
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Policy Optimization for Strictly Batch Imitation Learning

Rishabh Agrawal RISHABHA@USC.EDU
University of Southern California

Nathan Dahlin NDAHLIN@ALBANY.EDU
University at Albany, SUNY

Rahul Jain RAHUL.JAIN@USC.EDU
University of Southern California

Ashutosh Nayyar ASHUTOSN@USC.EDU

University of Southern California

Abstract
Imitation Learning (IL) offers a compelling framework within the broader context of Reinforce-
ment Learning (RL) by eliminating the need for explicit reward feedback, a common requirement
in RL. In this work, we address IL based solely on observed behavior without access to transition
dynamics information, reward structure, or, most importantly, any additional interactions with the
environment. Our approach leverages conditional kernel density estimation and performs policy
optimization to ensure the satisfaction of the Markov balance equation associated with the environ-
ment. This method performs effectively in discrete and continuous state environments, providing
a novel solution to IL problems under strictly offline optimization settings. We establish that our
estimators satisfy basic asymptotic consistency requirements. Through a series of numerical ex-
periments on continuous state benchmark environments, we show consistently superior empirical
performance over many state-of-the-art IL algorithms.

1. Introduction

Reinforcement Learning (RL) has achieved significant breakthroughs over the past decade, from
surpassing human performance in games like Atari [35], Go [45], and StarCraft [52] to advancing
fields such as protein structure prediction [19]. Despite these successes, a major challenge persists
in real-world applications: RL depends on well-defined reward functions, which often do not exist,
especially when only offline data is available. While considerable effort has been invested in de-
signing reward models, particularly in areas like generative AI, these efforts often introduce issues
such as reward hacking, over-optimization, and reduced robustness in the learned policies [46].

This challenge is particularly pronounced in human-in-the-loop systems, where demonstrators
or evaluators provide data. Expert demonstrations rarely reveal a clear reward function, making it
hard to infer their true objectives. While IRL methods like MaxEntropy-IRL [62] first infer a reward
function from expert data and then use it with RL algorithms to design near-optimal policies, they
suffer from two key drawbacks: RL performance is highly sensitive to errors in reward estimation,
and the expert may not be following an optimal reward-based policy. This underscores the need for
imitation learning (IL) approaches that bypass reward inference entirely [3].

Behavioral Cloning (BC) is a simple IL method that learns expert policies through supervised
learning [39]. However, it overlooks the sequential nature of decision-making, which results in

© R. Agrawal, N. Dahlin, R. Jain & A. Nayyar.



CKIL

covariate shift and leads to error accumulation in underexplored states [42]. Recent attempts to
address these limitations involve adding online interactions or supplementary data [38, 43], but this
is often impractical in real-world settings like autonomous driving or healthcare, where interactions
can be costly or unsafe.

Imitation learning centers on matching the state-action distribution of expert demonstrations to
that of the imitator’s policy. Adversarial Imitation Learning (AIL) achieves this through adversarial
optimization [12, 16, 20], but it relies on on-policy samples, making it unsuitable for offline learning
where further environment interactions are not possible. Recent approaches aim to improve IL
by adding cheaply generated data from suboptimal policies to supplement expert demonstrations
[57, 59]. However, this can introduce distribution shifts, degrading policy performance when the
data deviates from the expert distribution.

In this paper, we present an imitation learning algorithm that eliminates the need for reward
feedback, does not rely on distribution matching from on-policy samples, and avoids behavioral
cloning. Our approach leverages the Markovian nature of dynamics, requires no generative model,
accommodates continuous state spaces, and supports batch processing of offline data. This frame-
work is particularly relevant for applications in healthcare, robotics, and autonomous vehicles [27],
where experimentation can be costly or unsafe.

We introduce a novel framework for policy optimization based on the balance equation between
the demonstration policy, the Markov decision process (MDP) transition density, and the induced
Markov chain. We utilize conditional kernel density estimators for estimating these densities and
establish their universal consistency. We demonstrate strong performance across various tasks with
continuous state spaces. Extension to continuous action spaces is conceptually straightforward but
requires further work for robustness. A further review of related work is provided in Appendix A.

2. Preliminaries

The Imitation Learning Problem. An infinite horizon discounted MDP M is defined by the tuple
(S,A, T, r, γ) with states s ∈ S, actions a ∈ A and next states s′ ∈ S sampled from the transition
function T (s′|s, a). The reward function r : S × A → R maps state-action pairs to scalar rewards,
and γ is the discount factor. Policy π is a probability distribution over actions conditioned on state
and is given by π(at|st) = Pπ(At = at|St = st), where at ∈ A, st ∈ S, ∀t = 0, 1, 2, · · · . The
induced occupancy measure of a policy is given as ρπ(s, a) := Eπ[

∑∞
t=0 γ

t 1st=s,at=a], where the
expectation is taken over at ∼ π(·|st), st+1 ∼ T (·|st, at) for all t, and the initial state s0. The cor-
responding state-only occupancy measure is given as ρπ(s) =

∑
a ρπ(s, a). In the offline imitation

learning (IL) framework, the agent is provided with trajectories generated by a demonstration pol-
icy πD, collected as D = {(s0, a0), (s1, a1), (s2, a2), ...}; and is not allowed any further interaction
with the environment. The data D does not include any reward rt at each time step. Indeed, rather
than long-term reward maximization, the IL objective is to learn a policy π⋆ that is close to πD in
the following sense [60]:

π⋆ ∈ argmin
π∈Π

Es∼ρπ [L(π(·|s), πD(·|s))], (1)

where Π is the set of all randomized (Markovian) stationary policies, and L is a chosen loss function.
In practice, (1) can only be solved approximately since πD is unknown and only transitions are
observed in the dataset D.

2



CKIL

Conditional Kernel Density Estimation (CKDE). The imitation learning approach we introduce
depends on transition density estimation. Though statistical theory exists for it, conditional density
estimation is a difficult problem due to a lack of clarity on what parametric families of density
functions are good candidates. Thus, we adopt kernel density estimation (KDE), a nonparametric
framework for the estimation of general continuous distributions [53].

