffusion: (ν, ρ) ∈ [0, 5]2 1 100 5× 10−3

Reaction-diffusion: (ν, ρ) ∈ [0, 10]2 1 100 10−2

Reaction-diffusion: (ν, ρ) ∈ [0, 20]2 1 100 10−1

Helmholtz: (a1, a2) ∈ [1, 2]2 1 100 5× 10−1

Helmholtz: (a1, a2) ∈ [1, 3]2 1 100 5

28

Published as a conference paper at ICLR 2025

Table 6: Problem hyperparameters for supervised solutions

ϵo
training
samples

validation
samples

test
samples FNO architecture

Burgers’ 10−3 800 200 200 16 modes, 4 layers
Diffusion-sorption 10−3 1000 500 500 8 modes, 5 layers
Navier-Stokes: ν = 10−3 10−2 1000 500 500 8 modes, 8 layers
Navier-Stokes: ν = 10−4 5× 10−2 1000 500 500 8 modes, 8 layers
Navier-Stokes: ν = 10−5 10−2 800 200 200 8 modes, 8 layers

periodic with period 2π/β. We therefore use the problem

minimize
θ∈Θ

1

N

N∑
n=1

(
uθ(xn, tn)− h(xn, tn)

)2

subject to
1

M

M∑
m=1

(
D[uθ](xm, tm)− τ(xm, tm)

)2

≤ ϵpde

E(x,t)∼ψST
0

[(
uθ(x, t)− uθ

[
x, t+

2π

β

])2
]
≤ ϵs

For both (PI) and (SCL′)(M) we use a total of N = 456 collocation points, namely 256 points (x, 0),
x ∈ [0, 2π], for the IC and 100 points equally spaced in t ∈ (0, 1] to evaluate the period BC. We
use M = 100 collocation points sampled uniformly at random in the beginning of training and kept
fixed throughout for the PDE loss.

Problem hyperparameters. For SCL, we take ϵpde = 10−3 and ϵs = 10−3. For (PI), we use the
weights µ from (Daw et al., 2023), namely, µD = 1, µBC = 100, and µIC = 100.

Model. We used MLPs with 4 hidden layers of 50 neurons.

Training. For (SCL′)(I), we used Alg. 2. For the invariance loss, we used Σ = diag(0.5, 0.1)
to sample from (x, t). All models were trained for 200 000 epochs using Adam with the default
parameters from (Kingma & Ba, 2017) and learning rate of 10−3 for (PI). For SCL, the dual learning
rate was ηd = 10−4. We decayed the learning rates by a factor of 0.9 every 5000 epochs.

Testing. The solution was tested on a dense regular grid of 256× 100 points (x, t) ∈ D against its
analytical solution.

E.1.4 SUPERVISED SOLUTION OF BVPS (SEC. 5.4)

For supervised experiments, we formulate an SCL without objective using only data constraints (ob-
servational knowledge). Since we use FNOs, that can only make predictions on uniform grids, we
replace ψOB0 in (SCL) with a uniform distribution over a fixed regular grid. The problem the FNOs
tackle is that of predicting the solution u† of a BVP given its IC h(x, 0). Hence, the training data is
composed of pairs (u†j , hj) describing ICs and their corresponding solution. We therefore pose the
SCL problem

minimize
θ∈Θ

0

subject to
1

N

N∑
n=1

(
uθ(hj)(xn, tn)− u†j(xn, tn)

)2

≤ ϵo, j = 1, . . . , J.

Problem hyperparameters. For SCL, the tolerance was chosen as before, using a coarse hyperpa-
rameter search. The final values are reported in Table 6.

Model. We used the FNO architecture from (Li et al., 2021) with 64 hidden channels, 128 projection
channels, and no lifting channels. The number of modes and layers are reported in Table 6.

