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ABSTRACT

Recent studies have validated that pruning hard-to-learn examples from training im-
proves the generalization performance of neural networks (NNs). In this study, we
investigate this intriguing phenomenon—the negative effect of hard examples on
generalization—in adversarial training. Particularly, we theoretically demonstrate
that the increase in the difficulty of hard examples in adversarial training is signifi-
cantly greater than the increase in the difficulty of easy examples. Furthermore,
we verify that hard examples are only fitted through memorization of the label in
adversarial training and that the memorization of hard examples is attributed to the
significant increase in the difficulty of hard examples. We find that the increased
difficulty of hard examples brings about the functioning of hard examples as label
corrupted data in adversarial training, thereby leading to the memorization of those
hard examples and deterioration of the robustness performance. Based upon these
observations, we propose a new approach, difficulty proportional label smoothing
(DPLS), to mitigate the negative effect of hard examples, thereby improving the
adversarial robustness of NNs. Notably, our experimental result indicates that our
method can successfully leverage hard examples while circumventing the negative
effect.

1 INTRODUCTION

The structural regularities of classification datasets have been investigated in several studies (Jiang
et al., 2021; Paul et al., 2021; Wu et al., 2018), and measures have been proposed for identifying the
regularities of training samples through training statistics. For example, Jiang et al. (2021) discovered
that the learning speed of training examples is strongly correlated with the structural regularities,
i.e., regular examples are learned quickly, whereas irregular examples are learned slowly. Paul et al.
(2021) measured the difficulty of a training example by using the loss gradient norm. Based on the
proposed measures, the aforementioned studies clarified the relationship between example difficulty
and generalization in the context of deep neural networks (DNNs). In particular, a compelling
finding among their observations motivates our study: memorizing hard-to-learn/irregular examples
can deteriorate the generalization ability of DNNs. In other words, hard-to-learn examples are
unrepresentative outliers of a class or data with corrupted labels, and thus, these examples can result
in the degradation of generalization. In this study, we explore this intriguing phenomenon—the
negative effect of hard examples on generalization—in adversarial settings.

Adversarial training differs from standard training: it uses adversarial examples as the training
data. Notably, adversarial training requires more data than standard training (Schmidt et al., 2018).
Additionally, the improvement in generalization performance rendered by using more data is observ-
ably greater in adversarial settings than in standard settings (Lee et al., 2021; Gowal et al., 2021b).
Therefore, recent studies on adversarial training have focused on approaches for using more data ef-
fectively to bridge the gap between training and test inferences of DNNs (Carmon et al., 2019; Gowal
et al., 2021b). Nevertheless, in this study, we demonstrate that the improvement in generalization
performance could be achieved by regularizing the use of data. Specifically, we demonstrate that the
improvement achieved by regularizing the training of hard examples is greater in adversarial training.

Fig. 1 illustrates the difference between the effect of pruning hard examples in standard training
(denoted as STD) and adversarial training by using projected gradient descent (Madry et al., 2017)
(denoted as PGD). After training models on subsets of CIFAR-10 (Krizhevsky et al., 2009) for 100
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epochs, we either pruned hard examples from the training set or continued by training on the entire
training data1. We evaluated the test accuracy for clean examples in the STD models and the test
accuracy for adversarial examples in the PGD models. Observably, pruning hard examples during
training can improve the generalization performance, which is consistent with the previous study’s
result that training of hard examples can deteriorate generalization. However, the result indicates that
the performance increase is greater in adversarial training. It can be inferred that the negative effect
of hard examples on training is intensified by adversarial perturbations, and thus, the improvement by
pruning hard examples is more substantial in adversarial training.
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Figure 1: The test accuracy (for clean
examples) of the standard (STD) models
and the test accuracy (for adversarial ex-
amples) of the adversarial (PGD (Madry
et al., 2017)) models trained on the sub-
sets of CIFAR-10. On pruning hard ex-
amples from training, test accuracy in-
creases both in the STD and PGD mod-
els, but the increase in the PGD model is
greater than that in the STD model.

In this study, we verify that the cause of this result is the
enlarged negative effect of hard examples in adversarial
training. We theoretically prove that the difficulty of each
example increases in an adversarial setting and that the
increase is more significant for hard examples than for
easy examples. Furthermore, we demonstrate that hard
examples are fitted only through memorization in adversar-
ial training and that pruning them from training improves
robustness. Considering that the memorization of outliers
or label corrupted data deteriorates generalization, we in-
vestigate the aforementioned demonstration by training
a model with dataset which corrupts the labels of hard
examples and comparing the performance. We find that,
surprisingly, assigning random labels to hard examples
does not change the robustness performance. It implies
that hard examples in adversarial training function as label
corrupted data and that it leads to memorization of hard
examples, which accordingly degrades generalization.

To address this problem, we propose a regularization
method, difficulty proportional label smoothing (DPLS),
to mitigate the negative effect of hard examples. Label smoothing (LS) (Szegedy et al., 2016)
regularizes the prediction of each example to prevent overconfidence and the memorization of the
one-hot label. In this perspective, DPLS extends this LS approach to adopt a smoothing factor that is
proportional to the difficulty of the example for regularizing the training of each example. Using the
results of experiments on a variety of datasets and algorithms, we assess our proposed methodology
and find that DPLS could successfully leverage hard examples while avoiding the negative effect.

2 RELATED WORK

Adversarial robustness Adversarial training (Madry et al., 2017) employs adversarial examples as
training data to improve robustness. For a dataset D = {(xi, yi)}ni=1, where xi ∈ Rd represents a
clean data, and yi ∈ {1, ..., C} denotes its corresponding label of C classes. Adversarial training can
be formulated in an empirical risk minimization form featuring the following optimization:

min
θ

n∑
i=1

max
δ∈S
L(f(xi + δ), yi; θ). (1)

In the aforementioned equation, θ denotes the parameter of a model f , L represents the loss function,
and S = {δ ∈ Rd : ||δ|| ≤ ϵ} where ϵ is an adversarial budget, which depicts an upper bound of
adversarial perturbations. Another form of adversarial training is TRADES (Zhang et al., 2019),
which controls the trade-off between robustness and standard accuracy by dividing training loss into
the loss of clean examples and regularization for robustness. For adversarial attacks, fast gradient
sign method (FGSM) is a general method for generating adversarial examples (Goodfellow et al.,
2014). PGD is a multi-step version of FGSM (Madry et al., 2017). Adaptive auto attack (A3) is
an efficient and reliable attack which utilizes adaptive random starts and online statistics-based
discarding strategy (Liu et al., 2022).

1Example difficulty is measured by accumulating 0-1 loss along the training trajectory. For further details,
refer to Appendix C.2.
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Overfitting and memorization in adversarial training Wong et al. (2020) conducted analysis on
overfitting in adversarial training, termed robust overfitting. Chen et al. (2020) utilized a smoothing
method that combines knowledge distillation (Hinton et al., 2015) and stochastic weight average (Iz-
mailov et al., 2018). Yu et al. (2022) proposed a method to prevent overfitting of small-loss data
combined with adversarial weight perturbation (Wu et al., 2020). In Huang et al. (2020); Liu et al.
(2021); Dong et al. (2021), they used the exponential moving average of predictions as a label for
training to prevent robust ovefitting. In particular, Dong et al. (2021) demonstrated that DNNs are
sufficient to memorize training adversarial examples with random labels; reportedly the causes of
robust overfitting may be the memorization of one-hot labels.

Measurement on difficulty of examples Paul et al. (2021) demonstrated that the norm of the error
vector (EL2N score) can be used to identify important and difficult training data. They discovered
that examples with high score tend to be hard to learn but important for improving the performance.
However, pruning certain examples with the highest score can improve generalization performance,
indicating that the highest score examples tend to be unrepresentative. Jiang et al. (2021) proposed
consistency score (C-score), which is the expected accuracy of each instance for the models trained
with various data subsets excluding the given instance. While these scores can be utilized in several
applications (Lee et al., 2022), we use these scores as the example difficulty in our study.

3 METHOD

3.1 THEORETICAL ANALYSIS ON THE EFFECT OF HARD EXAMPLES
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Figure 2: The schematic
illustration of easy (x2)
and hard examples (x1).

