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Abstract

Large Vision-Language Models (VLMs) have revolutionized computer vision, enabling tasks
such as image classification, captioning, and visual question answering. However, they re-
main highly vulnerable to adversarial attacks, particularly in scenarios where both visual
and textual modalities can be manipulated. In this study, we conduct a comprehensive
reproducibility study of "An Image is Worth 1000 Lies: Adversarial Transferability Across
Prompts on Vision-Language Models" validating the Cross-Prompt Attack (CroPA) and
confirming its superior cross-prompt transferability compared to existing baselines. Beyond
replication we propose several key improvements: (1) A novel initialization strategy that sig-
nificantly improves Attack Success Rate (ASR). (2) Investigate cross-image transferability by
learning universal perturbations. (3) A novel loss function targeting vision encoder attention
mechanisms to improve generalization. Our evaluation across prominent VLMs—including
Flamingo, BLIP-2, and InstructBLIP as well as extended experiments on LLaVA validates
the original results and demonstrates that our improvements consistently boost adversarial
effectiveness. Our work reinforces the importance of studying adversarial vulnerabilities in
VLMs and provides a more robust framework for generating transferable adversarial ex-
amples, with significant implications for understanding the security of VLMs in real-world
applications. Our code is available at https://github.com/Swadesh06/Revisting_CroPA

1 Introduction

The advent of large Vision-Language Models (VLMs) has significantly transformed the field of computer
vision by enabling a wide range of tasks, including image classification, captioning, and visual question
answering. This versatility has fostered deeper exploration into visual-linguistic interactions. However, recent
studies Zhao et al. (2023); Qi et al. (2023); Zhang et al. (2022a); Carlini et al. (2024) have demonstrated
that VLMs remain highly vulnerable to adversarial attacks. These attacks involve subtle perturbations to
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input images, leading VLMs to produce incorrect or even harmful outputs. Furthermore, the inclusion of
textual modalities introduces additional attack vectors, expanding the range of threats beyond those faced
by traditional vision models.

Several studies have investigated the adversarial robustness of VLMs. For example,Zhao et al. (2023) con-
ducted a comprehensive analysis of the adversarial robustness of VLMs such as BLIP and BLIP-2, exploring
both query-based and transfer-based adversarial attack methods in black-box settings. Additionally, Schlar-
mann & Hein (2023) examined targeted and untargeted adversarial attacks in white-box settings. While
these works primarily focused on adversarial image attacks, subsequent research has also explored adversar-
ial perturbations in textual inputs. Qi et al. (2023) demonstrated that adversarial images could manipulate
VLMs into executing harmful instructions, while Tu et al. (2023) systematically evaluated both visual and
textual adversarial attacks.

Traditionally, the generalization of adversarial examples and their transferability in VLMs has been classified
into two primary categories:

• Cross-Model Transferability: The ability of adversarial examples to maintain their adversarial
nature across different VLM architectures, commonly referred to as transferability.

• Cross-Image Transferability: The ability of adversarial perturbations to generate adversarial
examples that generalize across multiple images, often known as Universal Adversarial Perturbations
(UAPs).

Luo et al. (2024) introduced the novel concept of Cross-Prompt Transferability, which describes the abil-
ity of adversarial images to remain effective across varying textual prompts. Unlike prior work that treated
visual and textual adversarial perturbations independently, Luo et al. (2024), proposed the Cross-Prompt
Attack (CroPA), which employs learnable prompts to ensure adversarial images retain their effectiveness
regardless of textual input. Their work demonstrated CroPA’s efficacy across multiple vision-language tasks,
including image classification, captioning, and visual question answering.

Our work aims to address the following goals:

• [Reproducibility Study] Reproducing the Results from the Original Paper: Through
our experiments, we successfully reproduced and verified the four main claims of the original paper.
First, we confirm that CroPA achieves superior cross-prompt transferability compared to established
baselines across various target texts, and that this transferability is independent of the semantic
meaning or word frequency of the target text. Second, we show that while increasing the number
of prompts improves transferability, convergence occurs rapidly, and even with additional prompts,
baseline methods fail to surpass CroPA. Third, we validate CroPA’s effectiveness even when ad-
ditional in-context learning examples are provided. Lastly, we reproduce the original findings on
CroPA’s convergence by evaluating the overall ASR across increasing attack iterations, while also
contributing our own analysis of ASR performance for individual tasks.

• [Extended Work] Better Initialization Strategy: We propose a new initialization method,
substantially increasing the Attack Success Rate (ASR) as well as Transferability.

• [Extended Work] Investigating Cross Image Transferability and Image Augmentation:
We explore learning a common perturbation for all images using CroPA’s backbone and investigate
whether transferability-promoting enhancements aid in the cause.

• [Extended Work] Guiding perturbations via Target Value Vectors: We propose a novel
loss function building on the idea that specific components within the vision encoder’s attention
mechanism control and determine the level of interaction between patches, manipulating the value
vectors of the vision encoder in a targeted manner leads to greater generalization as well as ASR.

Furthermore, we conduct in-depth analyses to elucidate the mechanisms behind our improvements, offering
insights into the nature of adversarial vulnerabilities in VLMs. Our work not only reinforces the importance
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of studying these vulnerabilities but also provides a more robust and versatile framework for generating
transferable adversarial examples.

2 Related Works

While adversarial attacks on deep neural networks have been extensively studied since their introduction by
Szegedy et al. (2013) and Goodfellow et al. (2014), their application to Vision-Language Models (VLMs)
presents unique challenges and opportunities. In this section, we review the progression of adversarial
transferability research and position CroPA within this broader context.

2.1 Adversarial Transferability

The phenomenon of adversarial transferability has manifested across multiple dimensions in machine learning
systems. Liu et al. (2017) and Tramèr et al. (2017) established that adversarial examples crafted for one
model can often deceive other models, even those with different architectures. Beyond model transferability,
researchers discovered that perturbations can generalize across images Moosavi-Dezfooli et al. (2017); Mopuri
et al. (2017), enabling the creation of Universal Adversarial Perturbations (UAPs).

The domain of transferability extends to cross-task applications, where adversarial examples designed for
classification can affect object detection and other visual tasks Naseer et al. (2019b;a); Lu et al. (2020);
Salzmann et al. (2021). This multi-dimensional transferability raises critical questions about the robustness
of modern machine learning systems.

2.2 Adversarial Attacks on Vision-Language Models

Early research on adversarial robustness of vision-language models focused on task-specific attacks. In
image captioning, works by Xu et al. (2019); Zhang et al. (2020); Aafaq et al. (2021); Chen et al. (2017)
demonstrated methods to manipulate model outputs. Similarly, Visual Question Answering (VQA) systems
proved vulnerable to targeted attacks that mislead attention mechanisms Xu et al. (2018); Kaushik et al.
(2021); Kovatchev et al. (2022); Li et al. (2021); Sheng et al. (2021); Zhang et al. (2022b).

However, these approaches primarily targeted lightweight CNN-RNN architectures lacking in-context learn-
ing capabilities, limiting their applicability to contemporary VLMs. Recent work by Zhao et al. (2023)
explored adversarial robustness of modern large VLMs like BLIP and BLIP-2 under black-box settings,
focusing on cross-model transferability rather than the cross-prompt perspective introduced by CroPA.

2.3 Cross-Prompt Adversarial Transferability

The emergence of large VLMs with prompt-driven task adaptation introduced a new dimension of adversarial
vulnerability. Unlike traditional vision models that perform specific tasks, VLMs can dynamically adapt to
different tasks based on textual prompts Li et al. (2023b); Awadalla et al. (2023); Li et al. (2023b); Zhu
et al. (2023); Liu et al. (2023). This flexibility creates a novel attack surface where adversarial examples
must maintain their effectiveness across varying prompts.

CroPA Luo et al. (2024) pioneered this concept by introducing learnable prompts that compete with image
perturbations during optimization. This approach diverges from existing methods that treat visual and
textual perturbations independently, establishing a new paradigm for evaluating VLM robustness. Due to
the relative novelty of this concept, no credible benchmarks/baselines have been established yet. However,
work by Yang et al. (2024) does explore cross-prompt transferability and introduces Context Injection Attack
(CIA), which employs gradient-based perturbations to inject target tokens into both visual and textual
contexts, and is presented as an additional comparison in our experiments.

2.4 Enhancing Adversarial Transferability

Various techniques have been proposed to improve adversarial transferability. Input diversity methods Xie
et al. (2019) and data augmentation strategies Wang et al. (2021) have shown promise in creating more
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robust attacks. Recent works have identified gradient misalignment as a key factor limiting transferability
Li et al. (2023a); Wang et al. (2023), leading to novel optimization strategies. Our work builds upon these
insights to enhance CroPA’s capabilities across multiple transferability dimensions.

3 Scope of reproducibility

This study aims to examine and validate the results demonstrated by Luo et al. (2024). Our primary
objective is to confirm that CroPA significantly enhances the transferability of adversarial examples across
various prompts by meticulously reproducing their experimental procedures.

The main claims we aim to verify are as follows:

• Claim 1: CroPA achieves cross-prompt transferability across various target texts

• Claim 2: CroPA achieves the best overall performance across different number of prompts

• Claim 3: CroPA converges towards higher ASR as number of iterations are increased

• Claim 4: CroPA outperforms baselines under few-shot settings

Beyond replication, we extend the scope of CroPA by investigating its efficacy in cross-model and cross-
image contexts as well as compare it to other methods in cross-prompt transferability. Specifically, we
assess whether adversarial images generated through CroPA can consistently deceive diverse Vision-Language
Models (VLMs), regardless of the input prompt or specific model parameters. Addressing these points will
enable us to faithfully reproduce the original paper’s experiments and build upon it to explore the broader
applicability of CroPA in enhancing the robustness and versatility of adversarial attacks on VLMs.

4 Methodology

4.1 Problem Formulation

The vulnerability of neural networks to adversarial attacks has been well-documented since the seminal
work of Goodfellow et al. (2014). Building on this foundation, we examine the authors’ novel formulation
that extends these concepts to cross-prompt scenarios in Vision-Language Models (VLMs). Their work
introduces a critical perspective on how adversarial perturbations can maintain effectiveness across varying
textual inputs Luo et al. (2024).

The authors develop their formulation around a VLM function f that processes both visual and textual
inputs, denoted as xv and xt respectively. To ensure real-world applicability, the authors constrain the
adversarial perturbation δv within human-imperceptible bounds, enforcing ∥δv∥p ≤ ϵv. This constraint
mirrors established practices in adversarial machine learning while adapting them to the multi-modal context
of VLMs Carlini et al. (2024).

The authors establish two distinct attack scenarios that we reproduced in our study. (1) The targeted
attack scenario aims to manipulate the VLM into generating a specific predetermined text T , regardless of
the input prompt. This objective manifests mathematically as Equation 1 minimizing the language modeling
loss L across multiple prompt instances. In contrast, (2) the non-targeted scenario focuses on maximizing
the discrepancy between outputs from clean and adversarial inputs, described in Equation 2.

min
δv

k∑
i=1

L(f(xv + δv, xi
t), T ) (1)

max
δv

k∑
i=1

L(f(xv + δv, xi
t), f(xv, xi

t)) (2)
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Figure 1: Framework overview of CroPA as presented in Luo et al. (2024). The architecture employs learn-
able perturbations for both image (δv) and prompt (δt) inputs. These perturbations operate antagonistically,
while δv is optimized to minimize the language modeling loss, δt works to maximize it. The model’s for-
ward pass (solid arrows) processes the perturbed inputs through the vision encoder and language model,
with backpropagation (dashed arrows) updating the perturbations at configurable frequencies. The model
parameters (marked with *) remain fixed during the attack. ⊕ denotes element-wise addition.

