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Abstract

While RL successfully enhances reasoning in LLMs, its effect on compositional
generalization (the ability to synthesize novel skills from known components) is
often conflated with length generalization. To this end, we study what RL teaches
about skill composition and how the structure of the composition affects the skill
transfer. We focus on COUNTDOWN (given n numbers and a target, form an
expression that evaluates to the target) and analyze model solutions as expression
trees, where each subtree corresponds to a reusable subtask and thus can be viewed
as a “skill.” Tracking success rates per tree shape over training, we find: OOD
generalization to larger n and to unseen tree shapes, indicating compositional
reuse of subtasks; (ii) a structure-dependent hierarchy of learnability—models
master shallow balanced trees (workload is balanced between subtasks) before
deep unbalanced ones, with persistent fragility on right-heavy structures (even when
the composition depth is the same as some left-heavy structures). Our diagnostic
reveals what is learned, in what order, and where generalization fails, clarifying
how RL-only post-training induces OOD generalization beyond what standard
metrics such as pass @k reveal.

1 Introduction

A key objective in training large language models (LLMs) is to develop robust reasoning abilities that
generalize to novel problem instances. Reinforcement learning (RL) is a widely adopted technique
for this purpose [Ouyang et al., 2022 Grattafiori et al., 2024, |(OpenAl et al., 2024} |DeepSeek-Al
et al.,[2025]], yet the precise mechanism by which it improves reasoning remains poorly understood.
The prevailing hypotheses suggest that RL either sharpens the model’s probability distribution over
known reasoning paths [Huang et al., 2025| |Yue et al., [2025]] or encourages in-context exploration via
chaining in longer solution sequences [DeepSeek-Al et al.| [2025] [Setlur et al.| 2025]]. However, these
notions overlook a crucial aspect of intelligence: the ability to compose known skills in novel ways.

Current evaluations often conflate two fundamentally different modes of generalization. The first,
length generalization, is the ability to solve problems of greater sequential depth by iterating a known
algorithmic structure. The second, compositional generalization, is the ability to solve problems of a
fixed depth by synthesizing a novel algorithmic structure from familiar components. While complex
reasoning often involves both, we argue that a rigorous understanding requires operationalizing and
testing these two modes of generalization independently. Without a clear way to distinguish them, it
is difficult to ascertain the true algorithmic contribution of fine-tuning methods like RL.

To formalize this distinction we use COUNTDOWN as a testbed. Given n integers and a target, the
model needs to output an expression using each integer once and operators {+, —, X, =} that attains
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the target ﬂ The binary tree structure of a solution allows for a canonical representation of the
reasoning pattern used to solve a problem.

This pattern framework allows us to move beyond a monolithic view of the solution to a nuanced
skill-based view. Solving a complex pattern like A x (B — C/D) requires a composition of distinct
abilities: decomposition skills to identify how to explore and correctly partition the solution (e.g.,
factor_identification: identifying the factors of the target to explore potential candidates) and
the recursive sub-problem skills to solve the resulting sub-patterns (e.g., generating an expression for
B — C/D given the remaining three numbers and a modified target). The tree structure of the pattern
determines which atomic skills are combined, in what order, and how they are grouped.

By tracking the development of complex skills for each pattern during training, we probe two
questions: 1) To what extent does RL equip models with the ability for genuine structural composition?
and 2) How does the underlying compositional structure of a problem affect its learnability?

We summarize our main findings and contributions. We introduce a pattern framework for dis-
entangling length and compositional generalization (Section [2). Models trained on patterns from
n = 3,4 generalize to larger puzzle sizes (n = 5, 6), where skills for smaller patterns need to be
recombined to solve the puzzles (Section[4.T). Pattern structure determines difficulty: within the
same input length n, we observe a clear hierarchy of learnability based on the structure of the pattern:
shallow balanced structures are easier than deep unbalanced structures (Section @]), and within the
same depth, right-heavy trees (which require committing to a plan ahead of the complex subroutine
appearing later) are particularly hard (Section4.3). When a particular n = 3 pattern was removed
from training, 1.5B model can reconstruct the pattern and its higher-order extensions (Section .4),
signaling compositional reuse.

2 Methodology

Standard metrics for reasoning, such as pass@k, response length, or number of attempts offer an
incomplete picture of a model’s capabilities. They fail to distinguish between a model’s ability to
iterate a known procedure and the more formidable challenge of synthesizing a novel one. To address
this, we introduce a formal framework that disentangles these phenomena by analyzing the underlying
computational structure of arithmetic solutions, which we apply to the COUNTDOWN task.

A rigorous analysis of structural difficulty also requires that the distribution of problem types be
controlled. We identify severe distributional biases in standard approach for creating COUNTDOWN
datasets. To eliminate this confounder, we designed a different generation protocol. See Appendix|[C.2]
for more details.

2.1 Canonical Patterns of Reasoning

We define an atomic skill as the application of a single binary operator from {+, —, X, +}. Then the
ability to solve a COUNTDOWN puzzle with an arithmetic expression requires a skill composition.
By replacing numbers with placeholder symbols, an arithmetic expression can be abstracted (e.g.,
9/3 + 1 — A/B+C) and parsed into a binary tree, which provides insights into how the atomic skills
are combined.

To ensure that syntactically different but algorithmically identical expressions (e.g., (A + B) + C
and C' 4 (A + B) are treated as a single computational procedure, we apply a principled normal-
ization process that maps them to a unique canonical pattern (Figure[3). This process, detailed in
Appendix [C.] resolves ambiguities arising from properties like commutativity and associativity,
allowing us to analyze the underlying computational graph and distinguish a simple iterative structure
like A+ B + C + D from a complex, nested one like A/(B — C/D).

We classify the structure of a computational pattern by its shape signature [x] o [y], denoting the root
operator o and the number of leaf operands z and y in its left and right sub-trees. This partitioning into
left-heavy (z > y), balanced (z =~ y), and right-heavy (x < y) structures correlates with synthesis
difficulty (Figure ). For instance, to generate a right-heavy pattern like A/(B — C/D) (signature
[1] =+ [3]), a model cannot greedily select the root operator; it must first look ahead to the complex
sub-expression (B — C'/ D) and recognize its utility within the broader computation.

?For example, given [4,3,2,2] and a target 16, one solution is 2 X 2 x 3 + 4 = 16.



3 Experimental Setup

We finetune Qwen-2.5 models (1.5B, 3B, and 7B) [Qwen et al.,2025]] with GRPO [Shao et al., 2024]]
on problems of size n € {3,4}. Full training details and results on other model families are available
in Appendices and [F] We evaluate each intermediate checkpoint by sampling & = 32 outputs
per held-out question, with the maximum token length increasing for larger problem sizes. We
compute the following metrics on the extracted final answers: Pass@32 / All-correct@32 (fraction
of questions where at least one (Pass@32) or all (All-correct@32) of the k sampled answers are
correct); Average Accuracy (total number of correct answers, divided by the total number of final
answers); Per-Pattern Precision (for any single pattern, the total number of correct answers using
that pattern, divided by the total number of final answers using that pattern); Pattern Coverage
(fraction of all possible patterns that the model produces at least once); High-Precision Coverage
(fraction of all possible patterns for which the model’s per-pattern precision is at least SO%EI).

4 Main Results

We first show that models achieve length generalization (Section @, then demonstrate that this
success is fundamentally governed by the compositional structure of the task (Section [4.2). We
identify “lookahead bottleneck™ as the primary barrier to compositional skill and provide definitive
evidence that RL enables the synthesis of entirely novel reasoning patterns (Section[4.4). Finally, we
isolate the effect of RL training by comparing against an SFT baseline (Appendix [D.4).

4.1 Models Demonstrate Length Generalization

RL finetuning effectively teaches models to apply learned reasoning procedures to problems of greater
lengths than seen during training. Models trained only on n € {3,4} problems show substantial
accuracy improvements on held-out n = 5 puzzles (Figure[7)), with final Pass @32 reaching nearly
70% for the 1.5B model (Table . This generalization extends to n = 6, where models achieve
Pass@32 around 40%. These results confirm that models successfully achieve length generalization.

4.2 Compositional Structure Determines Learnability

However, the improvement in an aggregate accuracy masks the true determinant of difficulty. The
ability to generalize in length is fundamentally constrained by the compositional structure of the
pattern. This is evident in the out-of-distribution n = 5 evaluation in Figure |1} which reveals the
same hierarchy of difficulty seen on the training distribution (with n = 4): balanced patterns are
learned most readily, while right-heavy patterns remain the most challenging. This demonstrates that
compositional complexity, not problem length, is the primary predictor of reasoning difficulty, even
when generalizing to unseen lengths.

4.3 The “Lookahead Bottleneck” Is a Fundamental Barrier to Skill Composition

To isolate the effect of compositional structure while holding problem length constant, we analyze
performance on n = 4 puzzles. Our findings reveal a clear difficulty hierarchy that points to a
“lookahead bottleneck™ as a fundamental challenge for autoregressive models.

Figure[1](n = 4 column) shows that balanced patterns ([2] o [2]), which decompose a problem into
two equal subtasks, are mastered far more reliably than unbalanced ones. Crucially, right-heavy
patterns ([1] o [3]) are substantially harder to learn than left-heavy ([3] o [1]) ones. To generate a
solution for a right-heavy pattern like A/(B — C'/D), the model must commit to the root operator
(<) before generating the complex, three-term subroutine it applies to. This need to plan ahead for a
complex subsequent operation is the primary failure mode.

