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ABSTRACT

While variational autoencoders have been successful in a variety of tasks, the use
of conventional Gaussian or Gaussian mixture priors are limited in their ability to
encode underlying structure of data in the latent representation. In this work, we
introduce an Encoded Prior Sliced Wasserstein AutoEncoder (EPSWAE) wherein
an additional prior-encoder network facilitates learns an embedding of the data
manifold which preserves topological and geometric properties of the data, thus
improving the structure of latent space. The autoencoder and prior-encoder net-
works are iteratively trained using the Sliced Wasserstein (SW) distance, which
efficiently measures the distance between two arbitrary sampleable distributions
without being constrained to a specific form as in the KL divergence, and without
requiring expensive adversarial training. To improve the representation, we use
(1) a structural consistency term in the loss that encourages isometry between fea-
ture space and latent space and (2) a nonlinear variant of the SW distance which
averages over random nonlinear shearing. The effectiveness of the learned man-
ifold encoding is best explored by traversing the latent space through interpola-
tions along geodesics which generate samples that lie on the manifold and hence
are advantageous compared to standard Euclidean interpolation. To this end, we
introduce a graph-based algorithm for interpolating along network-geodesics in
latent space by maximizing the density of samples along the path while minimiz-
ing total energy. We use the 3D-spiral data to show that the prior does indeed
encode the geometry underlying the data and to demonstrate the advantages of
the network-algorithm for interpolation. Additionally, we apply our framework to
MNIST, and CelebA datasets, and show that outlier generations, latent represen-
tations, and geodesic interpolations are comparable to the state of the art.

1 INTRODUCTION

Generative models have the potential to capture rich representations of data and use them to gen-
erate realistic outputs. In particular, Variational AutoEncoders (VAEs) (Kingma & Welling, 2014)
can capture important properties of high-dimensional data in their latent embeddings, and sample
from a prior distribution to generate realistic images. Whille VAEs have been very successful in a
variety of tasks, the use of a simplistic standard normal prior is known to cause problems such as
under-fitting and over-regularization, and fails to use the network’s entire modeling capacity (Burda
et al., 2016). Gaussian or Gaussian mixture model (GMM) priors are also limited in their ability to
represent geometric and topological properties of the underlying data manifold. High-dimensional
data can typically be modeled as lying on or near an embedded low-dimensional, nonlinear manifold
(Fefferman et al., 2016). Learning improved latent representations of this nonlinear manifold is an
important problem, for which a more flexible prior may be desirable.

Conventional variational inference uses Kullback-Leibler (KL) divergence as a measure of distance
between the posterior and the prior, restricting the prior distribution to cases that have tractable
approximations of the KL divergence. Many works such as Guo et al. (2020); Tomczak & Welling
(2018); Rezende & Mohamed (2015) etc. have investigated the use of more complicated priors
(notably GMMs) which lead to improved latent representation and generation compared to a single
Gaussion prior. Alternate approaches such as adversarial training learn arbitrary priors by using a
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discriminator network to compute a divergence (Wang et al., 2020), however they are reported to be
harder to train and are computationally expensive.

In this work, we introduce the Encoded Prior Sliced Wasserstein AutoEncoder (EPSWAE), which
consists of a conventional autoencoder architecture and an additional prior-encoder network that
learns an unconstrained prior distribution that encodes the geometry and topology of any data man-
ifold. We use a type of Sliced Wasserstein (SW) distance (Bonnotte, 2013; Bonneel et al., 2015), a
concept from optimal transport theory that is a simple and convenient alternative to the KL diver-
gence for any sampleable distributions. A Sliced Wasserstein AutoEncoder (SWAE) that regularizes
an autoencoder using SW distance was proposed in Kolouri et al. (2018a). Several works improve
the SW distance through additional optimizations (Deshpande et al., 2019; Chen et al., 2020b; Desh-
pande et al., 2018), and show improved generation, however involve additional training and use a
fixed (usually Gaussian) prior. Kolouri et al. (2019) presents a comparison between max-SW dis-
tance, polynomial generalized SW distances, and their combinations. In contrast, we use a simple
and efficient nonlinear shearing which requires no additional optimization.

Additionally, we introduce a structural consistency term that encourages the latent space to be iso-
metric to the feature space, which is typically measured at the output of the convolutional layers of
the data encoder. Variants of this penalty have previously been used to encourage isometry between
the latent space and data space (Yu et al., 2013; Benaim & Wolf, 2017; Sainburg et al., 2018). The
structural consistency term further encourages the prior to match the encoded data manifold by pre-
serving feature-isometry, which in turn is expected to assist with encoding the geometry of the data
manifold , thus leading to improved latent representations.

A key contribution of our work is the graph-based geodesic-interpolation algorithm. Conventionally,
VAEs use Euclidean interpolation between two points in latent space. However, since manifolds typ-
ically have curvature, this is an unintuitive distance metric that can lead to unrealistic intermediate
points. Our goal is to learn a true representation of the underlying data manifold, hence it is natural
to interpolate along the manifold geodesics in latent space. Several works such as Shao et al. (2018);
Miolane & Holmes (2020b) endow the latent space with a Riemannian geometry and measure cor-
responding distances, however these are difficult and involve explicitly solving expensive ordinary
differential equations. In this work, we introduce ‘network-geodesics’, a graph-based method for
interpolating along a manifold in latent space, that maximizes sample density along paths while
minimizing total energy. This involves first generating a distance graph between samples from the
prior. Then this network is non-uniformly thresholded such that the set of allowable paths from a
given sample traverse high density regions through short hops. Lastly, we use a shortest path al-
gorithm like Dijkstra’s algorithm (Dijkstra, 1959) to identify the lowest ‘energy’ path between two
samples through the allowable paths. Since the prior is trained to learn the data manifold, the result-
ing network-geodesic curves give a notion of distance on the manifold and can be used to generate
realistic interpolation points with relatively few prior samples.

The novel contributions of this work are:

• We introduce a novel architecture, EPSWAE, that consists of a prior-encoder network that is
efficiently trained (without expensive adversarial methods) to generate a prior that encodes
the geometric and topological properties of data.

• We introduce a novel graph-based method for interpolating along network-geodesics in
latent space through maximizing sample density while minimizing total energy. We show
that it generates natural interpolations through realistic images.