We next outline the method for two continuous random variables, X and Y for the sake of sim-
plicity. Let f and g denote the joint density of (X,Y ) and the marginal density of X , respectively.
The conditional distribution of Y , given X , is denoted as hY |X(y|x) = fX,Y (x, y)/gX(x). Select-
ing a pair of kernel functions K : R → R and K ′ : R → R with respective scalar bandwidth
parameters h > 0 and h′ > 0 and given a set of n samples {(xi, yi)}ni=1, the KDE approximations
f̂ and ĝ for the joint and marginal distributions, respectively, are obtained as follows:

f̂X,Y (x, y) =
1

n

n∑
i=1

1

h
K

(
x− xi

h

)
1

h′
K ′

(
y − yi
h′

)
,

ĝX(x) =
1

n

n∑
i=1

1

h
K

(
x− xi

h

)
.

(2)

Using the approximations in (2), the approximate conditional density ĥY |X can be computed as

ĥY |X(y|x) =
f̂X,Y (x, y)

ĝX(x)
. (3)

In more general cases involving random vectors, analogous estimates to those in (2) and (3) may
be obtained using kernel functions defined according to

KH(x) = |H|−
1
2K(H− 1

2x), (4)

where H is a symmetric positive definite bandwidth matrix of appropriate dimension, m, with
determinant |H|, and K is a real-valued function satisfying

∫
Rm K(x)dx = 1. For example, the

KDE estimate for the marginal distribution of random vector X is defined as

ĝX(x;H) =
1

n

n∑
i=1

KH

(
x− xi

)
. (5)

We note that conditional density estimation is quite difficult numerically, and conditional kernel
density estimation (CKDE), the adaptation of KDE to conditional density estimation, is amongst
the most effective methods available (see [7] for more details).

3. Conditional Kernel Imitation Learning

We present our imitation learning algorithm, which leverages a fundamental principle: demonstra-
tion trajectories from an expert must satisfy the Markov balance equation under the expert policy
πD. This guides the agent’s learning process. To implement this, we estimate the required transi-
tion (conditional probability) densities using conditional kernel density estimation. The task then
becomes to identify policies that best fit the balance equation. Algorithm 1 outlines this approach,
and we provide theoretical guarantees and experimental results on benchmark environments.

3



CKIL

Algorithm 1 Conditional Kernel Imitation Learning (CKIL)
Input: Expert dataset of trajectories D = {(si, ai)}ni=1

Output: θ∗

1: Initialize policy parameter θ
2: Transform dataset D into (s, a, s′, a′) tuples, then store them in buffer B.
3: for iter = 0, 1, . . . do
4: Sample a batch biter of (s, a, s′, a′) tuples from B
5: Obtain P̂ , T̂ in (9) via CKDE on biter
6: Calculate empirical estimate of the objective function in (8) using all (s, a, s′, a′) ∈ biter as:∑

(s′,a′)

∑
(s,a)

[
P̂ (s′, a′|s, a)− πθ(a

′|s′)T̂ (s′|s, a)
]2

+ λ
∑
s′

∑
a′

πθ(a
′|s′)log(πθ(a′|s′)) (6)

7: Update the policy parameter θ using gradient update to minimize the calculated empirical
estimate of the objective function

8: end for
9: return θ∗

The Markov Balance Equation. Consider a demonstration policy πD, a randomized Markovian
stationary policy. This induces a Markov chain (MC) on the state state-action with transition density
P (s′, a′|s, a). Then, the Markov balance equation is given by

PπD(s
′, a′|s, a) = πD(a

′|s′)T (s′|s, a). (7)

This balance equation forms the foundation of our IL approach. By estimating PπD and T in (7)
(denoted as P̂ and T̂ respectively), we can deduce a policy πD that satisfies the equation. However,
due to the ill-conditioned nature of the problem, additional criteria like regularization are necessary.

We consider a class of policies parameterized by θ and set up the following optimization prob-
lem:

min
θ∈Θ

∫
(s′,a′)

∫
(s,a)

[
P̂ (s′, a′|s, a)− πθ(a

′|s′)T̂ (s′|s, a)
]2

dµ(s, a) dµ(s′, a′)

−λ

∫
s′
H(πθ(·|s′)) dν(s′).

(8)

In (8), the first term, a squared loss, ensures approximate satisfaction of the balance equation—a
novel loss function rarely used in imitation learning in conjunction with a balance equation. The
second term, H(πθ(·|s′)), represents the entropy of the action distribution πθ(·|s′) at state s′, en-
couraging more randomized policies. The regularization parameter λ ≥ 0 controls this trade-off.
Here, µ and ν are reference probability measures on state-action pairs and states, often based on
empirical data, while Θ represents parameters set, such as the weights of a neural network.
Transition Density Estimation. We now discuss how to estimate the two conditional densities PπD

and T using kernel density estimation methods for continuous spaces. The discussion for discrete
spaces is deferred to the Appendix C.

Estimating transition densities in continuous spaces is challenging since no visited state would
appear twice, and many remain unvisited in the dataset. This necessitates the use of advanced

4



CKIL

conditional density estimation methods. Options include parametric approaches like mixture density
networks [5], normalizing flows [51]; non-parametric methods like Gaussian process conditional
density estimation [11], CKDE [30]; and semi-parametric methods like least squares conditional
density estimation [48]. In this work, we choose CKDE for its closed-form, non-parametric nature,
ease of implementation, and consistency under appropriate conditions [7].

As explained in Section 2, kernel functions rely on the difference between sample points (e.g.,
x − xi) (5), which can be substituted by distance metrics [15]. We define three metrics: d1 :
(S × A) × (S × A) → R+ for (next state, next action) pairs, d2 : (S × A) × (S × A) → R+

for (state, action) pairs, and d3 : S × S → R+ for next states. Corresponding square bandwidth
matrices H1, H2, and H3 adjust the kernels KH1 , KH2 , and KH3 , and the CKDE approximations
P̂ and T̂ are then computed as

P̂ (s′, a′|s, a) =
∑n

l=1KH1

(
d1((s

′, a′), (s′l, a
′
l))

)
KH2

(
d2((s, a), (sl, al))

)∑n
l=1KH2

(
d2((s, a), (sl, al))

) ,

and T̂ (s′|s, a) =
∑n

l=1KH3

(
d3(s

′, s′l)
)
KH2

(
d2((s, a), (sl, al))

)∑n
l=1KH2

(
d2((s, a), (sl, al))

) . (9)

We integrate the transition estimation methods from (9) with the Markov balance equation opti-
mization from (8) in our conditional kernel imitation learning (CKIL) algorithm, detailed in Algo-
rithm 1.
Theoretical Guarantees. Given standard assumptions, we demonstrate that as the training dataset
size n approaches infinity, the CKDE estimates in (9) converge in probability to the true conditional
distributions in Theorem 1.

