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Abstract

Relying on ensemble diversity strategies to improve adversarial robustness has been investi-
gated in several papers, but the gains provided by ensemble-based defenses remain limited
so far. In this work, we propose Adversarial Contrastive Network (ACN) ensembles as a
defense against white-box adversarial attacks which is based on a new ensemble diversity
strategy. It consists in projecting the output feature maps of the di�erent ensemble mod-
els in a shared latent space with a projection network and using contrastive learning to
diversify the feature representations learned by the di�erent models. The performance of
the proposed method is evaluated and compared to regular ensembles in terms of adversar-
ial robustness and ensemble diversity. Results obtained demonstrate superior adversarial
robustness for ACN ensembles against the Fast Gradient Sign Method attack and against
Projected Gradient Descent attacks using low distortion bounds. Lower transferability of
adversarial examples among individual models within ACN ensembles is also demonstrated,
suggesting that the proposed method helps achieve more diverse representations.

1 Introduction

The vulnerability of neural networks against adversarial attacks is well known and has been widely studied
over the years, especially in the context of image classification (Szegedy et al., 2014; Goodfellow et al., 2015).
In response, many defense mechanisms (e.g. adversarial defenses) have been developed to mitigate the e�ect
of adversarial attacks on the performance of neural networks. Several adversarial defenses proposed in the
literature are based on ensembles of neural networks (Pang et al., 2019; Verma & Swami, 2019; Sen et al.,
2020; Abbasi & Gagné, 2017; Yang et al., 2020; 2021). These defenses generally aim at improving robustness
to adversarial attacks by training ensembles of diverse models using diversity promotion strategies. They are
based on the assumption that diverse ensembles are more di�cult to fool compared to single networks given
that they require adversarial examples to fool multiple models exposing distinct decision behaviors. However,
current solutions have a limited level of performance, especially against white-box adversarial attacks. This
motivates the search for new strategies to promote ensemble diversity and adversarial robustness against
such attacks (Madry et al., 2018; Zhang et al., 2019).

In this work, we propose Adversarial Contrastive Network (ACN) ensembles, an ensemble-based adversarial
defense relying on a novel diversity-promoting strategy. Our approach is based on the findings of Ilyas
et al. (2019) concerning the fact that di�erent neural networks trained on a similar classification task are
likely to learn similar feature representations. Our goal with ACN ensembles is thus to diversify the feature
representations learned by the di�erent models forming an ensemble directly from their output feature maps
in order to improve the ensemble’s adversarial robustness against white-box attacks. For that purpose,
ACN ensembles are composed of regular ensembles to which a projection network connected to the output
feature maps of the models is added in parallel. While the ensemble is trained to maximize the classification
performance of the individual models, ensemble diversity is promoted through the projection network using
contrastive learning. Indeed, the projection network is trained with a custom contrastive loss function in order
to project the feature maps originating from the models in a shared latent space, where the representations
of similar feature maps (i.e., feature maps from images of the same true class label) originating from di�erent
models are grouped. This is done to align the representations learned by the di�erent models that are likely
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to be similar (Ilyas et al., 2019). A diversity loss based on the distance between the representations of similar
feature maps in the shared latent space is then computed and back-propagated in the ensemble models during
training to promote the learning of more diverse representations, which cannot be aligned by the projection
network. This way, aligning feature maps from the di�erent models should be progressively more di�cult to
achieve by the projection network. We expect this approach to force individual models to rely on di�erent
features to classify images of the same class.

We experimentally evaluate ACN ensembles in terms of adversarial robustness and ensemble diversity and
compare their performances with regular ensembles of neural networks. Adversarial robustness is measured
with popular white-box adversarial attacks such as Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD). Ensemble diversity is measured with a metric based on the transferability of
adversarial examples among individual models in the ensembles. This choice is motivated by the fact that
adversarial examples (i.e., images perturbed with adversarial attacks) tend to transfer better between models
using similar feature representations (Ilyas et al., 2019). Results obtained expose lower transferability among
individual models, suggesting better ensemble diversity and show better robustness against the FGSM attack
and PGD attacks of low distortion bounds for ACN ensembles compared to regular ensembles. This shows
the potential of ACN ensembles for improving adversarial robustness and as an ensemble diversity strategy.

2 Related Work

Some works on ensemble-based adversarial defenses focusing on ensemble diversity have been proposed, the
most relevant to the current work being Adaptive Diversity Promoting (ADP), Error Correcting Output

Codes (ECOC), Ensembles of Mixed Precision Deep Networks for Increased Robustness (EMPIR), Diversi-

fying Vulnerabilities for Enhanced Robust Generation of Ensembles (DVERGE) and Transferability Reduced

Ensemble via Promoting Gradient Diversity and Model Smoothness (TRS).

