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Abstract
001

Cross-lingual word alignment is a task for word002

translation from monolingual word embedding003

spaces of two languages. Recent works are mostly004

based on supervised approaches, which need spe-005

cific bilingual seed dictionaries. The unsupervised006

adversarial approaches, which utilize the generative007

adversarial networks to map the whole monolin-008

gual space, do not need any aligned data. However009

these approaches pay no attention to the problem of010

mode collapse and gradient disappearance in gener-011

ative adversarial networks(GAN). We proposed an012

adaptive training objective generative adversarial013

network(ATOGAN). We combined particle swarm014

optimization(PSO) with GAN to select the training015

objective in GAN’s training, which alleviates the016

problem of mode collapse and gradient disappear-017

ance. Moreover, we improved the word alignment018

by bi-directional mapping and consistency loss. Ex-019

perimental results demonstrate that our approach020

is better than several state-of-the-art approaches in021

distant language pairs(non-isomorphic embedding022

spaces).023

1 Introduction024

Currently, cross-lingual word alignment plays an025

important role in language understanding and gen-026

eration tasks for various Natural Language Pro-027

cessing (NLP) applications, such as cross-lingual028

named entity recognition, cross-lingual sentiment029

analysis and cross-lingual text classification, etc.030

Cross-lingual word alignment transfers the embed-031

ding spaces between language pairs to address re-032

source lack in monolingual corpora. This task in033

non-isomorphic embedding spaces is a great chal-034

lenge at present.035

In isomorphic assumption, monolingual corpora036

have the similar structures across languages by the037

training of word embedding (Mikolov et al., 2013),038

and then different monolingual word embedding 039

spaces could be transformed with each other. How- 040

ever, those of etymologically and typologically dis- 041

tant languages are far from isomorphic. 042

Supervised approaches are commonly used for 043

the cross-lingual word alignment in the early works. 044

The monolingual space is aligned by bilingual seed 045

dictionaries((Vulić et al., 2019), (Glavaš et al., 046

2019), (Glavaš and Vulić, 2020)). Compared 047

with supervised learning approaches, unsupervised 048

learning approaches for the cross-lingual word 049

alignment do not need specific bilingual dictionar- 050

ies or parallel corpora. They utilized generative ad- 051

versarial networks(GAN) (Goodfellow et al., 2014) 052

to address this task, which have achieved great in 053

the deep learning field. GAN is a combination of 054

two neural networks, the generator and discrimina- 055

tor, which are trained against each other to gener- 056

ate realistic synthetic real-valued data. Based on 057

this work, Barone (2016) first proposed an unsu- 058

pervised adversarial method in cross-lingual word 059

alignment task. In Zhang et al. (2017), they im- 060

proved the training of GAN by changing the linear 061

transformation matrix to an orthogonal matrix and 062

adding noise to the word vector. This work al- 063

lows GAN to be better trained. In Lample et al. 064

(2018), they proposed a refined approach after the 065

training of GAN and cross-domain similarity lo- 066

cal scaling(CSLS) for word translation retrieval, 067

it improved the results a lot. In Bai et al. (2019), 068

they transformed the source and the target mono- 069

lingual word embeddings into a shared embedding 070

space. In Li et al. (2021), they proposed a noise 071

function to disperse dense word embeddings and 072

a Wasserstein critic network to preserve the se- 073

mantics of the source word embeddings. However, 074

these methods did not consider that the isomor- 075

phic assumption might not always hold, especially 076

those of etymologically and typologically distant 077

languages, which are far from isomorphic.(Glavaš 078

and Vulić, 2020). What’s more, in the training of 079
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GAN, there have always been problems of mode080