The effectiveness of these attacks is quantified through the Attack Success Rate (ASR). For targeted attacks,
success requires generating the exact target text, while non-targeted attacks succeed by producing any output
that differs from the clean image’s prediction.

4.2 Baseline Approaches

Given that cross-prompt transferability represents a novel direction in adversarial machine learning, no
established baselines exist in current literature. Therefore, we examine two baseline approaches introduced
by Luo et al. (2024) to evaluate CroPA’s effectiveness: Single-P and Multi-P.

Single-P represents the simplest baseline, where an image perturbation is optimized using a single prompt.
The optimization objective for targeted attacks is:

min
δv

L(f(xv + δv, xt), T ) (3)

Multi-P extends this concept by utilizing multiple prompts during optimization. Given a collection of textual
prompts Xt = {x1

t , x2
t , ..., xk

t }, the objective becomes:

min
δv

k∑
i=1

L(f(xv + δv, xi
t), T ) (4)

For non-targeted attacks, these objectives are inverted to maximize the discrepancy between the model’s
outputs for clean and perturbed inputs. The effectiveness of both approaches serves as a reference point for
evaluating CroPA’s enhanced cross-prompt transferability.

5



Published in Transactions on Machine Learning Research (06/2025)

4.3 Cross Prompt Attack

The Cross-Prompt Attack (CroPA) method introduced by Luo et al. (2024) employs learnable prompts during
optimization to enhance cross-prompt transferability. The key innovation lies in using prompt perturbations
that compete with image perturbations during the optimization process rather than collaborating to deceive
the model.

The algorithm optimizes both visual perturbation δv and prompt perturbation δt but with opposing objec-
tives. While δv aims to minimize the language modeling loss for generating the target text, δt maximizes this
loss. This adversarial relationship between the perturbations forces δv to develop stronger transferability
across different prompts.

The optimization process can be formally expressed as a min-max problem:

min
δv

max
δt

L(f(xv + δv, xt + δt), T ) (5)

where f represents the VLM, T is the target text for targeted attacks, and L denotes the language modeling
loss.

The implementation follows an iterative approach using Projected Gradient Descent (PGD) Madry et al.
(2017). The visual perturbation updates use gradient descent to minimize the loss, while prompt perturbation
updates employ gradient ascent to maximize it. The update frequency can be controlled via a parameter N ,
where image perturbation updates occur N times for each prompt perturbation update. The framework can
be visualized formally in Figure 1. We reproduce the algorithm, described by Luo et al. (2024), as follows:

Algorithm 1 CroPA: Cross Prompt Attack
Require: Model f , Target Text T , vision input xv, prompt set Xt, perturbation size ϵ, step sizes α1 and

α2, number of iteration steps K, adversarial prompt update interval N
Ensure: Adversarial example x′

v

1: Initialize x′
v = xv

2: for step = 1 to K do
3: Uniformally sample the prompt xi

t from Xt

4: if xi
t is not initialised then

5: Initialise x′i
t = xi

t

6: end if
7: Compute gradient for adversarial image : gv = ∇xv L(f(x′

v, xi
t), T )

8: Update with gradient descent: x′
v = x′

v − α1 · sign(gv)
9: if mod(step, N) = 0 then

10: Compute gradient for adversarial prompt: gt = ∇xt
L(f(x′

v, xi
t), T )

11: Update with gradient ascent: x′i
t = x′i

t + α2 · sign(gt)
12: end if
13: Project x′

v to be within the ϵ-ball of xv: x′
v = Clipxv,ϵ(x′

v)
14: end for
15: return x′

v

During evaluation, only the optimized image perturbation is applied, while prompt perturbations are dis-
carded. This ensures that the attack’s effectiveness stems from the image perturbation’s inherent transfer-
ability rather than prompt modifications.

5 Additional Investigative Experiments

CroPA’s iterative optimization method using PGD under the hood to increase the attack success rate is
effective when used on single model, but the use of the dependency on the feedback of single model minimizing
the loss function limits it’s transferability, as is shown true for several other gradient based perturbation
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techniques, which many works have recognized and proposed enhancements to Qin et al. (2024); Li et al.
(2024); Wang et al. (2023); Li et al. (2023a). This limitation is also recognized by the authors in their original
paper, and it verified by Table 9 under Appendix A.1. Furthermore, as reported in Table 1, the performance
of CroPA is especially poor in certain tasks such as Classification and Captioning.

Additionally, CroPA is highly computationally intensive, taking over 6 hours to run on a 48GB L40S GPU
utlising 95% of the VRAM, wherein a mere 50 images are trained with adversarial perturbations.

These limitations open the scope to perform our extended experiments which build on the CroPA framework
and supplement these drawbacks incorporating novel enhancements, especially targeting : (i) enhancements
in CroPA’s lack of consistent performance across all tasks and (ii) investigating CroPA against the different
transferability concepts we mentioned in Section 1, and incorporate supplements into the original framework
move towards better transferability of image perturbations.

While not a core proposal of the Luo et al. (2024) exploring transferability will also aid in cutting down
computation costs, with cross-image transferable perturbations having the potential to significantly increase
efficiency in an ideal scenario, without having to train a separate image perturbation for each image. The
Cross-Model transferable perturbation can potentially achieve even greater efficiency.

The following subsections detail our experiments which underscore our motivations to achieving the afore-
mentioned goals and outline their individual mechanisms:

5.1 Noise Initialization via Vision Encoding Optimization

A core limitation of CroPA lies in its random noise initialization strategy, which is shared across many
gradient-based adversarial attack methods. While CroPA iteratively optimizes this noise, its starting point
is uninformed by the target semantics, leading to instability and slower convergence. This is especially
problematic when targeting vision-language models (VLMs), where semantic alignment with prompts is
crucial. Crucially, this limitation is not merely theoretical, our comprehensive evaluation of CroPA’s bi-level
optimization framework in Section 6.5.1 reveals that its effectiveness is highly sensitive to initialization, as
empirically verified in Figure 7 and Table 6.5.1. This sensitivity stems from CroPA’s inability to guide the
optimization trajectory toward semantically meaningful directions from the outset, highlighting the need for
a more principled initialization strategy. Furthermore, conventional initialization techniques fail to ensure
meaningful adversarial directions from the onset, leading to suboptimal attack success rates and reduced
cross-prompt transferability.

To address these limitations, we hypothesize that a semantically informed initialization of adversarial pertur-
bations rather than a purely random initialization can significantly enhance attack efficacy while maintaining
perturbation imperceptibility. Specifically, we propose leveraging a diffusion-based approach to synthesize a
target image corresponding to a desired prompt. By using the vision encoder’s feature space as an alignment
mechanism, we ensure that the initial perturbation is already oriented in a semantically meaningful direction.

Our proposed Noise Initialization via Vision Encoding Optimization method integrates this semantic an-
choring with adversarial optimization by:

• Generating a semantically relevant target image using a state-of-the-art diffusion model (e.g., Stable
Diffusion XL).

• Aligning the perturbation with the target image’s vision encoder representation, ensuring that the
initial noise conforms to the adversarial objective.

• Optimizing perturbation updates using a Mean Squared Error(MSE)-based loss function that en-
forces semantic similarity while maintaining adversarial effectiveness.

By replacing random initialization with this vision-guided approach, we not only improve adversarial robust-
ness but also enhance attack efficiency, reducing the number of optimization steps required for convergence.
Our method thus provides a principled alternative to conventional approaches, offering both stronger ad-
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versarial perturbations and improved cross-prompt transferability. This approach provides a more effective
initialization, ensuring that the adversarial perturbations are semantically informed from the start.

5.1.1 Noise Initialization

Preliminary experiments performed on models such as BLIP-2 and InstructBLIP suggest that initializing
adversarial perturbations with semantically informed noise significantly enhances the attack’s efficacy over
traditional random initializations while only increasing the computation time for a single image by 20-25
seconds on a single GPU. The diffusion-based approach not only improves alignment in the vision encoder’s
feature space but also preserves the visual fidelity of the resulting adversarial examples while conforming to
strict perturbation budgets.

5.1.2 Diffusion-Based Target Synthesis

Given a target prompt T , we first generate an image xtarget that embodies the semantic attributes described
by T . This is accomplished via a diffusion model, specifically Stable Diffusion XL (SDXL). The generation
process can be formalized as follows:

xtarget = D(T, z; θSDXL), (6)

where D denotes the diffusion process, z is sampled from a Gaussian distribution, and θSDXL represents
the pre-trained weights of the diffusion model. The resulting image xtarget effectively captures the semantic
essence of the prompt T , thus providing an informative basis for initializing adversarial perturbations.

5.1.3 Vision-Encoder Anchored Perturbation

Let fv(·) denote the vision encoder component of the VLM. Our objective is to craft an adversarial per-
turbation δ such that the perturbed image x + δ mimics the semantic representation of the target image
in the vision encoder’s output space. To achieve this, we derive the initial perturbation by minimizing the
following objective:

δinit = arg min
∥δ∥∞≤ϵ

∥fv(x + δ)− fv(xtarget)∥2
2 , (7)

where ϵ is the maximum allowable perturbation (ensuring imperceptibility under an ℓ∞ constraint). This
initialization ensures that the adversarial example starts within a semantically meaningful neighborhood of
the target prompt’s representation. The method is formally depicted in Algorithm 2 under Appendix B.

5.1.4 Adversarial Optimization via PGD

After initializing the perturbation, we refine the adversarial example using projected gradient descent (PGD).
For the tth iteration, the update rule is given by:

x(t+1)
adv = ΠBϵ(x)

[
x(t)

adv − α∇x(t)
adv
LMSE

]
, (8)

where α is the step size, and ΠBϵ(x) projects the updated input back onto the admissible ℓ∞ ball around the
original image x. The loss function used during optimization is a simple mean squared error (MSE) between
the vision encoder outputs:

LMSE = ∥fv(xadv)− fv(xtarget)∥2
2 . (9)

This loss ensures that each update incrementally aligns the adversarial example with the target’s semantic
embedding.

5.2 Guiding perturbations via Target Value Vectors and evaluating Cross-Model Tranferability

While CroPA attempts to enhance adversarial effectiveness by optimizing both image and text inputs through
PGD, it lacks architectural sensitivity, particularly to the internal dynamics of the vision encoder, which
plays a dominant role in VLMs’ semantic grounding. CroPA treats both vision and language modalities
as uniformly vulnerable, failing to exploit modality-specific weaknesses. This oversight limits its ability to
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generate transferable and structured adversarial perturbations. More critically, CroPA’s perturbations lack
targeted influence on the encoder’s representational backbone, which undermines both adversarial strength
and transferability across models. CroPA minimizes and maximizes losses for image and text perturbations
respectively, aiming to manipulate the model’s output toward a specific target.

Previous research (Cui et al. (2023); Wang et al. (2024)) demonstrates that perturbing the output embeddings
of the vision encoder can significantly impair the visual perception capabilities of large vision-language models
(LVLMs), thereby misleading the language model’s responses. Moreover, various LVLMs typically employ
similar image encoders to convert images into visual tokens, which encode rich semantic and structural
information and serve as a critical interface for language decoders, to access and reason over image content.
However, the CroPA method does not sufficiently leverage the architectural specifics of the vision encoder and
instead treats both the vision and language components as equally susceptible to adversarial manipulation,
potentially overlooking targeted vulnerabilities unique to the vision encoder.