ADP is an adversarial defense relying on a specific loss to promote diversity (Pang et al., 2019). With this
method, the M ensemble models are trained with the following loss function:

L(x, y) = ≠– H(z(x)) ≠ — Vol2
1

{z\y

m
(x)}

2
+

Mÿ

m=1
LCE(zm(x), y),

where zm(x) is the m-th model probability vector output, z(x) is the ensemble probability output,
LCE(zm(x), y) is the cross-entropy loss of the m-th model, H(z(x)) is the Shannon entropy of the en-
semble, and – and — are hyperparameters. The middle term (i.e., Vol2(·)) is the volume spanned by the
probability vectors of the non-maximal predictions {z\y

m (x)}, which includes the probabilities for all classes
except that of class y. This term is introduced since its value can only increase if the vectors of non-maximal
predictions from the di�erent models are diversified. Consequently, this strategy aims at diversifying the
output probability vectors of the di�erent models while having a minimal impact on the ensemble’s accuracy
since the maximal predictions are excluded from the volume-based regularization term.

ECOC ensembles were initially proposed by Dietterich & Bakiri (1995) and later adopted as an adversarial
defense by Verma & Swami (2019). They are based on error correction methods used in digital communication
to control errors in data transmission over unreliable or noisy communication lines. For a classification

Table 1: Example of a codeword matrix for classifying over C = 4 classes using M = 10-bit class codewords.

Class Binary classifiers
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

C1 -1 -1 -1 +1 +1 -1 -1 -1 -1 +1
C2 +1 -1 -1 -1 -1 -1 +1 -1 +1 -1
C3 +1 -1 +1 +1 +1 -1 +1 +1 +1 -1
C4 -1 -1 +1 -1 +1 +1 -1 +1 -1 -1
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problem of C classes, ECOC ensembles are composed of M binary classifiers trained over di�erent subsets
of classes represented by the columns of a C ◊ M matrix, such as the example shown in Table 1. In such
a matrix, the rows represent the M -bit class codewords assigned to each class. At inference, the output
bits of the binary classifiers are concatenated to form codewords compared to the class codewords using the
Hamming distance to determine the inferred classes. ECOC ensembles have interesting robustness properties
when the matrix is carefully designed. For instance, if a minimal Hamming distance of ◊ is enforced between
any pairs of class codewords, the ensemble will be robust to wrong predictions of Â

◊≠1
2 Ê binary classifiers.

Moreover, ensemble diversity can be promoted by maximizing the column separation in the codeword matrix,
to diversify the subsets of classes the binary classifiers are trained on.

EMPIR is an adversarial defense proposed by Sen et al. (2020) and based on ensembles of Quantized
Neural Networks (i.e., networks storing weights and activations in variables of varying precisions). EMPIR
ensembles are composed of a network with 32-bit weights and activations, a network with 2-bit weights and
4-bit activations, and a network with 2-bit weights and activations. Final predictions are made according to
majority voting over the class predictions of each model. According to the authors, EMPIR ensembles are
less sensitive to adversarial perturbations.

DVERGE is an adversarial defense proposed by Yang et al. (2020) which is based on diversifying the
adversarial vulnerabilities of the di�erent neural networks in an ensemble. The authors proposed a new loss
function that maximizes the diversity of every pair of models based on their non-robust features using their
feature maps. Although DVERGE also uses the feature maps to diversify the ensembles, it is much di�erent
from our approach, which aims at diversifying the feature representations through contrastive learning with
a projection network.

TRS is an adversarial defense proposed by Yang et al. (2021) based on an extensive theoretical evaluation
of ensemble diversity and robustness. The authors found that enforcing model smoothness as well as gra-
dient orthogonality can help reduce the transferability of adversarial examples among the models within
an ensemble, and thus the adversarial robustness of the ensemble. They designed a new training objective
function based on these two conditions to train more diverse ensembles.

The ensemble-based defenses presented use di�erent strategies to promote ensemble diversity and adversarial
robustness. More recent work such as DVERGE and TRS achieve good results in terms of reducing adver-
sarial transferability of adversarial examples among ensemble models. However, their robustness against
white-box adversarial attacks is still limited, which motivates the research for new ensemble diversity strate-
gies to improve adversarial robustness to such attacks.

To the best of our knowledge, this marks one of the first instances where contrastive learning is employed
with ensembles of neural networks within the context of adversarial robustness. Previous studies on the
intersection of contrastive learning and adversarial robustness, with frameworks such as Robust Contrastive

Learning (RoCL) (Fan et al., 2021) and Adversarial Contrastive Learning (AdvCL) (Kim et al., 2020), have
focused on improving the robustness of self-supervised learning models trained with unlabeled data.

3 Methodology

In the following, we introduce ACN ensembles as a novel ensemble diversity strategy to improve adver-
sarial robustness. This di�ers from previous work on ensemble diversity by acting directly on the feature
representations of the models using a projection network and contrastive learning.