We theoretically analyze the effect of hard examples in both standard and
adversarial training. A simple model is designed to demonstrate the manner
in which adversarial perturbations affect hard examples in adversarial
training. We aim to design examples featuring different difficulties in
learning. Specifically, we define a binary classification model f(x) =
σ(w⊤x), which is a mapping function f : X → Y from input space
X to output space Y , where (x, y) ∈ Rd × {±1} and σ(·) represents
a sigmoid function. To ensure simplicity, we assume that ∥w∥ = 1.
Thereafter, we set the loss function as cross-entropy loss and define easy
and hard examples by controlling the distance between each example and
the decision boundary. The hard example is set as (x1, y1 = +1) where

∥∥w⊤x1

∥∥ = d1, and the easy
example is set as (x2, y2 = +1) where

∥∥w⊤x2

∥∥ = d2 and d1 < d2. The differences between the
gradient norm of the examples in standard and adversarial settings are as follows:
Theorem 1 (Gradient difference). The differences between the loss gradient norm on x1 and x2 in
standard and adversarial training are defined as follows:

Dstd(x1,x2) =
∥∥(1− σ(w⊤x1))x1

∥∥− ∥∥(1− σ(w⊤x2))x2

∥∥
Dadv(x1,x2, ϵ) =

∥∥(1− σ(w⊤(x1 + δ)))(x1 + δ)
∥∥− ∥∥(1− σ(w⊤(x2 + δ)))(x2 + δ)

∥∥. (2)

Here, δ represents an adversarial perturbation, where
∥∥w⊤δ

∥∥ = ϵ. Dstd denotes the difference
between the loss gradient norm on inputs in standard training and Dadv denotes that in adversarial
training. The following corollary demonstrates that the difference between the loss gradient norm of
hard and easy examples in adversarial training is more significant than that in standard training:
Corollary 1. Let the training loss of the classifier almost converge to the minimum. Then, if
w⊤x1 ≥ 0 and 0 < ϵ < (d1+d2)

2 , it satisfies

Dstd(x1,x2) < Dadv(x1,x2, ϵ). (3)

We have reported the proof in Appendix B. In the model whose training loss is sufficiently converged,
the outputs of easy examples are saturated, where σ(w⊤x2) ≈ 1. Thus, the loss gradient norm
of easy examples in standard training is assumed to be similar to that in adversarial training. The
assumption is validated through empirical analysis. The change in the gradient norm of hard examples
through the addition of adversarial perturbation is considerably larger than that of easy examples.
According to Paul et al. (2021), the gradient norm can be used as the difficulty (importance) score. In
other words, the difficulty increment of hard examples is more significant than that of easy examples.
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Figure 3: (a) and (b) shows the training and test accuracy curves in the STD and PGD models,
respectively. (c) presents the training and test loss curves in the PGD model. (d) shows the training
accuracy of hard examples and test accuracy of the models with different adversarial budgets ϵ.

3.2 EMPIRICAL ANALYSIS OF THE EFFECT OF HARD EXAMPLES

The preliminary analysis verifies that the increase in the difficulty of hard examples is greater than
the increase in that of easy examples in adversarial training, and we demonstrated that hard examples
exerts a negative effect on generalization (Fig. 1). We accordingly hypothesize that a major factor
deteriorating generalization in adversarial training is the large increase in the difficulty of hard
examples. We empirically verify this hypothesis in this section. We first demonstrate the theoretical
analysis presented in Section 3.1. We select hard examples according to the average loss of the
models along the training trajectory in accordance with the strategy reported by Jiang et al. (2021).
The loss can be of any kind, which is a measure of the error of each example. We employ 0-1 loss as
the measurement of difficulty. For a clear representation, the model trained with standard training is
denoted as STD, and the model trained via adversarial training as PGD. We represent the accuracy for
clean examples as standard accuracy and the accuracy for adversarial examples as robust accuracy.
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Figure 4: Average error vector norm (EL2N
score (Paul et al., 2021)) of training examples.

Comparing the difficulty of hard examples
We initially conduct an empirical study on the
difficulty of hard examples by comparing the
gradient norm in standard and adversarial train-
ing. Paul et al. (2021) reported that the average
error vector norm (EL2N score) can approxi-
mate the expected training loss gradient norm of
each example. Thus, we employ this to compare
the gradient norm in both training. We select the
top 10k hard and top 10k easy example subsets
from the training dataset of CIFAR-10 and subsequently calculate the average error vector norm of
examples in each subset during training, where the error vector norm of an input pair (x, y) is defined
as E∥f(x)− y∥2 for the one-hot label vector y. We train several models by varying the adversarial
budget ϵ = 8 (PGD), 4, 2, and 0 (STD), and the result is obtained after the learning rate decay epoch,
which is the training point indicating that the model is sufficiently trained.

As illustrated in Fig. 4 (left), the average norm values of easy examples are small in all models, and
the difference in the average norm of easy examples between models is also comparatively small.
However, for the results of hard examples, the average norm of hard examples increases significantly
as the adversarial budget ϵ increases. In the PGD model (right), greater difference is observed between
clean and adversarial examples of hard examples than that of easy examples. This result indicates
that the loss gradient norm of hard examples is rendered greater in adversarial training while that of
easy examples does not, which demonstrates our theoretical analysis presented in Section 3.1.

Memorization of hard examples The difficulty of hard examples is significantly amplified in
adversarial training. We therefore investigate whether hard examples are fitted normally in adversarial
training. Figs. 3a and 3b show the test accuracy and training accuracy of the top 10k hard, top 10k
easy, and entire training examples in the STD and PGD models. Observably, test accuracy decreases
marginally following the learning rate decay (epoch 100) in the STD model. In contrast, the result of
the PGD model indicates that when the training robust accuracy of hard examples starts to increase
(at the decay epoch 100), the test robust accuracy starts to decrease rapidly. Moreover, the training
accuracy of the easy examples remains unchanged after the decay, indicating that the decrease in the
test performance is mostly attributed to the training of hard examples. Fig. 3c illustrates the results of
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Figure 5: (a) and (b) show the accuracy of STD and PGD models where subset of training data is
pruned. (c) shows the results that repeat the experiment of (a) and (b) for different adversarial budgets.
(d) shows the best and final accuracy of the PGD pruning models.

cross-entropy loss in the PGD model, depicting the increasing gap between the train hard and test
robust losses after the decay. These results suggest that the PGD model memorizes hard examples.
Fig. 3d shows the training accuracy of hard examples and the test accuracy of the models with varying
adversarial budget ϵ. The decrease in test accuracy and the increase in training accuracy of hard
examples after the learning rate decay are observed to be severe as the ϵ increases. This accordingly
indicates that the memorization of hard examples may become severe in adversarial training.
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Figure 6: Memorization of easy and hard examples in the
STD (left) and PGD (right) models.

Considering that determining the phe-
nomenon as the memorization of
hard examples is not sufficient, we
approximately measure the memo-
rization score defined in Feldman
(2020), Prf∼A(D)[argmax f(xi) =
yi] − Prf∼A(D\i)[argmax f(xi) =

yi], where A denotes a training algo-
rithm, D represents a dataset, and D\i

denotes the dataset with data (xi, yi)
removed. Fig. 6 demonstrates the
memorization (red lines) of easy and hard examples in the STD and PGD models. Observably,
the PGD model does not fit hard examples before the learning rate decay and fits hard examples only
through memorization after the decay; the memorization score of hard examples starts to increase
after the decay and converges to the maximum score at the end. Thus, the PGD model memorizes
hard examples, which implies that the memorization of hard examples deteriorates robustness. Details
for the analysis of memorization are reported in Appendix C.4

While the result of the STD model in Fig 6 (left) shows a moderate increase in memorization for hard
examples at the learning rate decay, the performance of the STD model increases, which is contrast to
the result of the PGD model. Because even the easy examples present underfitting in the PGD model,
as in Fig. 3b, the performance increase at the decay is the result of the fitting of underfitted data.
Contrarily, the training accuracy of easy examples in the STD model is approximately 100%. This
indicates that fitting hard examples increases the performance in standard training, and large portions
of hard examples are fitted through memorization, like the result of the PGD model. Thus, the
memorization of hard examples increases performance in standard settings but decreases performance
in adversarial settings. We will address this difference between the memorization of hard examples in
standard and adversarial settings in Section 3.3.

Pruning hard examples from training Before addressing the abovementioned phenomenon,
as another rationalization that training hard examples decreases the performance in adversarial
training, we demonstrate that pruning hard examples from training improves robustness. Because the
memorization of hard examples is observed after the learning rate decay, we prune hard examples
from around that training point. We prune hard, easy, and random example subsets from the training
dataset of CIFAR-10. Figs. 5a and 5b show the best performance results of the STD and PGD pruning
models. The result of the STD model is consistent with that reported by Paul et al. (2021); they noted
that when data are normal, examples with high loss (e.g. EL2N score) are considered important.
In this context, our results indicate that solely pruning hard examples reduces the accuracy plotted
in Fig. 5a. However, the result of the PGD model shows the opposite trend. In Fig. 5b, pruning
hard examples does not reduce the performance but rather improves the performance. Pruning easy
examples decreases the performance, which does not affect accuracy in standard training.
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The results of pruning easy examples may be a result of underfitting in the PGD model. Contrarily,
hard examples exhibit underfitting before the decay and memorization after the decay (in Fig. 6) in
both models; however, they yield different results for pruning of hard examples. Fig 5c demonstrates
that the improvement by pruning hard examples decreases as the adversarial budget ϵ decreases, which
implies that this improvement could be considered as the manifested property of adversarial training.
The result in Fig. 5d reveals the property clearly; it shows the performances of the pruning models at
the final checkpoint where the memorization score of hard examples is the maximum. Comparing
the performance of the final checkpoint with the performance of the normal PGD model (red dotted
line), the improvement by pruning hard examples is significant. Comparing the performances of the
best and final checkpoints in each model, easy pruning models show large gaps; however, the gaps of
hard pruning models decrease as the pruning ratio increases. These results also demonstrate that the
memorization of hard examples deteriorates the robustness performance in adversarial training.