29

Published as a conference paper at ICLR 2025

Training and Testing. The datasets from (Li et al., 2021) were used for Burgers’ and Navier-Stokes
equation, whereas the diffusion-sorption dataset was taken from (Takamoto et al., 2022). All models
were trained for 500 epochs using Adam with the default settings from (Kingma & Ba, 2017) with
learning rate 10−3 and batch size of 20. For SCL, the dual learning rate was ηd = 10−4. All learning
rates were decreased by a factor of 0.5 every 100 epochs. All test errors are reported for the model
that achieved the lowest validation error during training. The sizes of the training, validation and test
sets are reported in Table 6.

30

Published as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENTS

F.1 SOLVING PARAMETRIC FAMILIES OF BVPS

We begin by presenting additional experiments focused on solving parametric families of
BVPs (Sec. 5.2) and show how the samples from MH can be used to gain insights into the PDE and
the training process.

In what follows, we report the “relative (computational) complexity” of (SCL′) in terms of differential
operator evaluations per epoch. Explicitly,

Relative complexity =
differential operator evaluations per epoch for (SCL′)

differential operator evaluations per epoch for (PI)
× 100%

Recall that in order to evaluate the PDE loss, (PI) uses 1000 collocation points per discretized
coefficient πj whereas (SCL′) takes 5000 steps of Alg. 2.

Convection equation. Table 7 considers simultaneously solving all BVPs corresponding to the
convection equation with β ∈ [1, 30] and compares (SCL′)(M) with (PI). We see that (SCL′)(M)
outperforms or matches (PI) while being more efficient. In particular, (SCL′)(M) significantly
outperforms (PI) in terms of relative L2 error for all but the finest discretization where they perform
similarly. However, for that discretization, (SCL′)(M) is much more efficient that (PI). In that sense,
it strikes a better compromise between error and computational cost. This is even clearer from Fig. 4,
particularly when we normalize the x-axis in terms of differential operator evaluations.

Table 7: Relative L2 error and computational efficiency for the parametric convection problem.

Discretization for (PI)
Average Relative L2 Error Relative complexity

(SCL′) ÷ (PI)(PI) (SCL′)(M)
{1.0, 10.0, 20.0, 30.0} 0.365

0.0110

125%
{1.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0} 0.220 71%

{1.0, 2.0, 3.0, 4.0, 5.0, . . . , 30} 0.0476 16%

0 50k 100k 150k 200k
Epoch

10 2

10 1

100

R
el

at
iv

e
L 2

 e
rr

or

= 10
(PI)
(SCL′)(M)

0 50k 100k 150k 200k
Epoch

= 20
(PI)
(SCL′)(M)

0 50k 100k 150k 200k
Epoch

= 30

(PI)
(SCL′)(M)

0 2 4
1e9

10 2

10 1

100

R
el

at
iv

e
L 2

 e
rr

or

= 10
(PI)
(SCL′)(M)

0 2 4
1e9

= 20

(PI)
(SCL′)(M)

0 2 4
1e9

= 30

(PI)
(SCL′)(M)

Differential operator evaluations

Figure 4: Relative L2 error as a function of training epoch and differential operator evaluations for
the parametric convection problem.

31

Published as a conference paper at ICLR 2025

Reaction-diffusion equation. Additional results for the parametric reaction-diffusion BVP are
shown in Table 8. Same as for the convection PDE, (SCL′)(M) is more efficient than (PI), striking a
better compromise between computational complexity and performance. Indeed, in order to achieve
the same error as (SCL′)(M), (PI) requires between 5 and 7 times more evaluations of the PDE loss,
i.e., of the differential operatorD, per epoch. This is once again clear when looking at the evolution of
the error during training (Fig. 5), especially when the x-axis is displayed is terms of PDE evaluations.
The distribution of errors across parameters is also more homogeneous for the SCL solution (Fig. 7).