• Improvements to the latent space representation are obtained by using a structural consis-
tency term in the loss that encourages isometry between feature space and latent space and
by using a simple and efficient nonlinear variant of the SW distance.

2 BACKGROUND AND RELATED WORK

Several works have attempted to increase the complexity of the prior in order to obtain better latent
representations. Most data can mathematically be thought of as living on a high dimensional man-
ifold. In an image dataset, for instance, if images in high dimensional pixel space are effectively
parametrized using a small number of continuous variables, they will lie on or near a low dimen-
sional manifold (Lu et al., 1998). Many works such as Weinberger & Saul (2006); Rahimi et al.
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(2005) have investigated image and video manifolds. Encoding and exploiting the topological and
geometric properties of such data is a question of increasing interest.

Some representative works are Dilokthanakul et al. (2016) which shows improved unsupervised
clustering of latent space by using GMM priors, Takahashi et al. (2019) which uses the density ratio
trick to calculate the KL divergence using implicit priors, Rezende & Mohamed (2015), which maps
a Gaussian prior by a series of explicit transformations, Guo et al. (2020) which learns a GMM prior
using an approximate ELBO, Goyal et al. (2017) which uses a hierarchical Bayesian framework, and
VampPrior Tomczak & Welling (2018) which learns a two-layer hierarchical GMM from aggregated
posteriors. Yin & Zhou (2018); Molchanov et al. (2019); Liutkus et al. (2019) expand the variational
family to incorporate implicit variational distributions while providing exact theoretical support.

The KL divergence is tractable only for Gaussian distributions, however the Wasserstein distance of
1D projections (also called Sliced Wasserstein (SW) distance) has a closed-form for any arbitrary
distribution (Kolouri et al., 2018b). Wasserstein distances (Villani, 2003) have several of the same
properties as KL divergence, but often lead to better sampling (Gulrajani et al., 2017; Tolstikhin
et al., 2018), and have been used in several machine learning applications (e.g. Arjovsky et al.
(2017); Tolstikhin et al. (2018); Kolouri et al. (2018b)).

A Sliced Wasserstein AutoEncoder (SWAE) that regularizes an autoencoder using SW distance was
proposed in Kolouri et al. (2018a). There exist several variants of SW distance that have been suc-
cessful at improving generative ability - for example, Deshpande et al. (2018); Chen et al. (2020b)
train discriminator-like networks to perform nonlinear transformations (instead of purely linear pro-
jections) whereas Deshpande et al. (2019) introduces max-SW distance, which looks for the best
linear projection, generalized in Nguyen et al. (2020) to finding optimal distributions of projections.
Wu et al. (2019) uses a different optimization approach to computing the SW distance based on the
Kantorovich dual formulation. All of the above use some form of additional training. In contrast,
we use a simple and efficient nonlinear shearing which requires no additional optimization and is
sufficient for improving latent representation, however, our method can easily incorporate other SW
distances if desired.

Alternatively, many works such as Wang et al. (2020); Makhzani et al. (2015); Arjovsky et al. (2017);
Sainburg et al. (2018) replace the KL divergence with an adversarial loss, however adversarial meth-
ods tend to be significantly more expensive and difficult to optimize. In higher dimensions, using
a discriminator network as in adversarial approaches is a natural way of implicitly computing an
equivalent of the Wasserstein-1 distance (Arjovsky et al., 2017; Tolstikhin et al., 2018). However,
using the SW distance is much simpler and more efficient. Adversarial training for interpolation in
Sainburg et al. (2018) uses a structural consistency term that encourages relative distances in data
space to be preserved in latent space. Similar distance-preserving terms have also been used suc-
cessfully in Yu et al. (2013); Benaim & Wolf (2017), however Euclidean distances in data space can
be a poor measure of the natural geometry of the data. In our work, we preserve relative distances in
latent space and feature space to improve latent encoding, where features are extracted at the output
of the last convolutional layer in the data encoder.

Several manifold learning techniques such as Dollár et al. (2007); Weinberger & Saul (2006) com-
pute embeddings of high-dimensional data but are less general and lack generative or interpolation
abilities. The hyperspherical VAE Davidson et al. (2018) outperforms the standard VAE for data
residing on a hyperspherical manifold. Miolane & Holmes (2020a) formulates a Riemannian VAE,
however computing its ELBO is challenging. Along similar lines, Arvanitidis et al. (2017) shows
that under certain conditions, a Riemannian metric is naturally induced in the latent space, and uses
it to compute geodesics. In Chen et al. (2020a), a flat manifold is approximated by penalizing cur-
vature in latent space, and geodesics are defined through Euclidean distances on the flat manifold.

There exists limited work on integrating graphical structures with generative models (Kipf &
Welling, 2016). Hadjeres et al. (2017) studies monophonic music using a latent space geodesic
regularization that allows interpolations in the latent space to be more meaningful, giving a notion
of geodesic distance. Several approaches such as Tenenbaum et al. (2000); Bernstein et al. (2000);
Klein & Zachmann (2004); Mémoli & Sapiro (2005); Luo & Hu (2020) approximate geodesics on
point clouds by, for instance, building a nearest-neighbor network on the manifold and applying a
shortest path algorithm, however, these often require many samples in order generate reasonable
approximations and aren’t robust to noise (Sober et al., 2020). Inspired by this, we introduce an
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energy-based network algorithm to identify network-geodesics in latent space with relatively few,
noisy samples.

3 EPSWAE

3.1 NONLINEAR SLICED WASSERSTEIN DISTANCE

Wasserstein distances are a natural metric for measuring distances between probability distributions,
however they xare difficult to compute in dimensions two and higher. The Sliced Wasserstein dis-
tance dSW averages over the Wasserstein distance of 1D projections (see Appendix A for derivation).
Several works (e.g. Kolouri et al. (2019); Deshpande et al. (2019)) discuss why a conventional SW
distance may be sub-optimal as a large number of linear projections may be required to distinguish
two distributions. In this work we use a Nonlinear Sliced Wasserstein distance (dNSW ), an averag-
ing procedure over (random) nonlinear 1D projections, between two distributions µ and ν defined
as:

dNSW (µ, ν) = EdSW (N ζ,γ
∗ µ,N ζ,γ

∗ ν) ≈ 1

L

L∑
`=1

dSW (N ζ`,γ`
∗ µ,N ζ`,γ`

∗ ν) (1)

where L is the number of nonlinear transformations, and ζ, γ are chosen to be normal random
variables with mean 0, and variance matching that of µ, and N is defined below. We define the
“push-forward” (also known as “random variable transform”) as follows: given any function f :
X → Z and probability measure µ, we define f∗µ(A) = µ(f−1(A)) for all A ⊂ Z measurable.
Most importantly, to generate samples of z ∼ f∗µ one simply generates x ∼ µ and defines z =
f(x).