Table 1: Performance comparison
of models with the label corruption.

Dataset STD PGD
Best Final

Normal 95.52 51.8 46.07
Corrupted 92.61 51.99 45.67

Pruned 93.88 52.63 48.81

Label corrupted behavior of hard examples As reported
by Paul et al. (2021), examples with corrupted labels exhibit
the highest difficulty scores in addition to hard examples. Be-
cause memorizing examples with corrupted labels decreases
performance, they demonstrated that pruning examples with
highest score improved the accuracy when certain data are cor-
rupted. Considering this demonstration, we hypothesize that the
abovementioned difficulty amplification effect in Section 3.1
substantially increases the difficulty of hard examples, thereby transforming the hard examples into
such examples of data with label corruption. To verify this, we perform shuffling test by assigning
random labels to hard examples in standard and adversarial training.

Table 1 lists the test accuracy of the STD and PGD models trained with normal dataset (Normal),
with dataset that the labels of the top 5k hard examples are corrupted (Corrupted), and with dataset
that the same examples are pruend (Pruned). For the STD results, the normal model offers the best
performance, and the pruned model naturally exhibits a higher performance than the corrupted model.
However, the results for PGD indicate that the pruned model exhibits the best performance and that
the normal model performance is similar to that of the corrupted model. The training accuracy of the
corrupted model on hard examples is 0% before the learning rate decay and approximately 94% at
the end, which is also similar result to that of the normal PGD model. This implies that, in contrast
to standard training, the result in adversarial training is the same regardless of whether the labels of
hard examples are completely random or correct. These findings support our hypothesis that the hard
examples are transformed to examples that function as label corrupted data in adversarial training.

Table 2: Performance of mod-
els trained with 5k examples.

Method STD PGD
Std. Rob.

Rand 80.79 69.07 28.36
Easy 72.93 55.93 34.54
Hard 34.02 12.1 8.1

A possible reason for this phenomenon is the hypothesis that hard ex-
amples comprise features slightly correlated with the labels. Tsipras
et al. (2018) noted that any feature slightly correlated with the label
is advantageous, but the same feature becomes anti-correlated with
the correct label in an adversarial setting. We can then assume the ex-
istence of certain examples comprising only features that are slightly
correlated with the label. These examples are useful in a standard
setting but are transformed into examples where all features are anti-
correlated with the correct label in an adversarial setting. Training with only these examples assigns
a zero or lower weight to the model parameters in the adversarial setting and exhibits performance
as that of random prediction. We verify this by investigating the performance of the models trained
with hard examples. The performances of the models trained using random 5k, top 5k easy, and top
5k hard examples are compared. We measure the standard (Std.) and robust (Rob.) accuracy for the
PGD models. In Table 2, the STD model trained with hard examples exhibits a lower performance,
suggesting that hard examples have a comparatively small correlation with labels. The PGD model
trained with the hard examples exhibits a performance similar to that of the random prediction (10%)
for both types of accuracy. This indicates that when a model is trained with normal dataset, it cannot
fit hard examples without memorizing them in adversarial training because the model otherwise
results in the random prediction when inferring these examples. These results support our hypothesis
that hard examples comprise only slightly correlated features and become anti-correlated with the
correct label in an adversarial setting. Here, the labels of hard examples are actually uncorrupted;
however, the features of hard examples are corrupted in an adversarial setting, and these examples
function as label corrupted data. Thus, we term these examples feature corrupted data.
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3.3 MITIGATION OF THE NEGATIVE EFFECT OF HARD EXAMPLES

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Data Pruning Ratio

78

80

82

84

86

88

St
an

da
rd

 A
cc

ur
ac

y

None (best)
Easy (best)
Hard (best)
None (final)
Easy (final)
Hard (final)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (M
em

or
iza

tio
n)

train hard acc.
train easy acc.
memorization (hard)

train hard acc. (hard pruning)
train easy acc. (easy pruning)
memorization (easy)

Figure 7: The standard accuracy of the PGD model at
the best and final checkpoints (left). The memorization
result of clean examples in the PGD model.

Although memorizing hard examples im-
pairs the performance in an adversarial set-
ting, simply pruning hard examples from
training is not the optimal solution for the
following reasons: (i) finding the optimal
difficulty threshold for removing hard ex-
amples that deteriorate robustness is an in-
tractable proposition, and (ii) hard examples
are not incorrect data and do not function
as feature corrupted data with respect to the
standard accuracy. The results in Fig. 7 (left)
show the standard accuracy of the PGD pruning models at the final and best performance checkpoints.
This indicates that pruning hard examples in adversarial training decreases standard accuracy as the
results of standard training in Fig. 5a, which is the opposite result of the previous demonstrations.
With the observations in Figs. 3 and 6, we compared the memorization results of the STD and PGD
models, where the memorization of hard examples increased the performance in the STD model but
decreased the performance in the PGD model. In Feldman (2020), they noted that memorizing exam-
ples where each example is the sole representative of a subpopulation can improve the performance
of a model that are trained with natural data distribution by contributing to inferring test data from a
similar subpopulation, and our memorization results of the STD model are consistent with this.

In case of PGD, although the PGD model utilizes the loss for adversarial examples, it involves fitting
a clean version of these example. Thus, memorizing an adversarial version of hard examples leads to
memorizing the clean version of them, as shown in Fig. 7 (right), which is the memorization result
of clean examples in the PGD model. We can then explain the increase in the standard accuracy
and the decrease in the robust accuracy when pruning hard examples in adversarial training: the
memorization of the same hard examples with uncorrupted/corrupted features. Hard examples
are mostly transformed into feature corrupted data in an intense adversarial setting and function
as label corrupted data, thereby decreasing the robust accuracy; however, from the perspective
of standard accuracy, the memorization of hard examples improves the accuracy by memorizing
uncorrupted labels of hard examples with uncorrupted features because memorizing the adversarial
version of hard examples involves memorizing the clean version of them. Therefore, pruning hard
examples is sufficient if considering only robustness; however, both standard and robust accuracy are
generally considered important. Thus, instead of pruning hard examples whose difficulty exceeds the
manually defined difficulty threshold, we propose a method to leverage hard examples in training by
regularizing every example where the intensity of regularization is proportional to the difficulty.

Mitigating the negative effect of hard examples We extend the LS method (Szegedy et al., 2016)
because it can control the training of each example by utilizing the LS factor. LS replaces a one-hot
label with a mixture of the label and the uniform distribution by assigning the LS factor, λ, to the
ground-truth class and distributes 1− λ to the other classes equally. Rather than simply reweighting
the loss scale of each example, it effectively regularizes the fitting of one-hot label (see Appendix D).
The general LS method assigns an identical LS factor to every example, and thus, the intensity of
regularization applied to every example is the same. We modified the LS method to ensure that
the training of hard examples is regularized, but the training of other examples is less affected by
regularization. We adopt a smoothing factor that is proportional to the difficulty of each example and
control the intensity of regularization, thereby mitigating the memorization of hard examples, which
we term as difficulty proportional label smoothing (DPLS). The difficulty is calculated by using the
average loss of the training models along the training trajectory. We train the model and accumulate
the difficulty until the difficulty calculation epoch T , and the training progresses with the application
of DPLS using the calculated difficulty. We establish the LS factor of the easiest example as λ = 1
(no smoothing) and the factor of the most difficult example as λ ∈ [ 1C , 1), where C represents the
number of the class. The procedure of DPLS is described in Algorithms in Appendix A.

Our method maintains the positive effect of each training example, but it avoids the negative effect of
hard examples. We could utilize several loss types for difficulty measurement including cross-entropy
loss, the norm of the error vector (EL2N score) (Paul et al., 2021), consistency score (C-score) (Jiang
et al., 2021), and 0-1 loss. Applying DPLS via any error measure is an effective strategy for mitigating
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Table 3: Performance of the models for mitigation methods. The best results are indicated in bold.