collapse and gradient disappearance. This problem081

is more obvious in distant languages task.082

In order to address mode collapse and gradi-083

ent disappearance in GAN’s training, researchers084

have done a lot of improvement by developing085

various adversarial training objectives. LSGAN086

(Mao et al., 2017) presents least squares loss func-087

tion to overcome the problems of vanishing gradi-088

ents. Wasserstein GAN(Arjovsky et al., 2017) and089

Wasserstein GAN gradient penalty (WGAN-GP)090

(Gulrajani et al., 2017) used Wasserstein distance091

and gradient-penalty in adversarial training goals.092

However, they all use a predefined single adversar-093

ial objective function. Evolutionary GAN (Wang094

et al., 2019) combined evolution strategy with GAN095

for the first time. It utilizes different training objec-096

tives as mutation operations to jointly optimize the097

generator for improving both the training stability098

and generative performance. Based on evolutionary099

GAN, CatGAN (Liu et al., 2020) utilize a hierar-100

chical evolutionary learning algorithm for training101

the model and obtaining the balance between the102

sample quality and diversity. Multi-Objective Evo-103

lutionary Generative Adversarial Network (MO-104

EGAN)(Baioletti et al., 2020) re-defined the evalu-105

ation of generators as a multi-objective problem to106

address the conflict of quality and diversity. How-107

ever, this methods only utilized a little evolutionary108

strategy. The training objective of the generator is109

a simple choice, and it is hard to choose a better110

combination of training objective.111

This paper proposes an adaptive training objec-112

tive generative adversarial network(ATOGAN) for113

cross-lingual word alignment in non-isomorphic114

embedding spaces. We find the non-consistency of115

mapping from source to target and target to source116

can effect the accuracy of word alignment. For117

instance, the word ’horse’ maps to ’Chevaux’ in118

French, while ’Chevaux’ maps to ’sheep’ in En-119

glish. Thus, we utilize the cycle consistency loss120

in Cycle-GAN (Zhu et al., 2017) and improve it.121

The generator is used as a mapper to map the em-122

bedding space from source language to the target123

language. The discriminator distinguishes whether124

the embedding is from the source or the target lan-125

guage. This model can reduce the cycle consis-126

tency loss which represent the non-consistency in127

language pairs. To address the mode collapse and128

gradient disappearance in the training for the task129

of distant langauge pairs, we design a dynamic130

loss function for the training objective by particle 131

swarm optimization(PSO) which is an evolutionary 132

computation. The training objective is a combina- 133

tion of various adversarial loss and cycle consis- 134

tency loss. In various epoch of training, we will 135

use the PSO algorithm to calculate an optimal pa- 136

rameter combination of loss weights to adjust the 137

training objective. 138

The contributions of this paper are as follows: 139

• We propose a novel unsupervised cross- 140

lingual word alignment approach through con- 141

sistency loss and bi-directional mapping in 142

non-isomorphic embedding spaces. 143

• We improve the generate network via parti- 144

cle swarm optimization to select the better 145

training objective in various training periods, 146

which alleviates mode collapse and gradient 147

disappearance in GAN’s training. 148

• Extensive experiments are performed on 149

dataset. Compared with previous adversar- 150

ial approaches in distant language pairs tasks, 151

the proposed approach is more effective. 152

2 Methodology 153

In our approach, the source language word embed- 154

ding is set to x ∈ X , while the target is y ∈ Y . 155

The proposed model is a bi-directional GAN with 156

evolutionary computing, as Figure 1. The bi-GAN 157

consists of discriminator_A, discriminator_B, gen- 158

erator(G) and generator(F). The procedure of evo- 159

lutionary computing by PSO comprises variation, 160

evaluation and selection step. 161

2.1 bi-directional mapping with consistency 162

loss 163

The generator(G) and generator(F) are both the or- 164

thogonal matrix which performance better in cross- 165

lingual word alignment task. G maps x to y, while F 166

maps y to x. Discriminator_A and discriminator_B 167

are trained against generators by judging that the 168

word embedding is real or not. The word alignment 169

from source to target is the opposite direction task 170

of the alignment from target to source. The better 171

results of one direction mapping can improved the 172

opposite mapping results. 173

Lcycle =Ex→X [||F (G(x))− x||] 174

+ Ey→Y [||G(F (y))− y||] (1) 175
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Figure 1: Architecture of unsupervised cross-lingual word alignment approach based on cycle-GAN and hybrid
training.

176

Lid =Ex→X [||F (x)− x||]177

+ Ey→Y [||G(y)− y||] (2)178

Inspired by cycle-GAN, we utilize consistency179

loss to constraint the consistency of bi-directional180

mapping. Adversarial training can learn the map-181

ping between two monolingual space. However,182

with large enough embedding space capacity, al-183

though the word embedding space has been aligned184

as a whole, some words are only aligned to the185

same target word. This words are not accu-186

rately aligned to the translated words. If one187

word is mapped to its near-synonym in target lan-188

guage, which is not its accurate translated word,189

the two-way direction mapping would cause non-190

consistency. Thus, reducing consistency loss can191

alleviate this problem, the loss is showed in for-192

mula (2). In addition, we hope that the mapping193

outputs belong to target space for any inputs, so we194

use identity loss to assist mapping, as formula (3).195

Lgen1(X,G,D_B) = −Ex→X [log(D_B(G(x)))]
(3)