3.1 Architecture of ACN Ensembles

Fig. 1 presents the overall architecture of ACN ensembles in the context of image classification. As shown,
input images are classified with M models (i.e., neural networks). Each model in the ensemble is composed
of a set of feature extraction layers (i.e., fm) and a set of classification layers (i.e., gm). As shown in Fig. 1,
the feature map qm = fm(x) is extracted by the m-th model from the input image x, with zm = gm(qm)
being the corresponding output classification probability vector. The voting mechanism used to generate the
ensemble probability vector (i.e., ztot) is shown in the “Voting and prediction” block of Fig. 1. It consists
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Figure 1: Architecture of ACN ensembles. The ensemble is composed of M neural networks and a voting
mechanism for image classification. The neural networks are decomposed into two components: f repre-
senting the feature extraction layers and g representing the classification layers. A projection network H,
situated in parallel to the ensemble, consists of fully connected layers followed by a ReLU activation func-
tion. It is responsible for projecting the feature maps q at the output of the feature extractors into the
representations qÕ in the shared latent space. The neural networks are trained to minimize the classification
loss Lc represented in blue, and the projector is trained to minimize the contrastive loss Lcont represented
in green. The diversity loss Ldiv in red is calculated on the representations in the shared latent space and is
backpropagated in the feature extraction layers to diversify the features learned by di�erent models.

in a linear combination of the probability vectors (i.e., zm) of all models. This voting mechanism allows the
ensemble to be fully di�erentiable, allowing the generation of white-box adversarial examples (Tramèr et al.,
2020). Finally, the class prediction ŷ of an image x is determined according to the highest class probability
among the C classes of ztot. The models are trained with loss function Lc, shown in blue in Fig. 1 and
discussed further in Sec. 3.3.

The projection network H is operating in parallel to the ensemble. As shown in Fig. 1, a set of fully connected
layers process the output feature maps of the M feature extractors to project them in a shared latent space,
that is qÕ

m
= H(qm). Note that the feature maps are normalized to the unit hypersphere before being

processed by the projection network (Chen et al., 2020; Khosla et al., 2020). The goal of the projection
network is to represent the feature maps originating from the individual models in a new latent space where
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representations of similar feature maps are grouped and those of di�erent feature maps separated. We define
similar feature maps as those coming from di�erent models and images of the same class. As for the di�erent
feature maps, they are defined as those coming from di�erent models and images of di�erent classes. The
projection network is trained with a custom contrastive loss function Lcont, shown in green in Fig. 1 and
presented in Sec. 3.3.

3.2 Diversity Promotion

Explicit diversity promotion is required in order for the M models of an ensemble to learn di�erent feature
representations. Otherwise, di�erent neural networks trained on the same classification task tend to learn
similar feature representations leading to the models having similar adversarial vulnerabilities (Ilyas et al.,
2019; Pang et al., 2019). With ACN ensembles, the feature extraction layers of the M models are regular-
ized using the representations in the shared latent space defined by the projection network. We use these
representations to evaluate the similarity of the feature representations learned and to foster the learning of
di�erent features to classify images of the same class. This is inspired by the domain classifier network used
in Domain Adversarial Neural Networks (DANN) to promote the learning of domain invariant features in
neural networks (Ganin et al., 2016).

The inclusion of the projection network in ACN ensembles is justified by the fact that it enables us to
assess the similarity of the feature representations learned by the di�erent models. We assume that if the
projection network is able to project the feature maps of the di�erent models in a shared space where they
are grouped according to their true class labels, this is likely due to the fact that the models are relying on
similar feature representations. Therefore, to achieve more diverse representations, the feature extractors of
the M models are regularized during training such that it will become progressively more di�cult for the
projection network to correctly align their feature maps in the shared latent space. This is achieved through
a competition between the contrastive and diversity losses. The contrastive loss Lcont is minimized when
training the projection network to align the representations of similar feature maps. Conversely, the diversity
loss Ldiv, shown in red in Fig. 1, aims at separating similar feature maps in the shared latent space, thus
acting in opposition to the alignment task of the contrastive loss with the projection network. While the
contrastive loss is used to directly train the projection network, the diversity loss is backpropagated into the
feature extractors of the individual models, acting as a regularization factor for the classification loss.

Algorithm 1 Training algorithm of ACN ensembles
Inputs: Batch size N , number of models M , epochs E, feature extractors f1,...,M , classifiers g1,...,M ,
projection network H, hyperparameters ⁄, –1 and –2, training data X and corresponding labels Y

for epoch e = 1, . . . , E do

for all mini-batches X̄ µ X do

q(i)
m = fm(xi), m = 1, . . . , M, ’x(i)

œ X̄ Û Extract the output feature maps
z(i)

m = gm(q(i)
m ), m = 1, . . . , M, ’x(i)

œ X̄ Û Classification probability vectors
qÕ(i)

m = H(q(i)
m ), m = 1, . . . , M, ’x(i)