Dataset Method Std. Robust Robust Method Std. Robust Robust
(PGD) (A3) (PGD) (A3)

CIFAR-10

PGD 87.19 56.44 51.8 TRADES 85.66 58.46 54.08
+Pruning 86.44 56.18 52.56 +Pruning 84.07 58.04 54.64
+LS 86.96 57.2 51.99 +LS 86.32 58.72 54.02
+DPLS 87.21 57.76 53.15 +DPLS 85.36 59.33 55.19

CIFAR-100

PGD 62.88 31.82 27.36 TRADES 60.78 33.19 28.05
+Pruning 62.28 31.64 28.05 +Pruning 60.61 33.53 29.01
+LS 62.65 33.91 27.85 +LS 62.43 33.29 27.83
+DPLS 62.43 35.05 29.64 +DPLS 63.32 34.53 29.68

SVHN

PGD 92.96 52.88 35.2 TRADES 91.84 59.14 47.46
+Pruning 92.68 55.52 40.87 +Pruning 91.54 60.27 47.79
+LS 92.65 66.2 38.44 +LS 92.27 59.65 46.37
+DPLS 92.94 76.53 42.01 +DPLS 92.33 59.4 49.05

the negative effect of hard examples (refer to Table 5). However, in our experiments, as the 0-1 loss
exhibits a higher performance than the other loss types, we mainly use the 0-1 loss as the difficulty
measurement loss. Notably, our method calculates the difficulty using clean examples because the
adversarial examples are different from training algorithms and training epochs.

4 EXPERIMENT

Implementation details We conducted experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), and SVHN (Netzer et al., 2011) by employing PGD (Madry et al., 2017) and TRADES (Zhang
et al., 2019) as the baseline adversarial training algorithms. We utilized WideResNet28-10 (Zagoruyko
& Komodakis, 2016) as the architecture of our models. We set the LS factor of the most difficult
example in DPLS considering the average difficulty score of each dataset and algorithm. We selected
the difficulty calculation epoch as T = 90 for stability, which is 10 epochs before the first learning
rate decay. To evaluate the robustness of the models, we employed the PGD and adaptive auto attack
(A3) (Liu et al., 2022). Further details are presented in Appendix C.1.
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Figure 8: The training and test accuracy curves of the
PGD and the PGD with DPLS model on CIFAR-10.

Improvement in robustness We com-
pared four mitigation methods: baseline
(-), pruning hard examples (pruning), label
smoothing (LS), and our proposed method
(DPLS). We pruned the top 10% of exam-
ples with high difficulty for pruning mod-
els. For LS models, we applied the same
LS factor with the average factor of DPLS.
Thus, with the same LS budget, our method
assigns a large portion of the budget to the
hard examples and LS assigns it uniformly to every example. We trained the baseline model until
epoch 90 and continued this training with the application each method. Table 3 shows that pruning
hard examples and DPLS are effective for mitigating the effect of hard examples and improving the
robustness generalization. The performance improvement of the pruning models supports our analysis
in Section 3.2, demonstrating that the negative effect of hard examples appears in various datasets
and algorithms. The results of LS models show no improvements in the robustness performance.
Contrarily, the DPLS increases the robustness of the models across different training algorithms and
datasets. The robustness performance difference between LS and DPLS indicates that regularization
without considering the effect of each example on training is difficult to improve robust generalization.

Fig. 8 illustrates the training and test robust accuracy results (left) of the PGD and PGD with DPLS
(denoted as DPLS) models and training accuracy of top N% (right) hard examples of the 50,000
training examples of CIFAR-10 (e.g. (0-20%) denotes the top 10k hard examples). Observably,
comparing DPLS with PGD, the decrease in the training accuracy of the DPLS model coincides with
the increase in the test accuracy. DPLS (right) prevents overfitting of hard examples and causes the
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Table 4: Performance comparison
with other robust overfitting mitiga-
tion methods.

Method Std. Robust
(PGD)

Robust
(A3)

PGD 87.19 56.44 51.8
+SAT 86.94 57.52 52.94
+KD+SWA 88.28 57.93 53.49
+TE 85.83 58.31 52.84
+DPLS 85.92 57.8 53.71

Table 5: Robust accuracy of
DPLS according to various dif-
ficulty measurement.

Method PGD TRADES

- 51.8 54.08
C-score 52.62 54.71
CE loss 52.57 54.45
EL2N 52.83 54.32

0-1 loss 53.15 55.19

Table 6: Performance im-
provements in other adversar-
ial training algorithms.

Method Std. Robust
(PGD)

Robust
(A3)

AWP 84.82 60.19 55.54
+DPLS 84.4 60.26 56.09

MART 83.9 59.05 52.19
+DPLS 83.81 59.54 53.18

RST 84.82 61.53 57.26
+DPLS 84.43 62.03 57.81

fast convergence of comparatively easy examples. This result indicates that our method prevents the
memorization of hard examples and mitigate the negative effect of hard examples, thereby leading to
decrease in the gap between training and test accuracy by improving the generalization performance.

Comparison with other mitigation methods We compared DPLS with the previous robust overfit-
ting mitigation methods: self-adaptive training (SAT) (Huang et al., 2020), knowledge distillation
with stochastic weight averaging (KD+SWA) (Chen et al., 2020), and temporal ensemble (TE) (Dong
et al., 2021). We trained the PGD model combined with each method and with total training epoch
200. The details on the settings of each method are described in Appendix C.6. The results listed in
Table 4 indicate that all the methods are effective at mitigating robust overfitting. Among the methods,
DPLS exhibits the highest improvement in the test robust accuracy against A3. This result indicates
that our method successfully mitigates the memorization of hard examples and prevents overfitting.

Applying DPLS to other training algorithms We applied our method to other adversarial training
algorithms to verify that DPLS can consistently increase the robustness generalization performance in-
dependent of algorithms. We combined DPLS with three algorithms: adversarial weight perturbation
(AWP) (Wu et al., 2020), misclassification aware adversarial training (MART) (Wang et al., 2019),
and robust self training (RST) (Carmon et al., 2019). We trained each algorithm model combined
with TRADES+DPLS and evaluated the trained models. Table 6 shows that all training algorithms
combined with DPLS yield improvements in robustness. For the RST models, we calculated the
difficulty of the unlabeled dataset as the ratio of number of training iterations to the number of right
predictions. The result shows that DPLS successfully mitigates the negative effect of hard examples
for the unlabeled dataset and improves the robust accuracy for the A3 and PGD attacks.

Various difficulty loss on DPLS We compared the loss types of the difficulty for DPLS. Table 5
shows the performance of the TRADES models that apply DPLS with several loss functions: C-score,
cross-entropy loss (CE loss), EL2N score, and 0-1 loss. All models in which DPLS was applied
exhibited a better performance than the baseline models. The difficulty calculated from another
model (e.g. C-score from STD) was also effective on mitigation. Any difficulty loss was effective,
and DPLS with the 0-1 loss offered the best performance. The results indicate that the 0-1 loss
leverages comparatively objective values because the 0-1 loss is less affected by scale or variance at
each checkpoint of the model. As the calculation process can be detached from the training (refer
to Appendix A), further improvement is achievable by using the better difficulty measurement loss.
Further experiments and ablation studies on DPLS can be found in Appendix C.6 and Appendix D.

5 CONCLUSION

In this study, we analyzed the effect of hard examples in adversarial training. We demonstrated
that training hard examples can deteriorate the performance in adversarial training and verified
that the cause is the memorization of hard examples. The increased difficulty of hard examples
in an adversarial setting transforms hard examples into feature corrupted data and decreases the
performance. Thus, we proposed a method, DPLS, which mitigates the memorization of hard
examples. Through experiments on various datasets and algorithms, we verified that our method
could successfully leverage hard examples, thereby improving robustness.
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A THE PROCEDURE OF DPLS

A.1 THE PROCEDURE OF DPLS IN ADVERSARIAL TRAINING

Algorithm 1 DPLS adversarial training

Require: Dataset D, model parameter θ, batch size n, difficulty calculation epoch T , training epoch
K, learning rate α, loss storage S

1: for t = 1 to K do
2: mini-batch and indices {xi,yi}ni=1, I ∼ D
3: {δi}ni=1 ← argmaxδi

Ladv(xi + δi,yi; θ)
4: compute or apply difficulty:
5: if t < T then
6: S [I]← {Ldifficulty(xi,yi; θ)}ni=1
7: else
8: {yi}ni=1 ← DPLS(S [I])
9: end if

10: L ← 1
n

∑n
i=i Ladv(xi + δi,yi; θ)

11: θ ← θ − α · ∇θL
12: end for

The procedure of difficulty proportional label smoothing (DPLS) is described in Algorithm 1. DPLS
measures and saves the average difficulty of each example until the calculation epoch T . The difficulty
of each example is calculated at the epoch T . Soft labels that are calculated using DPLS following
Algorithm 2 replace the one-hot label of each example. DPLS does not include difficulty after the
epoch T , and thus, the difficulty of each example is fixed at the epoch T . Because the soft labels are
already biased to regularize each example according to the difficulty, the models trained using these
soft labels can offer biased difficulty; thus, DPLS does not include difficulty after the calculation.
Therefore, the subsequent training after the difficulty calculation is performed using the fixed soft
labels.