196

Lgen2(X,Y,G,D_B) = −Ex,y→X,Y [D_B(y)log 197

(D_B(G(x))) + (1−D_B 198

(y)log(1−D_B(G(x)))]
(4)

199

Lgen3(X,G,D_B) = −Ex→X [(D_B(G(x))− 1)2]
(5)

200

Lobj =λ1 ∗ Lgen1 + λ2 ∗ Lgen2+ 201

λ3 ∗ Lgen3 + λ4 ∗ Lcycle + λ5 ∗ Lid (6) 202

LD(X,Y,G,D_B) = Ex→X [log(D_B(G(x)))] 203

+ Ey→Y [log(1−D_B(y))]
(7)

204

2.2 adaptive training objective via PSO 205

Most existing GANs address the mode collapse and 206

gradient disappearance in GAN’s training via trans- 207

forming the adversarial objective function. Inspired 208

by EGAN, different objective function will achieve 209

the best results in various training periods. The 210

single adversarial objective function could cause 211

mode collapse or gradient disappearance in a cer- 212

tain training period. We design a combination of 213
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multiple different loss functions as training objec-214

tive, then we utilize the PSO algorithm to select215

various weight combination of loss functions in216

various training periods. As Eq. (6), we combine217

three various adversarial loss(Eq. (3)(4)(5)) and218

cycle consistency loss(Eq. (1)), identity loss(Eq.219

(2)) as the final training objective function(Lobj). It220

should be noted that the EGAN only select one loss221

function as objective in various training periods.222

It equals to the weight combination of one value223

being 1, the other being 0 in our approach. The224

weight combination of loss functions include the225

selecting of only one adversarial loss function.226

F (X,G,D_B) = Ex→X [(D_B(G(x))]−227

λd ∗ log||∇D_B|| (8)228

We utilize a fitness function to score the weight229

combination in each particle training, then save the230

best result when the training of PSO is ending. The231

fitness function is combined of the quality of gen-232

erated data and generative diversity, as Eq. (8). For233

evaluating the quality, the prediction of generated234

data is higher, the quality is better. It measures the235

gap between the generated samples and the real236

samples. For evaluating the diversity, the minus237

log-gradient-norm of optimizing D is utilized to238

measure the diversity of generated samples. Cor-239

responding to a small discriminator gradient, the240

generated data tend to be scattered enough to avoid241

obvious countermeasures for the discriminator.242

In the training, we utilize the average cosine243

similarity in language pairs evaluate the results of244

each epoch. If the value of average cosine similarity245

less than maximum value k times continuously, we246

consider the objective is not the better in current247

training period, then the PSO will start to find the248

best objective function. Thus, the training objective249

is adaptive in the GAN’s training by the selecting250

in PSO.251

3 Experiment252

3.1 Experimental Setup253

Data.We evaluate on the MUSE dataset introduced254

by Lample et al. (2018). The MUSE dataset255

consists of monolingual word embeddings of256

dimension 300 trained with fasttext on Wikipedia257

corpora and gold dictionaries for 110 language258

pairs. According to BLISS(Patra et al., 2019),259

the high Gromov-Hausdorff distance language260

pairs(distant language pairs) cannot be aligned 261

well using orthogonal transforms. We choose a 262

part of distant language pairs such as: English (En) 263

from/to Russian(ru), Danish(da), Indonesian(id), 264

Hungary(hu) and Croatia(hr). 265

266

Baselines. We compare ATOGAN to the 267

state-of-the-art unsupervised cross-lingual word 268

alignment approaches:(1)Adv-C(Lample et al., 269

2018) proposed CSLS for selecting the nearest 270

neighbor of vector, meanwhile it utilize procrustes 271

analysis to refine the learned mapping by the 272

dictionary which is build from unsupervised 273

model. (2)Adv-B(Bai et al., 2019) trains two 274

separate auto-encoders to map two monolingual 275

embeddings into a shared embedding space. 276

(3)Adv-L(Li et al., 2021) introduces a noise 277

function that can disperse the dense embedding 278

points and utilize a Wasserstein critic network to 279

encourage adding noise. 280

281

Implementation Details and Hyperparam- 282

eter Tuning. We consider the most frequent 283

200k word embeddings for evaluation. We 284

take cross-domain similarity local scaling as 285

the retrieval metrics and use the average cosine 286

similarity between these deemed translations as 287

a validation metric. The number of particle is 288

set to 20 and the iterations of PSO is set to 50. 289

ATOGAN has two hyperparameter: the threshold 290

K for activating PSO, the weight of diversity in 291

fitness function λd. We verified that setting K = 292

2 and λd = 0.4 performs best for most language 293

pairs. 294

3.2 Results and Discussion 295