œ X̄ Û Representations in the shared latent space
Û Compute Lc, Lcont, Ldiv (Eq. 1, 2 and 3)
Û Update parameters with gradient descent
◊gm

Ω ◊gm
≠ –1

ˆLc

ˆ◊gm

, m = 1, . . . , M Û Classification layers with Lc

◊fm
Ω ◊fm

≠ –1
1

ˆLc

ˆ◊fm

+ ⁄
ˆLdiv

ˆ◊fm

2
, m = 1, . . . , M Û Feature extractors with Lc and Ldiv

◊H Ω ◊H ≠ –2
ˆLcont

ˆ◊H

Û Projection network with Lcont

end for

end for
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3.3 Training of ACN Ensembles

The ACN training procedure is shown in Algorithm 1. It begins by processing a mini-batch set X̄ and
corresponding labels Ȳ sampled from the complete training set X with labels Y. The images of the mini-
batch are first passed through the M models and the projection network to obtain the feature maps, their
classification probability vectors and their representations in the shared latent space. Then, the three losses
Lc, Lcont, and Ldiv are computed over the mini-batch samples to update the weights of the feature extractors,
classifiers and projection network. This process is repeated for all mini-batches over the E epochs.

Loss function Lc is used to simultaneously train the M models of the ensemble on the classification task:

Lc(◊f , ◊g, X̄ , Ȳ) = 1
|X̄ |M

ÿ

x(i)œX̄

Mÿ

m=1
LCE(◊fm

, ◊gm
, z(i)

m
, y

(i)), (1)

where LCE is the cross-entropy loss of the m-th model. As the individual cross-entropy losses are summed,
this training method is similar to training each model independently since each model has its own independent
set of parameters (Pang et al., 2019). Simultaneous training is important for the proposed method because
it allows the ensemble to be regularized based on the interactions between the models during training (Islam
et al., 2003).

The projection network H is trained with contrastive learning. This type of learning is typically used to
learn data representations in a new latent space based on the contrast between representations of similar
and dissimilar data (Chen et al., 2020). A contrastive network is usually composed of fully connected layers
connected to the feature extraction layers of a neural network and it generates vector representations of the
images in the new latent space (Chen et al., 2020; Khosla et al., 2020). In addition, both feature extraction
layers and the contrastive network are usually trained with a contrastive loss function to maximize the
alignment of the representations of similar data in the new latent space. Inspired by previous contrastive
learning works (Sen et al., 2020; Khosla et al., 2020), the projection network H in ACN ensembles generates
vector representations of the feature maps extracted from the di�erent models in what we define as the
shared latent space. It is trained with the objective of grouping together representations of similar images
(same ground truth labels) and separating representations of di�erent images (di�erent ground truth labels)
using the following contrastive loss:

Lcont(◊H , X̄ , Ȳ) = 1
|X̄ |M

ÿ

x(i)œX̄

Mÿ

m=1

≠1
|Q

Õ(i)
\m

|

ÿ

pœQÕ(i)
\m

log exp(sim(qÕ(i)
m , p)/·)

q
aœ{AÕ(i)

\m
fi p} exp(sim(qÕ(i)

m , a)/·)
, (2)

where sim(·) is the cosine similarity, the metric used to measure the distance between representation pairs
in the shared latent space, and · is the temperature parameter used for calibration (Guo et al., 2017). Let
us define Q

Õ
m

= {qÕ(i)
m | x(i)

œ X̄ } as the set of representations in the shared latent space of the feature
maps corresponding to the instances x(i)

œ X̄ and originating from the m-th model. We then define set
Q

Õ(i)
\m

= {qÕ(j)
l

œ Q
Õ
l
, ’l ”= m | y

(j) = y
(i)

}, which consists of the representations in the shared latent space of
the feature maps corresponding to the mini-batch instances x(j) having the same ground truth label as x(i)

and originating from all models other than m. We also define set A
Õ(i)
\m

= {qÕ(j)
l

œ Q
Õ
l
, ’l ”= m | y

(j)
”= y

(i)
} as

the representations in the shared latent space of the feature maps corresponding to the mini-batch instances
originating from all models other than m and having ground truth labels which di�er from that of x(i). With
this formulation of Lcont, the cosine similarity between pairs of representations of similar feature maps is
maximized and the cosine similarity between pairs of representations of di�erent feature maps is minimized
in the shared latent space. Note that the sum at the denominator of Eq. 2 follows a similar form as the
SimCLR loss introduced by Chen et al. (2020). The e�ect of the contrastive loss is shown in Fig. 2(a).