Table3|quantifies this bottleneck across all model sizes: at the same depth of 3, [1] o [3] underperforms
[3] o [1], especially with root operator o € {—, =} and with smaller models.

3The 80% threshold checks if the model can execute a pattern with a reasonable reliability, but allows some
mistakes. The main findings are robust to reasonable variations of the threshold (70-90%). See AppendixE}
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Figure 1: Compositional structure (not input length) determines difficulty. Within n = 4,
balanced patterns ([2] o [2]; purple) are discovered (top row) and mastered far more reliably (bottom
row) than the unbalanced ones (red/blue). Balanced patterns have shallow trees, with solution depth
of 2 equal to that of n = 3 puzzles. Even when controlling for depth, right-heavy patterns ([1] o [3];
blue) are substantially harder than left-heavy patterns ([3] o [1]; red). This evidence points to a
“lookahead bottleneck” suggesting that a primary failure mechanism is the challenge of committing to
a solution ahead of a complex subroutine. The entire structural hierarchy persists for n = 5.

4.4 RL Enables Synthesis of Unseen Patterns, Signaling Compositional Generalization

We next test for the strongest form of generalization: whether RL can enable a model to synthesize
a novel reasoning pattern it has never been explicitly trained on. We designed a rigorous held-out
experiment, removing the n = 3 pattern A/B + C and its entire family of n = 4 derivatives from
the training dataset (e.g., A/B + C + D, A/(B + C) + D). See Appendix [E.4|for the full list.

The results provide evidence for compositional generalization. The model successfully learns to
generate the held-out patterns despite zero training exposure (Figure[2). The learning dynamics mirror
those on the training distribution: coverage first emerges on the simpler n = 3 subpattern before
the model learns to compose it into its more complex n = 4 dependent forms. This demonstrates
that the model is not merely matching seen templates but is actively reusing learned substructures to
assemble novel operator-tree shapes, fulfilling our definition of compositional generalization.

5 Ablations

In Appendix [E| we run ablations on the different part of the training pipeline. Small models
often find a formatting-only shortcut, but increasing the group size initially mitigates the instability
(Appendix [E-I). Normalizing by the standard deviation in the group advantage leads to longer
responses and a lower final performance (Appendix [E.2)); increasing the number of rollouts may
improve stability but leads to a lower final performance (Appendix [E3)); models require harder
and a diverse set of patterns to escape the formatting-only shortcut (Appendix [E-4); models trained
without a random subset of patterns can still generalize to unseen patterns and larger pattern sizes
(Appendix [E-4); training with PPO may improve All-correct@32 but hurts Pass @32 (Appendix [E.3).

6 Discussion and Future Work

Our work studies the acquisition of skill composition during RL. On natural data, compositional
complexity is confounded with length, making it impossible to isolate true failure modes. A synthetic
testbed is therefore methodologically essential to control for these confounders and identify drivers
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Figure 2: Generalizes to entire families of held-out compositional patterns. To evaluate composi-
tional generalization, we removed an entire family of related patterns from the training set: the base
n = 3 structure A/B + C and all of its n = 4 extensions (e.g., A/B+ C + D, A/(B+ C) + D).
The model successfully recovers these unseen patterns. Coverage first emerges on the held-out n = 3
subpattern before generalizing to its more complex n = 4 dependents, matching the typical learning
hierarchy where presence precedes precision. This result demonstrates that the model can reuse
learned substructures to assemble novel operator-tree shapes it has never been explicitly trained on.

of reasoning failure. Thus, the COUNTDOWN task introduces a formal lens through which to analyze
the acquisition of compositional skills. By representing solutions as computational trees, we can
disentangle the effects of a problem’s length from its underlying compositional structure. This
decomposition reveals a fundamental insight: the primary barrier to learning complex reasoning are
not length-based but structural. Models do not fail simply because a task is long; they fail when its
compositional form creates specific bottlenecks.

Our analysis reveals that problems decomposable into balanced sub-problems are learned most readily.
In contrast, those requiring deep-sequential commitments (particularly “right-heavy” structures that
demand significant lookahead before executing a complex subroutine) constitute a fundamental
bottleneck for autoregressive models; crucially, these right-heavy structures are often harder than
left-heavy ones, despite having the same compositional depth. This demonstrates that a task’s
compositional structure, rather than merely its size, is what dictates learnability. This finding should
be understood not as an artifact of our task, but as highlighting a plausible explanation of where
difficulty in extending beyond the reasoning boundary arises. Our results suggest that the inherent
challenge is tied to the structure of skill composition itself, not to incidental features of the data.

The relationship between compositional structure and difficulty likely extends to a broad class of
compositional tasks, including program synthesis, multi-step tool use, and theorem proving. In any
domain where a solution can be mapped to a computational plan or proof tree, its structural properties
(balance, depth, and sequentiality of dependence) may predict its difficulty for a model.
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A Related Works

Sharpening vs discovery and pass@k. Previous works [Yue et al, [2025] [Dang et al.| 2025]]
often use the metric of pass@k to label the effect of post-training as either sharpening [Huang
et al.} 2025]]—concentrating probability on pre-existing good paths—or discovery—acquiring new
knowledge. While useful, trajectory-level metrics like pass@k are too coarse to provide detailed
insight into model behavior. Our work focuses on the learning dynamics, which are compatible
with both possibilities. Instead of concluding whether RL is introducing a new type of reasoning or
resurfacing it, we focus more on skill composition: how and in which order it happens.

Length and compositional generalization Previous works [[Anil et al., 2022} Zhou et al., 2024,
Lee et al.| 2025] study the ability of LLMs to generalize to a sequence length longer than seen during
training. More broadly, recent papers DeepSeek-Al et al.|[2025]], [Setlur et al.| [2025] claim that RL
helps models generalize to more difficult problems by encouraging more attempts, considering length
as a proxy for difficulty. [Sun et al.|[2025] study the ability of RL to teach LLMs to compose skills,
but they consider the number of skills combined as a proxy for task complexity, still conflating length
and compositional generalization. Concurrent with our work, [Yuan et al.|[2025]] also show that RL
can induce compositional ability and report the need for a metric beyond pass @k, but their definition
is limited to compositional depth, which again coincides with length.

Our work instead proposes a framework to analyze the structure behind each skill as an abstract
tree, which allows us to diagnose how the complexity of a task is determined by the compositional
structure, not just its length or depth.

COUNTDOWN and the game of 24. Prior works [Yao et al., [2023} |Gandhi et al., 2024} Herr
et al., 2025 N1 et al., 2025]] consider COUNTDOWN, and its variant Game of 24, as a testbed for
model reasoning due to its clean structure. They mainly focus on optimizing inference-time search
or training on heuristics-based search traces, but these approaches can make it difficult to identify
which skills acquired versus which are a part of the search algorithm / heuristics. By contrast, our
work focuses on natural RL on COUNTDOWN—no handcrafted search heuristics or specialized
decoding—so the only signal is the natural task reward. This design lets us attribute behavioral
changes directly to RL and to analyze them with the pattern framework.

Design choices in RL training. RL training is sensitive to algorithmic choices. The loss function in
GRPO [Shao et al.l[2024] involves multiple terms, including group-level advantage normalization, KL
regularization, and gradient clipping. Follow-up works [Liu et al., 2025 [Yu et al.| 2025| |Shrivastava
et al.}[2025]] analyze the effect of these choices; for example, arguing that removing standard-deviation
normalization can improve stability and avoid biases toward easy prompts. Our work complements
these works by providing additional empirical observations on the effect of the design choices in RL.

B Limitations

The scope of the paper is limited to COUNTDOWN; we do not evaluate on other reasoning or
compositional tasks. We consider generalization only to a larger puzzle size n or to a selected
held-out set of patterns; a more careful design of held-out strategy will be useful to test the limit of
the generalization capability. Finally, the paper trains on a random mix of a balanced dataset; we do
not consider any data curriculum, which may further accelerate the rate of learning or reveal other
learning dynamics of RL.



C Experimental Setup (More Details)

C.1 Expressions to Patterns
Here are the heuristics (in plain English) to map an expression to its canonical form.

» Remove any unnecessary parentheses. For example, map (A + B) + Cto A+ B + C.
* If possible, use + and x instead of — and /. For example, map A — (B—C)to A— B+ C.

» For commutative operations (+ and x), the operands are sorted in decreasing order of the
“weight” of the operand (i.e., the number of symbols involved in the intermediate term). For
example, (A 4+ B) x C is preferred over A x (B + C).

* If in the same intermediate level of computation, 4+ and x should appear before — and /.
For example, A + B — C'is preferred over A — B + C'. For example, (A + B) x (A — B)
is preferred over (A — B) x (A + B).

The full list of mapping is given in Tables [IT]to[I4] In Appendix [H] we show that the choice of the
canonicalization scheme does not affect the main findings of the paper.