To address this, we propose integrating the CroPA loss with a perturbation loss designed to disrupt the
vision encoder’s core attention mechanism, specifically focusing on value vectors of the attention layers of
the vision encoder. Our hypothesis is that by perturbing the value vectors between the original image and
a reference image corresponding to a target text, we can significantly enhance the Adversarial Success Rate
(ASR) while maintaining the same hyperparameter constraints as CroPA.

This motivation is derived from empirical evidence in related works on adversarial tranferability in VLMs.
Our approach is inspired by the Doubly-Universal Adversarial Perturbation (Doubly-UAP) method where
instead of maximizing, we minimize the losses between value vectors of x i and T i, which identifies the
most effective components within a vision encoder’s attention mechanism for adversarial influence. We
hypothesize that targeting the value vectors in the vision layers which encode essential visual features will
disrupt the model’s interpretative abilities more effectively than CroPA’s generic PGD-based perturbations.
Additionally, by freezing the text encoder, we ensure that our perturbations are specifically tuned to degrade
the visual processing capability of the VLM rather than introducing text-based artifacts.

Thus, our modification aims to:

1. Improve attack effectiveness by focusing on exploiting information in the vision encoder,

2. enhance semantic alignment of adversarial perturbations with the target text representation, and

3. achieve better adversarial robustness across models while maintaining computational feasibility.

By jointly optimizing the CroPA loss and our modified Doubly-UAP loss, we introduce a more structured,
interpretable, and targeted adversarial attack framework for VLMs.

This incorporation is adapted from a component of the Doubly-UAP method proposed in Kim et al. (2024)
which introduced a UAP by identifying which specific components within the vision encoder’s attention
mechanism most effectively influence the performance of the VLM. We choose to focus on the two components
with the most fundamental roles in the attention mechanism:

1. Attention Weights: These control how much each patch should focus on other patches, determining the
level of interaction or relevance between patches. We hypothesize that by targeting the attention weights,
we can effectively interfere with the encoder’s ability to establish these relationships.

2. Value Vectors: These hold the actual information within each patch. We expect that perturbing the
value vectors will disrupt the essential information content within patches, further impairing the model’s
interpretative abilities.

We target the vision encoders within VLM, as they are crucial for visual interpretation. Specifically, we
focus on the attention mechanism within the vision encoder, the core process responsible for interpreting
visual features. We aim to target the most vulnerable components of this mechanism the value vectors at
the middle-to-late layers based on prior analysis.
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Formally, in the standard Doubly-UAP attack, the perturbation δ∗ is obtained as:

δ∗ = arg max
δ

1
|L|

∑
l∈L

Loss(Vl(x), Vl(x + δ)), (10)

where Vl(x) represents the value vectors associated with the l-th layer with input image x, and Loss(·) is the
loss function applied to the target vectors.

5.2.1 Our Modified Approach

We adapt this approach by introducing a modified loss function that incorporates a target value vector derived
from a reference image corresponding to a desired target text T. Instead of solely maximizing the deviation
of value vectors from their original representation, we enforce alignment between the vision encoder’s output
and a predefined target representation. Our method consists of the following steps:

Figure 2: D-UAP Architecture Diagram

1. Extract the value vectors from the l-th layer of the vision encoder for both the input image and the target
text’s associated image.

2. Compute the cosine similarity loss between these value vectors.

3. Jointly minimize -ve of this loss along with the CroPA loss with proper scaling to ensure adversarial
robustness and target alignment.
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Formally, let Vi(x + δ) denote the perturbed value vectors of the i-th attention head for the input image x,
and let Vt represent the value vectors of the target text’s reference image.We define our value vector loss as:

Ld-UAP =
N∑

i=1

(
1− Vi(x + δ) · Vt

∥Vi(x + δ)∥2∥Vt∥2

)
(11)

where N is the number of attention heads. This loss encourages the perturbed image’s value vectors to
closely align with the target text’s representation.

We integrate this loss with the CroPA loss to formulate our final objective function in Equation 12 , where
λ is a hyperparameter controlling the relative importance of the value vector loss:

Lre-CroPA = LCroPA(xv + δv, xt + δt, T )− λLd-UAP(δv) (12)

By jointly optimizing both losses, our approach not only preserves the adversarial nature of the perturbation
but also enforces semantic alignment with the target text. Specifically, during optimization, the gradients
from both loss components are combined to update the perturbation δ, ensuring that the generated adversar-
ial example exhibits both cross-prompt transferability and guided semantic influence. This enhancement to
the Doubly-UAP framework allows for more precise adversarial manipulation of VLMs, facilitating controlled
and interpretable perturbations with applications in adversarial robustness and security analysis. Algorithm
3 under Appendix B summarizes the method step-by-step.

While we propose this as a step towards increasing transferability of perturbations generated by CroPA, the
dependency of the D-UAP method on the model value vectors, and consequently the Vision Encoder, leads
us to hypothesize that transferability might be limited to models having the same or similar Vision Encoder
architectures as the primary model on which the CroPA framework is run.

5.3 Transferability across images via Image Augmentation

Traditional adversarial methods optimize perturbations through iterative gradient descent on individual
images, often leading to overfitting to image-specific features. As a result, these perturbations exhibit
poor transferability across images, which also makes them computationally expensive. The same applies to
CroPA, in which the adversarial perturbations are learned for a single image, across multiple prompts. In
their experiments, Luo et al. (2024) mention that their method is orthogonal to cross-image transferability
approaches, and that that cross-image transferability can be enhanced by computing perturbations across
images, as is done in Moosavi-Dezfooli et al. (2017). As part of our investigation, we experiment on this
claim and also introduce a novel approach, based on other literature on Universal Adversarial Perturbations
(UAPs).

To mitigate overfitting in gradient-based attacks while enabling cross-image transferability, Fang et al. (2024)
introduce Universal Adversarial Perturbations (UAPs) for Vision-Language Pretraining (VLP) models. Com-
plementing this, CutMix, proposed by Yun et al. (2019), offers a distinct regularization strategy by synthesiz-
ing training samples through regional replacement rather than pixel blending. CutMix generates composite
images by cutting rectangular patches from one image and pasting them into another, while mixing labels
proportionally to the area of the patches. This forces models to learn from partial views and prioritize
spatially invariant features, thereby improving robustness against adversarial attacks and occlusions.

Expanding on UAP frameworks, Zhang et al. (2024) propose Effective and Transferable Universal Adversarial
Attack (ETU), a method that enhances UAP transferability across multiple VLP models and tasks through
improved global and local optimization techniques. Specifically, ETU introduces SCMix, a data augmentation
strategy combining self-mix and cross-mix operations to boost data diversity while preserving semantic
integrity. Of these, SCMix aims to integrate both spatial and scale invariant features in images. We integrate
SCMix into our perturbation generation process, selecting it as one of our investigative techniques based on
their empirical results showing that, for the same model, SCMix alone, without their additional local utility
reinforcement, yields superior cross-image transferability.
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5.3.1 SCMix

SCMix, as an augmentation technique, diversifies training inputs through a structured two-stage mixing pro-
cess, the first of which self-mixing and the second cross-mixing. The self-mixing phase synthesizes variations
of a base image I1 by blending randomly cropped and resized patches:

I ′
1 = ηX1 + (1− η)X2 where Xi = Resize(RandomCrop(I1)), η = 0.5 (13)

While the original SCMix method utilised a probabilistic sampling of η, as η ∼ Beta(α, α) for some α >
0, we choose η = 0.5 to be fixed, which is equivalent to setting α = ∞ which is justified in appendix
D.3. The subsequent cross-mixing phase introduces features from a secondary image I2 through a weighted
combination:

I3 = β1I ′
1 + β2I2 with β1 ≫ β2 ∈ [0, 1). (14)

The weighting ensures I1’s dominant visual semantics persist in I3 while incorporating diversity from elements
of I2, enabling the adversarial generator to learn perturbations effective across diverse images. Further, by
preserving the dominance of the base image, the compatibility with I1’s text description T1 for I3 is ensured.
This facilitates enriched cross-modal interactions, as the synthetic image I3 remains aligned with T1 despite
integrating I2’s features.

The dual mixing mechanism reduces overfitting which is possible in the case of CroPA by forcing perturba-
tions to attack features invariant to both intra-image variations (via self-mixing) and inter-image blending
(via cross-mixing). This regularization effect promotes universal perturbations for cross-image transferabil-
ity, which may be applicable to unseen images without explicitly training the attack for that image, bridging
the gap between targeted efficacy and cross-image generalization. This is valid because during inference,
CroPA only returns the perturbed image, or equivalently an appropriate perturbation for the image, thus, if
effective cross-image perturbations are learned, the attack can be made universal as being both cross-prompt
transferable, as CroPA claims, and cross-image transferable, as we aim to check.

I1

X1

X2

I ′
1

I2 I3

η

1 − η

β2

β1

Self-Mixing

Cross-Mixing

Figure 3: Illustration of the self-mixing and cross-mixing processes. The input image I1 undergoes self-mixing
to generate intermediate representations X1 and X2, which are then combined to form I ′

1. Additionally, an
external image I2 is mixed with I ′

1 to produce the final output I3.
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5.3.2 CutMix

CutMix Yun et al. (2019) enhances transferability through discrete regional feature replacement. For image
pairs xA and xB , it creates composite samples:

x̃ = M ⊙ xA + (1−M)⊙ xB (15)

where M ∈ {0, 1}W ×H is a binary mask defining a randomly placed rectangular region. Effectively, CutMix
is able to learn from partial views of the images that it mixes. The main difference with SCMix is that
while SCMix uses a soft blend of features across, and within, images, CutMix uses a hard mask-based
replacement. Unlike SCMix’s continuous blending, CutMix’s discrete region replacement forces perturbations
to target spatially invariant features that persist across different image combinations. When integrated with
adversarial training, this approach encourages perturbations that exploit higher-level semantic patterns
rather than localized artifacts, potentially improving cross-image transferability.

5.4 Attack Setup and Threat Models for Transferability Experiments

We establish comprehensive threat models for evaluating both cross-model and cross-image transferability,
focusing on the specific adversarial capabilities, knowledge assumptions, and evaluation protocols for each
scenario.

5.4.1 Using D-UAP to explore Cross-Model Transferability for CroPA

To systematically evaluate how well adversarial perturbations generated with our D-UAP enhancement
transfer across different models, we establish a principled threat model for cross-model attacks:

Adversary’s Goal: The attacker aims to generate a single adversarial perturbation for an image that,
when applied, causes multiple vision-language models to output a specific target text regardless of the input
prompt. This represents a practical black-box transfer scenario where an attacker optimizes on an accessible
model but deploys against unknown models.

Knowledge and Capabilities: The attacker has white-box access to a surrogate model (either BLIP-2
or Flamingo in our experiments), including gradients and internal representations. For target models, the
attacker only knows their general architecture family (e.g., CLIP-based) without access to parameters. The
attacker is constrained to a maximum perturbation budget of ϵ = 16/255 under L∞ norm to ensure visual
imperceptibility.

Cross-Model Settings: We examine two transferability scenarios reflecting real-world deployment condi-
tions:

• Intra-family transfer: Perturbations optimized on BLIP-2 (with OPT-2.7b language model) are
evaluated on InstructBLIP (with Vicuna-7b language model). Both share similar CLIP ViT-L/14
vision encoders but differ in language models and fine-tuning objectives.

• Cross-architecture transfer: Perturbations are tested across fundamentally different model archi-
tectures: from BLIP-2 to Flamingo and vice versa. These models employ different vision encoders,
language models, and architectural designs.

Evaluation Setup: We measure Attack Success Rate (ASR) for each vision-language task independently
(VQAgeneral, VQAspecific, Classification, and Captioning). Success is measured by the target model failing
to generate the correct output when given the perturbed image, regardless of input prompt.

