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Abstract
Real-time action detection demands fine-grained
supervision, yet most skeleton based datasets only
provide video-level annotations, due to the high
cost, subjectivity, and time-consuming nature of
frame-level labeling. To bridge this gap, we
propose a pipeline that transforms video-level
annotations into frame-level pseudo-labels via
saliency maps. This approach significantly re-
duces the need for manual labeling while enabling
frame-level action detection. We evaluate our
method using both structured foundation models
and task-specific architectures for action recog-
nition (daily activities and rehabilitation) across
four diverse datasets: SERE, Toronto Rehab, UTK
and MMAct. These results highlight the gener-
alization potential across users of the foundation
models trained on structured time-series data, of-
fering an efficient route from video-level labels to
fine-grained motion analysis.

1. Introduction
Real-time action detection is a key component in numerous
real-world applications, including human-computer inter-
action (Mitra & Acharya, 2007), robotics (Olatunji, 2018),
rehabilitation and physical therapy monitoring (Cóias et al.,
2022), sports performance feedback (Bialkowski et al.,
2014), and intelligent surveillance systems (Kulbacki et al.,
2023). These domains require not only the recognition of
human actions, but also the immediate feedback of ongoing
behaviors, which in turn requires frame-level annotations
(Shou et al., 2016). However, most large-scale human action
datasets, such as HMDB-51 (Kuehne et al., 2011), Kinetics-
700 (Tölgyessy et al., 2021) and NTU RGB+D (Shahroudy
et al., 2016; Liu et al., 2020) provide only video-level la-
bels, limiting model development to offline classification
and making them unsuitable for tasks that require temporal
precision. Obtaining frame-level ground truth is notoriously
difficult. Frame-level annotations are labor intensive, time-
consuming (Sigurdsson et al., 2016), and susceptible to
interannotator bias (Sigurdsson et al., 2016). Disagreements
about action onset and offset, or divergent interpretations of
ambiguous motions, introduce noise that can hinder training

and generalization, especially in safety-critical or interactive
systems where precision is important.

In real-world applications where timely and accurate feed-
back is essential, structured representations of human mo-
tion play a critical role in enabling robust and scalable per-
ception systems. Skeleton data, which captures the spa-
tial and temporal dynamics of body joints, provides a se-
mantically rich, yet compact format for modeling human
actions. In light of these challenges and using this struc-
tured data as input, we propose a novel framework that
aims to improve pseudo-labels to the frame-level on ac-
tion recognition by addressing the following: (i) Saliency-
based pseudo-labelling for skeleton data: We propose
a two-stage pipeline that first performs video-level action
classification and then generates frame-level pseudo-labels
using saliency maps and the pseudo-label selection method.
This method enables weakly supervised action detection by
identifying the most important frames, without requiring
dense annotation. (ii) Foundation vs. task-specific model
comparison: We present the first empirical comparison
between a large-scale time-series foundation model (MO-
MENT) and task-specific skeletal transformers (AcT and
SkateFormer) in the context of video binary classification,
saliency-based pseudo-labeling and frame binary classifica-
tion. (iii) Cross-subject evaluation on four benchmark
datasets: We evaluate our models on four datasets: Toronto
Rehab (Dolatabadi et al., 2017) and SERE (Cóias et al.,
2025), which focus on rehabilitation exercises, and UTK
(Xia et al., 2012) and MMAct (Kong et al., 2019), which
target daily activity recognition. Each dataset is adapted
to support both video-level and frame-level evaluation. To
assess cross-person generalization, we apply a Leave-One-
Subject-Out (LOSO) cross-validation protocol across all
experiments.

2. Related Work
Recent work has explored how gradient-based techniques
can enhance temporal understanding and interpretability in
video action recognition. In rehabilitation contexts, saliency
methods such as vanilla and integrated gradients have been
used to detect subtle anomalies and interpret model deci-
sions effectively (Cóias et al., 2022; Lee, 2024). These
approaches are especially valuable in settings where pre-
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cise frame-level annotations are unavailable. More broadly,
gradient-based methods like Grad-CAM (Selvaraju et al.,
2017) and recent extensions such as the To-a-T Spatio-
Temporal Focus framework (Ke et al., 2022) have demon-
strated success in highlighting informative regions in tempo-
ral sequences, though they are underexplored in the context
of skeleton based motion data. Skeleton based systems offer
a lightweight and interpretable representation for modeling
human motion. Early methods relied on binary classifiers
for stroke rehabilitation (Lee et al., 2019), while more recent
approaches leverage webcam-based pose estimation com-
bined with machine learning to detect compensatory behav-
iors with greater accuracy and generalizability (Cóias et al.,
2023). Finally, the choice between foundation and task-
specific models continues to shape advances in structured
prediction. Foundation models like Moment (Goswami
et al., 2024) offer strong generalization via large-scale pre-
training across diverse time-series tasks. In contrast, spe-
cialized models such as Action Transformer (AcT) (Mazzia
et al., 2022) and SkateFormer (SF) (Do & Kim, 2024) are
explicitly designed for human motion analysis, incorporat-
ing skeletal priors and attention mechanisms that excel in
domain-specific applications.