Finally, we can once again inspect the samples from ψ0 throughout training to understand where
the advantage of SCL comes from (Fig. 6). First, we do not note any interesting behavior over the
x-marginal (the samples are mostly uniform and the histogram is therefore omitted). Once again,
we see that (SCL′)(M) starts by focusing more on earlier times t, fitting the solution of the PDE
“causally.” Additionally, since the diffusion term tends to make the solution more homogeneous for
larger times, it is clear that these are regions that are easier to fit and therefore require less attention.
Once again, this behavior is not manually encouraged, but arises naturally from Alg. 1. As for
the (ν, ρ), we see that the distributions shift during training, indicating the change in difficulty of
fitting the solution of the reaction-diffusion PDE. In the end, the samples for ρ are quite uniform,
while we notice that there remains a strong focus on smaller values of ν. Note that these distributions
reflect the error patterns of the final solution (Fig. 7).

Table 8: Relative L2 error and computational efficiency for the parametric reaction-diffusion problem.

Coefficients
range Discretization for (PI)

Average relative L2 error Relative complexity
(SCL′) ÷ (PI)(PI) (SCL′)(M)

ν ∈ [0, 5]
ρ ∈ [0, 5]

{0.0, 2.5, 5.0}2 0.0793

0.0126

55.6%
{0.0, 1.67, 3.33, 5.0}2 0.0190 31.3%

{0.0, 1.25, 2.5, 3.75, 5.0}2 0.0119 20%
{0.0, 1.0, 2.0, 3.0, 4.0, 5.0}2 0.0105 13.9%

ν ∈ [0, 10]
ρ ∈ [0, 10]

{0.0, 5.0, 10.0}2 0.636
0.0133

55.6%
{0.0, 2.5, 5.0, 7.5, 10.0}2 0.0228 20%

{0.0, 2.0, 4.0, 6.0, 8.0, 10.0}2 0.0131 13.9%
ν ∈ [1, 20]
ρ ∈ [1, 20]

{1.0, 10.0, 20.0}2 0.841
0.0204

55.6%
{1.0, 5.0, 10.0, 15.0, 20.0}2 0.0128 20%

32

Published as a conference paper at ICLR 2025

0 50k 100k 150k 200k
Epoch

10 2

10 1

100
R

el
at

iv
e

L 2
 e

rr
or

(,) = (1, 10)
(PI)
(SCL′)(M)

0 50k 100k 150k 200k
Epoch

(,) = (5, 10)
(PI)
(SCL′)(M)

0 50k 100k 150k 200k
Epoch

(,) = (10, 10)
(PI)
(SCL′)(M)

0 2 4 6
1e9

10 2

10 1

100

R
el

at
iv

e
L 2

 e
rr

or

(,) = (1, 10)
(PI)
(SCL′)(M)

0 2 4 6
1e9

(,) = (5, 10)
(PI)
(SCL′)(M)

0 2 4 6
1e9

(,) = (10, 10)
(PI)
(SCL′)(M)

Differential operator evaluations

Figure 5: Relative L2 error as a function of training epoch and differential operator eval-
uations for the parametric reaction-diffusion problem. (PI) uses the discretization (ν, ρ) ∈
{0.0, 2.0, 4.0, 6.0, 8.0, 10.0}2

0.000

0.025

0.050

0.075

0.100

Sampled
Epoch: 0.5k-1k

Sampled
Epoch: 0.5k-1k

Sampled Times
Epoch: 0.5k-1k

0.00

0.05

0.10

Epoch: 30k-30.5k Epoch: 30k-30.5k Epoch: 30k-30.5k

0 1 2 3 4 5
0.00

0.05

0.10

Epoch: Last 500

0 1 2 3 4 5

Epoch: Last 500

0.0 0.2 0.4 0.6 0.8 1.0
t

Epoch: Last 500

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 6: Histogram of (marginalized) MH samples of ψ0 for the parametric reaction-diffusion
equation.