The nonlinear transformations are related to a special case of the generalized SW distance (Kolouri
et al., 2019) (with the difference that we choose distribution-dependent shear frequencies that are
most likely to produce deformations which highlight differences in the measures, thus breaking the
homogeneity condition H2 in Kolouri et al. (2019)), and are given by

N ζ`,γ`(x) = x+ ζ` sin(γ` · x). (2)
In all our experiments, we use L = 5 nonlinear transformations with 50 linear 1D projections each.
Several works such as Deshpande et al. (2018; 2019); Wu et al. (2019); Nguyen et al. (2020); Chen
et al. (2020b) improve the SW distance through some form of optimization or training an additional
discriminator-like network, and show improved generative results (with Deshpande et al. (2018) be-
ing the most similar to our method). We did not implement these other variants, however they could
easily be used in conjunction with our method. Our choice of nonlinearity is motivated by certain
tail-behavior considerations (such as boundedness and non-saturation of nonlinearity), along with
computational efficiency, and for our goals, a simple nonlinearity was sufficient. See section 4.2 and
Appendix E for computational time and loss comparisons with some other nonlinearities discussed
in Kolouri et al. (2019). For further discussion on NSW distance and derivation see Appendix A.

3.2 ALGORITHM DETAILS

In the Encoded Prior Sliced Wasserstein AutoEncoder (EPSWAE) (see Fig. 1 for schematic), let’s
define the data encoder as ΨE , the decoder ΨD, and the prior-encoder as ΨPE , each with parameters
φE , φD, φPE respectively. Input samples x(j) ∼ PX , where PX is the probability distribution of the
input data, are passed through ΨE to generate posterior samples z(j) ∼ (ΨE)∗PX by setting z(j) =
ΨE(x(j)). Similarly, prior-encoder input samples ξ(j) ∼ µ, where µ is the probability distribution
of the input to the prior-encoder (chosen to be a mixture of Gaussians) from a distribution, are passed
through ΨPE to generate prior samples y(j) ∼ (ΨPE)∗µ by setting y(j) = ΨPE(ξ(j)). The prior-
encoder network and the autoencoder (data encoder and decoder) network are trained iteratively in
a two step process:

1. Given a minibatch, parameters of the autoencoder (φE , φD) are trained for k1 steps while
parameters of the prior encoder (φPE) are fixed. The loss function for the autoencoder
consists of the reconstruction error, the NSW distance, and a Feature Structural Consistency
(FSC) term LFSC (given in Eqn. 4):

LAE = αEx∼PX
Lrec (x, x̄) + βdNSW ((ΨE)∗PX , (ΨPE)∗µ) + κLFSC , (3)
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where x̄ = ΨD(ΨE(x)) is the autoencoder output. Note that dNSW is efficiently computed
just from samples of the distributions.
In this measure theoretic notation, (ΨE)∗PX is the posterior distribution (denoted as
qφE

(z|x) in Bayesian literature), and (ΨPE)∗µ is the prior distribution (denoted as
pφPE

(z) in Bayesian literature). Similar to β-VAE ((Higgins et al., 2016)), the hyperparam-
eters α, β, κ are tuneable; in our experiments they are fixed, but it could be advantageous
to have them vary over training epochs.
LFSC encourages relative distances in feature space to be preserved in latent space, where
features are extracted at the output of the last convolutional layer in the encoder (or at
input data if no convolutional layers are present). LFSC (adapted from Sainburg et al.
(2018)) for two point clouds F = [f1, . . . fN ] in feature space and the corresponding points
Z = [z1, . . . zN ] in latent space in a minibatch of size N is given by:

LFSC =
1

N2

N∑
`,j=1

(
log

(
1 +

‖fj − f`‖2
1
N2

∑
m,n ‖fm − fn‖2

)
− log

(
1 +

‖zj − z`‖2
1
N2

∑
m,n ‖zm − zn‖2

))2

.

(4)
2. In the second step of minimization, the parameters of the prior-encoder (ΨPE) are trained

for k2 steps while parameters of the autoencoder (φE , φD) are fixed. The loss function for
the prior-encoder consists of the NSW distance between the prior and posterior:

LPE(x) = dNSW ((ΨE)∗PX , (ΨPE)∗µ). (5)

The pseudocode is outlined in Appendix B. Additional architecture and training details for the ex-
periments in this paper are in Appendix C.

3.3 INTERPOLATION AND APPROXIMATE GEODESICS

EPSWAE attempts to learn a representation of the embedded manifold geometry that the data lies
along. The question arises: how does one make use of this representation? A natural way of
interpolating data which lies on a manifold is through geodesics or paths on the manifold which
traverse dense regions. Here we present a network algorithm for efficiently approximating network-
geodesics with relatively few, noisy samples from the prior, by encouraging connections through
high density regions of latent space while minimizing total energy.

1. Gather samples of the posterior (ΨE)∗PX , i.e., ΨE(x) with x is a minibatch of data. Ad-
ditional prior samples can be used to supplement this if desired;

2. For each sample j, compute the average Euclidean distance cj of the k-nearest neighbors;
3. Generate a thresholded network: Let samples be represented as nodes. For a given thresh-

old value t, sample j is connected to sample i with edge weight dh(i, j) if d(i, j) < t · cj .
Here h is the energy parameter in the edge weight (chosen to be 1 or 2 in experiments, with
h = 2 encouraging shorter hops). Sample-specific thresholding, i.e., thresholding depen-
dent on cj , increases the probability of a ‘central’ node having a connection. Thus, this
encourages (1) paths through high density regions, i.e., high-degree nodes, and (2) traver-
sal of latent space through short hops as a consequence of localization of paths, i.e., paths
existing only between nearby points due to thresholding.