We report the results of average word translation 296

Precision@1 on Table 1. We compare our approach 297

with state-of-the-art unsupervised approaches. The 298

results show that the proposed approach outper- 299

forms other unsupervised approaches on 9 of 10 300

mapping directions in distant language pairs. It 301

can be seen that the two direction mapping results 302

in the same language pair have a big difference, 303

for instance, the average word translation Preci- 304

sion@1 of en-hu is 54.7% while hu-en is 66.0%. 305

It means a certain one direction mapping is harder 306

than other in the same language pair. We consider 307

the bi-directional mapping can use one direction 308

mapping to assist training other direction mapping 309

in the same language pair. 310
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model en-ru ru-en en-da da-en en-hu hu-en en-hr hr-en en-id id-en
Adv-C 44.0 59.1 58.1 51.9 53.5 62.9 * * 67 62.2
Adv-B 49.0 65.8 57.7 64.6 52.5 63.0 33.4 48.2 68.0 68.5
Adv-L 29.9 43.2 - - 47.1 62.4 32.5 48.0 - -
ATOGAN 49.9 63.4 59.3 66.7 54.7 66.0 35.9 48.7 68.6 68.7

Table 1: Average word translation precision retrieval P@1(%) on MUSE. Best results are bolded.(The best results
of 5 runs,’*’ denotes an precision of less than 0.1%. ’-’ denotes that we can not get the results.)

model id-en da-en hu-id
P@1 s P@1 s P@1 s

Adv-C 62.3 1 11.2 1 61.3 6
ATOGAN 68.0 9 66.7 10 65.5 9

Table 2: The average word translation precision retrieval
P@1 (%) and the number of successful runs (those with
>5% accuracy) on MUSE. Best results are bolded.(The
average results of 10 runs)

λd en-ru ru-en en-id id-en
0.1 49.3 62.3 67.8 68.5
0.2 48.5 61 68.1 68.3
0.4 49.9 62.9 68.6 68.7
0.8 48.8 63.4 68.1 68.4

Table 3: Average word translation precision retrieval
P@1(%) on MUSE. Best results are bolded.(The best
results of 5 runs)

In order to verify the stable of our approach, we311

report the average result of the word translation Pre-312

cision@1 and the number of successful runs((those313

with >5% accuracy)) in 10 runs on Table 2. The314

results show that our approach can successfully run315

9 or 10 times in 10 runs for id-en,da-en and hu-en,316

while on the same language pairs and mapping di-317

rection, the Adv-C can only run a small number of318

times successfully, what’s more, our average Preci-319

sion@1 is also higher, which is close to best value320

in Table 1. We consider that the adaptive training321

objective let the GAN’s training more stable by al-322

leviating mode collapse and gradient disappearance323

in GAN’s training.324

To further analyze our model, we perform abla-325

tion studies and show the results for two language326

pairs(en from/to ru, en from/to id) on Table 3 and327

Figure 2. Table 3 shows the performance for dif-328

ferent λd, which is a weight for fitness function in329

PSO. We need a balance of quality and diversity330

when using PSO to select the weight of objective331

function. The λd is used to adjust it. The results332

show that when the λd is set to 0.4, we can get the333

best results on most of experiments. However, due 334

to the diversity of different languages, one value of 335

this hyperparameter is hard to fit all language pairs. 336
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Figure 2: The average cosine similarity in each epochs
for en to ru. We add the point where PSO is activated.

We perform the results of different PSO thresh- 337

old K and without PSO for en to ru in Figure 2. 338

The results show that when the weight of training 339

objective is improved by PSO, the decreasing trend 340

can be improved a lot. Compared to the results of 341

without PSO, adaptive training objective can reach 342

to a better value. We consider that the various loss 343

function have different priority in various training 344

periods. Using PSO to select the weight of training 345

objective can help the model find a better training 346

direction. 347

4 Conclusion 348

In this paper, we propose an adaptive training ob- 349

jective generative adversarial network for cross- 350

lingual word alignment in non-isomorphic embed- 351

ding spaces. Our approach uses consistency loss 352

and bi-directional mapping to improve the orthog- 353

onal mapping. We combined PSO with GAN to 354

alleviate mode collapse and gradient disappearance 355

in GAN’s training, so that the mapping is stable. 356

The experiments show that our approach performs 357
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better than other strong baselines in distant lan-358

guage pairs(non-isomorphic). In the future we will359

focus on the combined of supervised approaches360

and our approach to improve the mapping on cross-361

lingual word alignment tasks.362
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