The final loss function used for ACN ensembles training is the diversity loss Ldiv. This loss function defined
as

Ldiv(◊f , X̄ , Ȳ) = 1
|X̄ |M

ÿ

x(i)œX̄

Mÿ

m=1

1
|Q

Õ(i)
\m

|

ÿ

pœQÕ(i)
\m

sim(qÕ(i)
m

, p), (3)
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is used to regularize the feature extraction layers of the models and diversify their feature representations. In
the equation, set Q

Õ(i)
\m

is the same set defined earlier for Eq. 2, containing the representations in the shared
latent space of the feature maps corresponding to the mini-batch instances x(j) having the same ground
truth label as x(i) and originating from all models other than m. Loss Ldiv corresponds to the average
cosine similarity between all pairs of similar representations in the shared latent space. The parameters
of the feature extractors are updated with backpropagation in a way that minimizes Ldiv, to promote the
separation of the similar representations in the shared latent space.

Since these representations are from feature maps originating from di�erent models and from images with
the same true class labels, this regularization of the feature extractors will promote the diversification of their
representations by forcing them to use more diverse features to classify images of the same class. Fig. 2(b)
helps visualize the e�ect of the diversification loss on the representations in the shared latent space. It will
also make the training of the projection network progressively more di�cult since Ldiv is antagonistic to
Lcont. Ultimately, the goal is attained if the regularization with the diversity loss leads to an increase of
Lcont, meaning that the feature representations are diversified and the projection network can no longer
group the similar feature maps originating from di�erent models in the shard latent space.

6KDUHG�/DWHQW�6SDFH
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(a) Contrastive Loss (Lcont)

6KDUHG�/DWHQW�6SDFH

)HDWXUH�([WUDFWLRQ�/D\HUV

3URMHFWLRQ�1HWZRUN

(b) Diversity Loss (Ldiv)

Figure 2: High level visualization of the impact of Lcont and Ldiv on the representations qÕ in the shared
latent space. In this example, we assume an ACN ensemble composed of M = 3 models. Therefore, each
input image x(i) has 3 feature maps q(i)

m and 3 corresponding representations qÕ(i)
m generated at the output

of the projection network. As shown in (a), the contrastive loss impacts only the projection network during
the training and its goal is to gather the representations qÕ coming from di�erent models and from images
of the same class (e.g. qÕ(3)

1 and qÕ(3)
3 ). The e�ect of the diversity loss is shown in (b). It impacts the feature

extraction layers and its goal is to separate the representations of images of the same class and coming from
di�erent models (e.g. qÕ(1)

2 and qÕ(1)
1 ). The representations of images of the same class and coming from the

same model like qÕ(1)
2 and qÕ(1)

1 are not separated in (b) because we assume the model should extract similar
features for such images.
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The gradient descent update equations for all components (◊gm
, ◊fm

and ◊H) are shown at the bottom of
Algorithm 1. The weights of the classification layers are updated to minimize the loss Lc and the weights of
the projection network are updated to minimize the loss Lcont. The weights of the feature extraction layers
are updated to minimize both Lc and Ldiv in order to extract meaningful and diverse features to achieve good
accuracy and ensemble diversity. Parameters –1 and –2 in the update equations correspond to the ensemble
and projection network learning rates, respectively. Finally, ⁄ is the diversification parameter, allowing
the weight of Ldiv to be controlled in the update of the parameters of the feature extraction layers. This
parameter will be optimized in the experiment since a value which is too high could prevent the projection
network from learning proper mappings in the shared latent space.

4 Experiments

We conducted several experiments to demonstrate the proper functioning of the proposed method and
to show the improvements in robustness and ensemble diversity for ACN ensembles compared to regular
ensembles of neural networks. The experiments are performed with the Fashion-MNIST (Xiao et al., 2017)
and CIFAR10 (Krizhevsky & Hinton, 2009) datasets. ACN ensembles trained on Fashion-MNIST consist
of three (M = 3) ResNet20 (He et al., 2016) and a projection network composed of three fully connected
layers of size 64, 64 and 32, each followed by ReLU activations. Each feature extractor is thus composed of
the input convolutional layer and the residual blocks over which the classification is carried out by a fully
connected layer of size 64. The ACN ensembles trained on CIFAR10 consist of three (M = 3) ResNet18 (He
et al., 2016) and a projection network composed of three fully connected layers of size 512, 256 and 64, each
followed by ReLU activations. The feature extractors and classifiers have similar architectures to the ACN
ensembles trained on Fashion-MNIST, except that the feature maps extracted by the ResNet18 are of size
512 instead of 64. The baseline ensembles consist of three ResNet20 for Fashion-MNIST and three Resnet18
for CIFAR10. They are trained simultaneously with the loss function in Eq. 1. Preliminary experiments
were conducted to compare the performance of di�erent architectures and motivate the choices made (see
Appendix A for more details).

In the experiments, unless stated otherwise, the ensembles are trained over 1000 epochs with a mini-batch
size of N = 100, learning rates of –1 and –2 set to 0.001 and a temperature parameter · of 0.07. These
parameters were selected to optimize the classification and robustness performances. Also, 1000 images
from the training data are randomly selected and set aside during training to evaluate the performance
in validation. Furthermore, 2000 images randomly sampled from the test dataset are used to measure the
performance in test after training.