3. Method
3.1. Approach Pipeline Overview

Figure 1 shows the complete pipeline we adopt for real-
time action detection in untrimmed videos. Consider the
dataset V = {vi}Ni=1 and its associated video-level labels
yi ∈ {0, 1}K ; the target yik = 1 indicates that action k
occurs somewhere in vi, making the task binary multi-label
when K > 1. We first extract body-pose keypoints with a
state-of-the-art detector and denoise them in a preprocessing
step (box a). These features, together with the video-level
labels, are used to fine-tune video classifiers (Model A in
box b), of architectures AcT (Mazzia et al., 2022), SF (Do &
Kim, 2024), Moment (Goswami et al., 2024), or an LSTM.
Next, we apply a gradient-based saliency method (Simonyan
et al., 2014) (Sundararajan et al., 2017) to Model A’s predic-
tions to obtain temporal saliency scores. The Pseudo-Label
Selection method thresholds these scores to construct binary
frame-level labels zit ∈ {0, 1}K , setting zit,k = 1 whenever
the saliency for action k at frame t exceeds the predefined
cut-off (box c). Finally, the same feature sequence f i to-
gether with the derived pseudo-labels {zit} are used to train a
multilayer perceptron (MLP) for frame-level action recogni-
tion (box d), whose outputs are evaluated against the ground
truth annotations.

3.2. Structured Pose Representation and Preprocessing

To impose a structured inductive bias over body dynamics,
we use 2D/3D skeletal keypoints as input features. For each

MediaPipe
get body keypoints

Video of an
exercise trial

Model A Video Classification
Prediction

Saliency Maps

Pseudo-Label
Selection

Frame-Level
Pseudo-Labels

Model B Frame Classification
Prediction

Model A

LSTM
Action Transformer
SkateFormer
MOMENT

a) b)

c)

d)

Model B

MLP

                                   

Figure 1. Approach Pipeline: a) body pose extraction and prepro-
cessing; b) video-level assessment with Model A; c) if the positive
motion labeled is detected, through the gradient-based technique
we generate a saliency map to which we apply the pseudo-label
selection method to generate frame-level pseudo-labels; d) train-
ing of Model B, a Multilayer Perceptron (MLP), for frame-level
assessment.

dataset, we apply the appropriate pose extractor, MediaPipe
for SERE (Cóias et al., 2023), Microsoft Kinect (Tölgyessy
et al., 2021) for Toronto Rehab and UTK (Xia et al., 2012),
and OpenPose (Cao et al., 2019; Simon et al., 2017; Cao
et al., 2017; Wei et al., 2016) for MMAct (Kong et al., 2019)
ensuring that each frame is represented by a set of joint co-
ordinates. To reduce inter-subject variability, we normalize
joint positions by subtracting their initial positions within
a trial, capturing displacement vectors instead of absolute
locations. Additionally, we apply a temporal smoothing
filter (a five-frame moving average) to suppress sensor noise
and increase signal coherence over time.

3.3. Video-Level Action Classification: Foundation vs.
Task-Specific Models

To assess the role of model architecture and pretraining strat-
egy in structured prediction, we compare both task-specific
and foundation models in their ability to classify human
motion (in rehabilitation settings and daily activities) using
only video-level annotations. We include the Action Trans-
former (AcT) (Mazzia et al., 2022), a transformer-based
model that leverages full self-attention over short sequences
of body keypoints and is pre-trained on MPOSE2021, a
pose-centric dataset. SF (Do & Kim, 2024) introduces an
inductive bias by grouping joints into semantically meaning-
ful skeletal-temporal partitions, applying attention within
and across these groups to better capture joint interactions.
We also evaluate Moment (Goswami et al., 2024), a founda-
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tion model pre-trained across diverse time-series domains
and tasks such as classification and anomaly detection. This
model serves as a representative of broadly pre-trained struc-
tured models and is expected to exhibit strong adaptability
to novel domains. A LSTM baseline was also trained from
scratch, providing a minimal inductive bias comparator with-
out any pre-trained knowledge. All models transformer
based models are fine-tuned solely with video-level labels.
By comparing their downstream performance and the qual-
ity of the saliency-derived pseudo-labels, we isolate how
structural priors and pretraining strategies affect the learn-
ing.

