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Abstract

Cross-lingual word alignment is a task for word
translation from monolingual word embedding
spaces of two languages. Recent works are mostly
based on supervised approaches, which need spe-
cific bilingual seed dictionaries. The unsupervised
adversarial approaches, which utilize the generative
adversarial networks to map the whole monolin-
gual space, do not need any aligned data. However
these approaches pay no attention to the problem of
mode collapse and gradient disappearance in gener-
ative adversarial networks(GAN). We proposed an
adaptive training objective generative adversarial
network(ATOGAN). We combined particle swarm
optimization(PSO) with GAN to select the training
objective in GAN’s training, which alleviates the
problem of mode collapse and gradient disappear-
ance. Moreover, we improved the word alignment
by bi-directional mapping and consistency loss. Ex-
perimental results demonstrate that our approach
is better than several state-of-the-art approaches in
distant language pairs(non-isomorphic embedding
spaces).

1 Introduction

Currently, cross-lingual word alignment plays an
important role in language understanding and gen-
eration tasks for various Natural Language Pro-
cessing (NLP) applications, such as cross-lingual
named entity recognition, cross-lingual sentiment
analysis and cross-lingual text classification, etc.
Cross-lingual word alignment transfers the embed-
ding spaces between language pairs to address re-
source lack in monolingual corpora. This task in
non-isomorphic embedding spaces is a great chal-
lenge at present.

In isomorphic assumption, monolingual corpora
have the similar structures across languages by the
training of word embedding (Mikolov et al., 2013),

and then different monolingual word embedding
spaces could be transformed with each other. How-
ever, those of etymologically and typologically dis-
tant languages are far from isomorphic.

Supervised approaches are commonly used for
the cross-lingual word alignment in the early works.
The monolingual space is aligned by bilingual seed
dictionaries((Vuli¢ et al., 2019), (Glavas et al.,
2019), (Glavas and Vuli¢, 2020)). Compared
with supervised learning approaches, unsupervised
learning approaches for the cross-lingual word
alignment do not need specific bilingual dictionar-
ies or parallel corpora. They utilized generative ad-
versarial networks(GAN) (Goodfellow et al., 2014)
to address this task, which have achieved great in
the deep learning field. GAN is a combination of
two neural networks, the generator and discrimina-
tor, which are trained against each other to gener-
ate realistic synthetic real-valued data. Based on
this work, Barone (2016) first proposed an unsu-
pervised adversarial method in cross-lingual word
alignment task. In Zhang et al. (2017), they im-
proved the training of GAN by changing the linear
transformation matrix to an orthogonal matrix and
adding noise to the word vector. This work al-
lows GAN to be better trained. In Lample et al.
(2018), they proposed a refined approach after the
training of GAN and cross-domain similarity lo-
cal scaling(CSLS) for word translation retrieval,
it improved the results a lot. In Bai et al. (2019),
they transformed the source and the target mono-
lingual word embeddings into a shared embedding
space. In Li et al. (2021), they proposed a noise
function to disperse dense word embeddings and
a Wasserstein critic network to preserve the se-
mantics of the source word embeddings. However,
these methods did not consider that the isomor-
phic assumption might not always hold, especially
those of etymologically and typologically distant
languages, which are far from isomorphic.(Glavas
and Vuli¢, 2020). What’s more, in the training of



GAN, there have always been problems of mode
collapse and gradient disappearance. This problem
is more obvious in distant languages task.

In order to address mode collapse and gradi-
ent disappearance in GAN’s training, researchers
have done a lot of improvement by developing
various adversarial training objectives. LSGAN
(Mao et al., 2017) presents least squares loss func-
tion to overcome the problems of vanishing gradi-
ents. Wasserstein GAN(Arjovsky et al., 2017) and
Wasserstein GAN gradient penalty (WGAN-GP)
(Gulrajani et al., 2017) used Wasserstein distance
and gradient-penalty in adversarial training goals.
However, they all use a predefined single adversar-
ial objective function. Evolutionary GAN (Wang
etal., 2019) combined evolution strategy with GAN
for the first time. It utilizes different training objec-
tives as mutation operations to jointly optimize the
generator for improving both the training stability
and generative performance. Based on evolutionary
GAN, CatGAN (Liu et al., 2020) utilize a hierar-
chical evolutionary learning algorithm for training
the model and obtaining the balance between the
sample quality and diversity. Multi-Objective Evo-
lutionary Generative Adversarial Network (MO-
EGAN)(Baioletti et al., 2020) re-defined the evalu-
ation of generators as a multi-objective problem to
address the conflict of quality and diversity. How-
ever, this methods only utilized a little evolutionary
strategy. The training objective of the generator is
a simple choice, and it is hard to choose a better
combination of training objective.