A.2 THE PROCEDURE FOR THE CALCULATION OF DPLS

Algorithm 2 Pre-calculation of DPLS

Require: Dataset D, Dataset size N , number of class C, loss storage S, DPLS factor λ
1: Initialization:
2: apply min-max normalization to difficulty:
3: S ← S−min(S)

max(S)−min(S)

4: for i = 1 to N do
5: (xi,yi)← D[i]
6: apply label smoothing that is proportional to difficulty:
7: yi ← LS(yi, 1− (1− λ)S[i], C)
8: D[i]← (xi,yi)
9: end for

10: function LS(y, λ, C)
11: for i = 1 to C do
12: if y[i] = 1 then
13: y[i]← λ
14: else
15: y[i]← 1−λ

C−1
16: end if
17: end for
18: return y
19: end function
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The procedure of the calculation of DPLS is described in Algorithm 2. Because our method uses fixed
soft labels after the calculation epoch T , our method can utilize the pre-calculated difficulty such as
C-score (Jiang et al., 2021), which can be easily obtained from the official site. For the calculation,
DPLS assigns the label smoothing factor 1 to the easiest example (S[i] = 0) and assigns the factor λ
to the most difficult example (S[i] = 1).

B PROOFS

Theorem 2 (Gradient difference). The differences between the loss gradient norm on x1 and x2 in
standard and adversarial training are defined as follows:

Dstd(x1,x2) =
∥∥(1− σ(w⊤x1))x1

∥∥− ∥∥(1− σ(w⊤x2))x2

∥∥
Dadv(x1,x2, ϵ) =

∥∥(1− σ(w⊤(x1 + δ)))(x1 + δ)
∥∥− ∥∥(1− σ(w⊤(x2 + δ)))(x2 + δ)

∥∥. (4)

Proof.

∂L(f(x), y)
∂w

= − ∂

∂w

(
y log f(x) + (1− y) log(1− f(x))

)
= − ∂

∂w

(
y log σ(w⊤x) + (1− y) log

(
1− σ(w⊤x)

))
= −

(
y(1− σ(w⊤x)) + (1− y)(−σ(w⊤x))

)
x.

Here, y = +1 for x1 and x2

∂L(f(x), y = +1)

∂w
= −(1− σ(w⊤x))x. (5)

The gradient norm difference between x1 and x2 in standard training is represented as:∥∥∥∥∂L(f(x1), y1)

∂w

∥∥∥∥− ∥∥∥∥∂L(f(x2), y2)

∂w

∥∥∥∥ =
∥∥(1− σ(w⊤x1))x1

∥∥− ∥∥(1− σ(w⊤x2))x2

∥∥. (6)

Thus, the gradient norm difference between the adversarial examples is represented as:∥∥∥∥∂L(f(x1 + δ), y1)

∂w

∥∥∥∥− ∥∥∥∥∂L(f(x2 + δ), y2)

∂w

∥∥∥∥
=

∥∥(1− σ(w⊤(x1 + δ)))(x1 + δ)
∥∥− ∥∥(1− σ(w⊤(x2 + δ)))(x2 + δ)

∥∥. (7)

Corollary 2. Let the training loss of the classifier almost converges to the minimum. Then, if
w⊤x1 ≥ 0 and 0 < ϵ < (d1+d2)

2 , it satisfies

Dstd(x1,x2) < Dadv(x1,x2, ϵ). (8)

Proof. Because the training loss of the classifier almost converges to the minimum, we can assume
that the gradient norm of easy examples is smaller than the gradient norm of hard examples in both
standard and adversarial training. Therefore, Dstd(x1,x2) > 0 and Dadv(x1,x2, ϵ) > 0. Then, we
can rewrite Equation 9 as

Dstd(x1,x2)

Dadv(x1,x2, ϵ)
< 1. (9)
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Let the prediction for x1 is not incorrect, where w⊤x1 ≥ 0. Here, we assume the norm of every input
x that is defined in the input space X is almost the same. Then, the above inequality is represented as

Dstd(x1,x2)

Dadv(x1,x2, ϵ)
=

∥∥(1− σ(w⊤x1))x1

∥∥− ∥∥(1− σ(w⊤x2))x2

∥∥
∥(1− σ(w⊤(x1 + δ)))(x1 + δ)∥ − ∥(1− σ(w⊤(x2 + δ)))(x2 + δ)∥

(10)

=
(1− σ(w⊤x1))∥x1∥ − (1− σ(w⊤x2))∥x2∥

(1− σ(w⊤(x1 + δ)))∥(x1 + δ)∥ − (1− σ(w⊤(x2 + δ)))∥(x2 + δ)∥
(11)

=
(1− σ(w⊤x1))− (1− σ(w⊤x2))

(1− σ(w⊤(x1 + δ)))− (1− σ(w⊤(x2 + δ)))
(12)

=
σ(−w⊤x1)− σ(−w⊤x2)

σ(−w⊤(x1 + δ))− σ(−w⊤(x2 + δ))
(13)

=
σ(−d1)− σ(−d2)

σ(−(d1 − ϵ))− σ(−(d2 − ϵ))
(14)

=
σ(−d1)− σ(−(d1 + (d2 − d1)))

σ(−(d1 − ϵ))− σ(−(d1 − ϵ+ (d2 − d1)))
. (15)

Here, it satisfies Equation 9 if the function h(x) = σ(−x)− σ(−(x+ (d2 − d1))) is monotonically
decreasing for input x ≥ d1 − ϵ, where ϵ > 0. Let a denote (d2 − d1), where a = (d2 − d1). Then,

d

dx

(
σ(−x)− σ(−(x+ a))

)
=

d

dx

(
1

1 + ex
− 1

1 + ex+a

)
(16)

= ex
(

ea

(1 + ex+a)2
− 1

(1 + ex)2

)
(17)

= ex
(

(ea − 1)(1− e2x+a)

(ex + 1)2(ex+a + 1)2

)
< 0. (18)

Since a > 0, Equation 18 can be represented as 1− e2x+a < 0. Then, we can rewrite Equation 18 as

x > −d2 − d1
2

. (19)

Thus, the fuctnion h(x) = σ(−x) − σ(−(x+ (d2 − d1))) is monotonically decreasing for x >
−d2−d1

2 , and here, the minimum value of x is d1 − ϵ. Therefore, if d1 − ϵ > −d2−d1

2 , which can be
rewritten as ϵ < d1+d2

2 , it satisfies

Dstd(x1,x2) < Dadv(x1,x2, ϵ). (20)

C ADDITIONAL IMPLEMENTATION AND EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS

Datasets CIFAR-10 (Krizhevsky et al., 2009) consists of 50,000 training images and 10,000
test images with 10 classes. CIFAR-100 (Krizhevsky et al., 2009) consists of 50,000 training
images and 10,000 test images with 100 classes. CIFAR-10 and CIFAR-100 images have sizes of
32 × 32 pixels. The CIFAR datasets are subsets of the 80 million tiny images dataset (Torralba
et al., 2008), and the 80 million tiny images dataset contains images downloaded from seven
independent image search engines: Altavista, Ask, Flickr, Cydral, Google, Picsearch, and Webshots.
SVHN (Netzer et al., 2011) consists of 73,257 training images and 26,032 test images with 10
classes. SVHN images have sizes of 32 × 32 pixels. SVHN is obtained from a very large set of
images from urban areas in various countries by using Google Street View. The license of CIFAR
datasets is unknown and SVHN is a non-cokmmercial dataset. Further details can be found in
https://paperswithcode.com/datasets.

14

https://paperswithcode.com/datasets


Under review as a conference paper at ICLR 2023

Implementation details We conducted experiments on CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), and SVHN (Netzer et al., 2011). We used PGD (Madry et al., 2017) and TRADES (Zhang
et al., 2019) as the baseline adversarial training algorithms. We used WideResNet28-10 (Zagoruyko &
Komodakis, 2016) as the architecture of our models. The learning rates for CIFAR-10, CIFAR-100 are
set to 0.1 and 0.01 for SVHN, and the decay at 100 and 105 of the total training epoch 110 with decay
factor 0.1 following Pang et al. (2021). We additionally conducted experiments with the learning
rate decay at 50% and 75% of the total training epoch 200 with decay factor 0.1 following Madry
et al. (2017). We used stochastic gradient descent optimizer with the weight decay factor 5e-4 and
the momentum 0.9. The upper bounds of adversarial perturbation were set to 0.031 (ϵ = 8), 0.0155
(ϵ = 4), and 0.00775 (ϵ = 2), and the step-size of training adversarial examples of each model were
set to one fourth of the ℓ∞-bound of each model with 10 steps. To evaluate robustness of the models,
we used the 10-step and 20-step PGD attacks, and adaptive auto attack (A3) (Liu et al., 2022) for
reliable evaluation. We used a single RTX 8000 GPU with CUDA11.6 and CuDNN7.6.5 in our
experiments.