5.4.2 Investigating Cross-Image Transferability via Augmentation Techniques

For evaluating universal adversarial perturbations that work across different images, we establish the follow-
ing threat model:
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Adversary’s Goal: The attacker aims to generate a single perturbation pattern that, when applied to any
image, causes a VLM to output a predetermined target text regardless of the input prompt or image content.
This represents a higher level of attack efficiency compared to per-image optimization.

Knowledge and Capabilities: The attacker has access to a limited set of training images and their
corresponding SCMix-augmented variants. The attacker has white-box access to the target model during
perturbation optimization but must create a perturbation that generalizes to unseen images. The perturba-
tion is restricted to an L∞ budget of ϵ = 16/255.

Evaluation Setup: We evaluate universal perturbations on a separate set of test images not seen during
training. Success is measured by the ASR across different task types. A successful attack causes the model
to fail to generate the correct output text when presented with any previously unseen image, regardless of
its content or the associated prompt.

Our SCMix-enhanced approach specifically aims to overcome the inherent limitations of gradient-based
methods which tend to overfit to specific image features. By introducing controlled variations through self-
mixing and cross-mixing during training, we hypothesize that the resulting perturbations will better capture
model vulnerabilities independent of specific image characteristics.

5.4.3 Evaluation Rationale for Transferability experiments

In our experiments, we present all cross-prompt and cross-model transferability results under the untargeted
attack setting. This decision is motivated by two primary factors. First, different Vision-Language Models
(VLMs) incorporate visual information using distinct embedding mechanisms, making it difficult to pinpoint
how input perturbations influence final output token embeddings. As observed, targeted transferability is no-
tably higher between models sharing similar vision encoder architectures (e.g., BLIP-2 to InstructBLIP) but
varies drastically otherwise, rendering direct comparison of targeted ASRs across heterogeneous architectures
imprudent.

Second, the method of visual-textual fusion substantially impacts adversarial control. Decoder-only VLMs
such as LLaVA and OpenFlamingo incorporate visual features late via cross-attention or token concatenation,
treating them as auxiliary memory during causal language generation. Consequently, visual influence fades
as decoding progresses (Awadalla et al. (2023), Liu et al. (2023).

In contrast, fusion-based models like BLIP-2 Li et al. (2023b) and InstructBLIP Dai et al. (2023) integrate
visual features early and deeply into the input embeddings, ensuring persistent visual grounding throughout
generation. Thus, targeted attacks are inherently more feasible in fusion-based models compared to decoder-
only models (Dai et al. (2023)).

Given these architectural disparities, the evaluation of the transferability between models and between
images through non-targeted ASR provides a more robust, fair, and comparable assessment across diverse
VLM architectures.

Furthermore, we excluded CIA when comparing transferability as upon experimentation CIA yielded negli-
gible transferability, and presented the following limitations for transferability fundamentally in the method
itself:

• Image-Specific Semantic Embedding: CIA’s perturbation strategy relies on per-image visual token
manipulation to embed target concepts. This creates adversarial patterns that lack cross-image
consistency and are dependent on the image since the gradient direction and token space for different
images and concepts are vastly different and the token-space transformations between input/target
image pairs are non-transferable.

• Model-Specific Embedding Architectures : CIA is highly dependent on the structure of visual and
textual encoders, which fails to demonstrate cross-model transferability due to structural variations
across LVLMs (BLIP2, LLaVA, Flamingo etc).
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6 Results

As stated in Section 4, a major objective of our research is to reproduce the cross-prompt transferability
results presented by Luo et al. (2024) for the CroPA attack. This section details our efforts to replicate those
findings and provides a comparative analysis of our reproduced results against the original paper.

Models Used:

In reproducing the work of Luo et al. (2024), we evaluated five state-of-the-art Vision-Language Models
(VLMs): OpenFlamingo, BLIP-2, InstructBLIP and LLaVA. For Flamingo, we utilized the open-source
OpenFlamingo-9B implementation Awadalla et al. (2023), which provides comparable performance to the
original model while being publicly accessible.

BLIP-2 introduces a two-stage fusion-based approach that first extracts visual features using a frozen CLIP
image encoder, then processes these features through a Querying Transformer Li et al. (2023b). This archi-
tecture enables efficient adaptation to diverse vision-language tasks. The model employs OPT-2.7b as its
language model component, facilitating flexible text generation capabilities.

InstructBLIP builds upon BLIP-2’s fusion-based architecture while incorporating instruction tuning Dai
et al. (2023). A key distinction is its use of the Vicuna-7b language model, which enhances the model’s
ability to follow task-specific instructions. This modification enables more precise control over the model’s
outputs through carefully crafted prompts.

LLaVA Liu et al. (2023) employs a decoder-only generation approach, where a pretrained CLIP ViT-L vision
encoder connects to Vicuna-13B through a lightweight projection layer. Unlike fusion-based models, LLaVA
passes visual features directly into the language model’s context, treating images as special tokens in the
prompt sequence.

These models represent two distinct architectural approaches: decoder-only models (OpenFlamingo, LLaVA)
that treat visual embeddings as input context for generation, and fusion-based models (BLIP-2, Instruct-
BLIP) that explicitly align visual and textual representations before generation. These differences signifi-
cantly affect adversarial effectiveness across prompts in targetted attack.

Our reproduction efforts were based on the code provided in the authors’ public repository, maintaining the
original configurations of these models to ensure faithful comparison with the baseline results. While the
overall implementation was well-documented, we encountered several challenges that required modifications
for successful reproduction. Notably, the code for BLIP-2 and InstructBLIP models triggered multiple
runtime errors, necessitating significant debugging and adjustments to achieve functional execution.

6.1 Claim 1: CroPA achieves cross-prompt transferability across various target texts. [Reproduced]

To validate the central claim of Luo et al. (2024), which posits that CroPA can achieve cross-prompt trans-
ferability, we meticulously replicated their experimental setup. This involved training adversarial examples
using the CroPA method and evaluating their transferability across a diverse set of target prompts on the
Flamingo VLM. Our evaluation focused on measuring the Targeted Attack Success Rate (ASR) across the
following tasks: VQA (both general and specific), image classification, and image captioning.

6.1.1 Experimental Details

Following the experimental protocol outlined in Luo et al. (2024), we generated adversarial examples using
CroPA and assessed their effectiveness against a range of target prompts distinct from those used during
training. The specific target prompts used in our evaluation are listed in Table 1. These prompts were
selected to represent a broad spectrum of semantic meanings, ensuring a rigorous evaluation of cross-prompt
transferability. Additional details for all reproduced experiments are reported in Appendix D.1.
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6.1.2 Comparative Analysis

Table 1 presents the Targeted ASRs achieved by the CroPA method on the Flamingo VLM for different target
texts. Overall, our results align well with the claim that CroPA can achieve cross-prompt transferability.
We observed non-zero ASRs across all evaluated tasks, indicating that adversarial examples generated using
CroPA were effective in misleading the VLM, even when presented with diverse target prompts. However, we
do note that CroPA consistently under-performs for tasks such as Classification and Captioning, especially
with texts such as "too late" or "not sure" that have abstract meanings and don’t have significant visual
semantics.

Target Prompt Method VQAgeneral VQAspecific Classification Captioning Overall

unknown
Single-P 0.2640 0.4720 0.2700 0.1400 0.2865
Multi-P 0.7240 0.8740 0.5550 0.2850 0.6095
CroPA 0.9680 0.9880 0.7070 0.4200 0.7708

I am sorry
Single-P 0.2120 0.4740 0.5170 0.2530 0.3640
Multi-P 0.7020 0.9020 0.7090 0.6140 0.7318
CroPA 0.8620 0.9260 0.7170 0.6890 0.7985

not sure
Single-P 0.3540 0.4240 0.1450 0.0000 0.2308
Multi-P 0.6520 0.6860 0.2310 0.0030 0.3930
CroPA 0.8760 0.8940 0.2420 0.0010 0.5033

very good
Single-P 0.3980 0.5760 0.2180 0.0480 0.3100
Multi-P 0.8940 0.9640 0.4040 0.2080 0.6175
CroPA 0.9620 0.9860 0.6060 0.2540 0.7020

too late
Single-P 0.2520 0.4800 0.2280 0.0220 0.2455
Multi-P 0.7880 0.9120 0.5040 0.1630 0.5918
CroPA 0.9300 0.9580 0.7010 0.1790 0.6920

metaphor
Single-P 0.3280 0.6020 0.5550 0.1040 0.3973
Multi-P 0.8880 0.9520 0.8420 0.4910 0.7933
CroPA 0.9840 0.9940 0.9100 0.5840 0.8680

Table 1: Targeted ASRs tested on Flamingo with different target texts, across a variety of Vision-Language
tasks. Here VQAgeneral and VQAspecific, refer to the degree of specificity of prompts pertaining to a particular
image. The prompts used are reported in Appendix E

Our experiments successfully reproduce the core finding that CroPA exhibits robust cross-prompt transfer-
ability, thereby validating the adversarial vulnerability of VLMs to such attacks.

6.2 Claim 2: CroPA achieves the best overall performance across different number of prompts
[Reproduced]

We conduct experiments to compare the performance of baseline and CroPA methods over different number of
prompts compared to baselines as shown in Figure 4. For all methods ASR increases with increase in number
of prompts (redundant for Single-P as it inherently gets tested on a single prompt, hence the lone "star"
symbol in Figure 4). We note that CroPA gives better ASR for the same number of prompts as compared
to baselines, and is a consistent better performer, underscoring the core motivation of transferability across
prompts. We select the target text “unknown” to avoid the inclusion of high-frequency responses commonly
found in vision-language tasks, which we find a valid argument presented by Luo et al. (2024), for this
experiment.

We can also observe that the baseline method saturates in an ASR rate lower than that of CroPA as number
of prompts are increased, indicating a trend that by adding more prompts, the baseline approach cannot
surpass the performance of CroPA methods, which is consistent with the findings of Luo et al. (2024).
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Figure 4: Targeted ASR tested with different number of prompts on Flamingo. With the same number of
attack iterations, our CroPA significantly outperforms baselines. "unknown" is used as the target text.

6.3 Claim 3: CroPA converges towards higher ASR as number of iterations increase [Reproduced]

Our obtained results on investigating the converging ASR rate for CroPA resulted in contrasting results with
respect to the original reported metrics of convergence with higher number of iterations (refer Appendix A.2),
for the author’s results, despite using the exact same parameters for training and evaluation, as well as the
author’s own code. Where the original metrics showed CroPA converging with higher number of prompts.
While this certainly is the trend observed with the overall ASR across tasks as shown in Figure 6, which
imitates the figures the original paper reports, when we investigated the ASR convergence for each task’s use
case, individually the trend is prone to instability. This is verified by the findings reported in 5. Additionally,
the model used for evaluation under this scenario wasn’t specified by the authors, hence we opted to report
figures obtained for the OpenFlamingo model with the target text being "unknown".

(a) VQA (b) VQA-Specific (c) Classification (d) Captioning

Figure 5: Comparison of Single-P, Multi-P, and CroPA across different categories.

Figure 6: Overall Convergence and Comparison of CroPA
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6.4 Claim 4: CroPA outperforms baselines under few-shot settings [Reproduced]

In addition to the textual prompt, the Flamingo model also supports providing extra images as in-context
learning examples to improve the task adaptation ability. To investigate their effect on the cross-prompt
attack, Luo et al. (2024) tested the ASRs of the image adversarial examples with the number of in-context
learning examples different from the one provided in the optimisation stage. During the optimisation stage,
the image adversarial examples are updated under the 0-shot setting, namely no extra images are provided
as the in-context learning examples. In the evaluations, the 2-shot setting is used, i.e. two extra images are
used as the in-context learning examples.