4. Continue increasing t until the graph is connected, i.e., there exists a path, direct or indi-
rect, from every sample to every other sample. Then, use Dijkstra’s algorithm (Dijkstra,
1959) to identify network-geodesics with least total energy through allowable paths on the
thresholded network.

4 EXPERIMENTS

We run experiments using EPSWAE on three datasets. First, we use a 3D spiral data, where the
latent space can be visualized easily, to demonstrate that the learned prior captures the geometry of
the 3D spiral. We also present here the advantages of the network-geodesic interpolation over linear
interpolation. Then we present interpolation and generation results on the MNIST (LeCun et al.,
2010) and CelebA (Liu et al., 2018) datasets.
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4.1 ARCHITECTURE
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Figure 1: (a) is a schematic of the EPSWAE architecture. The red arrows indicate calculation of the
loss terms. The prior-encoder generates a prior in latent space. (b) is simple example of a shape
where interpolating between points A and B ‘through the manifold’ (red dashed line through point
C) is desired, since linear interpolation (black line) leads out of the concave hull.

In all of the experiments, the prior-encoder ΨPE consists of three fully connected hidden layers
with ReLU activation. A sampleable distribution with dimension larger than the dimension of latent
space is input to the prior-encoder which yields the prior. In principle, samples from any distribution
can be the input µ to the prior-encoder. In the artificial data set we use a normal distribution, whereas
for MNIST and CelebA we use a mixture of 10 Gaussians with random i.i.d means (from Gaussian
with σ = 2). The schematic of the architecture is presented in Fig. 1(a). Note that the specifics of
the layers shown in this schematic are for the image datasets MNIST and CelebA, the 3D Spiral data
does not have convolutional layers. Details of the architecture, training, and hyperparameters for
each dataset are given in Appendix C. The optimizer Adam (Kingma & Ba, 2014) with a learning
rate of 0.001 was used for learning in both networks: the prior-encoder and the autoencoder.

4.2 LEARNING A LATENT MANIFOLD

We consider a 3D spiral randomly embedded to 40D space with noise as follows: (a) The formula
for the spiral is given by (x(t), y(t), z(t)) = (t cos 7tπ/4, t sin 7tπ/4, 2t), (b) a random 40 × 3
matrix is generated with i.i.d normal entries to map the spiral into R40, and (c) Gaussian noise with
standard deviation 0.1 is added. The input to the prior-encoder is a Gaussian in R40, and the latent
space is R3. For these tests, the data encoder, prior-encoder, and decoder all consist of three Fully
Connected (FC) layers with 40 nodes each and ReLU activations.

(a)
(b)

linear interpolation
Posterior
Prior

geodesic interpolation
(b)

Figure 2: (a) side view and (b) top view of samples of the prior (green) and posterior (blue) in 3D
latent space generated by EPSWAE after 100 epochs on the high dimensional input. The red line
shows the interpolation along network-geodesics between two prior samples. The brown line shows
the trajectory of linear interpolation between two points on the spiral.
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As seen in Figure 2, after training, the posterior matches the spiral almost exactly and the prior
learns the geometry of the spiral. A Nonlinear Sliced Wasserstein (NSW) distance and structural
consistency term (where latent space is isometric with data space since convolutional layers aren’t
used) are used in the loss in Eqns. 3 and 5. A comparison highlighting the effects of these terms is
shown in Fig. 5 in the Appendix D. We observe that the use of the NSW distance (as opposed to
linear SW distance) improves the accuracy of the learned prior.

Manifold interpolation (in red in Fig. 2) uses the network-algorithm outlined in section 3.3. The
interpolation is seen to have the desired form on the manifold, i.e., it approximates geodesics on
the manifold. The larger the number of samples of the prior, the smoother the corresponding in-
terpolation. In contrast, linear interpolation (brown line) between two points on the spiral does not
capture the geometry at all, and goes through regions that are largely empty and untrained. In higher
dimensional datasets, this may result in unrealistic interpolation. In order to traverse the manifold,
both the prior-encoder (that allows the prior to capture the geometry of the spiral), and the network-
interpolation algorithm are equally essential. Comparisons with baselines SWAE (Kolouri et al.,
2018a) and VAE (Kingma & Welling, 2014) are shown in Appendix Fig. 6, and EPSWAE is seen to
significantly outperform them in learning an improved latent representation.

Computational cost The choice of nonlinearity was, in part, motivated by computational effi-
ciency and simplicity, i.e., not requiring additional optimizations every evaluation or the training
of a discriminator-like network to select optimal transformations. Our sinusoidal shear nonlinearity
is closely related to a special case of the generalized SW distance defined in Kolouri et al. (2019)
(see discussion in section 3.1 for differences ). Here, we present a comparison of computational time
with two polynomial-type nonlinearities discussed in Kolouri et al. (2019) - cubic and quintic. Com-
putations done on a laptop with Intel Core i7-10710 CPU, 16GB RAM, and computed over 1000
runs. In practice, the losses were indistinguishable with choice of nonlinearity (see Appendix E),
whereas the sine shear is slightly less expensive (see Table 1). However, the complexity of cubic
and quintic nonlinearities are exponential in dimension and hence are impractical for larger data.

Table 1: Comparison of computational time for nonlinearities in SW distance.
sine-shear NSW cubic NSW quintic NSW

Computational Cost 0.0050s± 0.0006s 0.0054s± 0.0007s 0.0060s± 0.0008s

4.3 GENERATION AND OUTLIERS IN LATENT SPACE

In order to demonstrate one of the advantages of using a prior encoder in improving latent structure,
we consider generation with an increased probability of sampling from outliers, i.e., by increasing
the standard deviation of the distribution that feeds into the prior encoder. Studying generation from
outliers may seem nonstandard, however, it is informative in the study of how data is encoded in the
latent space. In Fig. 3 compare our results with the baseline SWAE (Kolouri et al., 2018a) in order
to assess the effect of the prior encoder in improving latent structure. It is worth noting that while
there exist several recent works that build upon SWAE for better generation, they do not attempt
to solve the same problem as ours (learning latent manifolds). As seen in Fig. 3, the behavior of
SWAE and EPSWAE at outliers is very different. For large σ, SWAE tends to generate unrealistic
faces with distorted colorations, whereas EPSWAE is more likely to generate realistic faces (albiet
with increased mode collapse at large σ). We see that EPSWAE encodes coherent information in a
large region of latent space as a consequence of nonlinear transformations through the prior encoder.
Since we are not competing with state of the art in generation here, we use downsized images and a
small, unsophisticated model compared to state of the art methods.