C.1.1 A Tree View of Expressions and Patterns

Each expression can be viewed as a binary tree, with each node representing an operation and each
leaf node representing a symbol. To define congruence between equivalent expressions, we convert
them to a signed n-ary tree:

* Each node now represents a chain of addition/subtraction operations () or a chain of
multiplication/division operations (®). Each node can now connect to any number of
operands that are being computed in that chain. For example, A + B + C is represented
with one node with 3 children.

e Each edge is assigned a positive sign if it connects to an operand that is being
added/multiplied in the chain or a negative sign if connects to an operand that is being
subtracted/divided in the chain.

* To convert from a binary tree to a n-ary tree:
— For nodes representing addition/multiplication, mark both edges as positive. For nodes
representing subtraction/division, mark the left edge as positive but the right as negative.

— Recursively merge any pair of parent/child if they belong in the same chain. The sign
of the edges of the child node will be flipped if the edge between the parent and the
child was negative.

If the binary trees have the same representation in the signed n-ary tree, they are considered equivalent.
The pattern (canonical form) can be retrieved as follows:

* At any level, sort the children by
1. sign of the edge between the shared parent and the child (positive comes first);
2. the weight of the subtree rooted at the child (heavy comes first);
3. the number of positive edges to the grandchildren (more positive edges comes first).

* Do an in-order traversal of the tree. Print the first node as A, the second node as B, and so
forth. Include parentheses only if a child subtree has weight > 1 and is rooted in a ¢ node.

C.1.2 Number of Expressions and Patterns

Given n, the number of distinct expressions is C,,_; x 47! where C,, is the Catalan number. There
are C,,_1 ways to assign the order of n — 1 operations (equivalently, choose the structure of the
binary tree). For example, when n = 4, there are 5 ways: ((AB)C)D, (A(BC))D, (AB)(CD),
A((BC)D), and A(B(CD)). There are additionally 4"~! different ways to choose the operations.

The number of distinct patterns T, is equal to the number of trees with n leaf nodes with the
following constraints: 1) any child of a & node must be a leaf node or a ® node (and vice versa); 2)
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Task Parse Operator Tree Normalize Canonical Pattern

(+) (+) (+)
Inputs: {8,9,3,2}
Target: 14 e e 0
8+(2x9)+3 9 e 0
@ © 2 © » @

Figure 3: From generated expression to canonical pattern. The model-generated expression
8 4+ (2 x 9) + 3 is parsed into an expression tree, normalized with respect to algebraic identities,
and mapped to the unique canonical pattern A x B + C + D. Patterns are then grouped by their
computational shape. Here, the root operator is “+4”, with a left sub-expression over three leaves
(A, B, () and a right sub-expression over one leaf (D). The signature [3] + [1] serves as a compact
representation of the pattern’s structure at the root-level.

Left-Heavy Balanced Right-Heavy

p

Figure 4: Grouping canonical patterns by tree structure (n = 4). Internal (blue) nodes are
operators and leaves (A, B, C, D) are operands. We categorize patterns by the relative size of the
root’s subtrees: left-heavy, balanced, or right-heavy.

no node shall have all negative edges. We let A,,, M,, respectively denote the number of such trees
with a @ root node and a ® root node. We let A; = 1 (for the single leaf A) and M; = 0. Forn > 2,
Ty, A, M, can be computed with the following recursive definition.

A, =n+ >

pe€ U P(nk)
2<k<n

(g1 +1) (ﬁl(g”‘j+zfjp,j_l)> — (Jﬁ(gp,ﬁﬁjp,j_l))]

(g1+1) (ﬁ (yp,j+§ﬁjp,j1)> - (ﬁ (gp,ﬁgf:?,jl))]

j=1 =1

pe U P(nk)
2<k<n

T, = A, + M,

where

* P(n, k) is the unordered set of partitions of n into a sum of k positive integers
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* Each partitionp € |J P(n,k) is written as
2<k<n

gp,1 times 9p,myp UIMES g1 times

P:(dp,l"‘dp,l"‘"""dp,l)"‘”""(dpymp"‘""*‘dp,mp)'*‘(l"'"""l)

where

— my, is the number of distinct part sizes in p (other than 1)
— dp ; > 1 are the distinct part sizes in p
— gp,; are their corresponding multiplicities, and g, is the multiplicity for 1

The first n corresponds to assigning {0,1,--- ,n — 1} negative edges to n leaf nodes directly
connected to the root node (which we assume to be & without loss of generality). Then for any
partition p € P(n, k) where 2 < k < n, any d,, ; > 1 corresponds to a ® child node with weight
dp,j, whereas d, ; = 1 corresponds to a leaf node directly connected. If d,; # dj ;, then the
corresponding ® child nodes are distinguishable, so we can independently count the number of
choices for each child node.

For each dj, ; > 1, there could be multiple @ child nodes that have the same weight and can have one
of Mdpj shapes. If they have the same shape, they are indistinguishable. Foreach: = 1,2, --- | My

let x; > 0 denote the number of the child nodes that have the corresponding shape such that

P,J°

Tyt T2+ My, = 9pj

For each x;, there are z; + 1 distinguishable ways to assign a sign to each child node ({0, 1, - , x;}
negative edges). Therefore, we apply the stars and bars formula to get:

Z (w1 + D(z2 +1) - (2pg,, , +1)

I1+'“+1Mdp ;I
x>0 Vi

= E Y2 YMa,
y1+---+dep_j =9p,;+Ma,

yi>1 Vi
= <(gp,j + Mdzw') + Mdp,j - 1)
2My, , — 1
— (gpvj + 2Mdp,j - 1)
a Ip.j

When d = 1, the leaf children are all indistinguishable and there are g; + 1 ways to assign a sign to
each leaf. We finally need to subtract the case where we assigned a negative edge to all possible g, ;
child nodes of all possible weight of d,, ;. For each choice of x;, there is exactly 1 way to assign a
negative sign to all child nodes. Again, by the stars and bars formula, we get

Z 1= <gp,j + Mdp,j - ]‘)

:Dl-Q—-"-l-ﬂﬂzuglp ;9P Ip.j

C.2 Dataset
C.2.1 Why is the Existing Dataset Lacking?

A rigorous analysis of structural difficulty requires that the distribution of problem types be controlled.
Standard approach for creating COUNTDOWN datasets [Pan et al., 2025b, |Gandhi et al., 2024}
Stojanovski et al., [2025]] proceeds as follows: 1) choose a random binary tree; 2) choose random
operators, numbers; 3) then filter for valid expressions that evaluate to an integer in [1,99]. This
introduces severe distributional biases, creating a confounding variable between a pattern’s frequency
and its intrinsic complexity. There are two problems with this design:
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* Structural bias. 4+ and x are commutative and associative, and many expressions involving
the two operators may have the same underlying pattern and have a higher probability
of being generated. For instance, the same A + B + C + D puzzle can be generated in
4! x C3 = 120 ways (e.g., (1 +2) +3) +4 and 1 4 (4 + (3 + 2))), whereas an asymmetric
pattern like A/(B — C/D) only has one expression.

* Selection bias. The second, more severe bias stems from the common practice of filtering
for solutions that evaluate to an integer within a fixed range, such as [1, 99]. When random
inputs are drawn from the set range, + or — yields a result in this range approximately 50%
of the time, whereas X or = do so only about 5% of the time. Consequently, each X or + is
approximately 10x more unlikely to appear in an expression.

These two biases together produce a skewed dataset where aggregate performance metrics are
dominated by a model’s ability on simple, additive patterns. To eliminate this confounder, we
designed a different generation protocol. We generate examples by first selecting a target canonical
pattern and then sampling numbers that satisfy it. This enforces a near-uniform distribution over all
patterns, a methodological prerequisite for isolating and analyzing the true effect of compositional
structure on reasoning difficulty.

Pan et al.[[2025b] do not release the exact generation code for their dataset. So instead, we sample
10000 examples from the training split of the dataset and count the number of examples that can be
solved with a given pattern (if one example can be solved with multiple patterns, increment the count
of all such patterns). 18 of the 114 patterns never appear in the dataset (i.e., none of the examples can
be solved with the patterns), and some patterns occur much more often than others (Figure[5). In the
test split (the last 1000 examples), there are 36 out of 114 patterns that never appear.

One reason behind the imbalance is that almost half of the dataset consists of examples for n = 3,
even though there are only 18 patterns for n = 3 compared to 96 for n = 4. Another explanation
is that the requirement that the target number is an integer within [1, 99] biases towards addition
and subtraction—multiplication would frequently cause the expression to be larger than the bound;
division would frequently make the final value non-integer.

Number of Examples
= - N N
w o w o w
o & o o o
o o o o o

o

0 20 40 60 80 100
Patterns (Sorted by Number of Examples)

Figure 5: Number of examples per pattern in |Pan et al.[[2025b]. 18 out of 114 patterns do not
appear in a randomly selected 10000 examples from the dataset. Few patterns (mostly from n = 3)
appear disproportionally frequently.

Another codebase that provides the generation code for Countdown [Gandhi et al.| 2024} [Stojanovski
et al.| 2025]] wrongly assumes that intermediate expressions cannot evaluate to non-integer values.
This incorrectly removes puzzles like 8 = (3 — 8 + 3) = 24 which are very difficult even for humans
[4nums.coml 2025] and should be used to test against models.

C.2.2 What Happens When Training on the Existing Dataset?