Setting Method VQAgeneral VQAspecific Classification Captioning Overall

shot=0 Multi-P 0.7240 0.8740 0.5550 0.2850 0.6095
CroPA 0.9680 0.9880 0.7070 0.4200 0.7708

shot=2 Multi-P 0.7860 0.9420 0.5630 0.0010 0.5730
CroPA 0.9440 0.9940 0.6860 0.0300 0.6635

Table 2: Targeted ASRs with and without visual in-context learning. The shot indicates the number of
images added for in-context learning.

The use of in-context examples makes it inherently harder for adversarial attacks to succeed as they can cause
a shift from the generation conditions from the optimization stage (Luo et al. (2024)). Furthermore, adding
in-context images makes the model more contextually aware of the correct prompt space which diverges from
the target text space. A number of works (Zhao et al. (2023),Qi et al. (2023)), verify that attacks like CroPA
which are optimized for specific context lose effectiveness when the context changes.

However, it is worthy to note that CroPA performs significantly better than the baseline in most tasks,
making it more robust to widening of the context space by in-context examples. This verifies the motivation
and hypothesis behind min-max objective detailed in Subsection 4.3, which was formulated to make CroPA
more robust to widening of the prompt-space and consequent changes in context.

6.5 Results Beyond the Original Paper

The following subsections detail our extended experiments building upon CroPA’s framework and incorpo-
rating novel enhancements, mitigating the corresponding limitations of CroPA.

6.5.1 Noise Initialization

Our proposed Noise Initialization via Vision Encoding Optimization (detailed in subsection 5.1) demonstrates
significant improvements across various tasks compared to baseline methods. By using semantically informed
perturbation initialization, we achieve superior performance in adversarial robustness and cross-prompt
transferability. As shown in Table 3, the integration of our method (CroPA+Init) consistently outperforms
both CroPA and Multi-P across all metrics, achieving 6-15% gains in overall accuracy.

These results validate the efficacy of semantically guided initialization over random noise approaches. The
vision-encoder-anchored perturbations not only enhance attack success rates but also improve efficiency by
reducing optimization steps. This highlights the robustness and adaptability of our method as a principled
alternative for adversarial attack initialization.

Theoretical Analysis of Initialization in Bi-level Optimization The significant performance gains
achieved through our diffusion-guided initialization can be attributed to the unique optimization challenges
in CroPA’s min-max framework. Our analysis reveals three key factors:

First, CroPA’s adversarial formulation resembles a saddle-point problem where optimization stability is
heavily influenced by initialization. Zhang et al. (2025) demonstrated that min-max optimization problems
exhibit significantly higher sensitivity to initialization conditions than standard minimization problems,
often requiring carefully designed initialization strategies to achieve stable convergence. This sensitivity
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Target Prompt Method VQAgeneral VQAspecific Classification Captioning Overall

unknown
Multi-P 0.7240 0.8740 0.5550 0.2850 0.6095
CroPA 0.9680 0.9880 0.7070 0.4200 0.7708

CroPA+Init 0.8824 0.8920 0.8858 0.9306 0.8977

bomb
Multi-P 0.6840 0.8260 0.9050 0.6090 0.7560
CroPA 0.8176 0.9100 0.9498 0.6960 0.8433

CroPA+Init 0.9140 0.9468 0.9020 0.9412 0.9260

I am sorry
Multi-P 0.7020 0.9020 0.7090 0.6140 0.7318
CroPA 0.8620 0.9260 0.7170 0.6890 0.7985

CroPA+Init 0.9320 0.9524 0.9270 0.9716 0.9458

very good
Multi-P 0.7900 0.8860 0.6700 0.6700 0.7540
CroPA 0.8540 0.8990 0.7680 0.7550 0.8190

CroPA+Init 0.8745 0.8894 0.8362 0.9043 0.8761

too late
Multi-P 0.6960 0.8540 0.6780 0.6060 0.7585
CroPA 0.8990 0.9060 0.7940 0.8150 0.8535

CroPA+Init 0.9340 0.9220 0.9110 0.9660 0.9333

Table 3: Targeted ASRs on Blip2 with different target texts using CroPA Vision Encoder noise initialization.
The detailed hyperparameters used are discussed under section D.2.

becomes particularly pronounced in CroPA’s architecture, where prompt perturbations continuously alter
the optimization landscape throughout training.

Second, the alternating update schedule in CroPA—which updates image perturbations more frequently
than prompt perturbations—creates optimization asymmetry that further amplifies initialization importance.
Chen et al. (2019) identified that such alternating gradient-based methods in min-max problems frequently
suffer from local cycling behaviors, with convergence properties strongly dependent on the initial point’s
proximity to adversarially robust regions. Our semantic initialization leverages this insight by deliberately
placing the starting point closer to meaningful adversarial directions.

Third, empirical evidence from our experiments aligns with findings from Wu et al. (2020), who demonstrated
that perturbations initialized with semantic priors consistently transfer better across models than randomly
initialized ones, producing substantial improvements in attack success rates. This effect becomes particularly
pronounced in bi-level optimization contexts like CroPA, where optimization pathways are more complex.

Our diffusion-based approach addresses these challenges by initializing perturbations in the direction of
semantic targets rather than using standard random noise. This principled initialization strategy enables
faster convergence during optimization while simultaneously enhancing the transferability of the resulting
adversarial examples. The significant performance improvements observed in Table 3, which show significant
ASR increases.

Method VQAgeneral VQAspecific Classification Captioning Overall
Multi-P 0.7053 0.8807 0.7001 0.5553 0.7104
CroPA 0.8723 0.9457 0.7518 0.6138 0.7958
CIA 0.2985 0.2281 0.4857 0.4687 0.370
CroPA+Init 0.9145 0.9342 0.8982 0.9464 0.9209

Table 4: Average Targeted ASRs on BLIP-2 for different methods. Results show the impact on different
vision-language tasks: Visual Question Answering (general and specific), Classification, and Captioning.
The best performance values for each task are highlighted in bold. Apart from the previously mentioned
baselines, we also compare our results with the Contextual Injection Attack (CIA) Yang et al. (2024) as an
additional baseline.

Gradient based adversarial attacks often take up semantics of their targets, which theoretically shouldn’t
need a semantically aligned initialization at all, however, due to the min-max complexities we mention above,
the semantic alignment produced by gradients weaken, and injection of target semantics into initialization is
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necessary to strengthen them and aid better convergence. To aid this claim we provide experimental results
in Figure 7.

We evaluate the incorporation of target attributes into the perturbations by first taking the CLIP score of
the target text and our noise perturbations obtained by the base CroPA method and our Init enhancement.
This offers an insight as to how much of the target features are taken up by the perturbations.

It is observed that CroPA does show expected behavior of gradient-based perturbation methods and acquires
the context of the target, however we do notice a modest increment in the CLIP score with the Initialization
included. This suggests that while the target semantics are acquired by CroPA’s perturbations, the initial-
ization provides a subtle change in favor of better proximity it adversarial vulerable regions, even if it does
not significantly upgrade the semantic features acquired by the perturbations with respect to the target.

The convergence trend before and after the updated initialization also shows a promising trend aligned
with our original hypothesis that, by deliberately placing the starting point closer to meaningful adversarial
directions, our semantic initialization strategy achieves faster convergence.

Method CLIP Score
CroPA 21.80
CroPA+Init 23.09

Target Text: "Bomb"

(a) (b)

Figure 7: (a) Overall Convergence Comparison of base CroPA and CroPA+Init. (b) Quantifying feature
similarity of learned perturbation to target by CLIP score.

6.5.2 Investigating Cross-Image transferability and Image Augmentation

CroPA’s effectiveness stems from its ability to retain adversarial impact across different textual prompts,
but this focus inherently limits its cross-image transferability. CroPA optimizes perturbations specifically to
be effective across different prompts, the resulting adversarial signals remain tightly coupled to the low-level
features of the image they were generated on. This strong dependency prevents the perturbations from
generalizing to different images, making universal cross-image attacks ineffective. This weakens the author’s
claims that learning the perturbation across images would lead to cross-image transferability.

To address this limitation, we further explored the integration of the SCMix and CutMix frameworks,
presented in subsection 5.3, both of which introduce input diversity by mixing image features during training.
The goal was to encourage perturbations to extend beyond a single image and improve their generalization.
We believe CutMix outperforms SCMix in promoting adversarial transferability because its region-based
mixing maintains distinct, non-overlapping spatial areas. This encourages the model to learn modular and
independently manipulable features, which in turn makes adversarial perturbations more generalizable across
different inputs. Our results (Table 5) show that while cross-image transferability remains a challenge, both
SCMix and CutMix contribute to measurable improvements. Despite these gains, the performance between
cross-image methods and CroPA when applied to a single image showcase a fundamental limitation of CroPA:
it excels at cross-prompt robustness but does not effectively support transferable adversarial attacks across
images.
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Method VQA VQAspecific Classification Captioning Overall
CroPA (Base) 0.3500 0.4920 0.4000 0.5000 0.4355
CroPA with SCMix 0.6560 0.7160 0.5000 0.9500 0.7055
CroPA with CutMix 0.4520 0.7240 0.5000 0.5500 0.5565

Table 5: Untargeted ASR of CroPA in cross-image settings with and without SCMix and CutMix. The
results represent the best ASRs achieved across all iterations. CroPA without input mixing attained its
highest ASRs at 1700 iterations, while CroPA with SCMix and CutMix outperformed it significantly earlier,
at just 1500 iterations and 1600 iterations, respectively. Additional details on experimental parameters are
reported in Appendix D.3.

6.5.3 Guiding perturbations via Target Value Vectors

We obtain results for the D-UAP-modified CroPA framework detailed in Subsection 5.2. Our results in
Tables 6 and 7 demonstrate the effectiveness of the CroPA+D-UAP method across various vision-language
tasks. The enhanced perturbations greatly improve upon the existing algorithm across the board to give
an overall ASR of 96.85% which is an 12.5% increase from CroPA’s base method. The enhanced algorithm
particularly improves ASR in tasks such as VQAgeneral and Captioning, marking a 13% and 28% increase
respectively. "Bomb" was used as the target text in these experiments, which underscores the performance
of the improved method even with instances of harmful text which inherently are set to trigger a model’s
guardrails. These means that for the worse expected cases of "harmful words" the enhancement lead the
model to perform significantly better in vulnerable scenarios.

Method VQAgeneral VQAspecific Classification Captioning Overall
Multi-P 0.68 0.82 0.90 0.60 0.75
CroPA 0.8176 0.9100 0.9498 0.6960 0.8433
CIA 0.3431 0.3102 0.4732 0.5534 0.4199
CroPA+D-UAP 0.9420 0.9720 0.9790 0.9810 0.9685

Table 6: Targeted ASRs on Blip2 using D-UAP function and target text being "Bomb", outperforming PGD
baselines and CIA, as well as the base CroPA method.

Method VQAgeneral VQAspecific Classification Captioning Overall
Multi-P 0.6960 0.8540 0.8990 0.6060 0.7638
CroPA 0.7900 0.8860 0.9470 0.6700 0.8233
CIA 0.3027 0.4302 0.5112 0.5080 0.4380
CroPA+D-UAP 0.9000 0.9520 0.9500 0.9060 0.9270

Table 7: Targeted ASRs on Open Flamingo using D-UAP Loss function and target text being "Bomb".