4.1 Projection Network

The goal of this experiment is to show that the contrastive loss function proposed in Eq. 2 is e�ective for
training the projection network. That is, it allows the projection network to learn to project the feature maps
coming from the di�erent models into the shared latent space, as described in Sec. 3.1. For that purpose, the
dimensionality reduction method t-SNE (van der Maaten & Hinton, 2008) is used to visualize the feature
maps (i.e., q) at the output of the feature extractors and their representations in the shared latent space (i.e.,
qÕ) at the output of the projection network. For this experiment, the diversity loss Ldiv is disabled during
training of the ACN ensemble to allow the projection network and the ensemble to be trained independently,
without diversity promotion.

The results are shown in Fig. 3, where we can see on the left the feature maps at the output of the feature
extractors and on the right their representations in the shared latent space generated by the projection
network. We observe in Fig. 3(a) that the feature maps are grouped by true class labels (marker color)
as well as by feature extractor of origin (marker type). This results in 3 main groups for the 3 feature
extractors in the ACN ensemble, each composed of 10 clusters for the 10 classes. In contrast, we observe
in Fig. 3(b) that the representations originating from di�erent feature extractors (di�erent marker types)
and from images of the same class (same color) are grouped in clusters. Although the clusters for the 10
classes are not perfectly grouped in Fig. 3(b), we can see that the projection network managed to align
the feature representations originating from di�erent feature extractors and images of the same true class
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(a) Feature maps (q) (b) Representations in the shared latent space (qÕ)

Figure 3: t-SNE visualization of 2000 feature maps q at the output of the feature extractors and their
corresponding representations qÕ in the shared latent space generated by the projection network. The marker
color represents the true class label and the marker type the model from which the feature maps and the
representations are originating. The ACN ensemble is trained on CIFAR10 for 50 epochs since the contrastive
loss Lcont becomes stable after this point.

label pretty well compared to their original representations in Fig. 3(a). This shows that the proposed
contrastive loss works as intended for training the projection network. This experiment was also performed
with Fashion-MNIST (see Appendix B).

4.1.1 Robustness

We now aim at demonstrating experimentally that ACN ensembles can support the learning of more diverse
features, which in turn improves robustness to adversarial attacks in comparison to baseline ensembles. In
this section, we assess the robustness of ACN ensembles compared to the baseline ensembles. Non-targeted
white-box adversarial attacks are used to evaluate robustness, which is measured as the accuracy of the
ensembles against the generated adversarial examples. The attacks used are FGSM and PGD from the
CleverHans V4.0.0 library (Papernot et al., 2018) and the adversarial perturbations are bounded by an ¸Œ
norm of 0.1 for Fashion-MNIST and 0.031 for CIFAR10. PGD attacks are performed with 20 iterations and
a gradient step of ¸Œ

3 .

As mentioned in sec. 3.3, the parameter ⁄ controls the weight of the diversification loss when updating the
parameters of the feature extraction layers. Several ACN ensembles were trained on both datasets with
di�erent values of ⁄ to optimize this parameter and study its e�ect on robustness. The values 0.01, 0.02,
0.04 and 0.06 were tested with Fashion-MNIST and the values 0.025, 0.05, 0.075 and 0.1 were tested with
CIFAR10. ACN ensembles are henceforth labeled F-ACN⁄ and C-ACN⁄ according to the parameter ⁄ and
the dataset used (F for Fashion-MNIST and C for CIFAR10). The baseline ensembles are labeled F-Vanilla
and C-Vanilla.

Fig. 4 shows the robustness against the FGSM attack computed from the validation images at di�erent
epochs during training for the ACN and baseline ensembles. This figure shows that ACN ensembles can
be more robust to the FGSM attack than regular ensembles. It also shows the importance of tuning ⁄.
Indeed, we notice that increasing the value of ⁄ eventually leads to a drop in robustness. For instance, a
drop is observed in Fig. 4(a) between F-ACN0.02 and F-ACN0.04 and between C-ACN0.075 and C-ACN0.1 in
Fig. 4(b). This is probably due to the diversity loss having too much importance in the training of the feature
extractors, which causes a rapid increase in the contrastive loss indicating that the projection network is
rapidly fooled and unable to properly map the feature maps and adapt to the changes in the features learned
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(a) Fashion-MNIST (b) CIFAR10

Figure 4: Robustness against FGSM at di�erent epochs during training for the baseline and di�erent ACN
ensembles trained on Fashion-MNIST and CIFAR10. Robustness is evaluated every 10 epochs with the
validation set.

Table 2: Test accuracy and robustness against FGSM and PGD attacks for ACN ensembles trained on
Fashion-MNIST and CIFAR10 compared to the baseline ensembles. Adversarial examples are generated
from the test images and the perturbations are bounded by a ¸Œ norm of 0.1 for Fashion-MNIST and 0.031
for CIFAR10.