We train Qwen2.5-3B on the dataset by |Pan et al.| [2025a]] with the same set of hyperparameters and
evaluate on both our and their held-out data. Since we do not explicitly check if our held-out data
is in their training data, the results on our held-out data may be slightly higher than expected. In
Figure[6] we recreate Figure

Even though the model performance seems to smoothly improve, the final performance is much
lower than training on our balanced dataset, which stems from the model failing to reliably learn
most n = 4 patterns. This suggests that the diversity of the data and the presence of challenging
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patterns helps the model identify reusable components. Additionally, many patterns are not present
when evaluating on the held-out data from |Pan et al.|[2025a]], precisely because none of the puzzles
test those patterns. This points to another deficiency in the existing datasets for COUNTDOWN that
test simple additive skills, rather than a well-rounded portfolio of arithmetic reasoning.
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Figure 6: Learning dynamics at a glance (Qwen2.5-3B) trained on dataset from Pan et al.| [2025a].
(Left) evaluated on our dataset; (Right) evaluated on the held-out data from Pan et al.[[2025a]. Even
though model accuracy smoothly increases (top), models do not reliably learn most n = 4 patterns
and fails to generate at least 10% of n = 4 patterns (bottom). The held-out data from Pan et al.
[2025a]] do not include 36 possible patterns and fail to test the models on the corresponding skills.

C.2.3 Creating a Balanced Dataset

To create our balanced dataset, we first choose a pattern and then plug in n numbers that are sampled
independently and uniformly at random from [1, 99]. If the output of the expression is an integer
in [1,99], we include it in our dataset. For each pattern, we repeat this process until we have 4000
distinct examples or have sampled 10 million combinations. There are only 15 patterns (4 from
n = 3 and 11 from n = 4) where we sample less than 4000 examples. The exact numbers are given
in Table[T] For each pattern, we select the first 10 examples as heldout examples. In total, we have
418619 examples for training and 1140 examples for testing.

For evaluation on n = 5, we similarly sample 10 examples for each of 558 patterns and for n = 6, 1
example for each of 4328 patterns.

Table 1: Number of training examples per pattern. Any pattern not listed has 4000 examples.

Pattern Number of Examples | Pattern Number of Examples
(A+ B)xC 3333 AXxBxC 315

A/(B+C) 3905 A/B/C 791
(AxB+C)xD | 2314 (A+B)xCxD 927
AxBxCxD 188 A/(BxC+ D) 2704
A/(B+C)/D 1058 A/B/C/D 264

A/B—CxD 2546 (A+B)x (C+ D) | 647
A/(B+C)-D 932 A/B/C — D 1033

(A/B-C)/D 2802 - -

14



C.3 Training

We finetune Qwen-2.5 models (1.5B, 3B, and 7B) [Qwen et al., 2025]] with GRPO [Shao et al., 2024]]
on problems of size n € {3,4}. Each rollout receives a reward of 0.1 for correctly formatting the final
expression and an additional reward of 0.9 if the expression is correct and vali We train for one
epoch across three seeds, saving checkpoints every 50 gradient updates and discarding any unstable
runs (see Appendix [E.I). Full training details and results on other model families are available in

Appendices and[F

We train with batch size and mini batch size 256, prompt and response length 1024, learning rate
1076, and KL coefficient 10—3, where the KL divergence is computed with the k3 estimator (low
variance) [Schulman, [2020]. Following [Liu et al.[[2025]], we do not normalize by the standard
deviation in the GRPO advantage computation. We use n = 4 rollouts except during a warmup
phase for 1.5B and 3B models (Appendix [E.I)). For the PPO experiments in Appendix [E.3] we use a
critic learning rate of 10~5 and PPO mini bach size of 64. For all other hyperparameters, we use the
default values from the verl package version 0.5.0.devO [Sheng et all[2024]]. See Appendix [G]for
the prompt template used.

C.4 Evaluation

We generate each output with temperature 0.6. We increase the maximum token length increasing for
larger problem sizes (1024 for n € {3,4}, 2048 for n = 5, and 4096 for n = 6).

*An expression is valid if each of the n provided numbers is used exactly once and operators are restricted to
{+, —, X, +}. An expression is correct if it evaluates to the target number.
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D Main Results (Continued)

D.1 Models Demonstrate Length Generalization (Continued)

Table 2: Final performance across sizes. All-correct@32 (All), Average Accuracy (Avg), and
Pass@32 (Pass) on n=3, 4 (trained) and n=>5, 6 (held out). Models learn n = 3, 4 patterns almost
perfectly and generalize to larger puzzle sizes n = 5, 6, but the gap between Pass @32 and Average
Accuracy increases with n, signaling that the generalization is not perfect.

n=3 n=4 n=>5 n=>6
Model All Avg Pass All Avg Pass All Avg Pass All Avg Pass

1.5B 098 1.00 1.00 063 0.83 094 0.13 036 068 0.00 0.09 0.36
3B 092 099 1.00 059 083 095 0.12 039 068 002 0.15 040
7B 096 099 100 060 0.82 093 0.10 035 061 001 0.12 0.36
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Figure 7: Successful length generalization, but a gap between pattern discovery and reliable
execution. We train Qwen2.5-1.5B on problem sizes n € {3,4} and evaluate on held-out data
for n € {3,4,5}. (Top) The model demonstrates strong length generalization: accuracy on the
held-out n = 5 problems improves substantially with training. (Bottom) The model also identifies
almost all compositional patterns for n = 5, but the ability to reliably execute the correct pattern
lags significantly behind its discovery. This indicates that the primary challenge for generalization is
procedural reliability, not abstract pattern identification.
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D.2 Compositional Structure Determines Learnability (Continued)

Table 3: Final performance by pattern structure on n=4. Average Accuracy by (a) root operator;

(b) pattern with root operator
the root operator. Shapes in the form of [1] —

(a) by root operator

[3] or [1] +
(b) by subtree shape (—)

—; (c) pattern with root operator <. Models struggle more on —, = as
[3] are particularly challenging.

(c) by subtree shape (=)

Operator 1.5B 3B 7B Shape 1.5B 7B Shape 1.5B 3B 7B
+ 0.86 0.85 0.83 [3]-[1] 081 079 0.72 0.77 077 0.77
— 082 080 0.76 [2]—[2] 092 0.89 0.86 0.87 0.85 0.88
X 090 086 084 [{]-[3] 073 0.75 0.82 0.61 0.76 0.80
= 0.75 0.78 0.81
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D.3 RL Enables Compositional Generalization to Unseen Patterns (Continued)
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D.4 Isolating the Effect of RL

We additionally compare with Supervised Fine-tuning (SFT). To prepare the answer column, we
replace the placeholder symbols in the desired pattern with the correct list of numbers. For the
optional chain of thought text, we 1) randomly select an integer k& € [2, n] based on the puzzle size n;
2) for each of k incorrect attempts, randomly choose a pattern different from the desired pattern and
replace the placeholder symbols with a randomly shuffled list of the input numbers; 3) evaluate the
expression and append “(Incorrect)”; 4) append the correct expression and append “(Correct).”
The CoT is explicitly designed to be random to remove any bias from hand-coded heuristics. See
Appendix [G] for more details on example prompts.

D.4.1 Training

We train with batch size 256, prompt and response length 1024, max learning rate 10~ with a linear
warmup of 0.03 and cosine decay to zero. For all other hyperparmeters, we use the default values
from the verl package. We train the Qwen2.5-1.5B model with and without the random chain of
thought text, each with 1 random seed for dataset shuffling.

D.4.2 Learning dynamics

In Figures 8] to[I0} we present the learning dynamics plots for the Quen2.5-1.5B model trained with
SFT (equivalent to Figure|[T).

Final accuracies. Tablereports the final accuracies of the model trained with SFT. The model
performs better without the CoT, most likely because including the random patterns confuses the
model. But, SFT without CoT still underperforms RL and struggles to generalize to n = 5, with
Average Accuracy less than 10%. This suggests that the exploratory nature of RL is more effective
than the imitation-based approach of SFT, which struggles to generalize especially when the provided
data is too simple or poorly structured. Nonetheless, the learning dynamics of SFT can isolate the
order of skill acquisition without access to the model’s own exploration and skill composition.

SFT exhibits different learning dynamics by pattern structure. The model trained without CoT
fails to reliably learn most n = 4 patterns. To probe the order in which the model learns the patterns
to an intermediate level, we instead relax the threshold of high-precision to 50% (Figure[8). Even
though the coverage of patterns for n = 5 patterns decrease in a similar order as in RL: right-heavy >
left-heavy > balanced, the model instead masters n = 4 patterns (in-distribution) in the exact opposite
order: right-heavy < left-heavy < balanced. This highlights that the clear hierarchy of difficulty
caused by the subtree structure is inherent to the RL training.

Table 4: Final performance of SFT-trained models. All-correct@32 (All), Average Accuracy
(Avg), and Pass@32 (Pass) on n=3, 4 (trained) and n=>5 (held out).