Theorem 1 Let P̂n and T̂n be the CKDE estimates constructed using (9) and a buffer B with n
tuples. Then, under appropriate conditions, for each (s, a, s′, a′), as n → ∞,

P̂n(s
′, a′|s, a) P−−−→PπD(s

′, a′|s, a), and T̂n(s
′|s, a) P−−−→T (s′|s, a). (10)

We prove the Theorem 1 and outline the assumptions made therein in the Appendix B.

4. Experimental Results

Experimental Setup and Benchmark Algorithms. We evaluate our algorithm’s performance in
various benchmark environments from OpenAI Gym [6], with details on the environments and
data collection provided in Appendix D. The policy implementation, kernel choice, and band-
widths for CKIL are discussed in Appendix E. We compare CKIL (Algorithm 1) against several
offline IRL/IL/AIL baselines such as Behavioral Cloning (BC), ValueDICE (VDICE) [25], reward-
regularized classification (RCAL) [37], Energy-based Distribution Matching (EDM) [17], AVRIL
[9], Deep Successor Feature Network (DSFN) [29], and IQ-Learn [13], a state-of-the-art model-free
offline IRL algorithm. While newer methods like CLARE [58] exist, many either require additional
diverse data or allow for environment interactions, diverging from our strict assumption of using
only expert data without further interactions. Thus, we exclude these methods to ensure a fair com-
parison. More details on the baselines and hyperparameters for CKIL can be found in Appendices
G and F, respectively.

5



CKIL

BC VDICE RCAL EDM AVRIL
DSFN CKIL IQ-Learn Expert Random

(a) Acrobot (b) CartPole (c) LunarLander

Figure 1: Average rewards achieved by benchmark IRL/IL/AIL and CKIL policies during real-time
deployment plotted against the number of trajectories included in demonstration dataset D (higher
values indicate better performance).

Results. Figure 1 illustrates the average rewards all algorithms achieve as the demonstration dataset
size increases in the Acrobot, CartPole, and LunarLander environments. CKIL consistently outper-
forms the baseline algorithms across all tasks, particularly in data-scarce scenarios, demonstrating
its ability to learn effective policies. Notably, CKIL achieves expert-level performance in the Cart-
Pole, Acrobot, and LunarLander environments using just three trajectories and impressively reaches
near-expert performance in CartPole with only a single trajectory. While the IQ-Learn algorithm
shows performance close to CKIL’s, it incurs significantly higher computational costs due to its IRL
nature, and its instabilities are discussed in [2]. In contrast, the off-policy adaptations of online al-
gorithms (VDICE, DSFN) do not maintain the same level of consistent performance as their offline
counterparts, underscoring the limitations of using online algorithms in offline contexts. Addition-
ally, VDICE’s potential underperformance compared to the behavioral cloning baseline may stem
from challenges in estimating the expectation of an exponential distribution. Moreover, ablation
study is done in Appendix H.

5. Conclusions

In this paper, we presented Conditional Kernel Imitation Learning (CKIL), a novel approach for
policy optimization in strictly offline imitation learning settings. CKIL eliminates the need for re-
ward modeling by utilizing the Markov balance equation and conditional kernel density estimators
to estimate transition densities in the MDP and induced Markov chain. The algorithm demonstrates
strong empirical performance against nearly all state-of-the-art offline IL, IRL, and AIL algorithms
and is supported by theoretical consistency results. Importantly, CKIL does not require access to a
generative model or additional datasets, distinguishing it from many other imitation learning meth-
ods. While imitation learning algorithms often struggle with distribution shifts when trained on
limited datasets, our experimental results indicate that CKIL manages this challenge more effec-
tively than other strictly batch methods. For more details, please see Appendix I. Future work could
explore density estimation methods, such as normalizing flows, and develop non-asymptotic sample
complexity bounds, which are rarely available in current IL literature.

6



CKIL

References

[1] Ibrahim A Ahmad and Iris S Ran. Data based bandwidth selection in kernel density estimation
with parametric start via kernel contrasts. Journal of Nonparametric Statistics, 16(6):841–877,
2004.

[2] Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. Ls-iq: Implicit
reward regularization for inverse reinforcement learning. arXiv preprint arXiv:2303.00599,
2023.

[3] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges,
methods and progress. Artificial Intelligence, 297:103500, 2021.

[4] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, 1983.

[5] Christopher M. Bishop. Mixture density networks. Technical report, Aston University, 1994.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[7] José E. Chacón and Tarn Duong. Multivariate kernel smoothing and its applications. Chapman
and Hall/CRC, 2018.

[8] Alex James Chan and Mihaela van der Schaar. Scalable bayesian inverse reinforcement learn-
ing. https://github.com/XanderJC/scalable-birl, 2021.

[9] Alex James Chan and Mihaela van der Schaar. Scalable bayesian inverse reinforcement learn-
ing. In International Conference on Learning Representations, 2021.

[10] Jonathan D Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mit-
igating covariate shift in imitation learning via offline data without great coverage. arXiv
preprint arXiv:2106.03207, 2021.

[11] Vincent Dutordoir, Hugh Salimbeni, James Hensman, and Marc Deisenroth. Gaussian process
conditional density estimation. Advances in neural information processing systems, 31, 2018.

[12] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse
reinforcement learning. In International Conference on Learning Representations, 2018.

[13] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-
learn: Inverse soft-q learning for imitation. Advances in Neural Information Processing Sys-
tems, 34:4028–4039, 2021.

[14] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-
learn: Inverse soft-q learning for imitation. https://github.com/Div99/IQ-Learn,
2021.

[15] Bernard Haasdonk and Claus Bahlmann. Learning with distance substitution kernels. In Joint
pattern recognition symposium, pages 220–227. Springer, 2004.

7

https://github.com/XanderJC/scalable-birl
https://github.com/Div99/IQ-Learn


CKIL

[16] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in
neural information processing systems, 29, 2016.

[17] Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar. Strictly batch imitation learning by
energy-based distribution matching. Advances in Neural Information Processing Systems, 33:
7354–7365, 2020.

[18] Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar. Strictly batch imitation learning by
batch imitation learning by energy-based distribution matching. https://github.com
/vanderschaarlab/mlforhealthlabpub/tree/main/alg/edm, 2020.