33

Published as a conference paper at ICLR 2025

0 1 2 3 4 5
0

1

2

3

4

5
(PI)

0 1 2 3 4 5

(SCL′)(M)

10 2

10 1

R
el

at
iv

e
L 2

 e
rr

or

(a)

0 2 4 6 8 10
0

2

4

6

8

10
(PI)

0 2 4 6 8 10

(SCL′)(M)

10 2

10 1

R
el

at
iv

e
L 2

 e
rr

or

(b)

Figure 7: Relative L2 error for reaction-diffusion solutions trained using (SCL′) and (PI) with
discretization (a) (ν, ρ) ∈ {0.0, 2.5, 5.0}2 and (b) (ν, ρ) ∈ {0.0, 2.0, 4.0, 6.0, 8.0, 10.0}2.

34

Published as a conference paper at ICLR 2025

Helmholtz equation. Once again, we see from Table 8 that (SCL′)(M) makes more efficient use
of computations than (PI). Indeed, in order to achieve the same error as (SCL′)(M), (PI) requires
between 3 and 4 times more evaluations of the PDE loss (i.e., of the differential operator D) per
epoch. This is clear by looking at the evolution of the error during training after normalizing the
x-axis in terms of computational complexity (Fig. 5). Naturally, taking finer discretizations eventually
leads to lower errors (Fig. 9), but the computational cost associated also rises considerably. On the
other hand, we keep the computational cost of (SCL′) fixed throughout all experiments, showcasing
its good performance across scenarios with little to no manipulation.

We can also inspect the samples from ψ0 throughout training to gain a better understanding of
the difficulties perceived by the MLP to fit solutions of this problem (Fig. 10). We display only
the x and a1 marginals, seen as they display the same behaviors as y and a2 respectively due to the
symmetry of the Helmholtz equation. Here, we notice that the distribution of x has an alternating
pattern initially. This makes sense seen as the solution of the Helmholtz equation is periodic. SCL
clearly picks up on this pattern, focusing on the modes of the solution. As training continues, the
sampling becomes more uniform, although with a focus on the boundaries of the domain where the
MLP clearly has difficulties fitting the solution. With respect to the problem coefficients, we notice
that ψ0 concentrates on larger values of a1, especially in the beginning of training. These are indeed
coefficients for which the solution of the problem is harder to fit (as evidenced by Fig. 9).

Table 9: Relative L2 error and computational efficiency for the parametric reaction-diffusion problem.

Coefficients
range Discretization for (PI)

Average relative L2 error Relative complexity
(SCL′) ÷ (PI)(PI) (SCL′)(M)

a1 ∈ [1, 2]
a2 ∈ [1, 2]

{1.0, 1.5, 2.0}2 0.0307
0.0125

55.6%
{1.0, 1.25, 1.5, 1.75, 2.0}2 0.00593 20%
{1.0, 1.2, 1.4, 1.6, 1.8, 2.0}2 0.00463 13.9%

a1 ∈ [1, 3]
a2 ∈ [1, 3]

{1.0, 2.0, 3.0}2 1.34
0.0549

55.6%
{1.0, 1.5, 2.0, 2.5, 3.0}2 0.00943 20%

{1.0, 1.4, 1.8, 2.2, 2.6, 3.0}2 0.00953 13.9%

0 50k 100k 150k 200k
Epoch

10 2

10 1

100

R
el

at
iv

e
L 2

 e
rr

or

(a1, a2) = (1.0, 2.0)
(PI)
(SCL′)(M)

0 50k 100k 150k 200k
Epoch

(a1, a2) = (1.5, 2.0)
(PI)
(SCL′)(M)

0 50k 100k 150k 200k
Epoch

(a1, a2) = (2.0, 2.0)
(PI)
(SCL′)(M)

0 2 4 6
1e9

10 2

10 1

100

R
el

at
iv

e
L 2

 e
rr

or

(a1, a2) = (1.0, 2.0)
(PI)
(SCL′)(M)

0 2 4 6
1e9

(a1, a2) = (1.5, 2.0)
(PI)
(SCL′)(M)

0 2 4 6
1e9

(a1, a2) = (2.0, 2.0)
(PI)
(SCL′)(M)