Both SWAE and EPSWAE use the same data encoder and decoder, and are independently opti-
mized: the encoder is (after downsizing CelebA images to 64x64) Conv (3,16,3) → BatchNorm
→ ReLu → MaxPool (2,2) → Conv (16,32,3) → BatchNorm → ReLu → MaxPool (2,2) →
Conv (32,64,3) → BatchNorm → ReLu followed by two FC layers of 512 and 256 nodes re-
spectively with a leaky ReLu nonlinearity and the decoder is the reverse (replace Conv layers with
Conv-transpose and MaxPool with Upsample). The prior-encoder consists of three FC layers from
186D → 128D latent space. See Appendix C for more details and hyperparameter values.
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EPSWAE

SWAE

σ = 1 σ = 2 σ = 3 σ = 4

σ = 1 σ = 2 σ = 3 σ = 4

Figure 3: Images generated after 100 epochs from prior samples in (a) EPSWAE (b) Baseline
SWAE at increasing standard deviations σ, i.e., progressively more ‘outlying’.

We also present a comparison with SWAE on CelebA generation from samples around the mean
in Appendix G, and find that EPSWAE sees a marginal improvement in the quality of faces. Gen-
eration on MNIST using EPSWAE (and comparisons with SWAE (Kolouri et al., 2018a) and VAE
(Kingma & Welling, 2014)) are shown in Appendix F. MNIST results are obtained with 5D latent
space. EPSWAE generation is more natural, whereas both other baselines generate some bloated
and unidentifiable numbers.

Table 2: FID score comparison generated with 10000 samples (lower is better)
SWAE EPSWAE (bl) EPSWAE (FSC only) EPSWAE (NSW only) ESPWAE (FSC + NSW)
178.04 161.55 162.14 161.06 157.86

For completeness, in Table 4.3 we present Frechet Inception Distance (FID) (Salimans et al., 2016)
scores with 10000 images with σ = 1 (code from Seitzer (2020)). It is important to note that one
can have good generation, despite learning a poor latent representation (and vice-versa), so scores
like FID may not be the best way to evaluate the latent structure. However, comparison between
SWAE and EPSWAE-baseline(bl) indicate that the prior-encoder significantly improves generation.

Computational cost : The computational cost of the different terms in the EPSWAE loss on the
CelebA dataset is as follows: (1) FSC computation: 0.00066s ± 0.0001s, (2) linear SW distance
computation: 0.01561s±0.0005s (3) sine-shear NSW computation: 0.0150s±0.0007s (with same
number of total projections). All computations for CelebA were done on a workstation with one
NVIDIA Tesla P100 GPU, two Intel Xeon E5-26660v4 CPUs, and 64Gb RAM.

4.4 INTERPOLATION

In this paper, we introduce a graph-based algorithm that interpolates over network-geodesics in
curved latent manifolds, thus capturing properties of the geometry. Here we show that we obtain
smooth interpolation using the network-geodesics algorithm, in contrast with linear interpolations
that often tend to generate unrealistic intermediate images.

The start and end points correspond to real images (posterior samples). Figure 4(a) presents a com-
parison of linear interpolation (top) vs interpolation through network-geodesics (bottom) described
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(a) Linear (L) vs Network-geodesic (NG) interpolation

(b) Geodesic interpolation

L

NG

L

NG

L

NG

Figure 4: (a) Comparison of linear vs geodesic interpolation using EPSWAE. The top row of each
row-pair is linear, and the bottom is geodesic-interpolation. (b) Randomly chosen instances for
geodesic interpolations for MNIST and CelebA. The first and last images are reconstructions of
real data, and the interpolations traverse through samples of the prior using the network-geodesic
algorithm. A total of 400 samples are used in all cases.

in section 3.3 on CelebA. One can see that linear interpolations often go through unrealistic images
(this corresponds to regions in latent space where training is limited), whereas geodesic interpola-
tions go through more realistic and less blurry faces. This also serves as evidence, that the latent
space for CelebA contains some natural structure that can be exploited.

Figure 4 (b) shows examples of interpolations on MNIST and CelebA datasets. MNIST interpola-
tions are smooth and intuitive, for instance, in the bottom left MNIST panel in Fig. 4(b), the top part
of a ‘7’ first changes to a ‘9’ naturally, followed by transformation of the ‘9’ to a ‘4’. Interpolation
along network-geodesics ensures that reconstructions of intermediate samples are realistic. Inter-
polations on CelebA are smooth and pass through intermediate images that could arguably pass for
celebrities these days. The state of the art interpolations along network-geodesics on the manifold
indicate that the learned prior does indeed encode the data manifold. For all interpolations shown
in Fig. 4, we use energy parameter h = 2. Comparisons between interpolations corresponding to
h = 1 and h = 2 are presented in Appendix 10. In experiments, energy parameter is not found
to have a significant impact on the quality of interpolations. Additionally, comparisons of linear
interpolation between equivalent networks of EPSWAE and SWAE are presented in Appendix I.

5 CONCLUSION

We introduce the Encoded Prior Sliced Wasserstein AutoEncoder (EPSWAE) that learns improved
latent representations through training an encoded prior to approximate an embedding of the data
manifold that preserves geometric and topological properties. The learning of an arbitrary shaped
prior is facilitated by the use of the Sliced Wasserstein distance, which can be efficiently computed
from samples only. We use a nonlinear variant of SW distance to capture differences between
two distributions more efficiently, and employ a feature structural consistency term to improve the
latent space representation. Finally, we introduce an energy-based algorithm to identify network-
geodesics in latent space that maximize path density while minimizing total energy. We demonstrate
EPSWAE’s ability to learn the geometry and topology of a 3D spiral from a noisy 40D embedding.
We also show that our model embeds information in large regions of latent space, leading to better
outlier generation. Lastly, we show that our geodesic interpolation results on MNIST and CelebA
are efficient and comparable to state of the art techniques. Our code is publicly available.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: on the curvature
of deep generative models. arXiv preprint arXiv:1710.11379, 2017.