6.5.4 Analyzing Cross Model Transferability by Value Vector guidance

The method also presents a strong case for increasing cross-model transferability as reported in Table 8,
with significant improvements over the vanilla CroPA method, especially in Classification and Captioning
tasks (14% and 21% respectively), with modest increase VQA. The discrepancy across tasks can be at-
tributed to the fact that VQA prompts span a much more complex embedding space than targeted tasks
like Classification or Captioning where the output is limited to much smaller spans.

It’s important to address a key limitation we observed during our analysis, particularly concerning the vision
encoder’s behavior, which verifies our hypothesis in Subsection 5.2 about the method’s limitations.

A limitation of the CroPA Doubly-UAP approach lies in the dependency of value vectors on the specific
vision encoder used within the Vision Language Model (VLM). This can limit transferability to model’s
having the same or similar architectural design of the Vision Encoder, this is verified in Table 8, where the
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pertubrations trained on BLIP2 appear to be passably transferable to InstructBLIP which used the same
Vision Encoder, and failing to transfer to OpenFlamingo. This expected pattern can verified also in the case
where the perturbations are trained on Flamingo and applied to the other models, where the ASR comes to
be insignificant (refer Table D.4.5 in Appendix D.4.5. Experimental details are reported in Appendix D.4.

Settings Method VQAgeneral VQAspecific Cls Cap Overall

BLIP2 to InstructBLIP
Multi-P 0.1760 0.2090 0.2750 0.2480 0.2270
CroPA 0.3220 0.4170 0.6720 0.6150 0.5065

CroPA + D-UAP 0.3940 0.5780 0.8800 0.8880 0.6850

BLIP2 to Flamingo
Multi-P 0.0810 0.0660 0.0760 0.0890 0.0780
CroPA 0.1520 0.1220 0.1180 0.1820 0.1435

CroPA + D-UAP 0.1850 0.2190 0.1420 0.3880 0.2335

BLIP2 to LLaVA
Multi-P 0.1220 0.1060 0.0810 0.0630 0.0930
CroPA 0.3190 0.2570 0.2730 0.3670 0.3040

CroPA + D-UAP 0.5070 0.3420 0.4380 0.8430 0.5325

InstructBLIP to BLIP2
Multi-P 0.1230 0.1520 0.1020 0.0960 0.1183
CroPA 0.2690 0.2320 0.1870 0.2270 0.2288

CroPA+D-UAP 0.4800 0.5100 0.4700 0.5000 0.4900

InstructBLIP to LLaVA
Multi-P 0.0650 0.0580 0.0420 0.0370 0.0505
CroPA 0.1620 0.1120 0.1410 0.1230 0.1345

CroPA+D-UAP 0.3450 0.3150 0.3680 0.3950 0.3558

InstructBLIP to Flamingo
Multi-P 0.0320 0.0210 0.0120 0.0110 0.0190
CroPA 0.0740 0.0680 0.0490 0.0480 0.0598

CroPA+D-UAP 0.1600 0.1400 0.1200 0.1300 0.1375

Flamingo to BLIP2
Multi-P 0.0140 0.0070 0.0090 0.0120 0.0105
CroPA 0.0450 0.0210 0.0300 0.0380 0.0335

CroPA+D-UAP 0.1080 0.0800 0.0990 0.1180 0.1013

Flamingo to InstructBLIP
Multi-P 0.0100 0.0060 0.0050 0.0090 0.0075
CroPA 0.0360 0.0220 0.0280 0.0300 0.0290

CroPA+D-UAP 0.1050 0.0720 0.0880 0.1100 0.0938

Flamingo to LLaVA
Multi-P 0.0180 0.0110 0.0140 0.0170 0.0150
CroPA 0.0400 0.0300 0.0350 0.0430 0.0370

CroPA+D-UAP 0.1100 0.0850 0.0980 0.1170 0.1025

Table 8: The cross model test under different settings. "BLIP2 to InstructBLIP" means the perturbations
optimised on BLIP2 are tested on the InstructBLIP and similarly for "BLIP2 to Flamingo"

Our investigations revealed that for a given target text, the value vectors generated by the vision encoder
remain approximately consistent across different input images. This observation has several implications:

1. Vision Encoder Specificity: The value vectors produced are aligned to the architecture and
pre-training of the vision encoder.

2. Limited Diversity in Perturbations: Due to the consistency of value vectors for a given target
text, the diversity of adversarial perturbations generated by our method may be constrained. This
could potentially limit the attack’s ability to produce highly varied adversarial examples.

3. Target Text Dependency: The similarity in value vectors across different images for the same
target text indicates that the attack’s outcome is strongly influenced by the choice of target text
rather than the specific features of the input image.
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7 Discussion

7.1 Observations with reproducibility

Our study aimed to replicate key aspects and findings of Luo et al. (2024) on the Cross-Prompt Attack
(CroPA) framework, we have substantiated the original claims regarding the enhancement of cross-prompt
adversarial transferability in Vision-Language Models (VLMs). Our experiments confirmed that CroPA
achieves strong cross-prompt transferability across diverse tasks, including VQA, image classification, and
captioning, consistently outperforming baseline methods. CroPA remains robust in few-shot settings (6.4),
outperforming other baselines and demonstrating resilience to the shift from the generation conditions from
the optimization stage introduced by in-context learning examples.

7.2 Noise Initialization findings

In Subsection 5.1, we identified a critical limitation in CroPA and related adversarial attack methods, the
reliance on random noise initialization, which is agnostic to the semantic structure of the target prompt. We
hypothesized that this lack of semantic guidance at initialization introduces instability, prolongs convergence,
and reduces cross-prompt and cross-modal transferability.

To address this, we proposed a semantically informed initialization strategy using a diffusion-synthesized
reference image and alignment in the vision encoder’s feature space, designed to orient perturbations in a
meaningful adversarial direction from the outset. Our experiment results in 6.5.1 empirically validate this
hypothesis: across all evaluated benchmarks, our noise initialization method significantly outperformed both
CroPA and random-initialized baselines, yielding up to 15% gains in Targeted ASR and notably reducing
optimization steps. These findings confirm that semantically anchored initialization not only enhances
adversarial efficacy but also provides a principled and efficient foundation for VLM attack frameworks.

This enhancement not only increased the effectiveness of adversarial attacks but also reduced the number
of optimization steps required, making the process more efficient. By anchoring perturbations to the vision
encoder’s semantic space, this method provided a more principled and robust initialization strategy compared
to random noise, highlighting its potential for improving adversarial attack frameworks.

7.3 Evaluation of Transferability Experiments

7.3.1 Cross-Image Transferability

Despite the author’s claims that and that cross-image transferability can be achieved by computing perturba-
tions across image, we found in our experimentation that while CroPA excels at cross-prompt transferability,
its adversarial perturbations are tightly coupled to the low-level features of the specific image they were
generated for. To address CroPA’s inherent limitation in cross-image transferability, we integrated SCMix
(Subsection 5.3) and CutMix, both image augmentation methods that help increase cross-image diversity
while preserving semantic information of the original images.

Our results 6.5.2 showed that SCMix provided significant improvements in cross-image transferability, par-
ticularly in tasks like VQA, VQA-specific and Captioning, where the ASR increased overall by approximately
27 percent. CutMix, on the other hand, achieved a net increase of around 12 percent over the base cross-
image version of CroPA. We believe this is because SCMix explicitly introduces spatial and scale invariance
through its random cropping and resizing of the same image, then softly mixes it with a second image.
This encourages the perturbations to target semantically aligned features that are less sensitive to exact
positioning or scale, making it easier for adversarial perturbations to generalize across different inputs.

We can see that adding SCMix and CutMix improves the success of cross-image transferability when ap-
plied to a cross-prompt transferable framework like CroPA. Both our improvements to address cross-image
transferability are image augmentation techniques, which we believe are able to add cross-image features for
better generalization when learning the perturbations. For further improvements, future research aimed at
improving cross-image transferability in cross-prompt frameworks should focus on more complex and layered
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approaches beyond augmentation such as combining it with feature-alignment attacks based on the latent
representation of the images, or perturbations in the latent space directly among other approaches.

7.3.2 Cross-Model Transferability

The D-UAP-modified CroPA framework (Subsection 5.2 represents a significant advancement in CroPA’s
attack method, achieving an overall Targeted Attack Success Rate (ASR) of 96.85%, an 13.5% improvement
over the base CroPA method as shown in 6.5.3. This enhancement is particularly notable in tasks like
VQAgeneral and Captioning, where ASRs increased by 13% and 28%, respectively. These improvements were
observed even when targeting challenging or harmful text, such as "Bomb," which typically triggers model
guardrails, demonstrating the robustness of the D-UAP framework in bypassing safety mechanisms.

Additionally, the framework exhibited improved cross-model transferability, especially between models with
similar vision encoders, such as BLIP2 and InstructBLIP. However, the method’s effectiveness is constrained
by its dependency on the specific vision encoder, which limits the diversity of perturbations and hinders
transferability to models with different architectures.

This limitation underscores the broader challenge of developing encoder-agnostic adversarial methods. De-
spite this, the D-UAP framework marks a critical step forward in creating universal adversarial perturbations
that are effective across both prompts and images, paving the way for future research to enhance generaliz-
ability and robustness in vision-language models. Lastly, our cross-model transferability comparisons do not
include evaluation with the Contextual Injection Attack, since the attack is inherently non-transferable and
was unable to produce comparable results.

7.4 Trade-offs Between Different Types of Adversarial Transferability

Our comprehensive analysis reveals fundamental trade-offs between different dimensions of adversarial trans-
ferability in vision-language models. These trade-offs are essential to understand when designing robust
adversarial attacks:

7.4.1 Cross-Prompt vs. Cross-Model Transferability

The original CroPA method excels at cross-prompt transferability by optimizing perturbations against com-
peting text embeddings. However, this optimization implicitly anchors the perturbations to the specific
architecture of the target model. Our experiments in Section A.1 confirm this limitation, with ASRs drop-
ping significantly when perturbations generated on one model are applied to another.

Our D-UAP enhancement (Section 5.2) attempts to address this trade-off by targeting generalizable com-
ponents within vision encoders rather than model-specific features. While this improves cross-model trans-
ferability between architecturally similar models (e.g., BLIP-2 and InstructBLIP), the improvement remains
modest between fundamentally different architectures (e.g., BLIP-2 and Flamingo). This suggests an inher-
ent tension between optimizing for prompt diversity and model diversity simultaneously.

7.4.2 Cross-Prompt vs. Cross-Image Transferability

Cross-prompt and cross-image transferability represent competing optimization objectives. CroPA achieves
strong cross-prompt transferability by tightly coupling perturbations to image-specific features. This cou-
pling, however, fundamentally limits cross-image generalization.

We propose using data augmentation to address this limitation. Our SCMix and CutMix integrations (Sec-
tion 5.3) attempt to overcome this limitation by diversifying the optimization process through augmentation.
The improvements observed in Table 5 are promising for future work in this direction. However, at the same
time, we find it important to point out that our findings suggest that while augmentation techniques can
improve cross-image transferability, they do not fully resolve the fundamental tension between these objec-
tives.
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7.4.3 Role of Initialization in Transferability Balance

Our diffusion-based initialization approach (Section 5.1) represents an alternative perspective on these trade-
offs. By anchoring perturbations to semantically meaningful initializations, we can achieve higher ASRs
without sacrificing cross-prompt transferability. This suggests that the optimization landscape’s starting
point significantly influences the achievable balance between different transferability types.

Unlike methods that modify the optimization process itself, better initialization enables perturbations to
converge toward more general adversarial directions that remain effective across prompts. However, even
with improved initialization, the fundamental tension between cross-prompt and cross-image/cross-model
transferability remains. A perturbation optimized for one dimension inevitably sacrifices effectiveness in
others.