Differential operator evaluations

Figure 8: Relative L2 error as a function of training epoch and differential operator evaluations for the
parametric Helmholtz problem. (PI) uses the discretization (a1, a2) ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}2

35

Published as a conference paper at ICLR 2025

1.0 1.2 1.4 1.6 1.8 2.0
a1

1.0

1.2

1.4

1.6

1.8

2.0

a 2

(PI)

1.0 1.2 1.4 1.6 1.8 2.0
a1

(SCL′)(M)

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
L 2

 e
rr

or

(a)

1.0 1.2 1.4 1.6 1.8 2.0
a1

1.0

1.2

1.4

1.6

1.8

2.0

a 2

(PI)

1.0 1.2 1.4 1.6 1.8 2.0
a1

(SCL′)(M)

10 2

R
el

at
iv

e
L 2

 e
rr

or

(b)

Figure 9: Relative L2 error for Helmholtz solutions trained using (SCL′) and (PI) with discretization
(a) (a1, a2) ∈ {1.0, 1.5, 2.0}2 and (b) (a1, a2) ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}2.

36

Published as a conference paper at ICLR 2025

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
Fr

eq
ue

nc
y

Beginning (Epoch: 0.5k-1k)

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e
Fr

eq
ue

nc
y

Middle (Epoch: 30k-30.5k)

1.0 0.5 0.0 0.5 1.0
x

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
Fr

eq
ue

nc
y

End (Epoch: Last 0.5k)

0.00

0.02

0.04

0.06

0.08

R
el

at
iv

e
Fr

eq
ue

nc
y

Beginning (Epoch: 0.5k-1k)

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
Fr

eq
ue

nc
y

Middle (Epoch: 30k-30.5k)

1.0 1.2 1.4 1.6 1.8 2.0
a1

0.000

0.025

0.050

0.075

0.100

0.125

R
el

at
iv

e
Fr

eq
ue

nc
y

End (Epoch: Last 0.5k)

Figure 10: Histogram of (marginalized) MH samples of ψ0 for the parametric Helmholtz equation.

37

Published as a conference paper at ICLR 2025

F.2 SUPERVISED SOLUTION OF BVPS

Burgers’ equation. Fig 11 shows the box plots for the relative L2 error across samples. They show
that not only is the average error across samples smaller when using (SCL)(O), but in fact the whole
error distribution is shifted down. This is due to the variety of weights given to different samples,
weights that in fact vary during the training process (Fig 12). The few large dual variables are related
to ICs that are harder to fit and can provide important information for data collection or architecture
improvements. We have already shown which ICs are harder for FNOs to fit in Fig. 3.

(PII) (SCL)(O)

0.0004

0.0006

0.0008

0.0010

R
el

at
iv

e
L 2

 e
rr

or

Box Plot for Train Errors

o

(PII) (SCL)(O)

Box Plot for Test Errors

Figure 11: Distribution of train and test errors (across data points) for the Burgers’ equation (orange
line indicates the median).

1 100 200 300 400 500
Epoch

0.00

0.02

0.04

0.06

D
ua

l V
ar

ia
bl

e
(

)

Maximum
Minimum
Average

(a)

0.04 0.05 0.06 0.07
Dual Variable ()

100

101

102

Fr
eq

ue
nc

y

(b)

Figure 12: Dual variables obtained by Alg. 1 for the Burgers’ equation: (a) evolution during training
and (b) distribution of the dual variables after training.

38

Published as a conference paper at ICLR 2025

Diffusion-sorption equation. We once again display the distribution of the relative L2 errors
across training and test data points for models trained using (PII) and (SCL)(O) (Fig. 13). Here, we
clearly see that by bounding the maximum error rather than minimizing its average leads to a more
homogeneous fit across samples. This is once again due to the different weight assigned to each data
sample, weights that also evolve throughout training (Fig 14a). By inspecting the ICs with large and
small values of λ, we notice the pattern showcased in Fig 14b, where IC with either large or small
magnitude are more challenging to fit than those with moderate ones.