Model Clean Accuracy (%) Robustness (%)
Ensemble Net 1 Net 2 Net 3 FGSM PGD

F-Vanilla 95.0 94.2 94.5 94.1 31.0 0.0
F-ACN0.02 95.8 95.5 94.8 95.1 40.6 0.2
C-Vanilla 95.7 94.3 94.05 93.9 32.8 8.6
C-ACN0.075 94.5 93.1 93.6 93.2 52.2 6.9

(See Appendix C for more details). F-ACN0.02 and C-ACN0.075 will be used in the next experiments since
they are the most robust ACN ensembles against the FGSM attack in Fig. 4.

In Table 2, F-ACN0.02 and C-ACN0.075 are compared to F-Vanilla and C-Vanilla in terms of test accuracy
on clean images and robustness against di�erent adversarial attacks. The ensembles used to generate the
results were selected at the training epoch where their validation FGSM robustness is the highest to promote
their individual robustness. Looking at the results in Table 2, we notice that ACN ensembles have similar
accuracy scores as the baselines, which shows that the proposed diversification strategy does not a�ect
classification performances. In terms of robustness against FGSM, the results show increases of about 10%
for F-ACN0.02 and about 20% for C-ACN0.075 compared to the baselines. This shows the superiority of ACN
ensembles against the FGSM attack. Nevertheless, the results in Table 2 are not as conclusive for PGD, as
the robustness of all ensembles against this attack remain low.

To further investigate robustness against the PGD attack, Tables 3 and 4 show the robustness of the ensembles
against this attack when the adversarial perturbations are bounded by di�erent ¸Œ norms. We observe in
Table 3 that C-ACN0.075 has a robustness of 39.65% against PGD bounded by a ¸Œ norm of 0.01 while the
robustness of C-Vanilla against this attack is only 16.9%. Similarly, the robustness of F-ACN0.02 against
PGD bounded by a ¸Œ norm of 0.03 in Table 4 is 25.7% while that of F-Vanilla is only 9.7%. These results
demonstrate the superiority of ACN ensembles in terms of adversarial robustness against PGD attacks
bounded by small ¸Œ norms.

10
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Table 3: Test Robustness of an ACN ensemble and a baseline ensemble trained on CIFAR10 against PGD
attacks bounded by di�erent ¸Œ norms.

Model PGD Robustness (%)
¸Œ = 0.031 ¸Œ = 0.02 ¸Œ = 0.01

C-Vanilla 8.6 11.8 16.9
C-ACN0.075 6.9 15.7 39.65

Table 4: Test Robustness of an ACN ensemble and a baseline ensemble trained on Fashion-MNIST against
PGD attacks bounded by di�erent ¸Œ norms.

Model PGD Robustness (%)
¸Œ = 0.1 ¸Œ = 0.06 ¸Œ = 0.03

F-Vanilla 0.0 0.2 9.7
F-ACN0.02 0.2 2.5 25.7

4.1.2 Diversity

In this section, we assess ensemble diversity in ACN ensembles. The notion of ensemble diversity is generally
based on the assumption that di�erent neural networks commit errors on di�erent data points (Kuncheva,
2004). For this reason, many ensemble architectures are composed of weaker neural networks, to promote
diversity in their output predictions (Kuncheva, 2004; Alpaydin, 2010). In our case, ACN ensembles are
composed of high-performance models (cf. individual accuracy scores in Table 2). Consequently, traditional
ensemble diversity metrics based on output probabilities are not appropriate for measuring ensemble diversity.

To measure diversity, we decided to use a metric based on the transferability of adversarial examples among
individual ensemble models. Our working assumption is that the transferability of adversarial examples
should be lower between neural networks using more diverse representations since it has been shown that
adversarial examples transfer better among models using similar features representations (Ilyas et al., 2019).
Therefore, to measure diversity in an ensemble of M neural networks, adversarial examples are generated on
each model and the robustness scores of the M ≠ 1 other models are evaluated against them. This results in
a total of M ◊ (M ≠ 1) robustness scores, named transfer robustness scores. Following our assumption, the
more diverse the neural networks are, the higher the transfer robustness scores should be because it would
mean that less adversarial examples transfer between them. We defined as average transfer robustness a
metric evaluating the ensemble diversity by averaging these M ◊ (M ≠ 1) transfer robustness values.

The results of the average transfer robustness for F-ACN0.02 and C-ACN0.075 in comparison to the baseline
ensembles are shown in Table 5. The ensembles used for generating these results are the same as in Table 2.
We notice that the average transfer robustness for F-ACN0.02 is 8% and 7.9% higher compared to F-Vanilla

Table 5: Average transfer robustness against FGSM and PGD attacks for ACN ensembles trained on Fashion-
MNIST and CIFAR10 compared to regular ensembles. Adversarial examples are bounded by a ¸Œ norm of
0.1 for Fashion-MNIST and 0.031 for CIFAR10.