Sagie Benaim and Lior Wolf. One-sided unsupervised domain mapping. In Advances in neural
information processing systems, pp. 752–762, 2017.

Mira Bernstein, Vin De Silva, John C Langford, and Joshua B Tenenbaum. Graph approximations
to geodesics on embedded manifolds. Technical report, Citeseer, 2000.
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A BACKGROUND ON THE SLICED WASSERSTEIN DISTANCE

Wasserstein distances provide a natural metric for measuring distances between probability distribu-
tions based on optimal transport, i.e., the cost of deforming one probability distribution into another.
For a measurable cost function c(x, y) for x, y ∈ Rd, and probability distributions µ and ν on Rd,
we define the p-Wasserstein distance between the distributions as

dW,p(µ, ν) = inf
Γ∈Π(µ,ν)

(ˆ
Rd×Rd

cp(x, y)dΓ(x, y)

)1/p

, (6)

where Π is the set of all joint distributions with marginals µ and ν (see Villani (2003)).

This Wasserstein distance between probability distributions is extremely difficult and computation-
ally intensive in dimensions two and higher, i.e., d ≥ 2. However, in dimension one, there exists a
closed-form solution (Villani, 2003). A simple algorithm for computing the 1D Wasserstein distance
is given as follows (see for example (Kolouri et al., 2018a)): (a) Generate N one dimensional i.i.d
samples xj ∼ µ, yj ∼ ν; (b) sort each list X = [x1, . . . , xN ], Y = [y1, . . . , yN ] into ascending
order denoted by X̃, Ỹ respectively; (c) define the approximation to the 1D p-Wasserstein distance

dW,p(µ, ν) ≈

 1

N

N∑
j=1

cp(x̃j , ỹj)

1/p

, (7)

where x̃j ∈ X̃, ỹj ∈ Ỹ . The Sliced Wasserstein (SW) distance defines a metric on probability
measures (Bonnotte, 2013) which provides an alternative to Eqn. 6 by exploiting the computational
feasibility of the 1D Wasserstein distance in Eqn. 7. It involves averaging over one-dimensional
orthogonal projections πθx := (θ · x)θ as follows:

dSW (µ, ν) =

( 
Sd−1

dpW,p(π
θ
∗µ, π

θ
∗ν)dS(θ)

)1/p

, (8)

The SW distance has seen a variety of implementations (Bonneel et al., 2015; Kolouri et al., 2018b;
Lee et al., 2019).

The integral in Eqn. 8 can be easily approximated by sampling M random one-dimensional vectors
θk uniformly on Sd−1 and computing

dSW (µ, ν) ≈

(
1

M

M∑
k=1

dpW,p(π
θk
∗ µ, π

θk
∗ ν)

)1/p

. (9)

Several works (for example Nguyen et al. (2020); Deshpande et al. (2019)) have discussed reasons
why this often does not result in the best computational method. Linear projections may be sub-
optimal for extracting information about the differences between µ and ν, since a large number of
linear projections may be required to get an accurate approximation for dSW . Several works have
suggested possible methods for improving the effectiveness of the SW distance (Chen et al., 2020b;
Kolouri et al., 2019; Nguyen et al., 2020; Deshpande et al., 2019). In contrast, we use a Nonlinear
Sliced Wasserstein (NSW) distance, an averaging procedure over (random) nonlinear transforma-
tions. For our goals, the choice of nonlinearity was motivated by the following considerations: (1)
a bounded non-linearity would be beneficial since unbounded non-linearities (such as cubic poly-
nomials) have a pronounced deformation on the tails of a measure and may excessively weight
outliers. (2) A sigmoid is another potential candidate, but it saturates at high values and we want the
non-linearity to be similarly effective everywhere. (3) The use of polynomials has been discussed
in Kolouri et al. (2019), however, a full set of all higher order polynomials have exponential com-
plexity and may be prohibitively expensive in high latent dimensions. We compared our method to
cubic and quintic polynomials for the simple 3D spiral and found that the choice of the nonlinearity
did not have a significant effect on performance, with our choice being the fastest (see section 4.2
and Appendix E for computational time and loss comparisons). In principle, other ensembles of
nonlinear transformations could be used.

13



Under review as a conference paper at ICLR 2021

B PSEUDOCODE

Algorithm 1 Training EPSWAE
1: while not converged do
2: Update the autoencoder ΨE ,ΨD:
3: for k1 substeps do
4: Sample minibatch from data {x(1), ...,x(N)} with x(j) ∼ PX
5: Compute feature extractor samples f (j) = ΨFE(x(j))
6: Compute posterior samples z(j) = ΨE(x(j))

7: Compute decoded output x
(j)
recon = ΨD((z)

j
)

8: Generate samples {ξ(1), ...ξ(J)} with ξ(j) ∼ µ
9: Compute prior samples y(j) = ΨPE(ξ(j))

10: Compute reconstruction error: Lrecon = 1
J

∑J
j=1 d(x(j),x

(j)
recon)

11: Compute NSW distance: LNSWdistance = dNSW ( 1
N

∑N
j=1 δz(j) , 1

N

∑N
j=1 δy(j))

12: Compute FSC loss: LFSC = dFSC({f (1), ..., f (J)}, {z(1), ..., z(J)})
13: Compute autoencoder loss LAE = αLrecon + βLNSWdistance + κLFSC
14: Compute gradients of LAE wrt to φE , φD
15: Update φE , φD
16: end for
17: Update the prior-encoder ΨPE :
18: for k2 substeps do
19: Sample minibatch from data {x(1), ...,x(J)} with x(j) ∼ PX
20: Compute posterior samples z(j) = ΨE(x(j))
21: Generate samples {ξ(1), ...ξ(J)} with ξ(j) ∼ µ
22: Compute prior samples y(j) = ΨPE(ξ(j))

23: Compute prior-encoder loss: LPE = dNSW ( 1
N

∑N
j=1 δz(j) , 1

N

∑N
j=1 δy(j))

24: Compute gradients of LPE wrt to φPE
25: Update φPE
26: end for
27: end while

C ARCHITECTURE AND TRAINING DETAILS

For all datasets, the prior-encoder ΨPE consists of three fully connected hidden layers and ReLU
activations. For all datasets, the autoencoder and prior-encoder losses (given in Eqns 3 and 5) are
trained iteratively using the optimizer Adam (Kingma & Welling, 2014) with a learning rate of
0.001. We experimented with both p = 1 and p = 2 (corresponding to p-Wasserstein) in the SW
distance and did not find any significant differences; all results in this paper use p = 2. For each
calculation of the NSW distance, L = 5 random nonlinear transformations were taken followed by
M = 50 one dimensional projections per transformation. Data-specific model and parameter details
are given below.