(PII) (SCL)(O)

0.004

0.006

0.008

0.010

0.012

R
el

at
iv

e
L 2

 e
rr

or

Box Plot for Train Errors

o = 0.001

(PII) (SCL)(O)

Box Plot for Test Errors

Figure 13: Distribution of train and test errors (across data points) for the diffusion-sorption equa-
tion (orange line indicates the median).

1 100 200 300 400 500
Epoch

0.00

0.02

0.04

0.06

D
ua

l V
ar

ia
bl

e
(

)

Maximum
Minimum
Average

(a)

0.00 0.05 0.10 0.15 0.20
Magnitude of Initial Condition

0.05

0.06

0.07

D
ua

l V
ar

ia
bl

e
(

)

(b)

Figure 14: Dual variables obtained by Alg. 1 for the diffusion-sorption equation: (a) evolution during
training and (b) value as a function of the IC magnitude.

39

Published as a conference paper at ICLR 2025

Table 10: Relative L2 error on test set (mean ± standard deviation).

ν (PII) (SCL)(O)
Burgers’ 10−3 0.0540± 0.0027% 0.0444± 0.0020%

Navier-Stokes
10−3 4.29± 0.40% 3.31± 0.16%

10−4 32.2± 0.87% 29.9± 0.54%

10−5 27.6± 0.63% 26.0± 0.33%

Diffusion-Sorption 0.274± 0.049% 0.218± 0.036%

Navier-Stokes equation. We start by displaying an extended version of Table 2 including standard
deviations of results over 10 runs to show the consistency of our results across random seeds (Table 10).
We then turn to Fig 15 which shows that (SCL)(O) not only improves the average relative L2 error,
but its entire distribution across train and test data points. For the Navier-Stokes equations, however,
it is harder to find a relation between IC properties and the difficulty of fitting the solution. That is
because, as we show in Fig 16, the dual variables do not have such extremely different values. This is
certainly due to the fact that the tolerance ϵo is set very loose (0.01) and that in these situations, all
ICs are similarly difficult to fit. Still, some ICs have outlier values of λ (Fig 16b), which does point
to the fact that the FNO does struggle more to fit certain conditions. That being said, it not easy to
identify what in those conditions make them hard (Fig 17). Nevertheless, this is not an issue as we
need not know beforehand which ICs are challenging: suffices it to run Alg. 1 to solve (SCL)(O).

(PII) (SCL)(O)
0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

R
el

at
iv

e
L 2

 e
rr

or

Box Plot for Train Errors

o = 0.01

(PII) (SCL)(O)

0.02

0.04

0.06

0.08

0.10

Box Plot for Test Errors

Figure 15: Distribution of train and test errors (across data points) for the Navier-Stockes equation
with ν = 10−3 (orange line indicates the median).

1 100 200 300 400 500
Epoch

0.00

0.02

0.04

0.06

D
ua

l V
ar

ia
bl

e
(

)

Maximum
Minimum
Average

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Dual Variable ()

100

101

102

Fr
eq

ue
nc

y

(b)

Figure 16: Dual variables obtained by Alg. 1 for the Navier-Stokes equation with ν = 10−3:
(a) evolution during training and (b) distribution of the dual variables after training.

40

Published as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

y
IC for Smallest Dual Variables () IC for Largest Dual Variables ()

0.0

0.2

0.4

0.6

0.8

y

0.0

0.2

0.4

0.6

0.8

y

0.0 0.2 0.4 0.6 0.8
x

0.0

0.2

0.4

0.6

0.8

y

0.0 0.2 0.4 0.6 0.8
x

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Magnitude

Figure 17: Initial conditions corresponding to the smallest and largest final dual variables for Navier-
Stokes equation with ν = 10−3.