[19] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

[20] Liyiming Ke, Sanjiban Choudhury, Matt Barnes, Wen Sun, Gilwoo Lee, and Siddhartha Srini-
vasa. Imitation learning as f-divergence minimization. In Algorithmic Foundations of Robotics
XIV: Proceedings of the Fourteenth Workshop on the Algorithmic Foundations of Robotics 14,
pages 313–329. Springer, 2021.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, 2015.

[22] Edouard Klein, Matthieu Geist, and Olivier Pietquin. Batch, off-policy and model-free ap-
prenticeship learning. In European Workshop on Reinforcement Learning, pages 285–296.
Springer, 2011.

[23] Edouard Klein, Matthieu Geist, Bilal Piot, and Olivier Pietquin. Inverse reinforcement learning
through structured classification. Advances in neural information processing systems, 25,
2012.

[24] Oleg Klimov. Openai gym: Rocket trajectory optimization is a classic topic in optimal control.
https://github.com/openai/gym, 2019.

[25] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distri-
bution matching. arXiv preprint arXiv:1912.05032, 2019.

[26] Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distri-
bution matching. https://github.com/google-research/google-researc
h/tree/master/value_dice, 2020.

[27] Luc Le Mero, Dewei Yi, Mehrdad Dianati, and Alexandros Mouzakitis. A survey on imitation
learning techniques for end-to-end autonomous vehicles. IEEE Transactions on Intelligent
Transportation Systems, 23(9):14128–14147, 2022.

[28] Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learn-
ing with deep successor features. https://github.com/dtak/batch-apprentic
eship-learning, 2019.

8

https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/edm
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/edm
https://github.com/openai/gym
https://github.com/google-research/google-research/tree/master/value_dice
https://github.com/google-research/google-research/tree/master/value_dice
https://github.com/dtak/batch-apprenticeship-learning
https://github.com/dtak/batch-apprenticeship-learning


CKIL

[29] Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learn-
ing with deep successor features. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 5909–5915, 2019.

[30] Qi Li and Jeffrey Scott Racine. Nonparametric Econometrics: Theory and Practice. Number
8355 in Economics Books. Princeton University Press, 2006.

[31] Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation learning.
arXiv preprint arXiv:2004.09395, 2020.

[32] Enno Mammen, Maria Dolores Martinez Miranda, Jens Perch Nielsen, and Stefan Sperlich.
Do-validation for kernel density estimation. Journal of the American Statistical Association,
106(494):651–660, 2011.

[33] Henry B Mann and Abraham Wald. On stochastic limit and order relationships. The Annals
of Mathematical Statistics, 14(3):217–226, 1943.

[34] Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of
Machine Learning Research, 7(12):2651–2667, 2006.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[36] Andrew William Moore. Efficient memory-based learning for robot control. Technical report,
University of Cambridge, 1990.

[37] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted and reward-regularized classifica-
tion for apprenticeship learning. In Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, page 1249–1256, 2014.

[38] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Bridging the gap between imitation learn-
ing and inverse reinforcement learning. IEEE transactions on neural networks and learning
systems, 28(8):1814–1826, 2016.

[39] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1:305–313, 1988.

[40] Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines
3-zoo, 2020.

[41] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: imitation learning via regularized
behavioral cloning. arXiv preprint arXiv:1905.11108, 2(5), 2019.

[42] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pages 661–
668. JMLR Workshop and Conference Proceedings, 2010.

[43] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 15, pages 627–635, 2011.

9

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo


CKIL

[44] Bernhard Schölkopf and Alexander J. Smola. Learning with kernels : support vector ma-
chines, regularization, optimization, and beyond. MIT Press, 2002.

[45] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529
(7587):484–489, 2016.

[46] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artifi-
cial Intelligence, 299:103535, 2021.

[47] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

[48] Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya,
and Daisuke Okanohara. Least-squares conditional density estimation. IEICE Transactions
on Information and Systems, 93(3):583–594, 2010.

[49] Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. Advances in neural information processing systems, 8, 1995.

[50] Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Zhiwei Steven Wu. A critique of
strictly batch imitation learning. arXiv preprint arXiv:2110.02063, 2021.

[51] Brian L Trippe and Richard E Turner. Conditional density estimation with bayesian normalis-
ing flows. arXiv preprint arXiv:1802.04908, 2018.

[52] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-
master level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–
354, 2019.

[53] Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.

[54] Ruohan Wang, Carlo Ciliberto, Pierluigi Vito Amadori, and Yiannis Demiris. Random expert
distillation: Imitation learning via expert policy support estimation. In International Confer-
ence on Machine Learning, pages 6536–6544. PMLR, 2019.

[55] Zhiqing Xiao. Reinforcement Learning: Theory and Python Implementation. China Machine
Press, 2019.

[56] Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline
imitation learning from suboptimal demonstrations. In International Conference on Machine
Learning, pages 24725–24742. PMLR, 2022.

[57] Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline
imitation learning from suboptimal demonstrations. In International Conference on Machine
Learning, pages 24725–24742. PMLR, 2022.

[58] Sheng Yue, Guanbo Wang, Wei Shao, Zhaofeng Zhang, Sen Lin, Ju Ren, and Junshan Zhang.
CLARE: Conservative model-based reward learning for offline inverse reinforcement learning.
In The Eleventh International Conference on Learning Representations, 2023.

10



CKIL

[59] Sheng Yue, Guanbo Wang, Wei Shao, Zhaofeng Zhang, Sen Lin, Ju Ren, and Junshan Zhang.
CLARE: Conservative model-based reward learning for offline inverse reinforcement learning.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=5aT4ganOd98.

[60] Yisong Yue and Hoang M. Le. Imitation learning (tutorial). International Conference on
Machine Learning (ICML), 2018.

[61] Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Understanding expertise
through demonstrations: A maximum likelihood framework for offline inverse reinforcement
learning. arXiv preprint arXiv:2302.07457, 2023.

[62] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 3, page 1433–1438. AAAI Press, 2008.

11

https://openreview.net/forum?id=5aT4ganOd98
https://openreview.net/forum?id=5aT4ganOd98


CKIL

Appendix A. Other Related Work

To improve BC, methods such as incorporating online interactions, demonstrator feedback, or lever-
aging model dynamics and reward sparsity have been explored, but these are impractical with only
offline data. Recent work [56] attempts to address this by using supplementary data from non-expert
policies, but such data may not always be available. The EDM approach [17] models the expert’s
state occupancy with an energy-based framework, though it has significant limitations [50].