3D Spiral dataset: The input to the prior-encoder is a 40D Gaussian, and the latent space is 3D.
The input to the autoencoder is a 40D embedding of a 3D spiral manifold with 10% noise. The
dataset consists of 10000 samples, and a batch size of 100 was used. The prior-encoder, the data
encoder, and the decoder consist of three Fully Connected (FC) layers with 40 nodes each and ReLU
activations. The reconstruction loss is given by the Mean Square Error and α = 1, β = 0.1, κ = 0.01
in Eqn 3. In the absence of convolutional layers, the FSC term encourages the pairwise distances
of the minibatch in latent space to be similar to the pairwise distances of the minibatch in the data
space. The prior-encoder is trained k1 = 2 times for each training of the autoencoder k1 = 1. Power
of distance h = 2 is used to compute edge weights for computing network-geodesics.

MNIST dataset: The input to the prior-encoder is a 40 dimensional mixture of 10 Gaussians, and
the latent space is 5 dimensional. The data encoder takes MNIST images as input using a batch size
of 100, and consists of the following layers Conv (1,10,3) → BatchNorm → ReLu → MaxPool
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(2,2) → Conv (10,16,3) → BatchNorm → ReLu followed by two FC layers of 512 and 256
nodes respectively with a leaky ReLu nonlinearity. The encoder outputs a 5 dimensional latent
representation. The decoder consists of the reverse, i.e., three fully connected layers of size 256,
512, and 1936 nodes respectively. This is followed by ConvTranspose (16,10,3) → LeakyReLu
→ Upsample(2,2) → ConvTranspose (10,1,3) → Sigmoid. The decoder output has size 28 ×
28. The prior-encoder is trained k1 = 1 times for each training of the autoencoder k2 = 1. The
reconstruction loss is given by the Binary Cross Entropy and α = 1, β = 0.1, κ = 0.001 in Eqn. 3.
The FSC loss encourages the pairwise distances of the minibatch in latent space to be similar to the
pairwise distances of the minibatch in feature space computed at the output of the last convolutional
layer in the data encoder. Energy parameter h = 2 is used to compute edge weights for computing
network-geodesics.

CelebA dataset: The input to the prior-encoder is a 186 dimensional mixture of 10 Gaussians,
and the latent space is 128 dimensional. We ran experiments with different latent dimensions and
found that the generation ability didn’t vary significantly as a function of latent dimension. We
trade-off image quality of the input images for computational speed by downsizing the input and
employ a fairly simple network compared to state of the art computer vision architectures that use
CelebA. The data encoder takes CelebA images (of size 218× 178× 3) and downsizes them to size
64 × 64 × 3. The data encoder consists of the following layers Conv (3,16,3) → BatchNorm →
ReLu → MaxPool (2,2) → Conv (16,32,3) → BatchNorm → ReLu → MaxPool (2,2) → Conv
(32,64,3) → BatchNorm → ReLu followed by two FC layers of 512 and 256 nodes respectively
with a leaky ReLu nonlinearity. The encoder outputs a 128 dimensional latent representation. As in
the case of MNIST, the decoder consists of the reverse, with convolutions replaced by Convolution
Transpose, and MaxPool replaced by Upsample. The output of the decoder is passed through a
sigmoid nonlinearity and is of size 64 × 64 × 3. The prior-encoder was trained k1 = 1 times for
each training of the autoencoder. The reconstruction loss is given by the Binary Cross Entropy and
α = 500, β = 50, κ = 0.05 in Eqn. 3. The FSC loss encourages the pairwise distances of the
minibatch in latent space to be similar to the pairwise distances of the minibatch in feature space,
i.e., computed at the output of the last convolutional layer in the encoder. Energy parameter h = 2
is used to compute edge weights for computing network-geodesics.

D SPIRAL BASELINE COMPARISONS

(a) Linear SW distance

    No structure consistency loss  

(b) Linear SW distance

    structure consistency loss  

(c) Nonlinear SW distance

   No structure consistency loss  

(d) Nonlinear SW distance

   structure consistency loss  

Figure 5: Comparisons of the EPSWAE model with different loss terms. Top panels present top
views, and bottom panels present the corresponding side views. The red curves show interpola-
tion between two randomly selected samples using the network-geodesic algorithm. All figures are
generated after 100 epochs with a lr=0.01, and batch size =100. k1 = 1, k2 = 2.

Figure 5 shows the effects of the different loss terms in EPSWAE on the geometry of the learned prior
and posterior. The position and orientation of the spiral in the 3D plots are random and the views
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(c) VAE    (a) EPSWAE (b) SWAE 

Figure 6: Comparison of EPSWAE with baselines SWAE (Kolouri et al., 2018a) and VAE (Kingma
& Welling, 2014). All figures are generated after 100 epochs with a lr=0.01, and batch size =100.
For EPSWAE, k1 = 1, k2 = 2, α = 1, β = 0.1, κ = 0.001.

in the image are hand-chosen to be equivalent. (a) shows latent space and interpolations (red) using
EPSWAE with a linear Sliced Wasserstein distance in the loss, and no structural consistency term.
(b) shows that adding a structural consistency term doesn’t remarkably improve the quality of the
manifold learned, however, consistent with other experiments, it seems to improves interpolation
slightly. Note here that since we don’t use convolutional layers for the 3D spiral, the stuctural
consistency term preserves distance in latent space corresponding to distances in data space. (c)
shows that employing the NSW distance term significantly improves the learned structure in latent
space. The improvements resulting from incorporation of the NSW and structural consistency terms
as seen in these visualizations of the 3D spiral lead us to use both loss terms (as in (d)) on all results
in the main paper.