41

Published as a conference paper at ICLR 2025

G ADDITIONAL RELATED WORK

G.1 PHYSICS-INFORMED NEURAL NETWORKS

Fitting MLPs to the solution of BVPs goes back to (Psichogios & Ungar, 1992; Dissanayake &
Phan-Thien, 1994; Lagaris et al., 1998). The advent of differentiable programming and automatic
differentiation, however, lead to an increased interest in this approach, which has since been used
to tackle both forward and inverse problems involving a variety of PDEs (see, e.g., (Raissi et al.,
2019; Wight & Zhao, 2021; Chen et al., 2020; Lu et al., 2021b; Basir & Senocak, 2022; Yu et al.,
2022; Xu et al., 2023)). This led to new architectures tailored for PDEs (Raissi et al., 2019; Fathony
et al., 2021; Gao et al., 2021; Wang et al., 2021a; Kang et al., 2023; Moseley et al., 2023; Cho et al.,
2024; Chalapathi et al., 2024), leveraging positional embedding (Wang et al., 2021b) and adaptive
activation functions (Jagtap et al., 2020).

Training PINNs. PINNs tend to be very sensitive to training hyperparameters, particularly the
choice of collocation points and loss weights. Many works have theoretically and empirically
investigated the origins of these issues (Krishnapriyan et al., 2021; Markidis, 2021; Wight & Zhao,
2021; Wang et al., 2021a; 2022b;a; Grossmann et al., 2024). Based on these observations, adaptive
heuristics have been proposed to select the collocation points based on importance sampling (Nabian
et al., 2021; Wu et al., 2023), adversarial training Wang et al. (2022a), rejection sampling (Daw et al.,
2023), and causality-inspired rules (Penwarden et al., 2023; Wang et al., 2024). Similarly, empirical
rules for determining the loss weights [µ in (PI)] have been developed using the magnitude of the
gradients (Wang et al., 2021a), eigenvalues of the neural tangent kernel (Wang et al., 2022b), inverse-
Dirichlet weighting (Maddu et al., 2022), soft attention mechanisms (McClenny & Braga-Neto,
2023), and (augmented) Lagrangian formulations (Lu et al., 2021b; Basir & Senocak, 2022). Other
works have addressed these challenges by changing the problem formulation inspired by traditional
numerical methods (Kharazmi et al., 2021; Chiu et al., 2022; Patel et al., 2022), proposing different
objective functions (Yu et al., 2022; Son et al., 2021), and using sequential (Wight & Zhao, 2021;
Krishnapriyan et al., 2021) and transfer learning (Goswami et al., 2020; Chakraborty, 2021; Desai
et al., 2022) techniques.

In contrast to these approaches, we address these issues jointly by using worst-case losses and
constrained learning to obviate these hyperparameters. In fact, we prove that the constrained learning
problems we pose yield (weak) solutions of BVPs. Hence, it is not enough to use either adversarial
training to estimate the worst-case loss as in (Wang et al., 2022a) or constrained learning to manipulate
the loss weights as in (Lu et al., 2021b; Basir & Senocak, 2022). Both are required simultaneously.
Leveraging findings from adversarially robust learning, we also replace the gradient methods used
in (Wang et al., 2022a), i.e., the technique from (Mądry et al., 2018), by the sampling-based approach
in (Robey* et al., 2021).

G.2 NEURAL OPERATORS

In contrast to the MLPs and convolutional NNs (CNNs) typically used in PINNs, NOs are NNs
capable of handling infinite-dimensional inputs and outputs. They can therefore be trained to find
BVP solutions for different IC or forcing functions. Many different architectures have been proposed,
such as DeepONets (Lu et al., 2021a), FNOs (Li et al., 2021), and NO based on U-Nets (Gupta
& Brandstetter, 2023). FNOs in particular have become quite popular and garnered many efforts
towards addressing their limitations, such as improving memory efficiency (Rahman et al., 2023),
designing equivariant FNOs (Helwig et al., 2023), extending FNOs to general geometries (Li et al.,
2023), factorizing the Fourier transform (Tran et al., 2023), and leveraging multiwavelets (Gupta
et al., 2021).