C.2 EXPERIMENT DETAILS AND FUTHER EXPERIMENTS ON SUBSET TRAINING

Figure 1 For the experiments in Fig. 1, we executed 200 training epochs on the CIFAR-10 dataset
in both standard and adversarial training. We constituted datasets for both standard and adversar-
ial (Madry et al., 2017) training by selecting 5k hard and 5k random examples from the training
set, where the difficulty of data is measured by accumulating 0-1 loss along the training trajectory
of the models trained with standard and adversarial training until epoch 90. Considering that the
size of the dataset is small and to prevent overfitting before the learning rate decay in both standard
and adversarial training, we used the ResNet-18 (He et al., 2016) architecture. The ℓ∞-bound and
step-size of adversarial examples were set to 0.0155, and 0.0035, respectively, with 5 steps. The
adversarial training time on the 5k+5k subset of the CIFAR-10 dataset is 2 hours for 200 epochs. The
adversarial training time on the 5k subset (hard excluded) of the CIFAR-10 dataset is 0.5 hours for
100 epochs (after the learning rate decay epoch 100).
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Figure 9: The test accuracy
of PGD models trained with
subsets of CIFAR-10.

For further experiments in adversarial training, we constituted a new
dataset as in Fig. 1, with only using top 10k hard and 10k random
examples (total 20k). We trained the PGD model until learning rate
decay, then progress training for the models with the dataset: (1)
entire examples, (2) 10k random examples (hard excluded), (3) top
10k hard examples (hard only). We used 10k instead of 5k to prevent
overfitting before pruning. In Fig. 9, the models trained with the dataset
that includes hard examples show decrease in test robust accuracy;
however, the model trained with the dataset that hard examples are
pruned shows increases in test robust accuracy. Thus, pruning hard
examples improves robustness, indicating that hard examples degrades
the performance in adversarial training. The implementation details for Fig. 9 are same with those of
Fig. 4. The adversarial training time on the 10k+10k subset of the CIFAR-10 dataset is 20 hours for
200 epochs. The adversarial training time on the 10k subset (hard excluded) of the CIFAR-10 dataset
is 5 hours for 100 epochs (after learning rate decay epoch 100).

C.3 EXPERIMENT DETAILS FOR COMPARING EL2N SCORE

Figure 4 For the experiments in Fig. 4, we executed 200 training epochs on the CIFAR-10 dataset
in each training. The other experimental details are summarized in C.1. The adversarial training time
on the entire CIFAR-10 dataset is 47 hours for 200 epochs. The full results of Fig. 4 can be seen in
Fig. 10. For the results of the PGD model before the learning rate decay, because hard examples are
difficult to learn also in the perspective of standard accuracy with high learning rate, the result shows
large EL2N score for hard clean examples. After the learning rate decay, where the model starts to fit
hard examples, the difficulty difference between clean and adversarial examples of hard examples
starts to increase.
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Figure 10: Average error vector norm (EL2N score) of hard and easy examples.

C.4 EXPERIMENT DETAILS AND FURTHER EXPERIMENTS ON MEMORIZATION AND PRUNING

Figure 3 We executed 200 training epochs on the CIFAR-10 dataset in each training. The other
experimental details are summarized in C.1. The hard and easy examples are selected according to
the difficulty of each model. The training and test accuracy results and loss results for the PGD model
with ϵ = 4 and ϵ = 2 can be seen from Fig. 11. The robust overfitting phenomenon is observed to be
severe as the adversarial budget of the training setting increases.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train robust acc.
train hard robust acc.
train easy robust acc.
test standard acc.
test robust acc.

(a)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

train robust loss
train hard robust loss
train easy robust loss
test standard loss
test robust loss

(b)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train robust acc.
train hard robust acc.
train easy robust acc.
test standard acc.
test robust acc.

(c)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

train robust loss
train hard robust loss
train easy robust loss
test standard loss
test robust loss

(d)

Figure 11: (a) shows the training and test accuracy in the PGD models with ϵ = 4. (b) shows the loss
curves in the PGD models with ϵ = 4. (c) shows the training and test accuracy in the PGD models
with ϵ = 2. (d) shows the loss curves in the PGD models with ϵ = 2.

Table 7: Performance comparison
of models with subset pruned.

Method STD PGD

- 95.9 51.8
easy pruning 95.83 51.03
hard pruning 94.15 52.63

Figure 6 We executed 200 training epochs on the CIFAR-10
dataset in each training. The other experimental details are
summarized in C.1. For the measurement of approximate memo-
rization of easy and hard examples, we select top 5k easy and top
5k hard examples. We then trained the models with the dataset
that prunes top 5k easy examples (easy pruning) and that prunes
top 5k hard examples (hard pruning), respectively. Because it
requires high computational complexity to compute the memo-
rization score of each example in adversarial training, we used data subset as the unit of measurement
instead of single data pair. Thus, the memorization score is measured by the difference in the accuracy
for easy/hard examples between the normal model and the model that easy/hard examples are pruned.
Since the performance of the hard pruning PGD model is 0% and the performance of the normal PGD
model increase after the decay, the PGD model fits hard examples only through memorization. The
test performance of each model is described in Table 7. It is expected that the measurement error of
the memorization score caused by the difference in the performances of the models is not significant.
In Fig. 6, the STD model also shows the comparatively high memorization score for hard examples
after the learning rate decay. Memorization can cause overfitting; however, as indicated in Feldman
(2020), memorization can improve accuracy on visually similar test examples, except outliers and
examples with corrupted labels. Comparing the STD model at right after the learning rate decay epoch
100 where the memorization score of hard examples is high and the PGD model at around epoch
130 where the memorization score become similar with that of the STD model, the performance of
the STD model increases, but the performance of the PGD model decreases. Because the training
accuracy on the easy examples of the STD model are already saturated, it can be inferred that the
increase in the performance is attributed to the increase in the fitting of hard examples. Thus, the
memorization in the STD model improves the performance, which is the case of the improvement that
caused by increase in the accuracy on visually similar test examples. Contrarily, the memorization in
the PGD model deteriorates the performance, which is the except case of outliers and examples with
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corrupted labels. We showed that hard examples in adversarial training functions like the examples
with corrupted label through several experiments. The memorization results including experiments
on adversarial training with ϵ = 4 and ϵ = 2 is described in Fig. 12.
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Figure 12: Memorization of easy and hard examples in each setting. Clean example results for a
standard setting and adversarial example results for adversarial settings.
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Figure 13: The performance of the models that prune subsets of training examples.

Figure 5 For the experiments in Fig. 5, We executed 110 training epochs on the CIFAR-10 dataset
in each model. The other experimental details are summarized in C.1. We trained the baseline models
until epoch 90, which is the 10 epoch before the learning rate decay for the stability of the training,
then we continued by the training using the dataset with the subset pruned as the experiments in
Fig. 1. We evaluated the performance of the best checkpoint in each model using A3 (Liu et al.,
2022). The pruning results including experiments on adversarial training with ϵ = 4 and ϵ = 2 is
described in Fig. 13. Fig. 14a depicts a comparison of the performance of the models that apply
pruning at small epoch before the learning rate decay and at the beginning of the training. The trend
is similar; however, the gap increases as the pruned examples are rendered easy. It is inferred that
training of hard examples before the learning rate decay and memorization helps improve robustness
generalization marginally. Figs. 14b and 14c illustrate the robust accuracy and the standard accuracy
of the models that prune subsets of training examples in the TRADES models. Fig. 14d shows a
comparison of the performance of the models that apply pruning at small epoch before the learning
rate decay and at the beginning of the training in the TRADES models. The results of the TRADES
models shows a similar trend to the results of the PGD models.
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Figure 14: (a) and (d) compares the accuracy of the PGD and TRADES models that apply pruning at
epoch 90 and epoch 0, respectively. (b) and (c) show the robust accuracy and the standard accuracy
of the models that prune subsets of training examples in the TRADES models, respectively.
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C.5 EXPERIMENT DETAILS AND FURTHER EXPERIMENTS ON LABEL CORRUPTION

Table 8: Performance comparison of the final accuracy for models with label corruption.

Dataset
PGD TRADES

Std. Robust Robust Std. Robust Robust
(PGD) (A3) (PGD) (A3)

Normal 86.82 50.25 46.07 84.83 51.43 46.69
Corrupted (hard) 82.31 49.32 45.67 82.11 50.64 46.15
Corrupted (rand) 82.27 43.86 38.64 83.0 47.89 42.92

Pruned 85.99 52.36 48.81 84.71 53.44 48.78

Table 1 For the experiments in Table 1, we executed 200 training epochs on the CIFAR-10 dataset
in each model. The other experimental details are summarized in C.1. We assigned random labels to
the hard examples for the corruption model from the beginning of the training, and we pruned the hard
examples from the beginning of the training for the pruning model. We measured standard accuracy
for the STD models and robust accuracy for the PGD models. The robust accuracy is evaluated
using A3 (Liu et al., 2022). Table 8 shows the final accuracy for the models trained with applying
random labels to the top 5k hard examples or the 5k random examples. We compared the results
with the performance of the normal models and the models that prunes top 5k hard examples for
PGD and TRADES. Because the corruption models which assign random labels to random examples
show significantly low robust accuracy, it demonstrates that the models generally are vulnerable to
label corruption; however, assigning random labels to hard examples does not change the robustness
performance.