7.4.4 Implications for Future Research

These observed trade-offs highlight a critical challenge in adversarial machine learning for vision-language
models: no single attack methodology can simultaneously maximize all forms of transferability. Future
research should focus on developing frameworks that allow for controlled balance between these compet-
ing objectives, potentially through multi-objective optimization approaches or architecturally-aware attack
designs.

Our work demonstrates that while individual techniques can push the boundaries of specific transferability
dimensions, a comprehensive solution would require fundamentally rethinking how adversarial perturbations
interact with the underlying model architectures and data representations.

Despite these affirmations, the domain of cross-prompt adversarial transferability remains underexplored.
The considerable lack of literature in this area highlights a gap in our understanding of prompt-induced
vulnerabilities within VLMs. Addressing this gap is imperative, as it holds profound implications for the
secure deployment of these models.

7.5 Broader Impact

From an attacker standpoint, adversarial examples exhibiting high cross-prompt transferability pose signifi-
cant threats. Such examples can manipulate VLMs to produce malicious or misleading outputs, even when
prompted with harmless queries. This capability could be exploited to disseminate false information or to
subvert systems dependent on VLMs for content generation and decision-making.

Conversely, from a defensive perspective, the application of imperceptible perturbations offers a novel mech-
anism to safeguard sensitive information. By embedding these perturbations into images, it is possible to
induce VLMs to consistently output predetermined, non-sensitive text, thereby thwarting unauthorized at-
tempts to extract confidential data from personal images. This technique serves as a proactive measure to
enhance privacy and data security in an era where visual data is increasingly susceptible to exploitation.

Our study also introduces refinements to the CroPA framework, including improved initialization strategies
and an enhanced loss function. These modifications have demonstrated a marked increase in both the Attack
Success Rate (ASR) and the generalizability of adversarial examples across different models and images. Such
advancements not only reinforce the efficacy of cross-prompt attacks but also pave the way for more resilient
defenses against them.

In conclusion, while our reproducibility study affirms the foundational work of Luo et al. (2024), it also
accentuates the necessity for deeper investigation into cross-prompt adversarial transferability. A compre-
hensive understanding of this phenomenon is crucial for developing robust VLMs capable of withstanding
adversarial manipulations and for formulating effective countermeasures to protect user data and maintain
the integrity of model outputs.
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7.6 Limitations and Future Work

While we were successfully able to reproduce the key results of CroPA and conduct extensive ablations,
our progress was hindered on multiple occasions due to a lack of computational resources. Training and
evaluating adversarial attacks on large-scale VLMS, such as Flamingo and BLIP2, require significant GPU
memory and processing power, which limited the scale and depth of some experiments. Running extensive
hyperparameter tuning or evaluating cross-model transferability across a wider range of architectures was
often constrained by resource availability. Additionally, we aimed to further investigate transferability using
an ensemble of these models, which would have provided deeper insights into the generalizability of adversarial
perturbations. However, this approach required very high memory and compute requirements, making it
infeasible with our current infrastructure

Future work could focus on improving further cross-model transferability, particularly by developing encoder-
agnostic methods as well as enhancing cross-image generalization. Another way to further improve the
practical applicability of the method is to implement the optimization with query-based strategies.

7.7 Communication With Original Authors

No direct communication could be established with the original authors during the replication process. The
issue raised on their GitHub repository regarding the BLIP-2 and InstructBLIP models remains unresolved
at the time of writing.
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A Results Sourced from the original paper

A.1 Cross-Model Transferability Evaluation for CroPA

Table 9 presents CroPA’s cross model transferability results, underscoring the model-specific over-fitting
issue highlighted in 5.3.

Settings Method VQAgeneral VQAspecific Classification Captioning Overall

BLIP2 to InstructBLIP Multi-P 0.00 0.01 0.04 0.03 0.02
CroPA 0.00 0.04 0.15 0.11 0.08

InstructBLIP to BLIP2 Multi-P 0.00 0.02 0.10 0.02 0.04
CroPA 0.01 0.05 0.13 0.04 0.06

Table 9: The cross model test under different settings. "BLIP2 to InstructBLIP" means the perturbations
optimised on BLIP2 are tested on the InstructBLIP and "InstructBLIP to BLIP2" are different. The language
model for BLIP2 is OPT-2.7b and the model for InstructBLIP is Vicuna-7b. The best performance values
for each task are highlighted in bold.

A.2 Convergence results of the original paper

Figure 8 presents CroPA’s convergence results over increasing number of iterations, referred in 6.3.
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Figure 8: Overall Convergence and Comparison of Original CroPA

B Additional Method Details

In this section we present the algorithm formally depicted for our enhancement methodologies to CroPA as
discussed in subsection 5.1 and 5.2 in Algorithms 2 and 3 respectively :

The modified algorithm to apply SCMix image augmentation with CroPA is presented in Algorithm 4.
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Algorithm 2 Diffusion-Based Noise Initialization
and PGD
Require: x, T , fv, ϵ, α, θSDXL

— Noise Initialization —
Sample noise: z ∼ N (0, I)
Generate target image: xtarget ← D(T, z; θSDXL)

Compute initial perturbation:
δinit ← arg min∥δ∥∞≤ϵ ∥fv(x + δ)− fv(xtarget)∥2

2
— Adversarial Optimization via PGD —
Initialize adversarial example: xadv ← x + δinit

for t = 1 to Niterations do
Compute MSE loss:
LMSE ← ∥fv(xadv)− fv(xtarget)∥2

2
Compute gradient: g ← ∇xadv

LMSE

Update adversarial example: xadv ← xadv−α·g

Project back onto L∞ ball: xadv ←
ΠBϵ(x)(xadv)

end for
return xadv

D: Diffusion model (SDXL) for image generation.
fv: Vision encoder that extracts features.
ΠBϵ(x): Projection function to ϵ-ball.

Algorithm 3 CroPA-D-UAP
Require: Model f , Target Text T , input image xv,

input prompt xt, perturbation size ϵ, step sizes
α1, α2, regularization weight λ, iterations K

Ensure: Adversarial perturbations δv, δt

Initialize δv = 0, δt = 0
Generate target image Ti = SDXL(T )
for step = 1 to K do

LCroPA = CroPALoss(xv + δv, xt + δt, T )
Extract value vectors
Vt = ExtractValueVectors(Ti)
Ld-UAP = 0
for each attention head i in layer l do

Extract value vectors
Vi = ExtractValueVectors(xv + δv)
Ld-UAP = Ld-UAP + cossim(Vi, Vt)

end for
Total loss: Lre-CroPA = LCroPA − λLd-UAP
gv = ∇δv

Lre-CroPA, gt = ∇δt
Lre-CroPA

Update perturbations:
δv = δv − α1 · sign(gv)
δt = δt − α2 · sign(gt)
Project δv to ϵ-ball around 0

end for
return δv, δt

Figure 9: Left: Our algorithm for initializing adversarial perturbations using diffusion models. Right: Our
proposed CroPA-D-UAP method that guides perturbations via target value vectors.

C Implementational Details

C.1 Datasets

Following the original work, our evaluation utilized images from the MS-COCO validation dataset Lin
et al. (2014). This dataset provides a diverse collection of natural images suitable for testing cross-prompt
transferability across various visual scenarios.

For the textual component, we employed two categories of Visual Question Answering (VQA) prompts. The
first category, VQAgeneral, consists of general questions applicable to any image, focusing on common visual
attributes and objects. The second category, VQAspecific, derives from the VQA-v2 dataset Goyal et al.
(2017a) and contains questions specifically tailored to individual image content.

This combination of a standard vision dataset with both general and specific VQA prompts enables compre-
hensive evaluation of cross-prompt transferability across different types of queries and visual contexts. The
prompts were designed to test both broad visual understanding and specific detail recognition capabilities
of the models.

C.2 Experimental Setup

The experimental setup followed specific parameters for attack configuration and evaluation.For the attack
implementation, we maintained consistency with the original setup by utilizing the same seeds. By default,
the experiments were conducted as targeted attacks, with "unknown" chosen as the target text to avoid
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Algorithm 4 Cross Image Cross Prompt Attack
Require: Model f , Target Text T , input images Xv = {x1

v, x2
v, . . . , xn

v},
prompt set St = {X1

t , X2
t , . . . , Xn

t }, perturbation size ϵ,
step sizes α1, α2, iterations K, update interval N (controls text update frequency),
SCMix augmentation boolean SCMixAugment,
SCMix hyperparameters η (self-mixing ratio), β1, β2 (cross-mixing coefficients) if Augment is true Cut-
Mix augmentation boolean CutMixAugment

Ensure: Adversarial perturbation δv

1: Initialize perturbation δv ∼ N (0, ϵ)
2: for step = 1 to K do
3: for i = 1 to n (iterate through all images) do
4: Sample prompt xi,j

t from Xi
t // Select random prompt for current image

5: if SCMixAugment is true (enable SCMix augmentation) then
6: Sample cross-image xcross

v ∼ Xv // Randomly select image for mixing
7: if xcross

v is xv then
8: x′

v = xi
v // No augmentation if same image selected

9: else
10: Self-mixing: x′

v1
= Resize(RandomCrop(xi

v)) // Create two patches
11: x′

v2
= Resize(RandomCrop(xi

v)) // Create second patch
12: xself

v = ηx′
v1

+ (1− η)x′
v2

13: Cross-mixing: x′
v = β1xself

v + β2xcross
v

14: end if
15: else if CutMixAugment is true (enable CutMix augmentation) then
16: Sample cross-image xcross

v ∼ Xv // Randomly select image for mixing
17: Initialize rectangular binary mask M // Filled with 1s where the rectangle is

x′
v = (1−M)⊙ xi

v + M ⊙ xcross
v

18: else
19: x′

v = xi
v

20: end if
21: if x′i,j

t not initialized then
22: Initialize text perturbation x′i,j

t = xi,j
t // Starting point for text perturbation

23: end if
24: Compute image gradient: gv = ∇xv

L(f(x′
v + δv, x′i,j

t ), T )
25: Update perturbation: δv = δv − α1 · sign(gv)
26: if mod(step, N) = 0 (update text every N steps) then
27: Compute text gradient: gt = ∇xt

L(f(x′
v + δv, x′i,j

t ), T )
28: Update text perturbation: x′i,j

t = x′i,j
t + α2 · sign(gt) // Ascent direction

29: end if
30: Project δv to ϵ-ball: δv = Clip0,ϵ(δv)
31: end for
32: end for
33: return δv // Return universal perturbation applicable across images

high-frequency responses typical in vision-language tasks. The perturbation size was fixed at 16/255, and
all adversarial examples were optimized and tested under zero-shot settings.

For multi-prompt experiments, both Multi-P and CroPA implementations used ten prompts. We maintained
three evaluation runs for each experiment, averaging the Attack Success Rate (ASR) scores to ensure reliable
results. The prompts spanned multiple task types including general visual questions, image-specific queries,
classification tasks, and image captioning, with varying lengths and semantic structures.

For model implementations, we used the public OpenFlamingo-9B Awadalla et al. (2023) as our Flamingo
variant, along with BLIP-2 and InstructBLIP models. Our reproduction maintained these core experimental
parameters to ensure comparable results with the original work.
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C.3 Computational Requirements

The computational demands of reproducing the CroPA experiments were substantial, reflecting the resource-
intensive nature of modern Vision-Language Models. Our primary experiments were conducted on a PyTorch
Lightning platform using an L40S GPU with 48GB VRAM and a 4-core CPU with 16GB RAM, matching
the original paper’s minimum requirement of 45GB VRAM for stable execution.