Training NOs. Regardless of these improvements, the vast majority of NOs are trained in a
supervised manner by minimizing their average error across samples as in (PII) (see, e.g., (Lu et al.,
2021a; Li et al., 2020; Kovachki et al., 2023)). Unless substantial domain knowledge has been used
during data collection, challenging cases may be underrepresented in the dataset, which could hinder
the accuracy of the NO. Although semi-supervised techniques involving PDE losses have also been
used (Li et al., 2024), computing the space-time derivatives needed to evaluate Dπ[u] is challenging
for NOs.

42

Published as a conference paper at ICLR 2025

In this paper, we do not develop new NO architectures, but focus on the problem of training them.
Explicitly, rather than targeting the average error, we target the maximum error across samples. This
is much better suited to handle the heterogeneous difficulty in fitting the data. We also incorporate
structure in the solution during training, without the need to design new architectures.

G.3 CONSTRAINED AND ADVERSARIALLY ROBUST LEARNING

The main tool used in the development of SCL is constrained learning, or more specifically, robustness-
constrained learning. Constrained learning is a technique to train ML systems under requirements,
such as fairness (Kearns et al., 2018; Cotter et al., 2019; Chamon & Ribeiro, 2020; Chamon et al.,
2023) and robustness (Chamon & Ribeiro, 2020; Robey* et al., 2021; Hounie et al., 2023a; Chamon
et al., 2023), or to handle applications in which we want to attain good performance with respect to
more than one metric. As in unconstrained learning, it is formulated as statistical risk minimization
problem, albeit with constraints. Despite its non-convexity in virtually every modern ML task, certain
duality properties hold when using sufficiently expressive parametrizations, leading to a practical
learning rule with generalization guarantees (Chamon & Ribeiro, 2020; Chamon et al., 2023). These
duality results have also been exploited to automatically adapt each constraint specification to their
underlying difficulty, striking better compromises between objective and requirements Hounie et al.
(2023b).

Aside from dealing with the nominal accuracy vs. robustness trade-off typical in ML systems,
constrained learning has itself been used to optimize robust losses. Typically, this is done using some
combination of gradient ascent and random initialization, restart, and pruning heuristics (Goodfellow
et al., 2015; Mądry et al., 2018; Dhillon et al., 2018; Wu et al., 2020; Cheng et al., 2022). Using
semi-infinite optimization techniques, however, these deterministic methods can be replaced by a
sampling approach that has been successful in a variety of domains (Robey* et al., 2021). Different
MCMC methods (Robert & Casella, 2004) have been used in this context, including Langevin Monte
Carlo (LMC) (Robey* et al., 2021) and Metropolis-Hastings (MH) (Hounie et al., 2023a).

43

	Introduction
	Problem Formulation
	Boundary Value Problems
	Solving boundary value problems

	Science-Constrained Learning
	Algorithm
	Experiments
	Solving a specific BVP
	Solving parametric families of BVPs
	Leveraging invariance when solving BVPs
	Supervised solution of BVPs

	Conclusion
	Applications of (BVP)
	Convection equation
	Reaction-diffusion equation
	Eikonal equation
	Helmholtz equation
	Burgers' equation
	Diffusion-sorption equation
	Navier-Stokes equation

	Weak solutions and robust learning
	Proof of Prop. 3.1
	Prop. 4.1
	Preliminaries

	Proof of Proposition 3.2

	Sampling with the Metropolis-Hastings algorithm
	Generalization Results
	Experimental details
	Hyperparameters and implementation details
	Solving a specific BVP (Sec. 5.1)
	Solving parametric families of BVPs (Sec. 5.2)
	Leveraging invariance when solving BVPs (Sec. 5.3)
	Supervised solution of BVPs (Sec. 5.4)

	Additional experiments
	Solving parametric families of BVPs
	Supervised solution of BVPs

	Additional related work
	Physics-informed neural networks
	Neural Operators
	Constrained and adversarially robust learning