Figure 6 compares the EPSWAE model with baselines VAE and SWAE. The VAE uses KL diver-
gence in the loss, which constrains the prior to be sampled from a Gaussian distribution. While
the vanilla SWAE uses the SW distance, the prior remains a Gaussian, leading to an unnatural em-
bedding of the data manifold. In contrast, EPSWAE results in a significantly better learned prior
as a consequence of the nonlinear SW distance and the prior-encoder network trained explicitly to
improve the latent representation.

E COMPARISON WITH OTHER SLICED WASSERSTEIN NONLINEARITIES

Here, we compare our choice of nonlinearity in the SW loss (sinusoidal shear) with some other
common nonlinearities. While there exist several methods to improve the SW distance (e.g. max-
SW (Deshpande et al., 2019) which has seen several subsequent variations), these involve additional
training, and hence aren’t considered (although many such versions of SW distance could be used
in conjunction with out method). Instead we consider the polynomial generalized Radon transforms
described in (Kolouri et al., 2019). The computational cost of a single polynomial generalized
Radon transform is O(dk) for dimension d and kth order of polynomial, and hence we limit our
investigation to cubic and quintic polynomials. We show results on the artificial 3D Spiral dataset
trained upto 100 epochs with α = 1, β = 0.1, κ = 0.01. We see in Fig. 7 that the choice of
nonlinearity does not have a significant effect on the loss, however, as seen in Table4.2, the sine-
shear has slightly lower computational cost.
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Figure 7: Loss as a function of training epochs for linear SW, cubic nonlinearity, quintic nonlinearity
and our (sine-shear) NSW distance. A full set of cubic and quintic functions terms are considered
for computing the generalized Radon transform in the SW distance. L = 5 nonlinear transforms
with M = 50 linear 1D projections each taken for all cases.

F MNIST GENERATION RESULTS

(a) EPSWAE (b) SWAE (c) VAE

Figure 8: Comparison between (a) EPSWAE (b) SWAE and (c) VAE for generation on MNIST. for
all three, batch size = 200, epochs=100, lr = 0.001, for EPSWAE k1 = 2, k1 = 1, α = 1, β =
0.1, κ = 0.001.

Figures 8 (a,b,c) shows generation on the MNIST dataset after 100 epochs on EPSWAE, baseline
SWAE(Kolouri et al., 2018a), and baseline VAE (Kingma & Welling, 2014) respectively. All net-
works EPSWAE and baselines SWAE and VAE use equivalent architectures (outlined in section of
Appendix C), and hyperparameters are optimized individually. As seen in the figure, we observe
that EPSWAE generated samples were consistently found to have a lower fraction of ‘false’ digits,
i.e., digits that are unrealistic.
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G CELEBA GENERATION RESULTS

(a) EPSWAE (b) SWAE

Figure 9: Images generated from prior samples in (a) EPSWAE (b) Baseline SWAE. Batch size =
200, epochs=100, lr = 0.001. α = 500, β = 50, κ = 0.05.

CelebA raw images are downsized to 64 × 64 pixels, and a simple architecture is employed (see
Appendix C). This serves as a proof of principle for a better latent representation and interpola-
tion, without a high computational cost. Naturally, using a more sophisticated network (for instance
ResNet, VGG etc.) without downsizing the data would yield higher quality images at a computa-
tional cost.

Figure 9 shows generation on the CelebA dataset after 100 epochs with (a) EPSWAE and (b) baseline
SWAE (right) respectively. Both employ equivalent architectures and take downsized images as
input. As seen in the figure, EPSWAE generated images are more realistic. Note that this comparison
is for equivalent training epochs and architectural details, and does not make claims about the quality
of SWAE images with longer training.
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H EFFECT OF ENERGY PARAMETER ON CELEBA INTERPOLATIONS

Additional CelebA interpolations are shown in Fig. 10. The length of interpolations is automatically
selected by the network algorithm. In some cases, a linearly interpolated point is added between
every two samples on the network-geodesic to make smoother transitions; this would be unneces-
sary with enough samples of the prior, however it could be impractical in high latent dimension to
generated sufficiently many prior samples. Note that even if only one intermediate point is selected
by the network geodesic, the generated interpolation could be significantly different from a purely
linear interpolation (an illustration is provided in Figure 4.1 - the direct linear interpolation from A
to B is significantly different from the interpolation through the point C). Fig. 10 presents a compar-
ison between energy parameter h = 1 and h = 2. The energy parameter determines the power of
the distance metric used to compute the edge weight. One can think of the higher value (h = 2) as
corresponding to stronger connections between points, and encouraging shorter hops. In practice, as
seen from the figure, there is no clear advantage to choosing a specific value of energy parameter h.

(a) h=1

(b) h=2

Figure 10: Additional CelebA interpolations. The first and last images are reconstructions of real
data, and the interpolations traverse through samples of the prior using the network-geodesic algo-
rithm. (a) Top three panels show interpolations for energy parameter h = 1, and (b) bottom three
panels show interpolations for energy parameter h = 2. Latent space is 128 dimensional. Hyper-
parameters are the same as those used in the paper. A total of a 400 samples in latent space are
used.
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I LINEAR INTERPOLATION COMPARISON EPSWAE AND SWAE

(a)

EPSWAE

SWAE

EPSWAE

SWAE

EPSWAE

SWAE

EPSWAE

SWAE

(b)

(c)

Figure 11: Comparisons of linear interpolation between EPSWAE and SWAE. The first and last
images are reconstructions of randomly picked real data (a) shows long interpolation (over two
lines), (b,c) show shorter interpolations. Hyperparameters are the same as those used in the paper.
Latent space is 128 dimensional. A total of a 400 samples in latent space are used.

We compare here linear interpolations on the CelebA dataset for MNIST and CelebA. The autoen-
coder networks used are identical and outlined in section C. In contrast, EPSWAE uses the addi-
tional prior encoder. Both models are independently optimized, and the interpolations are linear. As
seen in Fig. 11, interpolations in EPSWAE are more realistically identifiable as ’faces’ than SWAE,
which mixes up the features and generates blurry intermediate images. This is suggestive that the
prior-encoder may play a role in improving latent representation.
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