3.4. Frame-Level Pseudo-Labels Generation

After training the video-level classifier (Model A), we use
gradient based saliency methods, Vanilla Gradient (VG)
(Simonyan et al., 2014) and Integrated Gradients (IG) (Sun-
dararajan et al., 2017), to identify frames most influential
to the model’s predictions. These techniques assign impor-
tance scores to input features, revealing which frames are
most relevant for classification. While Vanilla Gradient mea-
sures local sensitivity, Integrated Gradients provide more
stable attributions by integrating over a baseline-to-input
path.

3.5. Pseudo-label Selection Method

From the saliency maps, we aggregate gradients frame by
frame and apply min-max normalization to scale the results
to a range of [0, 1], yielding a pseudo-score sit for each frame
t. We distinguish the frames of a motion labeld negative
from the frames of a motion labeled positive by thresholding
frames pseudo-scores. We explore a technique we call single
threshold. This approach requires only one threshold τ .
Using a threshold, τ , each frame is assigned with a pseudo-
label, zit,

zit =

{
0, if ŷi = 0

I(sit > τ), if ŷi = 1
(1)

where ŷi represents the predicted class for video i, and I is
the indicator function. For normal motion video trial (ŷi =
0), all frames are assigned with a pseudo-label zit = 0. For
videos with positive label motions (ŷi = 1), each frame’s
pseudo-score sit is compared against the threshold τ . If
sit > τ , the indicator function assigns a frame pseudo-label
zit = 1 and zit = 0, otherwise. The threshold τ used to
convert the pseudo-saliency scores into binary frame-level
labels was selected subjectively for each dataset based on
inspection of the pseudo-score distributions. While τ differs
across datasets due to variations in label density, action
granularity and skeleton algorithm, it is held constant across
all models within a given dataset. This ensures fair model
comparisons under consistent pseudo-label conditions.

3.6. Frame-Level Compensation Classifier

In Model B, we implement a Multilayer Perceptron (MLP)
to evaluate the effectiveness of these pseudo-labels. For
comparison, we also train the same model using ground-
truth (GT) frame-level annotations, providing an upper-
bound performance that reflects the best achievable results
under our evaluation protoco.

4. Datasets
We evaluate our method on four datasets spanning reha-
bilitation and general action recognition: the Toronto Re-
hab Upper-Limb Dataset (Dolatabadi et al., 2017), MMAct
(Kong et al., 2019), SERE (Cóias et al., 2025) and UTK
(Xia et al., 2012). Each dataset is adapted to support both
video-level and frame-level evaluation. For both classifica-
tion tasks, we adopt a LOSO) cross-validation protocol to
assess model generalization across individuals.

Toronto Rehab Upper-Limb Dataset (Dolatabadi et al.,
2017): This dataset includes 19 participants performing
upper-limb exercises. Data were recorded with a Microsoft
Kinect v2 sensor at 30 FPS, capturing 3D joint trajectories.
Expert frame-level annotations identify four compensation
types. Since only frame-level labels are provided, we cre-
ated video-level labels by marking a video as compensatory
(ŷi = 1) if any frame in the sequence is annotated as com-
pensatory, and non-compensatory otherwise (ŷi = 0).

MMAct Dataset (Kong et al., 2019): Originally designed
for multi-class action recognition (daily activities), MMAct
contains over 36,000 labeled video clips from 20 partici-
pants across 37 action classes, captured across four envi-
ronments using multi-view cameras and multiple sensor
modalities. For our binary detection task, we concatenate
three action clips into a single video. The video-level label
is set to positive if the target action is present in any of the
three clips. The frame-level labels, initially provided for
each clip, are preserved in each frame of the clip.

SERE Dataset (Cóias et al., 2025): This dataset consists
of 1,260 short video clips recorded at 30 FPS from 18 post-
stroke patients performing five rehabilitation tasks. Video
and frame-level annotations of compensatory behavior are
provided by expert clinicians, with binary labels indicating
the presence (1) or absence (0) of compensation. The dataset
captures realistic variability in clinical movement patterns,
making it a valuable testbed for generalization.

UTK (Xia et al., 2012): This dataset is a benchmark dataset
designed for human action recognition using 3D skeletal
data. It was collected using a Microsoft Kinect sensor and
includes 10 different action classes (daily activities) per-
formed by 10 subjects from varying viewpoints. For our
binary detection task, we concatenate three action clips into
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a single video. The video-level label is set to positive if the
target action is present in any of the three clips. The frame-
level labels, initially provided for each clip, are preserved in
each frame of the clip.