Training All  Avg Pass All Avg Pass All Avg Pass
GRPO 098 1.00 1.00 063 0.83 094 0.13 036 0.68
SFT+No CoT 031 0.65 092 005 038 0.82 000 0.09 033

SFT+Random CoT 0.01 0.15 059 0.00 0.03 025 0.00 0.00 0.04
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Figure 8: Learning dynamics at a glance (Qwen2.5-1.5B with SFT). Here, the high-precision
threashold has been lowered to 50%. Even though the coverage of n = 5 patterns (OOD) decrease
in the following order: balanced > left-heavy > right-heavy, the model masters n = 4 patterns
(in-distribution) in the opposite order: right-heavy > left-heavy > balanced. This shows a fundamental
difference in the learning dynamics from RL.
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Figure 9: Learning dynamics at a glance (Qwen2.5-1.5B with SFT). The model does not reliably
learn any n = 4 pattern.
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Figure 10: Learning dynamics at a glance (Qwen2.5-1.5B with SFT+CoT). The model does not
reliably learn any n = 4 pattern.

21



E Additional Ablations

0 100 200 300 400 500 600 200 300 400 500 600 700 800
Step Step

Figure 11: Qwen2.5-1.5B often learns a formatting-only shortcut: (Left) training reward; (Right)
training response length of two distinct training runs. Once the model learns to collect the formatting
reward (grey dotted vertical), the model attempts the puzzle without chain of thought, characterized
by a sharp decrease in the response length. During some but not all runs (blue), we observe a phase
transition (grey solid vertical), where the model starts generating chain of thought again.

E.1 A Formatting-Only Shortcut, and How to Avoid It

Each answer can receive 0.1 points for correct formatting, plus up to 0.9 points for correctness.
Smaller models (1.5B and 3B) often exploit the format-only reward first (Figure [[T)), whereas the
larger 7B model does not. This shows that pretraining endows the larger model with more advanced
reasoning circuits. For example, if it can collect reward 0.9 with probability > 0.1 from the start,
then it has no incentive to overfitting to the formatting reward.

Intervention (large-to-small group size schedule) To stabilize training, we warm-start training
with a larger group size to encourage exploration of different patterns E] and reduce the group size to
the default value of G = 4 whenever the models make the phase transition and exit the shortcut.

E.2 Effect of Standard Deviation Normalization

For our main experiments, we do not apply std normalization to the group advantage, following |Liu
et al.| [2025]]. Here, we present the results when we do normalize the advantages by the standard
deviation in each group [Shao et al.,|2024]]. All results are from the 1.5B model.

E.2.1 Negative Gradients Induce Longer Responses

When initializing training with the normalization, the response length increases faster and stays
higher, compared to when training without normalization (Figure[T2). We observe a similar trend
with a different model (Appendix [F).

To identify the cause of the phenomenon, we separately train with positive gradients only (set the
group advantage A; = max(A;, 0) after the standard deviation normalization) and negative gradients
only (4; = min(A;, 0)). The response length of the positive-only training run follows the trend of
training without the normalization, whereas negative-only training mimics the trend of training with
the normalization. This shows that the negative gradients are the sole cause behind the initial increase
in the response length.

This behavior can be understood as the effect of the negative gradients on the token probabilities.
Initially, weak models do not collect the final output reward, and the possible rewards are within
{0,0.1}. However, when the rewards are normalized by the standard deviation, the absolute value of
the advantage becomes at most 20 times larger. Updates using the negative gradients greatly reduces
the probability of all tokens generated, and in particular, the generation of the EOS character (which
usually occurs after the <answer></answer> tags). After the probability of generating EOS token

>We find that G' = 16 for the 1.5B and G = 8 for the 3B model are sufficient to induce the phase transition.
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Figure 12: When normalizing group rewards by standard deviation, negative gradients make
responses longer: (Left) training reward; (Right) training response length. In the first 25 steps,
training reward increases to 0.1 at the same pace across all runs. However, with standard deviation
normalization (red), the response length peaks high, and the training reward stalls. Training with
only positive gradients (green dotted) and negative gradients (yellow dotted) respectively mimic the
behavior of training without (blue) and with (red) normalization.

is lowered sufficiently, the model tends to continue generating tokens after the <answer></answer>
tags.

E.2.2 Standard Deviation Normalization Leads to Worse Performance

We additionally notice that normalizing by the standard deviation leads to a worse performance at the
end of the training (Table[5).

Table 5: Effect of standard deviation normalization on final performance. All-correct@32 (All@),
Average Accuracy (Avg), and Pass@32 (Pass@) with or without standard deviation normalization
during group rewards computation. Normalizing generally hurts final performance.

No Normalization \ Normalization
All@ Avg Pass@ | All@ Avg Pass@

I.5B  0.66 085 0.94 036 060 0.86
3B 0.61 084 0095 0.66 086 0.96

E.3 Effect of Number of Rollouts

In Appendix [E.T] we increase the number of rollouts only during the initial phase of training to induce
the phase transition necessary for learning. Here, we explore maintaining the increased number of
rollouts (G = 16 for the 1.5B model and G = 8 for the 3B model) until the end of the training.

We notice that entropy remains slightly higher than training with a small group size (G = 4) and the
training reward may start decreasing before 1 epoch (around 0.5 epoch for 1.5B model and 0.75 epoch
for 3B model). We stop training whenever we observe a decline in the training reward, and evaluate
the final performance. The performance of these models is slightly worse than training switching to a
smaller rollout mid-training and significantly worse than fully training with G = 4 (Table[6). Other
than the initial training stability, we observe no benefit of training with a larger group size.
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Table 6: Effect of group size on final performance. All-correct@32 (All@), Average Accuracy
(Avg), and Pass@32 (Pass@) on different choices of group sizes. A larger number of rollouts
generally hurts final performance.

Small Large Switch
All@ Avg Pass@ | All@ Avg Pass@ | All@ Avg Pass@
1.5B  0.66 085 094 0.46 0.78 0.93 046 0.79 095
3B 0.61 0.84 0.95 046 0.78 0.94 0.48 0.83 0.98

E.4 Effect of Held-out Patterns
E.4.1 Generalization to Held-Out Patterns (More Details)

Here, we continue the discussion from Section When we remove the pattern A/B + C, we must
also remove all patterns which directly include A/ B + C' as a subpattern, or patterns that can collapse
into A/B + C, once some subtasks have been solved. See Tablefor the full list.

Table 7: The list of patterns removed, when holding out A/B + C. We additionally remove 6
patterns that contain A/B + C' as a subpattern and 8 more that can be collapsed into A/B + C once
a subtask has been solved.

Pattern Explanation Canonical Pattern | Structure
A/B+C Ttself A/B+C 2[+11
(A/B+C)+ D | Direct subpattern | A/B+ C + D 3+ 1
(A/B+C) — D | Direct subpattern | A/B+C — D 3 -[1
(A/B + C) x D | Direct subpattern | (A/B+C)x D | [3] x [1
(A/B+C)/D | Direct subpattern | (A/B+ C)/D 31
A — (B/C + D) | Direct subpattern | A — B/C — D 1]1-13
A/(B/C+ D) | Directsubpattern | A/(B/C + D) 1]+[3
A/B+ (Cx D) | CombineC xD | Ax B+C/D 1]+1[3
A/B+ (C/D) Combine C'/D A/B+C/D 2]+ 12
A/(B4+C)+D | Combine B+C | A/(B+C)+D | 3]+][1
A/(B—C)+ D | Combine B—C | A/(B-C)+D | [3]+]1
(A+B)/C+D | Combine A+B | (A+B)/C+D | [3]+]1
(A-B)/C+D | CombineA—B | (A-B)/C+D | [3]+[1
(Ax B)/C+ D | Combine AxB | AxB/C+ D 3]+ [1
(A/B)/C+ D Combine A/B A/B/C+ D 3+ 1

E.4.2 What Patterns are Necessary for the Model to Learn?

We further explore the effect of heldout patterns during training. We train the 1.5B model with the
following heldout strategies:

* Only 3/ Only 4: Train only with patterns from specific puzzle sizes.
* No Hard: Train without patterns of shape [1] — [3] or [1] =+ [3] (Section[4.2))
* Random p: Train only with randomly selected p% of the patterns

Following Appendix we warm-start the training with a larger group size G = 16 and check how
many runs are successful out of 3; i.e., model escapes the formatting-only shortcut after something
“clicks” (Table[8). When hard patterns are not a part of the training (“Only 3" or “No hard”), the model
does not have access to learn from high-entropy, high-reward rollouts and fail to learn. However,
training only with n = 4 patterns still leads to successful training. Additionally, the diversity of the
patterns also seems to be helpful for the model — the probability of a successful run increases with
the number of unique patterns in the dataset.
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Table 8: Number of successful runs (out of 3) per heldout strategy: The existence of harder
patterns and an overall wide range of patterns seems necessary for the 1.5B model to learn.

Only3 Only4 NoHard | Random 30 Random40 Random 50
# Successful Runs 0 3 0 \ 1 2 3

E.4.3 Models Can Generalize to Unseen Patterns (Random 50)

Even when the model is trained with only a randomly selected 50% of the patterns, more than 95%
of the patterns are present in the final checkpoint, and the model scores near 70% average accuracy.
The 3B model is able to generalize to more patterns, whereas 4% of patterns are Absent from the
reasoning of the 1.5B model and another 4% are always applied incorrectly (Table[9). Additionally,
the 1.5B model is able to generalize to n = 5 patterns, but the strength of the generalization is weaker
than having been trained on the full set of patterns (Table [2)).