Table 9: Performance of models trained with 5k examples.

Method STD PGD (ϵ = 2) PGD (ϵ = 4) PGD (ϵ = 8)
Std. Rob. Std. Rob. Std. Rob. Std. Rob.

Rand 80.79 - 78.75 59.19 76.97 46.19 69.07 28.36
Easy 72.93 - 69.58 56.21 64.8 46.27 55.93 34.54
Hard 34.02 - 22.99 12.2 16.31 7.98 12.1 8.1

Table 2 For the experiments in Table 2, we executed 110 training epochs on the subsets of CIFAR-
10 dataset in each model. The other experimental details are summarized in C.1. We measured
standard accuracy for the STD models and measured both standad and robust accuracy for the PGD
models. The robust accuracy is evaluated using A3 (Liu et al., 2022). Table 9 shows the performance
of the models trained with random 5k, top 5k easy, and top 5k hard examples as Table 2 with varying
the adversarial budget ϵ. As the adversarial budget decreases, the standard accuracy of the models
that prunes hard examples increases, which suggests that the number of anti-correlated features which
were slightly correlated features decreases.

C.6 EXPERIMENT DETAILS AND ABLATION STUDIES OF DPLS

Table 3 We executed 110 training epochs on the CIFAR-10 dataset in adversarial training. The other
experimental details are summarized in C.1. The adversarial training time on the CIFAR datasets
is 26 hours for 110 epochs of the PGD models, and the training time on the SVHN dataset is 40
hours for 110 epochs of the PGD models. The adversarial training time on the CIFAR datasets is 37
hours for 110 epochs of the TRADES models, and the training time on the SVHN dataset is 57 hours
for 110 epochs of the TRADES models. We mainly use 0-1 loss as difficulty measurement loss as
in Section 3.2 for DPLS. We set the label smoothing factor of the most difficult example in DPLS
considering the average difficulty score of each dataset and algorithm. We tuned the factor such that
the average label smoothing factor is between 0.8 and 0.9 in 10-class datasets (CIFAR-10 and SVHN)
and is 0.7 in a 100-class dataset (CIFAR-100). We selected difficulty calculation epoch as T = 90,
which is 10 epochs before the first learning rate decay. The label smoothing factor hyperparameter
λ of the most difficult example for the DPLS models and the label smoothing factor for LS models
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Table 10: The smoothing factor λ and the average of label smoothing factor for each model in Table 3
in the main paper.

Dataset Model Method λ (smoothing factor) Avg. smoothing

CIFAR10
PGD LS 0.9 0.9

DPLS 0.5 0.897

TRADES LS 0.9 0.9
DPLS 0.5 0.893

CIFAR100
PGD LS 0.7 0.7

DPLS 0.3 0.693

TRADES LS 0.7 0.7
DPLS 0.3 0.703

SVHN
PGD LS 0.9 0.9

DPLS 0.1 0.94

TRADES LS 0.9 0.9
DPLS 0.1 0.927

Table 11: Performance of the models with ϵ = 2 and ϵ = 4 for mitigation methods. The best results
are indicated in bold.

Dataset Method Std. Robust Robust Method Std. Robust Robust
(PGD) (A3) (PGD) (A3)

CIFAR-10

PGD 91.78 72.6 71.96 TRADES 90.36 74.37 73.5
+Pruning 91.24 73.03 72.64 +Pruning 89.12 73.76 73.32
+LS 92.21 72.39 71.55 +LS 90.92 74.78 73.67
+DPLS 92.13 74.68 73.53 +DPLS 90.43 75.38 74.47

(a) ϵ = 4

Dataset Method Std. Robust Robust Method Std. Robust Robust
(PGD) (A3) (PGD) (A3)

CIFAR-10

PGD 94.17 83.2 83.04 TRADES 93.32 84.42 84.29
+Pruning 92.95 82.73 82.7 +Pruning 92.08 83.84 83.69
+LS 94.56 83.46 83.13 +LS 93.14 84.33 83.96
+DPLS 94.35 84.61 84.11 +DPLS 92.94 85.18 84.79

(b) ϵ = 2

in Table 3 of the main paper is summarized in Table 10. The results for ϵ = 2 and ϵ = 4 is listed in
Table 11.

Figure 8 and Table 4 For the experiments of previous robust overfitting mitigation methods, we
used the code uploaded in the official Github by the author of each method. The initial learning
rate was set to 0.1, and the learning rate decay was applied at the learning rate decay scheduling
of each method with total training epochs 200 and with a decay factor of 0.1. The learning rate
decay was applied at 50 and 150 epochs for the method of knowledge distillation with stochastic
weight averaging (KD+SWA) (Chen et al., 2020) and the learning rate decay was applied at 100 and
150 epochs for the other methods (the baseline model, our method (DPLS), self-adpative training
(SAT) (Huang et al., 2020), and temporal ensemble (TE) (Dong et al., 2021)). We executed 200
training epochs on the CIFAR-10 dataset in adversarial training. The other experimental details are
summarized in C.1.

Table 5 For the experiments in Table 5, we executed 110 training epochs on the subsets of CIFAR-
10 dataset in each model. The other experimental details are summarized in C.1. We employed
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Table 12: Performance of DPLS according to various difficulty measurement losses.

Method
PGD TRADES

Std. Robust Robust Std. Robust Robust
(PGD) (A3) (PGD) (A3)

- 87.19 56.44 51.8 85.66 58.46 54.08
C-score 86.69 57.02 52.62 86.6 59.0 54.71
CE loss 86.74 56.43 52.57 86.02 58.64 54.45
EL2N 86.53 56.95 52.83 86.94 58.94 54.32

0-1 loss 87.21 57.76 53.15 85.36 59.33 55.19

the pre-calculated C-score (Jiang et al., 2021) from a standard model, and the difficulty from the
other losses was calculated during training according to the procedure described in Algorithm 1.
The detailed results of the performance of DPLS according to various difficulty losses are listed in
Table 12.

Table 13: Applying DPLS to MART (Wang
et al., 2019). DPLS model denotes the model
that calculate the difficulty of training examples
for DPLS.

Method DPLS
model Standard

Robust
(A3)

MART
- 83.9 52.19

MART 83.18 52.84
TRADES 83.81 53.2

Table 14: Applying DPLS to RST (Carmon
et al., 2019). DPLS dataset denotes the dataset
to which DPLS is applied.

Method DPLS
dataset Standard

Robust
(A3)

RST

- 84.82 57.26
Sup 84.36 57.35

Unsup 85.2 57.62
Sup+Unsup 84.43 57.81

Table 6 For the experiments of applying DPLS to other adversarial training algorithms, we used the
code uploaded in the official Github by the author of each method. We executed 110 training epochs
on the CIFAR-10 dataset in adversarial training. The other experimental details are summarized
in C.1. Table 13 and Table 14 show the experimental details of applying DPLS to misclassification
aware adversarial training (MART) (Wang et al., 2019) and robust self training (RST) (Carmon
et al., 2019). We use the 1,000k extra data generated by a denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020) as in Gowal et al. (2021a). For the MART models, we used the difficulty
score calculated from the TRADES model because MART uses weighted loss considering difficulty
(ground-truth class confidence) of each sample, in which the trained model by MART can be biased
and miscalculate the difficulty of each sample. The MART model combined with DPLS where the
difficulty is calculated from TRADES shows higher performance than the other models. It can be
inferred that calculating accurate difficulty score is important, but applying DPLS with approximate
difficulty is also effective at improving robustness. For the RST models, we applied DPLS to both
labeled and unlabeled dataset (Sup+Unsup), only the labeled dataset (Sup), and only the unlabeled
dataset (Unsup). We calculated difficulty of the unlabeled dataset as the ratio of the number of
training to the number of right predictions. For the DPLS (Sup) model, it is inferred that the model is
trained to depend on the unlabeled dataset because of regularization only on the labeled data. For the
DPLS (Unsup) model, although the difficulty of the unlabeled dataset is not calculated from the full
trajectory, the DPLS successfully mitigates the negative effect of hard examples for the unlabeled
dataset.