Efforts to improve IRL introduced methods like LSTD-µ [22, 23], a temporal difference tech-
nique prone to the same weaknesses as least squares estimators, including sensitivity to feature
selection and data distribution. [29] propose DSFN, a transition-regularized network that generates
policies close to expert behavior, but it unrealistically assumes full knowledge of reward features
[3]. [37] introduced RCAL, a non-parametric algorithm using boosting to minimize a large margin
objective with MDP-aware regularization. [9] propose AVRIL, which jointly estimates the poste-
rior of reward and policy, while [13] introduce IQ-Learn, an off-policy IRL method that implicitly
learns both via a soft Q-function. However, both face covariate shift issues, leading to poor reward
extrapolation in novel environments. CLARE [58] addresses this by adding conservatism to reward
estimates but assumes access to a diverse dataset, limiting performance when data quality is low
[61].

Adversarial Imitation Learning (AIL) methods [16] marked a significant advancement but rely
on online interactions, limiting their use in offline settings. [25] proposed ValueDICE, which uses
distribution matching between expert and imitator policies through a complex optimization proce-
dure. However, it struggles with gradient estimation, introducing bias when using mini-batches
[17]. Our algorithm diverges from these approaches, offering a simpler, more efficient solution with
promising preliminary results.

Appendix B. Theoretical Guarantees

We state the following technical lemma for convergence in probability of kernel density estimators
from i.i.d samples which we used for Theorem 1.

Lemma 2 [7] Suppose X1, X2, . . . , Xn are i.i.d vectors with probability density g. Let ĝ(·;H), as
given in Eq. (5), be the kernel density estimator constructed from these samples using kernel K and
bandwidth matrix H = H(n). Suppose the following assumptions hold.

(C1) Each entry of Hg(·) be piecewise continuous and square integrable, where Hg is the m ×m
Hessian-matrix of g.

(C2) The kernel K, is square integrable, spherically symmetric and with a finite second order mo-
ment; this means that

∫
Rm zK(z)dz = 0 and

∫
Rm zzTK(z)dz = m2(K)Im (where m2(K)

is independent of i, for i ∈ {1, 2, . . .m}). Furthermore,
∫
Rm K(z) = 1.

(C3) The bandwidth matrices H = H(n) form a sequence of positive definite, symmetric ma-
trices such that as n → ∞, vec H(n) → 0, i.e. all entries of H(n) approaches 0 and
n−1|H(n)|−1/2 → 0, where vec is the vectorization operator which acts on a matrix by
stacking its columns on top of one another.

Then, ĝ(x;H) converges in probability to g(x) for each x.

12



CKIL

We introduce the kernel functions Ki, i = 1, 2, 3, so that using (4), the kernels KHi for i =
1, 2, 3 appearing in (9) can be expressed as

KHi(x) = |Hi|−
1
2Ki(H

− 1
2x), (11)

where x is of appropriate dimension. We will make the following assumptions [7]:

(A1) Suppose the buffer B in Algorithm 1 consists of n iid tuples (s, a, s′, a′) generated according
to a probability distribution P (s, a, s′, a′) = µ(s, a)PπD(s

′, a′|s, a), where PπD is the tran-
sition probability density of the induced Markov chain on the state-action space under the
demonstration policy πD (see (7)) and µ is a reference probability measure on (s, a). Further,
P has a density function g that is square-integrable and twice differentiable, with all of its
second-order partial derivatives bounded, continuous and square integrable. Also assume that
the marginals P (s′, s, a) and P (s, a) satisfy these properties.

(A2) The kernels Ki for i ∈ {1, 2, 3} in (11) are square integrable, zero-mean, spherically sym-
metric, and with common finite second-order moment

∫
Rmi zz

TKi(z)dz = σ2Imi .

(A3) For each kernel KHi as defined in (4), the bandwidth matrices Hi(n) (where n is the number
of tuples in B) form a sequence of positive definite, symmetric matrices such that Hi(n) → 0
and n−1/2|Hi(n)|−1/2 → 0 as n → ∞.

With these assumptions, we re-state Theorem 1 as follows:

Theorem 1 Suppose assumptions (A1)-(A3) are true. Let P̂n and T̂n be the CKDE estimates con-
structed using (9) and a buffer B with n tuples. Then, for each (s, a, s′, a′), as n → ∞,

P̂n(s
′, a′|s, a) P−−−→PπD(s

′, a′|s, a), and T̂n(s
′|s, a) P−−−→T (s′|s, a). (12)

We now adopt Lemma 2 to give a detailed outline of proof for Theorem 1 under assumptions
(A1)-(A3). First of all, we defined the following in the proof:

f̂(s′, s, a) =

n∑
l=1

KH3

(
d3(s

′, s′l)
)
KH2

(
d2((s, a), (sl, al))

)
,

ĝ(s, a) =
n∑

l=1

KH2

(
d2((s, a), (sl, al))

)
.

(13)

We can then argue as follows:

1. We assume (A1) that P (s, a, s′, a′) has a density function g that is square-integrable and twice
differentiable, with all of its second-order partial derivatives bounded, continuous and square
integrable and so does its marginals P (s′, s, a) and P (s, a). This leads to the satisfaction of
condition (C1).

2. From assumption (A2),
∫
Rmi zKi(z)dz = 0 for i = {2, 3}, where zi is a vector of size mi.

Partition the vector z as z = [z3, z2] and let m = m2+m3 and K(z) = K3(z3)K2(z2). Then

13



CKIL

for t ≤ m3, ∫
Rm

ztK(z)dz =

∫
Rm

ztK3(z3)K2(z2)dz

=

∫
Rm2

K2(z2)dz2

∫
Rm3

ztK3(z3)dz3

=

∫
Rm3

ztK3(z3)dz3 = 0,

(14)

which follows from (A2). This can be shown for any t ∈ {1, 2, . . . ,m}. Hence,
∫
Rm zK(z)dz =

0 is satisfied corresponding to condition (C2).

Now, ∫
Rm

zzTK(z)dz

=

∫
Rm

[
z3z

T
3 z3z

T
2

z2z
T
3 z2z

T
2

]
K3(z3)K2(z2)dz3dz2

= σ2

[
Im3 0
0 Im2

]
= σ2Im.

Hence, K(z) = K3(z3)K2(z2) satisfies condition (C2).