Table 9: Final performance of models trained without random 50% of patterns: All-correct@32
(All@), Average Accuracy (Avg), and Pass@32 (Pass@) of models. Models can generalize to most
unseen patterns. 3B model is able to generalize to more diverse patterns than 1.5B, but has a lower
All-correct@32.

n=4 n=>»s
All@ Avg Pass@ | Absent (%) Incorrect (%) | All@ Avg Pass@
1.5B 047 0.68 0.82 4 4 0.06 0.25 0.52
3B 035 0.69 0.88 1 2 - - -

E.5 Choice of RL Algorithm

Here, we investigate the effect of the RL algorithm. We replace the GRPO training with PPO
[Schulman et al.,[2017]]. Due to higher computational constraints, we only train with 1 seed.

1.5B does not escape the formatting-only shortcut as in Appendix [E.T} 3B and 7B improve training
accuracy faster with respect to the same number of gradient updates. However, training entropy
decreases much faster during PPO training, which translates to a lower Pass@32 but a higher All-
correct@32 (Table[I0). Compared to GRPO, PPO tends to push the model behavior on each pattern
to one extreme — there are simultaneously more 1) Absent patterns and 2) patterns with precision
of 100%.

Table 10: Effect of RL algorithm on final performance. All-correct@32 (All@), Average Accuracy
(Avg), and Pass @32 (Pass@) of models. Using PPO instead of GRPO improves All-correct@32 at
the cost of Pass@32.

GRPO PPO
All@ Avg Pass@ | All@ Avg Pass@

3B 0.61 084 095 0.65 081 090
7B 0.62 0.83 094 076 085 093
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F Results on a Different Model Family

We additionally conduct some ablations studies on the Llama-3.2 models (1B and 3B) and a
Llama-3.1 model (8B). We take the chat template from the Instruct variant but discard most of
the system prompt, since the original version is too verbose and is out-of-distribution for the base
model. We apply the same set of training hyperparmaters.

F.1 Formatting-only Shortcut

Across all model sizes (even the 8B model), L1ama-3.2 and L1ama-3. 1 models also find a similar
formatting-only shortcut as outlined in Appendix [E.I] L1ama-3.1-8B is able to escape the shortcut
without a manual intervention (G = 4 rollouts throughout training), but the L1ama-3.2 models
are unable to escape the shortcut. By applying the group size switching strategy (G = 16 for
Llama-3.2-1B and G = 8 for L1ama-3.2-3B), the models are able to escape the shortcut on 2 out
of 3 runs each. This shows that the mitigation strategy for the shortcut is applicable to another model
family, but the strength of its effect may depend on the performance of the base model.

F.2 Llama Models Do Not Properly Learn

Even after escaping the formatting-only shortcut, the L1ama models do not properly learn to use
chain-of-thought to improve its answers. Instead, the models generally guess one expression and pad
it with repeated answers or gibberish text.

F.3 After SFT on Basic Formatting, RL. Shows the Same Trend

We speculate that the L1ama base models may require a little more training on the correct formatting
(including the <think> and <answer> tags). We SFT the L1ama-3.2-3B model on examples from
out dataset to teach the formattinéﬂ RL training on top of this warmed-up checkpoint shows a similar
learning dynamics as in the main part of the paper (Figure [T4).

F.4 Effect of Standard Deviation Normalization

We train with standard deviation normalization and reproduce its effect on the response length as
outlined in Appendix [E.2] and report the result in Figure

No Normalization Normalization

1000 - -

800

700 4 N

Response Length

600 -

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Step Step

Figure 13: Effect of standard deviation normalization on response length: We reproduce the
results from Figure[12]

We apply the random CoT template and the hyperparameters in Appendix We manually stop training
after 50 gradient updates (before the learning rate reaches max value) when the training loss decreases below 1.
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Figure 14: Learning dynamics at a glance (Llama-3.2-3B after lightweight SFT). The same
conclusion from Figure[T]holds about the hierarchy of difficulty by subtree structure: balanced <
left-heavy < right-heavy.
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G Prompts Used For Training

Prompt Template for RL

A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process in the mind and then provides
the user with the answer.

User: Using the numbers {numbers}, create an equation that equals {target}. You can use
basic arithmetic operations (+, -, *, /) and each number can only be used once. Show your
work in <think> </think> tags. And return the final answer in <answer> </answer> tags, for
example <answer> (1 +2) / 3 </answer>.

Assistant: Let me solve this step by step.

<think>

Prompt Template for SFT

A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process in the mind and then provides
the user with the answer.

User: Using the numbers {numbers}, create an equation that equals {target}. You can use
basic arithmetic operations (+, -, ¥, /) and each number can only be used once. Show your
work in <think> </think> tags. And return the final answer in <answer> </answer> tags, for
example <answer> (1 + 2) / 3 </answer>.

Assistant: Let me solve this step by step.

<think>Using the numbers {numbers}, create an equation that equals {target}.{CoT
text}</think>

<answer>{Solution text}</answer>

Example CoT Text for SFT

8/8+3/3=1 (Incorrect). 3+ 8 + 8 - 3 =16 (Incorrect). 3 * 3 /8 - 8 =-6.87 (Incorrect). 8 /
(3 - 8/3) =24 (Correct).

Example Solution Text for SFT

8/(3-8/3)
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H Alternate Ways to Canonicalize Patterns

A central claim of this work is that the compositional structure of a problem solution (specifically
balanced vs. unbalanced) dictates its difficulty for the model. This analysis, however, relies on our
specific method for mapping syntactically diverse expressions to unique canonical operators. A valid
concern is whether our findings are an artifact of this mapping. For instance, our normalization rules
(Appendix [C.T)) resolve ambiguities by systematically preferring left-heavy structures (e.g., mapping
both 9 x (34 2) and (3 + 2) x 9 to the canonical form (A + B) x C'). This choice could interact
with an intrinsic bias of the model towards left-to-right sequential generation, thereby confounding
the analysis of structural difficulty. To isolate the effect of structure from our analytical choices, we
conduct two ablations to test the robustness of our conclusions.

Reversed Canonicalization Preference First, we investigate whether our findings hold under an
alternative normalization scheme. We invert the rule that resolves ambiguity based on subtree weight,
now enforcing a preference for right-heavy structures. For example, under this new canonicalization
scheme, both 9 x (3 + 2) and (3 + 2) x 9 to the canonical form A x (B + C). We then redo
the analysis. The results, shown in Figure[T5] indicate that our central observations are unaffected
by this change. We observe the same hierarchy of difficulty as reported in Section balanced
patterns are mastered most reliably, while the structures that were originally classified as right-heavy
(and additionally structures now included in the right-heavy grouping) remain the most challenging.
This suggests that the difficulty arises from the procedural requirement to commit to an operator
before a complex subroutine is generated, rather than an arbitrary choice of a left- or right-associative
canonical representation.

Analysis Without Canonicalization Second, we remove the canonicalization process entirely and
analyze the raw expressions generated by the model. In this setting, a single problem may have
multiple correct solutions corresponding to different tree shapes (e,g, 9 x (3 + 2) would map to
Ax (B+C)and (3+2) x 9 would map to (A + B) x C. We group all valid expressions generated
across the evaluation set by their unnormalized tree shapes (left-heavy, balanced, or right-heavy), and
measure the per-shape pattern coverage and high-precision pattern coverage. As shown in Figure[16]
the structural difficulty persists. However, a model’s intrinsic bias toward generating solutions in a
particular syntactic form can artificially deflate the measured performance of any structural group
that includes alternative, algebraically equivalent forms. For example, if a model only ever generates
structures like (A + B) + C, but not A + (B + C), then the coverage for [1] o [2] goes down even
though the model can correctly compose two additions.
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Figure 15: Learning dynamics at a glance (Qwen2.5-1.5B) with reversed canonicalization. The
same conclusion from Figure [T|holds about the hierarchy of difficulty by subtree structure: balanced

< left-heavy < right-heavy.
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Figure 16: Learning dynamics at a glance (Qwen2.5-1.5B) without canonicalization. While
coverage decreases throughout training (models converge on one of multiple equivalent expressions),
the same conclusion from Figure [T] holds about the hierarchy of difficulty by subtree structure:
balanced < left-heavy < right-heavy.
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I Additional Plots

In Figures |17 and [18] we present the learning dynamics plots for the Qwen2.5-3B/7B models
(equivalent to Figure |

In Figure [T9 we present the learning dynamics plots for the Qwen2.5-1.5B model trained on
n € {2,3,4} (equivalent to Figures|l|and EI) For each of 4 patterns for n = 2, we generated 1000
examples for training and 10 examples for testing in the same way as in Appendix [C.2.3]

In Figure [20] we present the learning dynamics plots for the Qwen2.5-1.5B model (equivalent to
Figure[I) when the high-precision threshold is changed to 70% or 90%.
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Figure 17: Learning dynamics at a glance (Qwen2.5-3B). The same conclusion from Figure
holds about the hierarchy of difficulty by subtree structure: balanced < left-heavy < right-heavy.
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Figure 18: Learning dynamics at a glance (Qwen2.5-7B). The same conclusion from Figure
holds about the hierarchy of difficulty by subtree structure: balanced < left-heavy < right-heavy.
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Figure 19: Learning dynamics at a glance (Qwen2.5-1.5B) trained on n € {2,3,4}. The same
conclusions from Figures[T] and [7 hold: models exhibit length generalization and master patterns
progressively following a hierarchy of difficulty by subtree structure: balanced < left-heavy <
right-heavy.
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Figure 20: Learning dynamics at a glance (Qwen2.5-1.5B) but high-precision defined as precision
> 70% (top); > 90% (bottom). The same conclusion from Figureholds about the hierarchy of
difficulty by subtree structure: balanced < left-heavy < right-heavy.