C.7 OTHER EXPERIMENT DETAILS

Additional details of easy and hard examples Fig. 15 shows the class distributions of 10k easy
and 10k hard examples in the training dataset of CIFAR-10 selected by using accumulated 0-1 loss
difficulty along the training trajectory of TRADES Zhang et al. (2019). Fig. 16 shows the 0-1 loss
distributions of the training datasets for CIFAR-10, CIFAR-100, and SVHN, which are calculated
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with the training trajectory of TRADES. The value of 0-1 loss is normalized by using min-max
normalization. Fig. 17 shows easy and hard examples in the training dataset of CIFAR-10.
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Figure 15: The class distributions of 10k easy and 10k hard examples in CIFAR-10 selected by using
accumulated 0-1 loss difficulty.
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Figure 16: The 0-1 loss distributions of the each training dataset: CIFAR-10, CIFAR-100, and SVHN.
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(a) Easy examples
Original Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

Prediction Car Ship Airplane Deer Truck Bird Cat Brid Frog Airplane

Prediction Frog Brid Deer Dog Car Cat Deer Deer Cat Bird

(b) Hard examples

Figure 17: Easy and hard examples in CIFAR-10 Krizhevsky et al. (2009) selected by using accumu-
lated 0-1 loss difficulty. Original denotes the ground-truth class of images and prediction denotes the
most frequently predicted class of images at each epoch of training until the calculation epoch.

21



Under review as a conference paper at ICLR 2023

Table 15: Performance of DPLS according to the
DPLS calculation epoch T .

T
PGD TRADES

Std. Rob. Std. Rob.

10 86.6 52.92 84.88 54.69
50 87.23 53.16 85.56 55.0
90 87.21 53.15 85.36 55.19

100 87.53 53.04 85.53 54.77

Table 16: Performance of DPLS according to
the re-initialized epoch, where DPLS is pre-
calculated by using DPLS of the calculation
epoch 90.

T Reinit. PGD TRADES
Std. Rob. Std. Rob.

90

0 87.28 53.12 84.99 55.05
50 87.22 53.11 84.89 55.11
90 87.21 53.15 85.36 55.19

100 87.46 53.04 85.26 54.93

D ADDITIONAL ABLATION STUDY

Ablation on the DPLS calculation epoch In Table 15, we conducted experiments varying the
calculation epoch of DPLS. The results show that applying DPLS at any epoch is effective at
increasing robustness. However, the results show that the improvement is slightly higher when using
the difficulty calculated until higher epoch. Additionally, when DPLS is applied after the learning
rate decay, the result shows that the increase in robustness is diminished, but it still shows better
performance than the baseline model. Thus, the application of DPLS before memorization of hard
examples can maximize the mitigation effect of the method, which indicates the overfitting prevention
effect of DPLS.

Ablation on the re-initialization of training by using DPLS In Table 16, we conducted ablation
study varying the training re-initialization epoch with pre-calculated DPLS by using the difficulty of
that calculated until the training epoch 90. There are small differences between the results. Comparing
the result in Table 15 with the result in Table 16, it indicates that the difficulty score is important
for DPLS and the applying checkpoint is less important after fitting training examples and before
memorization of hard examples. However, all models still show the improvement in the robustness
performance of the model as in the above DPLS calculation epoch ablation study.

Table 17: Performance of DPLS applying to the PGD model on CIFAR-10 according to the smoothing
factor λ.

Model λ
(smoothing factor) Avg. smoothing Standard Robust

(PGD)
Robust
(A3)

PGD

- 1.0 87.19 56.44 51.8
0.9 0.98 86.63 57.0 52.49
0.7 0.939 87.82 56.89 52.48
0.5 0.898 87.21 57.76 53.15
0.3 0.857 87.05 57.93 53.2
0.1 0.816 86.27 58.44 53.92

Ablation study on the factor of DPLS Table 17 and Table 18 show the performance of DPLS
applying to the TRADES model on CIFAR-10 and CIFAR-100, respectively. We calculated the
average value for the smoothing factor of DPLS. In both results, it is observed that applying DPLS
with the factor of high value further increases the robustness performance.

Ablation study on the regularization of DPLS We used an LS approach for mitigating the effect
of hard examples, instead of simply reweighting the loss of hard examples. Pruning hard examples
corresponds to assigning zero values to the loss of hard examples, so we compare the performance
of DPLS with the reweighting method. We applied the difficulty of each example to the loss to
reweight the loss of each example, which is the same difficulty with DPLS. Because TRADES
utilized the robustness loss without labels, we applied DPLS to cross-entropy loss for clean examples
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Table 18: Performance of DPLS applying to the TRADES model on CIFAR-10 according to the
smoothing factor λ.

Model λ
(smoothing factor) Avg. smoothing Standard Robust

(PGD)
Robust
(A3)

TRADES

- 1.0 85.66 58.46 54.08
0.9 0.979 85.49 58.74 54.39
0.7 0.935 85.41 59.08 54.8
0.5 0.893 85.36 59.33 55.19
0.3 0.85 84.95 59.29 55.22
0.1 0.807 84.06 59.25 55.38

and reweighted the robust loss with the same difficulty; thus, the difference between DPLS and the
reweighting method in TRADES is the difference of application of the method to the loss for clean
examples. Tab 19 lists the result of applying reweight and DPLS. In the results of both PGD and
TRADES, DPLS shows higher standard accuracy. It is inferred that because the reweighting method
still ensures that the predictions are identical to one-hot labels and that the method focuses on the
memorization of examples, the method improves robustness and deteriorates accuracy depending on
robustness-accuracy trade-off. In contrast, instead of memorizing hard examples with one-hot label,
our method takes advantage of hard examples by allowing soft labels and learns distributions that
smoothly include hard examples, which results in improving robustness with decreasing the reduction
of standard performance.

Table 19: Performance comparison of DPLS with reweighting methods.

Method
PGD TRADES

Std. Robust Robust Std. Robust Robust
(PGD) (A3) (PGD) (A3)

- 87.19 56.44 51.8 85.66 58.46 54.08
Reweight 86.1 57.32 53.2 84.63 58.54 54.88

DPLS 87.21 57.76 53.15 85.36 59.33 55.19

Table 20: Performance of exclusion models according to various difficulty losses with and without
balancing the excluded data number of each class.

Model Method Balancing Standard Robust
(PGD)

Robust
(CW)

Robust
(A3)

TRADES

- - 85.66 58.46 56.53 54.08
C-score ⃝ 85.2 57.87 56.72 53.97
C-score × 85.35 58.52 56.82 54.25
CE loss ⃝ 83.7 57.49 56.76 54.01
CE loss × 83.82 58.37 57.31 54.45
EL2N ⃝ 83.8 57.76 56.89 54.07
EL2N × 83.25 57.86 56.9 54.28

0-1 loss ⃝ 83.81 57.84 56.76 54.22
0-1 loss × 84.07 58.04 57.4 54.64

Study on balancing the number of data in each class for exclusion In our experiments, we
selected easy and hard examples without consideration of class imbalance. The class distributions of
10k easy and 10k hard examples in our experiment are shown in Figure 15. We conducted the ablation
study on the effect of balancing the class distribution of the hard examples subset. Table 20 shows the
results of the exclusion models of TRADES, which exclude top 10% examples with high difficulty
from the training dataset of CIFAR-10. We experimented with varying the difficulty measurement
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loss and the balance of the number of excluded data for each class (the number of excluded data for
each class in balanced subset is 500). We extracted the balanced exclusion subset by selecting top
10% examples with high difficulty from the training subset of each class. It is observed that while the
exclusion models without consideration of class imbalance improve robustness, the exclusion models
with the balanced exclusion subset show the similar robustness performance with that of the baseline
model. It indicates that when selecting hard examples which have the negative effect to training, it
is less effective for the improvement of the robustness performance to consider the balance of the
number of data for each class.

Study on the robust fairness In Xu et al. (2021), they indicated that adversarial training differently
increases robustness of each class in a dataset, which effectively increases the robustness of easy
classes but not effectively increases the robustness of hard classes. They noted that the performance
imbalance between classes, which is termed as the robustness fairness problem, becomes more
significant in adversarial training. Because DPLS regularizes hard examples, it can be assumed
that the increase in the robustness performance is attributed to the increase in the performance of
easy classes. Thus, we compared the robustness performance of easy and hard classes in Table 21.
We divide the class of CIFAR-10 into 5 easy and 5 hard class subsets. We referred to the class
distributions of easy and hard examples from Figure 15 and divide them into easy (class 0, 1, 7,
8, 9) and hard (class 2, 3, 4, 5, 6). From Table 21, it is observed that the performance increase is
attributed to the increase in the robustness improvement of both the easy and hard class subsets in the
DPLS models. It indicates that our method does not only exploit the performance increase of the
easy classes, but increases the both performance of easy and hard classes.

Table 21: Robustness performance against adversarial attacks for easy class and hard class subsets of
CIFAR-10.

Model Method PGD PGD
(easy)

PGD
(hard) A3 A3

(easy)
A3

(hard)

PGD - 56.54 70.5 42.58 51.8 67.62 35.98
DPLS 57.75 70.32 45.18 53.15 67.76 38.54

TRADES - 58.52 71.42 45.62 54.08 68.64 39.52
DPLS 59.32 72.9 45.74 55.19 70.22 40.16
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