This paper proposes an adaptive training objec-
tive generative adversarial network(ATOGAN) for
cross-lingual word alignment in non-isomorphic
embedding spaces. We find the non-consistency of
mapping from source to target and target to source
can effect the accuracy of word alignment. For
instance, the word ’horse’ maps to *’Chevaux’ in
French, while Chevaux’ maps to ’sheep’ in En-
glish. Thus, we utilize the cycle consistency loss
in Cycle-GAN (Zhu et al., 2017) and improve it.
The generator is used as a mapper to map the em-
bedding space from source language to the target
language. The discriminator distinguishes whether
the embedding is from the source or the target lan-
guage. This model can reduce the cycle consis-
tency loss which represent the non-consistency in
language pairs. To address the mode collapse and
gradient disappearance in the training for the task
of distant langauge pairs, we design a dynamic

loss function for the training objective by particle
swarm optimization(PSO) which is an evolutionary
computation. The training objective is a combina-
tion of various adversarial loss and cycle consis-
tency loss. In various epoch of training, we will
use the PSO algorithm to calculate an optimal pa-
rameter combination of loss weights to adjust the
training objective.
The contributions of this paper are as follows:

e We propose a novel unsupervised cross-
lingual word alignment approach through con-
sistency loss and bi-directional mapping in
non-isomorphic embedding spaces.

e We improve the generate network via parti-
cle swarm optimization to select the better
training objective in various training periods,
which alleviates mode collapse and gradient
disappearance in GAN’s training.

e Extensive experiments are performed on
dataset. Compared with previous adversar-
ial approaches in distant language pairs tasks,
the proposed approach is more effective.

2 Methodology

In our approach, the source language word embed-
ding is set to x € X, while the targetis y € Y.
The proposed model is a bi-directional GAN with
evolutionary computing, as Figure 1. The bi-GAN
consists of discriminator_A, discriminator_B, gen-
erator(G) and generator(F). The procedure of evo-
lutionary computing by PSO comprises variation,
evaluation and selection step.

2.1 bi-directional mapping with consistency
loss

The generator(G) and generator(F) are both the or-
thogonal matrix which performance better in cross-
lingual word alignment task. G maps x to y, while F
maps y to x. Discriminator_A and discriminator_B
are trained against generators by judging that the
word embedding is real or not. The word alignment
from source to target is the opposite direction task
of the alignment from target to source. The better
results of one direction mapping can improved the
opposite mapping results.
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Figure 1: Architecture of unsupervised cross-lingual word alignment approach based on cycle-GAN and hybrid

training.
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Inspired by cycle-GAN, we utilize consistency
loss to constraint the consistency of bi-directional
mapping. Adversarial training can learn the map-
ping between two monolingual space. However,
with large enough embedding space capacity, al-
though the word embedding space has been aligned
as a whole, some words are only aligned to the
same target word. This words are not accu-
rately aligned to the translated words. If one
word is mapped to its near-synonym in target lan-
guage, which is not its accurate translated word,
the two-way direction mapping would cause non-
consistency. Thus, reducing consistency loss can
alleviate this problem, the loss is showed in for-
mula (2). In addition, we hope that the mapping
outputs belong to target space for any inputs, so we
use identity loss to assist mapping, as formula (3).