35



List of Patterns

Table 11: Expressions and their Canonical Forms (Patterns) (Page 1 of 4)

Expression Pattern Expression Pattern
(A+B)+C A+B+C A+ (B+0) A+B+C
(A+ B) — A+B-C A+ (B-C) A+B-C
(A+ B) x (A+ By xC A+ (Bx0O) AxB+C
(A+B)/C (A+ B)/C A+ (B/C) A/B+C
(A-B)+C A+B-C A—(B+C0C) A-B-C
(A-B)-C A-B-C A—(B-C) A+B-C
(A-B)xC (A-B)xC A—(BxC(O) A-—BxC
(A-B)/C (A-B)/C A—(B/C) A—-B/C
(AxB)+C AxB+C Ax (B+C) (A+B)xC
(AxB)-C AxB-C Ax (B-C) (A-B)xC
(AxB)xC Ax BxC Ax (BxC) Ax BxC
(Ax B)/C Ax B/C Ax (B/C) Ax B/C
(A/B)+C A/B+C A/(B+C) A/(B+C)
(A/B) - C A/B-C A/(B—C) A/(B-C)
(A/B) x C Ax B/C A/(B xC) A/B/C
(A/B)/C A/B/C A/(B/C) AXx B/C
A+(B+(C+D)) | A+B+C+D |A+B+(C-D))| A+B+C—-D
A+(B+(CxD) | AxB+C+D +(B+(C/D)) A/B+C+D
A+(B-(C+D))|A+B-C—-D +(B—( D)) | A+B+C—-D
A+(B—-(CxD))| A+ B-CxD (B—(C/D)) A+B-C/D
A+ (Bx(C+D)) | (A+B)xC+D A+(B><( D) | (A-B)yxC+D
A+ (Bx(CxD)) | AxBxC+D A+(B><(C/D AxB/C+D
A+ (B/(C+ D)) A/(B+C)+ D A+ (B/(C - D)) A/(B—C)+ D
A+ (B/(C x D)) A/B/C + D A+ (B/(C )) AxB/C+ D
A-(B+(C+D)|A-B-C-D A-—(B+(C-D) | A+B—-C—-D
A-—(B+(CxD)|A—BxC-D Af(B+(C/D)) A—-B/C—-D
A-(B-(C+D))|A+B+C—-D A-(B-(C-D))| A+B-C—-D
A—(B-—(CxD))| AxB+C—-D A—(B—(C/D)) A/B+C—-D
A-—(Bx(C+D))|A—-(B+C)xD | A-—(Bx(C-D)) | A—(B-C)xD
A—(Bx(CxD))| A—BxCxD A—(BX(C/D A—BxC/D
A—(B/(C+ D)) A—B/(C+ D) A—(B/(C - D)) A—B/(C—-D)
A—(B/(C x D)) A—-B/C/D A—(B/(C/D)) A—-BxC/D
Ax(B+(C+D) |(A+B+O)xD | Ax(B+(C-D)) | (A+B-C)xD
AX(B+(CxD)) | (AxB+C)xD | Ax(B+(C/D)) (A/B+C)xD
Ax(B—-(C+D)|(A—-B-CO)xD | Ax(B-—(C-D)) | (A+B-C)xD
Ax(B—(CxD))|(A—BxC)xD | Ax (B —-(C/D)) (A-—B/C)x D
Ax(Bx(C+D)) | (A+B)xCxD | Ax(Bx(C—-D)) | (A-B)xCxD
AXx(Bx(CxD))| AxBxCxD A X (B x (C/D)) Ax BxC/D
Ax (B/(C+ D)) AxB/(C+ D) Ax (B/(C - D)) Ax B/(C - D)
A x (B/(C x D)) Ax B/C/D A x (B/(C/D)) Ax BxC/D
A/(B+ (C+ D)) A/(B+C+ D) A/(B+ (C - D)) A/(B+C—D)
A/(B + (C x D)) AJ/(BxC+ D) A/(B+ (C/D)) A/(B/C + D)
A/(B—(C+ D)) A/(B—C—D) A/(B—(C—-D)) A/(B+C—-D)
A/(B—(Cx D)) | A/(B=CxD) | A/(B—(C/D)) | A/(B=CJD)
A/(B x (C+ D)) A/(B+C)/D A/(B x (C — D)) A/(B—-C)/D
A/(B x (C x D)) A/B/C/D A/(B x (C/D)) Ax B/C/D
A/(B/(C + D)) (A+B)xC/D A/(B/(C — D)) (A—B)x(C/D
A/(B/(C x D)) Ax BxC/D A/(B/(C/D)) Ax B/C/D
A+((B+C)+D) | A+B+C+D A+(B-C)+D) | A+ B+C—-D
A+ (BxC)+D) | AxB+C+D A+ ((B/C)+ D) A/B+C+D




Table 12: Expressions and their Canonical Forms (Patterns) (Page 2 of 4)

Expression Pattern Expression Pattern
A+(B+C)-D)| A+B+C-D A+(B-C)-D)|A+B-C-D
A+((BxC)—D) | AxB+C—-D A+ ((B/C)—- D) A/B+C—-D
A+(B+C)xD) | (A+B)yxC+D A+(B-C)xD) | (A—B)yxC+D
A+(BxC)xD)| AxBxC+D A+ ((B/C) x D) AxB/C+D
A+ ((B+0C)/D) (A+B)/C+D A+ ((B-0C)/D) (A-B)/C+D
A+ ((BxC)/D) AxB/C+D A+ ((B/C)/D) A/B/C + D
A-((B+C)+D)| A—-B-C—-D A-((B-C)+D) | A+B—-C—-D
A-—(BxC)+D)| A—BxC—-D A—((B/C)+ D) A—-B/C—-D
A-(B+C)-D)|A+B-C-D A-(B-C)-D)|A+B+C-D
A—((BxC)—D)| A+B—-CxD A—((B/C)—-D) A+B—-C/D
A-—((B+C)xD) | A—(B+C)xD A-(B-C)xD)| A—(B-C)xD
A—((BxC)xD)| A—BxCxD A—((B/C) x D) A—-—BxC/D
A—((B+0C)/D) A—(B+C)/D A—((B-0C)/D) A—(B-C)/D
A—((BxC)/D) A—BxC/D A—((B/C)/D) A—B/C/D
Ax((B+C)+D) | (A+B+C)xD Ax((B-C)+D) | (A+B—-C)xD
Ax ((BxC)+D) | (AxB+C)xD Ax ((B/C)+ D) (A/B+C)xD
Ax(B+C)-D) | (A+B-C)xD AXx(B-C)-D)| (A-B-C)xD
Ax((BxC)—D) | (AxB—-C)xD Ax ((B/C)—D) (A/B-C)x D
AXx(B+C)xD) | (A+B)xCxD Ax(B-C)xD) | (A—B)xCxD
AXx ((BxC)xD) | AxBxCxD Ax ((B/C) x D) Ax BxC/D
Ax ((B+0C)/D) (A+B)xC/D Ax ((B-C)/D) (A—B)x(C/D
Ax ((BxC)/D) AxBxC/D Ax ((B/C)/D) Ax B/C/D
A/((B+C)+ D) A/(B+C+D) A/(B-C)+ D) A/(B+C-D)
A/((BxC)+ D) A/(BxC+ D) A/((B/C) + D) A/(B/C+ D)
A/(B+C)—D) A/(B+C—-D) A/((B—-C)—-D) A/(B—C—-D)
AJ((BxC)—D) AJ/(BxC—D) A/((B/C)— D) A/(B/C — D)
A/((B+C) x D) A/(B+C)/D A/((B—-C) x D) A/(B—C)/D
A/((BxC)x D) A/B/C/D A/((B/C) x D) Ax B/C/D
A/(B+C)/D) Ax B/(C+ D) A/((B-C)/D) Ax B/(C - D)
A/((B x C)/D) Ax B/C/D A/((B/C)/D) Ax BxC/D
(A+B)+(C+D)| A+B+C+D (A+B)+(C—-D)| A+ B+C—-D
(A+B)+(CxD)| AxB+C+D (A+B)+(C/D) A/B+C+D
(A-B)+(C+D) | A+B+C—-D (A-B)+(C-D) | A+ B-C—-D
(A—B)+(CxD)| AxB+C—-D (A—-B)+(C/D) A/B+C-D
(AxB)+(C+D) | AxB+C+D (AxB)+(C-D) | AxB+C—-D
(AxB)+(CxD)| AxB+CxD (Ax B)+(C/D) AxB+C/D
(A/B)+ (C+ D) A/B+C+D (A/B)+ (C - D) A/B+C—-D
(A/B)+ (CxD) | AxB+C/D (A/B)+ (C/D) A/B+C/D
(A+B)—(C+D)| A+ B-C-D (A+B)—-(C-D)| A+ B+C-D
(A+B)—(CxD)| A+ B-CxD (A+ B)—(C/D) A+B-C/D
(A-B)—(C+D)| A—-B-C—-D (A-B)—-(C-D) | A+B-C-D
(A-B)—(CxD)| A—BxC—-D (A—-B)—(C/D) A—-B/C—-D
(AxB)—(C+D)| AxB—-C-D (AxB)—(C-D) | AxB+C-D
(AxB)—(CxD)| AxB—-CxD (Ax B)—(C/D) AxB—-C/D
(A/B)— (C+ D) A/B—-C—-D (A/B) — (C — D) A/B+C—-D
(A/B) — (C x D) A/B—-CxD (A/B) — (C/D) A/B —-C/D
(A+B)x(C+D) | (A+B)x(C+D)| (A+B)x(C—-D) | (A+B)x (C—-D)
(A+B)x (CxD) | (A+B)xCxD (A+ B) x (C/D) (A+B)xC/D
(A—B)x(C+D)| (A+B)x(C—-D)| (A—-B)x(C—-D) | (A-B)x (C—-D)
(A—B)x(CxD)| (A—B)xCxD (A—B) x (C/D) (A—B)x(C/D
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Table 13: Expressions and their Canonical Forms (Patterns) (Page 3 of 4)