3. Consider H(n) to be a block diagonal matrix with H3(n) and H2(n) as the two block di-
agonal entries with H3(n) and H2(n) satisfying assumption (A3). Then the matrices H(n)
form a sequence of positive definite, symmetric matrices. Using (5) with this H , the ker-
nel estimate for P (s′, s, a) takes the product kernel form as seen for f̂(·) in (13). Now,
|H(n)| = |H3(n)||H2(n)|, this implies that as n → ∞, n−1|H(n)|−1/2 → 0 because
n−1/2|Hi(n)|−1/2 → 0 for i = {2, 3}. Also, vec H(n) → 0 as vec Hi(n) → 0 for i = {2, 3}.
Therefore, condition (C3) is satisfied.

Having satisfied conditions (C1)-(C3), we may apply the argument found in Sections 2.6-2.9 of
[7] and conclude that

f̂(s′, s, a)
P−−−→P (s′, s, a),

ĝ(s, a)
P−−−→P (s, a).

Finally, it follows from the Continuous Mapping Theorem [33] that taking the ratio of f̂ and ĝ
produces a consistent estimator of

P (s′, s, a)

P (s, a)
= T (s′|s, a),

i.e.,

T̂n(s
′|s, a) = f̂(s′, s, a)

ĝ(s, a)

P−−−→T (s′|s, a).

A similar argument can be used to establish the asymptotic convergence in probability for the CKDE
of PπD(s

′, a′|s, a).

14



CKIL

Figure 2: Plots for CKIL agent in a discretized MountainCar environment for a varying number
of trajectories (a) Empirical KL divergence (lower values indicate better performance) (b) Average
rewards attained (higher values indicate better performance).

Appendix C. Discrete Spaces

We discuss kernel density estimation methods for estimating the two conditional densities PπD and
T for the discrete state and action space setting, where the estimation process is intuitive. When
both the state and action spaces are discrete, the estimates P̂ and T̂ can be calculated as:

T̂ (s′|s, a) := η(s, a, s′)

η(s, a)
, and P̂ (s′, a′|s, a) := η(s, a, s′, a′)

η(s, a)
(15)

, where η denotes the counting measure, i.e., the number of times a given tuple or sequence appears
in the dataset D. If the counting measure in the denominator is zero, we will consider the conditional
density to be uniform.
Results. The policy representation and associated hyperparameters are detailed in Appendices E
and F respectively. While we are focused primarily on continuous state-space settings requiring
estimation of conditional densities, we illustrate the effectiveness of our general approach in a dis-
crete state-space problem. Our comparison evaluates the performance of CKIL against Behavior
Cloning and an agent that selects random actions at each visited state. We consider the discretized
MountainCar problem [36] as an example of a discrete state and action space environment. To that
end, we uniformly discretized the original continuous 2-dimensional state space of the Mountain-
Car environment into a grid configuration measuring 15 by 15. Subsequently, we estimate P̂ and
T̂ using equation (15). The dataset D is generated using an ϵ-perturbation of the policy outlined in
[55], with ϵ = 0.05. We begin with one trajectory in D and increase to 15 trajectories, with obser-
vations summarized in Figure 2. The KL-divergence plot indicates increasing alignment between
agent and expert policies with growing training dataset sizes. As the amount of data increases, the
CKIL agent’s performance improves, achieving expert-level proficiency with 15 trajectories and
consistently outperforming Behavioral Cloning across various scenarios.

15



CKIL

Appendix D. Environments and Data Collection

The environments representing a wide spectrum of complexities commonly encountered in rein-
forcement learning sourced from OpenAI Gym [6] include the MountainCar environment [36], Cart-
Pole [4], Acrobot [49], and LunarLander [24]. To generate demonstration datasets D, we leverage
pre-trained and hyperparameter-optimized agents available in the RL Baselines Zoo [40]. Specifi-
cally, we employ a PPO agent for LunarLander-v2, a DQN agent for CartPole-v1, and an A2C agent
for Acrobot-v1.

Appendix E. Policy implementation and choice of Kernels

Implementation. The policy πθ in (6) is embodied by a neural network (NN) architecture. This
NN comprises two hidden layers featuring the Rectified Linear Unit (ReLU) activation function.
The final layer employs a softmax function to produce a probability distribution over actions when
given a state as an input. To facilitate comparison, all benchmarks adopt a common neural network
architecture consisting of two hidden layers comprising 64 units each, with Exponential Linear
Unit (ELU) activation functions, unless otherwise stated in Appendix G. Training is carried out
using the Adam optimizer [21] with individually tuned learning rates. The implementation details,
including hyperparameters of CKIL and benchmark algorithms, can be found in Appendices F, G,
respectively.
Choice of Kernel. We use the Gaussian kernel due to its ability to uniformly approximate any con-
tinuous target function on a compact subset [34] which is particularly helpful in density estimation.
A standard multivariate Gaussian kernel function for m dimensions is given as:

K(x) := (2π)−
m
2 exp

(
−xTx

2

)
.

We consider a Euclidean distance metric for d1, d2, and d3 and utilize a diagonal bandwidth
matrix with the same values across its diagonal elements. These matrices can then be denoted as
Hi = hiImi , where mi is the corresponding appropriate dimension for i = 1, 2, 3. Each hi was
tuned slightly but the conclusions of our experimental results are not very sensitive to this choice.
We want to emphasize that in prior research [1, 32, 44, 47], approaches for systematically selecting
bandwidth parameters, which should decrease as the dataset grows, have been developed. These
methods can be applied to more intricate problems where manual tuning is impractical. Specific
values of hi employed for various experiments are detailed in Appendix F.

Appendix F. Hyperparameters for CKIL

We report the hyperparameters used for CKIL. For discrete case, since number of states and number
of actions are both finite, instead of using a parameterized policy, we defined a policy for each states
and learnt it via optimizing the objective in (8). We used a learning rate of 0.5 for the same. We set
λ = 0.001.

For continuous case, we adopted a neural network architecture for learning the policy. This neu-
ral network consisted of 2 hidden layers with 64 nodes followed by 32 nodes. Final layer consisted
of a Softmax function to output the policy when a state was provided as an input. We used Adam
optimizer and a learning rate of 0.01. We use the same value for bandwidth parameters h1 and h2.