Working within the constraints of the free-tier platform credits posed significant challenges. Our experiments
were limited by a pooled allocation of 120 credits shared across four accounts. This necessitated careful
resource management, particularly given the computational intensity of large-scale VLMs. To overcome
these limitations, we implemented several memory optimization strategies to enable partial execution on
local machines with 16GB VRAM, though this required significant code modifications.

The total computational cost of our reproduction study amounted to approximately 140 GPU hours and 90
CPU hours. This includes time spent on model training, attack generation, and evaluation across multiple
experimental configurations. The substantial computational requirements underscore the importance of
efficient resource allocation in modern machine learning reproducibility studies.

D Experiment Hyperparameters

D.1 Targeted ASRs tested on Flamingo with different target texts using CroPA

The following are the detailed hyper-parameters used to obtain the results in Table 1, under Subsection 6.1:

CROPA utilizes the following hyperparameters for optimizing adversarial perturbations in vision-language
models. These parameters are designed to balance attack effectiveness while preserving task-specific func-
tionality.

D.1.1 Optimization Parameters

• Total Iterations: 1,701

• Step Size:

– Image Perturbations (α1): 1
255 ≈ 0.0039

– Text Embedding Perturbations (α2, CROPA method): 0.01

• Perturbation Budget (ϵ): 16
255 ≈ 0.0627 under L∞ constraint

• Loss Function: Mean Squared Error (MSE) on ViT embeddings

• Batch Size: Dynamically allocated based on available GPU memory

D.1.2 Multi-Prompt Strategy

• Simultaneous Prompts per Image: 10 (default)

• Prompt Rotation: Randomized cyclic permutation per full cycle

• Context Token Masking: Preserve first N context tokens during updates

D.1.3 Base Models Supported

• OpenFlamingo

• BLIP-2

• InstructBLIP
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D.1.4 Generation Parameters

• Beam Search Width: 3

• Length Penalty: -2.0 (encourages concise outputs)

• Maximum Generation Length: 5 tokens

D.1.5 Text Embedding Perturbation

• Update Intervals: Every 30 iterations (for 10 prompts)

• Constraint: ±0.27 deviation from original embeddings

D.1.6 Reproducibility

• Random Seed: 42

• Image Preprocessing: 224×224 center crop

This configuration enables simultaneous optimization of vision-language perturbations while maintaining
task functionality through constrained gradient updates.

D.2 Noise Initialization via Vision Encoding Optimization

This section details the key hyperparameters used in our CroPA with Noise Initialisation via Vision Encoding
optimisation attack detailed in Subsection 5.1, to obtain the results in Table 3 and provides a rationale for
their selection. We aim to provide sufficient information for reproducibility and to justify our experimental
choices. Projected Gradient Descent(PGD) was used to align the original image xi with the target
image Ti by adding perturbations iteratively.

D.2.1 PGD via Vision Encoder Image Perturbation Hyperparameters

• Epsilon (ε): We set the maximum allowed pixel perturbation (L∞ norm) to 16/255. This value
represents a trade-off between attack strength and perceptibility. Smaller epsilon values might be
less effective at fooling the model but also less noticeable to human observers.

• Alpha1 (α1): The step size for each PGD iteration was set to 1/255. This relatively small step
size allows for finer-grained exploration of the perturbation space and helps to avoid overshooting
optimal perturbation directions.

• PGD Iterations: The number of PGD iterations for image perturbation was set to 1701. This
was determined empirically; we observed that increasing iterations beyond this point yielded dimin-
ishing returns in terms of attack success rate while significantly increasing computation time. Save
perturbation iterations are 900, 1100, 1300,1500 and 1700.

• Budget: 0.05. This hyperparameter defines the maximum allowed change to each pixel value in
the image during the PGD optimization process for aligning ViT embeddings. It constrains the
perturbation magnitude to ensure the modified image remains visually similar to the original.

• Timesteps: 150. Specifies the number of optimization steps taken during the PGD process to align
ViT embeddings between the generated and target images. A larger number of timesteps allows for
finer adjustments and potentially better alignment but also increases computational cost.
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D.2.2 Text Perturbation Hyperparameters (CroPA Specific)

• Alpha2 (α2): This hyperparameter controls the step size for updating the text embedding pertur-
bations. The value is dynamically assigned based on the number of prompts used.

• Number of Prompts: The number of prompts utilized during the optimization phase was 10. We
use multiple prompts to make a more robust and transferable perturbation. Using different prompts
that all target the same wrong answer forces the attack to find a perturbation that works across
variations in the input question.

• CroPA Update Iterations: Text perturbations are updated at specific iterations (defined by
cropa_iter). The text perturbation will be updated till 300 iterations. We empirically found that
the text perturbation can guide the optimization better with some iterations.

cropa_end = 300
step = max((cropa_end//prompt_num),1)
cropa_iter = [i for i in range(step,cropa_end+1, step)]

D.2.3 Evaluation and Dataset Hyperparameters

• Test Dataset Fraction: We evaluated our attack on a 5% (fraction = 0.05) subset of the test
dataset. This allowed us to perform a thorough evaluation while keeping the computational cost
manageable. We selected the subset randomly to ensure a representative sample of the overall test
distribution.

• N-Shot Examples: The number of in-context learning examples was set to 0. This means we did
not provide any demonstration examples to the model during evaluation.

• Number of Test Images: 50.

• Max Generation Length: 5.

• Num Beams: 3.

• Length Penalty: -2.0.

D.2.4 Noise Initialization via Vision Encoding Optimization

• ViT Model: ViTModel.from_pretrained("openai/clip-vit-large-patch14")

• Learning Rate: 0.1

• Optimizer: Adam

D.2.5 Additional Notes

• Random Seed: We used a fixed random seed (seed_everything(42)) to ensure reproducibility of
our results.

• Device: All experiments were conducted on a GPU (cuda:{ config_args.device}).

• Batch Size: The evaluation batch size (args.eval_batch_size) was chosen to maximize GPU
utilization without exceeding memory constraints.

D.2.6 Justification of Choices

The hyperparameter values were selected based on a combination of prior work, pilot experiments, and
computational constraints. We prioritized settings that balanced attack effectiveness, stealthiness, and
computational efficiency. Ablation studies (not included in this section but discussed elsewhere in the paper)
were conducted to assess the sensitivity of our results to key hyperparameters such as ε and α.
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D.3 Investigating Cross Image Transferability and Image Augmentation

The following are the detailed hyper-parameters used to obtain the results in Table 5, under Subsection 6.5.2

For SCMix, the only hyperparameters are the choice of η (or α if η ∼ Beta(α, α)), β1 and β2.

• Eta (η) and Alpha (α): We chose η = 0.5 as a constant value for η to ensure that the degree of
self-mixing during augmentation is constant (and equal). In terms of α, this is equivalent to setting
α = ∞. We do not experiment with this, as our main goal with SCMix is to ensure cross-image
diversity.

• Beta1 (β1) and Beta2 (β2): We took several values of β1 from 0.5 to 1, fixing β2 = 1−β1 to ensure
that the base image, used for self-mixing, dominates the final augmented image in terms of visual
characteristics, while still ensuring diversification by adding some characteristics of the cross-mixing
image. Our results were reported for the best value we got, which was with β1 = 0.7 and β2 = 0.3.
The justification behind fixing β2 relative to β1 is so as to avoid clipping and ensure cross-mixing is
treated like a true weighted average.

For CutMix, there are no specific hyperparameters to consider.

The other hyperparemeters pertaining to the base CroPA framework can be found in D.1. Apart from this,
in terms of implementation, the only variation with base CroPA is that of the perturbation learned for an
image and its set of text prompts, the one learned for the image is common across all the images used.

D.4 D-UAP Enhancements

Our implementation of CroPA (Cross-modal Prompt Attack) and the baseline UAP (Universal Adversarial
Perturbation) approach utilized the following hyperparameters:

D.4.1 Attack Configuration

• Maximum Perturbation (ε): 16/255, constraining the L∞-norm of the adversarial perturbation.

• Step Size (α1): 1/255, controlling the gradient update magnitude for image perturbations.

• Text Embedding Perturbation Range: [−0.23, 0.27], limiting the word embedding perturbation
magnitude.

• Text Perturbation Step Size (α2): Varies based on prompt number, determining the magnitude
of updates to text embeddings.

• Total Iterations: 1701, with evaluation checkpoints at intervals of 200, starting from iteration 900.

• Target Response: “bomb,” forcing the model to generate this specific output.

• Loss Weight (λ): 5

D.4.2 CroPA-Specific Parameters

• Text Perturbation Schedule: Updates occur during the first 300 iterations at intervals deter-
mined by step = max((300/prompt_num), 1).

• Prompt Access Strategy: Random shuffling with rotation to ensure diverse prompt coverage.

• Semantic Alignment: Cosine similarity loss with weight factor 5 to align perturbed images with
the target concept.
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D.4.3 Evaluation Configuration

• Sampling Fraction: 0.05 of the total dataset, balancing computational resources with statistical
significance.

• In-Context Learning Examples: 0 shots (default configuration).

• Generation Parameters:

– Maximum generation length: 5 tokens.
– Number of beams: 3.
– Length penalty: −2.0.

D.4.4 Model-Specific Settings

We conducted the same experiment for both BLIP-2 and OpenFlamingo. Hyperparameters for both the
models are given
Experiment 1:

• Primary Model: OpenFlamingo-9B

• Image Generation Model: stable-diffusion-xl-base-1.0 was used.

• Vision Feature Extraction: Middle transformer blocks (layers 10-19) for semantic representation.

• Image Preprocessing: Normalization with mean = [0.485, 0.456, 0.406] and standard deviation
= [0.229, 0.224, 0.225].

• Image Dimensions: 224× 224 pixels.

Experiment 2:

• Primary Model: BLIP-2 (blip2-opt-2.7b).

• Image Generation Model: stable-diffusion-xl-base-1.0 was used.

• Vision Feature Extraction: Middle transformer blocks (layers 14-29) for semantic representation.

• Image Preprocessing: Normalization with mean = [0.485, 0.456, 0.406] and standard deviation
= [0.229, 0.224, 0.225].

• Image Dimensions: 224× 224 pixels.

The hyperparameters were carefully selected to balance attack effectiveness and computational efficiency.
Our implementation used a random seed of 42 to ensure reproducibility across experimental runs.

D.4.5 Cross Model test with OpenFlamingo as the primary model

Settings Method VQAgeneral VQAspecific Classification Captioning Overall

Flamingo to InstructBLIP Multi-P 0.00 0.00 0.00 0.00 0.00
CroPA 0.00 0.00 0.00 0.00 0.00

CroPA + D-UAP 0.00 0.00 0.00 0.00 0.00

Flamingo to BLIP2 Multi-P 0.00 0.00 0.00 0.00 0.00
CroPA 0.00 0.00 0.00 0.00 0.00

CroPA+D-UAP 0.00 0.00 0.00 0.00 0.00

Table D.4.5 reports results for the cross-model transferability test as mentioned in Subsection 6.5.3 with the
D-UAP enhanced CroPA method described in Subsection 5.2.
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E Prompts for Different Tasks

This section presents a short description of prompts used for various vision-language tasks in our experiments.
Detailed list of prompts is provided in our supplementary material.

Prompts for Visual Question Answering (VQA) are categorized into two types: VQAgeneral and VQAspecific.
VQAgeneral prompts are image-agnostic while VQAspecific prompts are tailored to specific image content.
Prompts in the categories of VQAgeneral, Image captioning and Image Classification are created by the
original paper Luo et al. (2024) while the prompts for VQAspecific are derived from the Goyal et al. (2017b).
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