Expression Pattern Expression Pattern
(AxB)Yx(C+D)| (A+B)xCxD | (AxB)x(C—-D) | (A—-B)xCxD
(AxB)x (CxD)| AxBxCxD (A x B) x (C/D) Ax BxC/D
(A/B) x (C+ D) (A+B)xC/D (A/B) x (C — D) (A—B)x(C/D
(A/B) x (C x D) Ax BxC/D (A/B) x (C/D) Ax B/C/D
(A+B)/(C+D) | (A+B)/([C+D) | (A+B)/(C—D) | (A+B)/([C D)
(A+ B)/(C x D) (A+B)/C/D (A+B)/(C/D) (A+B)xC/D
(A—B)/(C+D) | (A=B)/[C+D) | (A=B)/([C-D) | (A=B)/(C—D)
(A—B)/(C x D) (A-B)/C/D (A-B)/(C/D) (A-B)x(C/D
(Ax B)/(C+ D) Ax B/(C'+ D) (AXx B)/(C—-D) AXxBJ/(C—D)
(Ax B)/(C x D) Ax B/C/D (Ax B)/(C/D) Ax BxC/D
(A/B)/(C+D) [ AJ(B+C)/D [ (A/B)/(C~D) | A/(B—C)/D
(4/B)[(Cx D) | A/BJC]D (4/B)/(C/D) Ax BJC/D
(A+(B+C0)+D | A+B+C+D (A+(B-0)+D | A+B+C—-D
(A+(BxC)+D | AxB+C+D (A+ (B/C))+ D A/B+C+ D
(A-(B+C)+D | A+B-C-D (A-(B-C)+D | A+B+C-D
(A-(BxC)+D | A+B—-CxD (A-(B/C))+ D A+B-C/D
(Ax(B+C)+D | (A+B)xC+D | (Ax(B-C)+D | (A-B)yxC+D
(Ax(Bx(C)+D | AxBxC+D (Ax (B/C))+ D AxB/C+ D
(A/(B+CO)+D | A/(B+C)+D (A/( B-CO)+D |A/(B-C)+D
(A/(BxC))+ D A/B/C+ D (A/(B/C))+ D AxB/C+D
(A+(B+(C)—-D| A+B+C—-D (A+(B-C)-D | A+B-C-D
(A+(Bx(C)—D| AxB+C—-D (A+ (B/C))-D A/B+C-D
(A-(B+C)-D|A-B—-C-D (A-(B-C)-D | A+B-C-D
(A-(BxC)-D| A-BxC-D (A—-(B/C))—-D A—-B/C—-D
(Ax(B+C)-D|(A+B)xC—-D | ((Ax(B-C)—-D|(A-B)yxC-D
(Ax(BxC)—-D|AxBxC-D (Ax (B/C))-D AxB/C—-D
(A/(B+C))—-D A/(B+C)—-D (A/(B-C))—D A/(B-C)—-D
(A/(BxC))—D A/B/C — D (A/(B/C))— D AxB/C—-D
(A+(B+O)xD | (A+B+C)xD | (A+(B-C)xD | (A+B-C)xD
(A+(BxC)xD | (AxB+C)xD | (A+(B/C)) xD (A/B+C)xD
(A—(B+CO)xD|(A—-B-C)xD | (A—-(B-C)xD | (A+B-C)xD
(A—(BxCO)xD| (A—BxC)xD | (A—(B/C))xD (A—B/C)x D
(Ax(B+C)xD | (A+B)xCxD | (Ax(B-C)xD | (A-—B)xCxD
(Ax(BxO)xD | AxBxCxD (Ax (B/C))x D AXx BxC/D
(A/(B+C)) x D Ax B/(C'+ D) (A/(B-C))xD AXxBJ/(C—D)
(A/(BxC))x D Ax B/C/D (A/(B/C)) x D Ax BxC/D
(A+(B+0C))/D (A+B+C)/D (A+(B-0C))/D (A+B-C)/D
(A+ (Bx())/D (AxB+C)/D (A+ (B/C))/D (A/B+C)/D
(A-(B+())/D (A—B-C)/D (A—(B-0C))/D (A+B-C)/D
(A—(BxC)/D | (A=BxC)/D | (A—(B/C))/D | (A—BJC)/D
(Ax (B+C))/D (A+ B)xC/D (Ax (B-C))/D (A—B)xC/D
(Ax (Bx())/D Ax BxC/D (Ax (B/C))/D Ax B/C/D
(A/(B+C))/D A/(B+C)/D (A/(B-C))/D A/(B-C)/D
(A/(Bx(C))/D A/B/C/D (A/(B/C))/D Ax BJ/C/D
(A+B)+C)+D | A+B+C+D (A-B)+O)+D | A+B+C—-D
(AxB)+C)+D | AxB+C+D (A/By+C)+D | A/B+C+D
(A+B)-C)+D | A+B+C—-D (A-B)-C)+D | A+ B—-C—-D
(AxB)—C)+D | AxB+C—-D ((A/B)—C)+ D A/B+C—-D
(A+B)xC)+D | (A+B)xC+D | (A—-B)xC)+D | (A-—B)xC+D
(AxB)xC)+D | AxBxC+D ((A/B)xC)+ D Ax B/C+ D
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Table 14: Expressions and their Canonical Forms (Patterns) (Page 4 of 4)

Expression Pattern Expression Pattern
((A+B)/C)+ D (A+B)/C+D ((A-B)/C)+ D (A-B)/C+D
((Ax B)/C)+ D Ax B/C+ D ((A/B)/C)+ D A/B/C+ D
(A+B)+C)-D | A+ B+C—-D (A-B)+C)-D | A+ B-C-D
(AxB)+(C)—D | AxB+C—-D ((A/B)+C)—-D A/B+C—-D
(A+B)-C)-D | A+B-C-D (A-B)-C)-D | A-B-C-D
((AxB)—-C)—-D | AxB-C—-D ((A/B)—C)-D A/B-C—-D
(A+B)x(C)-D | (A+B)xC-D | ((A-B)xC)—-D | (A—-B)xC—-D
(AxB)x(C)—D | AxBxC—-D ((A/B)xC)—D AxB/C—-D
((A+B)/C)—-D (A+B)/C—-D ((A—B)/C)-D (A-B)/C-D
((Ax B)/C)—D AxB/C—-D ((A/B)/C)—-D A/B/C — D
(A+B)+O)xD | (A+B+O)xD | ((A-B)+O)YxD [ (A+B—-C)x D
(AxB)+C)xD | (AxB+C)xD | ((A/B)+C)xD (A/B+C)xD
(A+B)-C)xD | (A+B-C)xD | ((A-B)-C)xD [ (A-B-C)xD
(AxB)—C)xD | (AxB-C)xD | ((A/B)—C)x D (A/B-C)x D
(A+B)xC)xD | (A+B)xCxD | (A—-B)xC)xD [ (A—B)xCxD
(AxB)x(C)xD | Ax BxCxD ((A/B) xC) x D Ax BxC/D
((A+B)/C)x D (A+B)xC/D ((A-—B)/C)x D (A—B)x(C/D
((Ax B)/C)x D AxBxC/D ((A/B)/C) x D Ax B/C/D
(A+B)+0C)/D (A+B+C)/D (A-B)+C)/D (A+B-C)/D
(AxB)+C)/D (AxB+C)/D ((A/B)+C)/D (A/B+C)/D
(A+B)—-C)/D (A+B-C)/D ((A-B)-C)/D (A-B-C)/D
((AxB)—C)/D (AxB-0C)/D ((A/B)—-C)/D (A/B-C)/D
((A+B)x(O)/D (A+ B)xC/D ((A-B)x(O)/D (A-B)x(C/D
((Ax B)xC)/D Ax BxC/D ((A/B) x C)/D Ax B/C/D
(A+B)JC)/D [ (A+B)JC/D | (A-B)JC)/D | (A—B)JC/D
(Ax B)JO)/D | Ax BJCJD (A7B)/C)/D | AJBJC/D
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