16



CKIL

Environment
Trajectories (τ) Acrobot-v1 CartPole-v1 LunarLander-v2

τ = 1 0.1 0.01 0.009

τ = 3 0.05 0.005 0.005

τ = 7 0.01 0.001 0.0005

τ = 10 0.008 0.0008 0.00008

τ = 15 0.005 0.0001 0.00005

Table 1: h1 values used for CKIL on different environments for varying number of trajectories
during training.

Let m1 be the dimension of a state s, we then take the value of h3 as h3 = h
m1+1
m1

1 . We report the
values of bandwidth parameter h1 in Table 1. We set λ = 0.001.

Appendix G. Benchmark Algorithms and Hyperparameters

Baseline Algorithms. We compare the performance of our CKIL algorithm (Algorithm 1), with
a range of offline IRL/IL/AIL baselines, including several recent state-of-the-art algorithms. This
comprehensive assessment covers a spectrum of methodologies, including the inherently offline
Behavioral Cloning (BC); ValueDICE (VDICE), a sample-efficient AIL approach designed for of-
fline scenarios by removing replay regularization; reward-regularized classification (RCAL), a large
margin classification approach, which introduces a sparsity-based penalty on inferred rewards to
exploit dynamics information; Energy-based Distribution Matching (EDM), an offline imitation
learning algorithm that captures the expert’s state occupancy patterns through explicit training of
an energy-based model; AVRIL, a recent model-free offline IRL technique employing a variational
approach to simultaneously learn an approximate posterior distribution over rewards and policies;
and Deep Successor Feature Network (DSFN), an offline adaptation of the max-margin IRL algo-
rithm that transcends linear approaches by introducing a deep network architecture and employing
least-squares temporal-difference learning to produce both reward and policy outputs. Furthermore,
we compare against IQ-Learn, a state-of-the-art model-free offline IRL algorithm.
Implementation details. In the case of VDICE, we used the open-sourced code provided at [26].
It is worth noting that, for VDICE, offline learning is achieved by configuring the “replay regular-
ization” coefficient to zero. Our execution of EDM leveraged the source code accessible at [18].
It is essential to highlight that the contrast between BC and EDM predominantly stems from the
introduction of Lρ, an occupancy loss defined in the EDM work, while deriving the RCAL loss
is a straightforward process involving the inversion of the Bellman equation. As for AVRIL and
DSFN, the applicable source codes are accessible at [8], [28] respectively. Similarly, for IQ-Learn,
we utilised the source code available at [14].

We consider the hyperparameters associated with various benchmarks, as outlined in [17]. To
ensure comprehensiveness, we present them herein. When feasible, the policies trained by all im-
itation algorithms utilize an identical policy network structure, comprising of two fully connected
hidden layers, each containing 64 units with ELU activation function. Across all environments, we
adopt the Adam optimizer with a batch size of 64, conducting 10, 000 iterations, and employing

17



CKIL

a learning rate of 1e − 3. With the exception of the explicit standardization of policy networks
among imitation algorithms, all comparators are realized using the unaltered publicly accessible
source code. When relevant, we employ the optimal hyperparameters as indicated in the original
implementations.

G.1. VDICE

We employ the publicly accessible source code from https://github.com/google-resea
rch/google-research/tree/master/value_dice. To accommodate discrete action
spaces, we incorporate a Gumbel-softmax parameterization for the final layer of the actor network.
Both the actor and discriminator architecture encompass two fully connected hidden layers, each
composed of 64 units activated by ReLU functions. Consistent with the original framework, the
output is merged with the action and propagated through two additional hidden layers, each con-
taining 64 units. In addition, we set the ”replay regularization” coefficient at zero for strict batch
learning. Furthermore, the actor network is subjected to ”orthogonal regularization” with a coeffi-
cient of 1e-4. The actor network’s learning rate is set at 1e-5, while the discriminator operates with
a learning rate of 1e-3.

G.2. RCAL

This introduces an expansion of the policy loss by incorporating an extra sparsity-driven loss con-
cerning the inferred rewards R̂(s, a), defined as fθ(s)[a]− γsoftmaxa′fθ(s

′)[a′], acquired through
the inversion of the Bellman equation. The policy network employed is the fully-connected type
detailed previously. The coefficient for sparsity-based regularization is designated as 1e-2.

G.3. EDM

We utilize the code accessible at https://github.com/vanderschaarlab/mlforhe
althlabpub/tree/main/alg/edm. Particularly for EDM, the hyperparameters for joint
Energy-Based Model (EBM) training are adopted from https://github.com/wgrathwoh
l/JEM. These parameters include a noise coefficient of σ = 0.01, a buffer size of κ = 10000, a
length of ι = 20, and a reinitialization value of δ = 0.05. These predefined configurations align
effectively with the SGLD (Stochastic Gradient Langevin Dynamics) step size of α = 0.01.

G.4. BC

The sole distinction between Behavior Cloning (BC) and EDM lies in the inclusion of Lρ, which is
omitted in the implementation of BC. The policy network remains consistent with the description
provided earlier.

G.5. AVRIL

We use the code available at https://github.com/XanderJC/scalable-birl. The
policy network remains consistent with the description provided earlier. γ, used while computing
the TD error, equals 1. We used the default parameters provided in their GitHub repository.

18

https://github.com/google-research/google-research/tree/master/value_dice
https://github.com/google-research/google-research/tree/master/value_dice
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/edm
https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/edm
https://github.com/wgrathwohl/JEM
https://github.com/wgrathwohl/JEM
https://github.com/XanderJC/scalable-birl


CKIL

G.6. DSFN

We adopt the source code accessible at https://github.com/dtak/batch-apprentic
eship-learning. We utilize a ”warm-start” policy network consisting of two shared layers with
dimensions 128 and 64, employing tanh activation. The hidden layer with a size of 64 serves as the
feature map within the IRL algorithm. Each multitask head within the warm-start policy network
features a hidden layer comprising 128 units and is activated by tanh. The Deep Q-Network (DQN),
utilized for learning the optimal policy based on a set of reward weights, comprises two fully-
connected layers, each containing 64 units. Similarly, the DSFN, employed for estimating feature
expectations, comprises two hidden fully-connected layers, each containing 64 units. Across all
environments, the warm-start policy network undergoes training for 50, 000 steps, employing the
Adam optimizer with a learning rate of 3e-4 and a batch size of 64. The DQN network is trained for
30, 000 steps, using a learning rate of 3e-4 and a batch size of 64 (with the Adam optimizer). Lastly,
the DSFN network is trained for 50, 000 iterations, utilizing a learning rate of 3e-4 and a batch size
of 32 (with the Adam optimizer).