5. Results and Experiments
5.1. Video-level Classification

Table 1 presents the video-level classification performance
across four datasets using four different models, evaluated
under a LOSO cross-validation protocol. Moment consis-
tently achieved the highest AUC values, excelling on the
SERE dataset, UTK dataset and MMAct. Therefore being
able to create the best embeddings to detect human motion
across different people. SF recorded the best performance
on Toronto, highlighting its task-specific effectiveness. In
contrast, the baseline LSTM model, which lacks pretraining
and structural priors, trailed behind the transformer-based
models. Interestingly, performance variances are lower on
MMAct and UTK, likely because Toronto and SERE are re-
habilitation datasets, where patient-specific motion patterns
make generalization across subjects more difficult.

Method TorontoN=19 MMActN=20 SEREN=18 UTKN=10

LSTM 0.75± 0.05 0.93± 0.01 0.58± 0.06 0.97± 0.01

AcT 0.71± 0.07 0.96± 0.01 0.67± 0.05 0.92± 0.03

SF 0.76±0.05 0.96± 0.01 0.65± 0.05 0.96± 0.02

Moment 0.72± 0.04 0.97±0.01 0.73±0.05 0.98±0.01

Table 1. Video-level classification results (AUC) under LOSO
cross-validation across four datasets. Values are reported as mean
± standard error. Sample size N indicates the number of subjects.

5.2. Frame-level Pseudo-label Classification

Moving to the more challenging frame-level task, Table 2
shows that IG consistently outperform VG across all models
and datasets. This confirms that saliency-based attribution
significantly improves the ability to identify discriminative
frames from video-level supervision. Among all models,
AcT consistently produces the most informative saliency
maps. The gains from IG are especially pronounced for
AcT, for example, on the SERE dataset, its AUC rises from
0.53 (VG) to 0.72 (IG), marking the highest jump among all
models and surpassing ground-truth performance. In con-
trast, Moment, despite its strong video-level classification
performance, yields saliency maps that are generally less
aligned with frame-level relevance. Its frame-level AUCs
improve moderately with IG but remain behind AcT and SF
on most datasets. This suggests that while Moment captures
broad motion representations that generalize across subjects,
its internal attention may be less focused on temporally dis-

Method TorontoN=19 MMActN=20 SEREN=18 UTKN=10

LSTMVG 0.43± 0.03 0.83± 0.02 0.64± 0.02 0.52± 0.05

LSTMIG 0.65± 0.03 0.82± 0.02 0.64± 0.03 0.76± 0.03

AcTVG 0.45± 0.02 0.85± 0.02 0.53± 0.04 0.48± 0.06

AcTIG 0.70±0.03 0.85± 0.02 0.72±0.03 0.79±0.03

SFVG 0.63± 0.03 0.84± 0.02 0.58± 0.02 0.52± 0.04

SFIG 0.63± 0.02 0.86±0.02 0.66± 0.03 0.78± 0.03

MomentVG 0.47± 0.02 0.85± 0.02 0.51± 0.02 0.49± 0.05

MomentIG 0.61± 0.03 0.84± 0.02 0.69± 0.02 0.78± 0.03

GT 0.80± 0.03 0.91± 0.02 0.69± 0.03 0.91± 0.02

Table 2. Frame-level classification results (AUC, mean ± stan-
dard error) from LOSO cross-validation using Vanilla Gradients
(VG) and Integrated Gradients (IG) for pseudo-labeling across four
datasets. Sample size N indicates the number of subjects.

criminative regions. SF also benefits from IG, particularly
on MMAct, where it achieves the highest AUC (0.86), but
it trails behind AcT on rehabilitation datasets like Toronto
and UTK. Across all datasets, our pseudo-labeling pipeline
consistently narrows the AUC gap of the best performer to
ground truth labels by only 4–12 points, offering signifi-
cant annotation cost savings with minimal performance loss.
Specifically, the Toronto dataset showed a 10-point drop
from 0.80 to 0.70, MMAct had a 5-point decline from 0.91
to 0.86, and UTK exhibited the largest reduction, with a
12 point difference from 0.91 to 0.79. Interestingly, on the
SERE dataset, pseudo-labeling with AcTIG outperformed
the ground truth, achieving an AUC of 0.72 compared to
0.69 with expert annotations, suggesting that the manually
labeled data may be affected by human bias.

6. Conclusion and Limitations
This work demonstrates that gradient-based saliency meth-
ods, particularly IG, can effectively bridge the gap between
video-level labels and strong frame-level annotations. While
our approach shows strong potential, it has two main limita-
tions. First, the thresholding step used to convert saliency
scores into pseudo-labels was manually selected and dataset-
specific, limiting reproducibility. Second, although Moment
performed well in video classification, it was less class spe-
cific and less temporally focused compared to task-specific
models like AcT and SF, making its pseudo-labels less in-
formative in some contexts.

Overall, our findings suggest that saliency-guided pseudo-
labeling, when combined with either a pre-trained founda-
tion model or a task-specific skeletal transformer, provides a
practical and effective strategy for fine-grained action recog-
nition without the need for dense annotations.
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