Lgenl (X, G, D_B) = —Lgp X [lOg(D_B(G(.CL’)))]
3)

Lyen2(X,Y,G,D_B) = —E, , ,xy|D_B(y)log
(D_B(G(z))) + (1 — D_B

(y)log(1 = D_B(G(x)))]
“)

Lgen3(X,G,D_B) = —E,,x[(D_B(G(x)) — 1)
(5)

Lobj =1 * Lgenl + Ao * Lgen2+
)\3 * Lgen3 + )\4 * Lcycle + )\5 * Lid (6)

LD(Xv Y, G? D—B) =FEy.x [log(D_B(G(x)))]
+ Eyyllog(1 — D_B(y))]
(7

2.2 adaptive training objective via PSO

Most existing GANs address the mode collapse and
gradient disappearance in GAN’s training via trans-
forming the adversarial objective function. Inspired
by EGAN, different objective function will achieve
the best results in various training periods. The
single adversarial objective function could cause
mode collapse or gradient disappearance in a cer-
tain training period. We design a combination of



multiple different loss functions as training objec-
tive, then we utilize the PSO algorithm to select
various weight combination of loss functions in
various training periods. As Eq. (6), we combine
three various adversarial loss(Eq. (3)(4)(5)) and
cycle consistency loss(Eq. (1)), identity loss(Eq.
(2)) as the final training objective function(Lp;). It
should be noted that the EGAN only select one loss
function as objective in various training periods.
It equals to the weight combination of one value
being 1, the other being 0 in our approach. The
weight combination of loss functions include the
selecting of only one adversarial loss function.

F(X,G,D_B) = E,,x[(D_B(G(z))]—
Ad * log||Vp_gl| ®)

We utilize a fitness function to score the weight
combination in each particle training, then save the
best result when the training of PSO is ending. The
fitness function is combined of the quality of gen-
erated data and generative diversity, as Eq. (8). For
evaluating the quality, the prediction of generated
data is higher, the quality is better. It measures the
gap between the generated samples and the real
samples. For evaluating the diversity, the minus
log-gradient-norm of optimizing D is utilized to
measure the diversity of generated samples. Cor-
responding to a small discriminator gradient, the
generated data tend to be scattered enough to avoid
obvious countermeasures for the discriminator.

In the training, we utilize the average cosine
similarity in language pairs evaluate the results of
each epoch. If the value of average cosine similarity
less than maximum value k times continuously, we
consider the objective is not the better in current
training period, then the PSO will start to find the
best objective function. Thus, the training objective
is adaptive in the GAN’s training by the selecting
in PSO.

3 Experiment

3.1 Experimental Setup

Data.We evaluate on the MUSE dataset introduced
by Lample et al. (2018). The MUSE dataset
consists of monolingual word embeddings of
dimension 300 trained with fasttext on Wikipedia
corpora and gold dictionaries for 110 language
pairs. According to BLISS(Patra et al., 2019),
the high Gromov-Hausdorff distance language

pairs(distant language pairs) cannot be aligned
well using orthogonal transforms. We choose a
part of distant language pairs such as: English (En)
from/to Russian(ru), Danish(da), Indonesian(id),
Hungary(hu) and Croatia(hr).

Baselines. = We compare ATOGAN to the
state-of-the-art unsupervised cross-lingual word
alignment approaches:(1)Adv-C(Lample et al.,
2018) proposed CSLS for selecting the nearest
neighbor of vector, meanwhile it utilize procrustes
analysis to refine the learned mapping by the
dictionary which is build from unsupervised
model. (2)Adv-B(Bai et al., 2019) trains two
separate auto-encoders to map two monolingual
embeddings into a shared embedding space.
(3)Adv-L(Li et al., 2021) introduces a noise
function that can disperse the dense embedding
points and utilize a Wasserstein critic network to
encourage adding noise.

Implementation Details and Hyperparam-
eter Tuning. We consider the most frequent
200k word embeddings for evaluation. We
take cross-domain similarity local scaling as
the retrieval metrics and use the average cosine
similarity between these deemed translations as
a validation metric. The number of particle is
set to 20 and the iterations of PSO is set to 50.
ATOGAN has two hyperparameter: the threshold
K for activating PSO, the weight of diversity in
fitness function \;. We verified that setting K =
2 and )\g = 0.4 performs best for most language
pairs.