G.7. IQ-LEARN

We use the code available at https://github.com/Div99/IQ-Learn. The policy network
remains consistent with the description provided earlier. As highlighted in their implementation, we
use a batch size of 32 and Q-network learning rate of 1e-4 with entropy coefficient of 0.01.

All experiments involving CKIL and benchmarks were conducted on an M2 MacBook Air ma-
chine equipped with 16 GB of RAM and a 512 GB SSD.

Appendix H. Ablation Study

In this section, we present the evaluation of CKIL’s performance under various ablations.

(a) Acrobot (b) CartPole (c) LunarLander

Figure 3: Average rewards achieved by CKIL agent when trained using different λ values during
real-time deployment plotted against the number of trajectories included in demonstration dataset
D (higher values indicate better performance).

H.1. Varying λ for entropy regularization

Figure 3 shows the average cumulative reward on the considered gym environments as a function of
different λ values. We observe that when the data is very scarce (eg. 1 trajectory), having a higher

19

https://github.com/dtak/batch-apprenticeship-learning
https://github.com/dtak/batch-apprenticeship-learning
https://github.com/Div99/IQ-Learn


CKIL

λ value helps as we are less certain about which action is best to take in a given state. Conversely,
we observe that having a higher λ performs poorly in comparison to lower λ values with increased
data.

H.2. Varying learning rate

Figure 4 shows the average cumulative reward on the considered gym environments as a function
of different learning rate lr values. We observe that the learning rate of 0.01 does well across tasks
where the variance in performance is low across different episodes for any given environment along
with a similar or better mean performances than other learning rate values.

(a) Acrobot (b) CartPole (c) LunarLander

Figure 4: Average rewards achieved by CKIL agent when trained using different learning rates
during real-time deployment plotted against the number of trajectories included in demonstration
dataset D (higher values indicate better performance).

H.3. Varying Neural Network Size

(a) Acrobot (b) CartPole (c) LunarLander

Figure 5: Average rewards achieved by CKIL agent when trained using different Neural Network
Architectures during real-time deployment plotted against the number of trajectories included in
demonstration dataset D (higher values indicate better performance).

Figure 5 shows the average cumulative reward on the considered gym environments as a function
of different Neural Network size values. The legend is in the form {a − b} or {a − b − c} where
a indicates the number of hidden layers, followed by number of hidden nodes in each layer, which

20



CKIL

Algorithm
Trajectories (τ) EDM IQ-Learn CKIL

τ = 1 −406.37± 340.03 5.12± 190.12 −0.81± 169.56

τ = 3 −299.21± 184.60 159.726± 120.18 202.73± 93.03

τ = 7 −240.38± 202.53 205.96± 99.68 239.78± 62.59

τ = 10 −38.36± 130.54 232.28± 87.66 245.41± 57.85

τ = 15 89.32± 101.45 242.32± 77.59 247.4± 58.82

Table 2: Performance of EDM, IQ-Learn, and CKIL in the presence of initial distribution shift
(higher values indicate better performance)

are denoted by b and c. For example, {1 − 64} represents a neural network with one hidden layer
containing 64 hidden nodes in it. Similarly, {2 − 64 − 32} represents a neural network with two
hidden layers, with 64 hidden nodes in the first layer followed by 32 hidden nodes in the second
hidden layer.

For all the environments, we observe that having 2 hidden layers provides good performance,
and the performance is not sensitive to the number of hidden nodes in the two hidden layers. Fur-
thermore, with one hidden layer, spread is very high in some cases. Therefore, we selected a neural
network with 2 hidden layers, containing 64 nodes in the first hidden layer and 32 nodes in the
second hidden layer for our gym experiments.

Appendix I. Discussion on Distribution Shift

In this work, we have discussed the task of imitation learning in a strictly batch setting. Specif-
ically, we assumed that only expert data was available, with no possibility for further interaction
with the environment. Another line of research in imitation learning aims to incentivize the imi-
tating policy to remain within the distribution of states encountered in expert demonstrations. This
research typically follows two approaches. The first approach assumes access to additional data
from a behavioral policy (which may be sub-optimal) along with the expert data. This additional
data is used to provide coverage, as expert data is generally narrow. Examples of this approach in-
clude methods like CLARE [58] and MILO [10]. The second approach involves techniques such as
assigning a unit reward to all demonstrated actions in demonstrated states and zero otherwise [41],
such as random expert distillation [54]. Generally, these methods follow a ”two-step” formula: first,
a surrogate reward function is derived or defined; second, this reward function is optimized through
environment interactions, making these techniques inherently online, rendering it inapplicable in
our strictly batch setting [31].

Nevertheless, we investigated the effects of an initial distribution shift in the LunarLander-v2
environment, drawing inspiration from the approach in [13]. Typically, the agent starts in a small
area at the center-top of the screen. However, we modified the environment so that the agent be-
gins near the top-left corner instead. Using expert data from the standard, unmodified environment,
we aimed to determine if the agent could still successfully learn to land the lunar module despite
the shift in its initial conditions during testing. For comparisons, we consider EDM and IQ-Learn
algorithms as these methods don’t rely on additional data or further interactions with the environ-
ment, thus utilizing the same setup as ours. The findings are reported in Table 2. As anticipated,

21



CKIL

all algorithms perform poorly when the available data is very scarce. However, as the amount of
data gradually increases, the CKIL agent demonstrates the ability to effectively land the lunar lander
despite the initial distribution shift, even with limited training data (approximately 10 trajectories).
Additionally, CKIL outperforms baseline algorithms like EDM and IQ-Learn under these condi-
tions. Our experimental results suggest that our algorithm handles the distribution shift problem
more effectively than the other baseline algorithms in the same setup.

22


	Introduction
	Preliminaries
	Conditional Kernel Imitation Learning
	Experimental Results
	Conclusions
	Other Related Work
	Theoretical Guarantees
	Discrete Spaces
	Environments and Data Collection
	Policy implementation and choice of Kernels
	Hyperparameters for CKIL
	Benchmark Algorithms and Hyperparameters
	VDICE
	RCAL
	EDM
	BC
	AVRIL
	DSFN
	IQ-LEARN

	Ablation Study
	Varying  for entropy regularization 
	Varying learning rate
	Varying Neural Network Size

	Discussion on Distribution Shift