Model Average Transfer Robustness (%)
FGSM PGD

F-Vanilla 32.3 15.4
F-ACN0.02 40.3 23.3
C-Vanilla 41.1 16.9
C-ACN0.075 58.2 24.0

11
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Table 6: Test accuracy and robustness against the FGSM and PGD attacks for an ACN ensemble and a
regular ensemble trained on CIFAR10 with adversarial training. The adversarial examples are generated
from the test images and the perturbations are bounded by a ¸Œ norm of 0.031.

Model Clean Accuracy (%) Robustness (%)
Ensemble Net 1 Net 2 Net 3 FGSM PGD

ADVT-Vanilla 84.9 81.8 82.9 81.8 59.5 45.8
ADVT-ACN0.2 84.3 82.2 82.5 82.7 63.8 45.4

against FGSM and PGD, respectively. For C-ACN0.075, these values are respectively 17.1% and 7.1% higher
than those of C-Vanilla. These results suggest that the individual models in ACN ensembles learn more
diverse representations, since their average transfer robustness is higher, meaning that the transferability of
adversarial examples among the models is lower than for the baseline ensembles.

5 Adversarial Training

In this last experiment, we evaluate the combination of the proposed method with adversarial training, which
is considered one of the most e�ective adversarial defenses (Croce & Hein, 2020; Rice et al., 2020; Cohen
et al., 2019). The adversarial training method used in this experiment is based on the approach described
by Madry et al. (2018) that we adapted for ensembles of neural networks. That is, at every epoch during
training, adversarial examples are generated for each individual model from the images in the mini-batch.
The images generated for each model are then used to compute their individual cross-entropy loss, which
are then used to determine the ensemble loss with Eq. 1. The PGD attack is used during training with an
¸Œ norm of 0.031, 5 steps and a step size of ¸Œ

3 .

The results for the ACN ensemble (ADVT-ACN0.2) and the baseline ensemble (ADVT-Vanilla) combined
with adversarial training are shown in Table 6. We observe that ACN ensembles can be combined with
adversarial training without a�ecting the classification performances, as both models have similar accuracy
scores. In terms of robustness, we observe an increase of about 4% against the FGSM attack for the
ACN ensemble and similar robustness scores for both ensembles against the PGD attack. These results
demonstrate that it is possible to combine ACN ensembles and adversarial training to further improve
robustness to white-box adversarial attacks compared to regular ACN ensembles. However, the robustness
gains compared to a regular ensemble with adversarial training are limited to the FGSM attack.

6 Limitations

To the best of our knowledge, we are the first to propose an ensemble-based adversarial defense improving
ensemble diversity and robustness using a projection network and contrastive learning in a shared latent
space. However, we are aware of some limitations with the proposed method such as the limited robustness
against strong adversarial attacks such as PGD with regular distortion bounds (0.1 for Fashion-MNIST and
0.031 for CIFAR10) and AutoAttack (see Appendix E). We are also aware that ACN ensembles show better
results on CIFAR10 than Fashion-MNIST (see Appendix B and D).

According to Ilyas et al. (2019), neural networks are likely to learn non-robust features. These features are
highly predictive and correlated with class labels, but also vulnerable to adversarial attacks. The robustness
improvements observed against weaker attacks such as FGSM and PGD with lower distortion bounds might
be an indication that non-robust features are diversified in ACN ensembles. This hypothesis is in line with the
results obtained in Yang et al. (2020) for DVERGE, an ensemble-based defense in which non-robust features
are diversified on purpose. Indeed, the ensemble robustness of the latter defense against strong white-box
attacks is also limited. The diversification of non-robust feature could also be a reason as to why ACN
ensembles perform better on a more complex dataset such as CIFAR10, which possibly contains more non-
robust features due to its greater complexity compared to Fashion-MNIST. However, further experimentation
with di�erent datasets are required to confirm the this hypothesis. Addressing those limitations in further
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work by improving the training method or testing with di�erent architectures could allow the proposed
method to compete against current state-of-the-art adversarial defenses by promoting the diversification of
more robust features.

7 Conclusion

We introduced ACN ensembles as an adversarial defense based on a novel feature diversification strategy1.
Our approach leverages notions of contrastive learning and adapts concepts previously used in domain
adaptation to diversify the feature representations learned by the di�erent models in an ensemble directly
from their feature maps.

We demonstrate experimentally that the proposed method is functional. Specifically, ACN ensembles are
compared to regular ensembles in terms of adversarial robustness against popular adversarial attacks and
ensemble diversity with a metric based on the transferability of adversarial examples among individual
models. The results demonstrate that ACN ensembles are more robust against the FGSM attack and PGD
attacks using low distortion bounds. They also show lower transferability of adversarial examples among
individual models in ACN ensembles, suggesting that the proposed method promotes the learning of more
diverse feature representations.
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