3.2 Results and Discussion

We report the results of average word translation
Precision@1 on Table 1. We compare our approach
with state-of-the-art unsupervised approaches. The
results show that the proposed approach outper-
forms other unsupervised approaches on 9 of 10
mapping directions in distant language pairs. It
can be seen that the two direction mapping results
in the same language pair have a big difference,
for instance, the average word translation Preci-
sion@1 of en-hu is 54.7% while hu-en is 66.0%.
It means a certain one direction mapping is harder
than other in the same language pair. We consider
the bi-directional mapping can use one direction
mapping to assist training other direction mapping
in the same language pair.



model en-ru ru-en en-da da-en en-hu hu-en en-hr hr-en en-id id-en
Adv-C 440  59.1 58.1 51.9 53.5 62.9 * * 67 62.2
Adv-B 49.0 658 57.7 64.6 52.5 63.0 334 482 68.0 68.5
Adv-L 299 432 - - 47.1 62.4 32.5 48.0 - -

ATOGAN 49.9 634 593 66.7 54.7 66.0 359 48.7 68.6 68.7

Table 1: Average word translation precision retrieval P@1(%) on MUSE. Best results are bolded.(The best results

of 5 runs,”*’ denotes an precision of less than 0.1%. ’-* denotes that we can not get the results.)

model id-en da-en hu-id best results on most of experiments. However, due

P@1 s P@1 s P@1 s to the diversity of different languages, one value of
Adv-C 623 1 112 1 613 6 this hyperparameter is hard to fit all language pairs.
ATOGAN 68.0 9 667 10 655 9

Table 2: The average word translation precision retrieval
P@1 (%) and the number of successful runs (those with
>5% accuracy) on MUSE. Best results are bolded.(The
average results of 10 runs)

Ad en-ru ru-en en-id id-en 0.550
0.1 493 623 67.8 685 0525
0.2 485 61 68.1 68.3 0500
0.4 499 629 68.6 68.7

0.8 488 634 681 684 >

Table 3: Average word translation precision retrieval
P@1(%) on MUSE. Best results are bolded.(The best
results of 5 runs)

In order to verify the stable of our approach, we
report the average result of the word translation Pre-
cision@1 and the number of successful runs((those
with >5% accuracy)) in 10 runs on Table 2. The
results show that our approach can successfully run
9 or 10 times in 10 runs for id-en,da-en and hu-en,
while on the same language pairs and mapping di-
rection, the Adv-C can only run a small number of
times successfully, what’s more, our average Preci-
sion@1 is also higher, which is close to best value
in Table 1. We consider that the adaptive training
objective let the GAN’s training more stable by al-
leviating mode collapse and gradient disappearance
in GAN’s training.

To further analyze our model, we perform abla-
tion studies and show the results for two language
pairs(en from/to ru, en from/to id) on Table 3 and
Figure 2. Table 3 shows the performance for dif-
ferent )y, which is a weight for fitness function in
PSO. We need a balance of quality and diversity
when using PSO to select the weight of objective
function. The )\ is used to adjust it. The results
show that when the )\, is set to 0.4, we can get the
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Figure 2: The average cosine similarity in each epochs
for en to ru. We add the point where PSO is activated.

We perform the results of different PSO thresh-
old K and without PSO for en to ru in Figure 2.
The results show that when the weight of training
objective is improved by PSO, the decreasing trend
can be improved a lot. Compared to the results of
without PSO, adaptive training objective can reach
to a better value. We consider that the various loss
function have different priority in various training
periods. Using PSO to select the weight of training
objective can help the model find a better training
direction.

4 Conclusion

In this paper, we propose an adaptive training ob-
jective generative adversarial network for cross-
lingual word alignment in non-isomorphic embed-
ding spaces. Our approach uses consistency loss
and bi-directional mapping to improve the orthog-
onal mapping. We combined PSO with GAN to
alleviate mode collapse and gradient disappearance
in GAN’s training, so that the mapping is stable.
The experiments show that our approach performs



better than other strong baselines in distant lan-
guage pairs(non-isomorphic). In the future we will
focus on the combined of supervised approaches
and our approach to improve the mapping on cross-
lingual word alignment tasks.
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