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Abstract

Recent work in mechanistic interpretability of
language models (LMs) has established that
fact completion is mediated by localized com-
putations. However, these findings rely on the
assumption that the same computations occur
for all predictions, as long as the model is ac-
curate, and aggregate results for these. Mean-
while, a parallel body of work has shown that
accurate fact completions can result from vari-
ous inference processes, including predictions
based on superficial properties of the query or
even pure guesswork. In this paper, we present
a taxonomy of relevant prediction mechanisms
and observe that a well-known dataset for inter-
preting the inference process of LMs for fact
completion misses important distinctions in this
taxonomy. With this in mind, we propose a
model-specific recipe for constructing precise
testing data, which we call PREPMECH. We
use this data to investigate the sensitivity of
a popular interpretability method, causal trac-
ing (CT), to different prediction mechanisms.
We find that while CT produces different re-
sults for different mechanisms, aggregations
are only representative of the mechanism that
corresponds to the strongest signal. In sum-
mary, we contribute tools for a more granular
study of fact completion in language models
and analyses that provide a more nuanced un-
derstanding of the underlying mechanisms.

1 Introduction

Improving our understanding of how language
models process and respond to factual queries can
inform a safer and more efficient use of these sys-
tems. One field that aims to examine and explain
model behavior is mechanistic interpretability (El-
hage et al., 2021; Geiger et al., 2021). Recent work
by Meng et al. (2022); Geva et al. (2023); Haviv
et al. (2023) has focused on the inference process
of LMs for fact completion for simple (subject, re-
lation, object) fact tuples, illustrated in Figure 1.
This body of work hypothesizes that LMs follow

. Exact fact recall
Tokyo is the capital city of Japan [apan]

. Heuristics recall

Kye Ji-Su, a citizen of [None]
& Guesswork
Eksi Ekso originated in [Boston]

“J Generic language modelling
Veronica began her singing career when
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Figure 1: Prediction mechanisms and fact completion
examples. Words in code font indicate model pre-
dictions for the missing object and words in [brackets]
indicate the gold label. Subjects are underlined and
dashed underlines signify synthetic subjects.

a distinct process when producing accurate fact
completions, namely that LMs recall information
stored in middle range MLP layers.

Meanwhile, research into model performance
on factual benchmarks has shed light on different
factors affecting a prediction. Work by Poerner
et al. (2020); Cao et al. (2021); Ladhak et al. (2023)
found that accurate LM predictions in fact comple-
tion situations may stem from shallow heuristics,
such as lexical overlap, person name bias or prompt
bias. Work on fact editing (De Cao et al., 2021) as
well as probing for factual knowledge (Elazar et al.,
2021), has illustrated issues with consistency (i.e. a
model switching its prediction when the prompt is
rephrased), while other knowledge probing investi-
gations (Kandpal et al., 2023) have demonstrated
that models struggle more with facts rarely seen
during training, suggesting a correlation between
training data frequency and memorization.

By assuming that accurate predictions corre-
spond to one distinct process, previous interpre-
tations of LMs disregard fine-grained factors that
influence LM predictions. In this work we provide
an approach for exploring these nuances and ana-
lyze how they may affect the model and interpreta-



tions of it. Our contributions can be summarized
as follows:

* We present a detailed taxonomy of different types
of inference processes, referred to as prediction
mechanisms, related to factual queries (see Fig-
ure 1) and explore these for a dataset previously
used to study fact completion, showing the need
for a more precise dataset.

* We propose a method for creating model-specific
datasets that contain examples of each separate
mechanism in our taxonomy. We create and re-
lease the datasets PREPMECH for GPT-2 XL and
Llama 2 7B, respectively.

» Using PREPMECH, we evaluate the sensitivity of
a popular interpretability method — causal trac-
ing (CT) — for detecting and measuring different
prediction mechanisms. We observe how this
method yields distinctive results for each predic-
tion mechanism in isolation, while results based
on aggregations over multiple prediction mecha-
nisms are imprecise and dominated by the char-
acteristics of only one mechanism.!

2 Prediction mechanisms

Mechanistic interpretability aims to explain model
behavior by investigating the underlying computa-
tions (Conmy et al., 2023). Results are typically
validated on datasets with examples that can be
assumed to trigger the computation under consider-
ation. Therefore, ensuring a close match between
the dataset and the targeted phenomenon is crucial.
Such a close match may not hold for previous stud-
ies of LMs for fact completion, which distinguish
between queries that do recall factual associations
and those that do not based on the models’ accu-
racy when responding to these queries (Meng et al.,
2022; Geva et al., 2023). Some authors even go so
far as to define the model “knowing a fact” as its
ability to elicit the correct answer through a prompt
(Petroni et al., 2019). This perspective yields a
very coarse categorization of model behavior and
does not align well with previous studies showing
that accurate predictions may result from different
prediction mechanisms with varying levels of reli-
ability, such as predictions based on surface-level
artifacts in the query (Poerner et al., 2020; Cao
et al., 2021; Ladhak et al., 2023). Therefore, in

'All of our code and data will be open-sourced once the
anonymity period is over.

. Fact Confi- No
Mechanism ..
compl dent heuristics
Generic LM X - -
Guesswork v X -
Heuristics recall v v X
Exact fact recall v v v

Table 1: Our four identified prediction mechanisms and
their corresponding three criteria. A ‘-’ denotes that
the mechanism does not differentiate between v" and X
cases. Generic LM refers to generic language modeling,
and fact compl to fact completion.

this paper, we aim to introduce a precise and com-
prehensive conceptual framework of different LM
inference processes for fact completion. We refer
to them as prediction mechanisms.

We define three fine-grained criteria important
for a precise evaluation of model prediction mech-
anisms in fact completion. By exploring the fac-
tors affecting accuracy rather than working with
accuracy directly, we can disentangle the under-
lying phenomena. Specifically, our criteria are
(1) whether the prediction actually represents fact
completion rather than generic language model-
ing (Section 2.1); (2) whether the prediction is
confident and robust to insignificant signals in the
prompt (Section 2.2); and (3) whether the predic-
tion is based on the exact factual information ex-
pressed in the query or on heuristics triggered by
surface-level artifacts (Section 2.3). Based on rele-
vant combinations of these criteria, we define four
prediction mechanisms, as indicated in Table 1 and
discussed in the sections below. We argue that these
mechanisms should be studied in separation since
they rely on disparate signals with varying degrees
of soundness and correctness for fact completion
situations.

We conclude the section with a description of
how we implement the criteria in practice and in-
vestigate them for a dataset previously used for the
study of fact completion — the known samples from
CounterFact (Section 2.4). These are the 1,209
examples from the data for which GPT-2 XL pro-
duces a correct completion for the prompt.

2.1 Generic language modeling

The first criterion we consider is fact completion
— whether a prompt and the corresponding predic-
tion exemplify the setting of a model completing
a fact. A precise study of model behavior in fact-



intensive situations relies on only studying queries
that necessitate the processing of a fact. One way
to ensure this is to work with queries corresponding
to fact completion, exemplified in Figure 1.

Based on the fact completion criterion, we de-
fine one of our four prediction mechanisms — the
generic language modeling mechanism — important
for baseline comparisons. This mechanism is as-
sumed to take place for generic model predictions,
illustrated in Figure 1, and to be different from
mechanisms taking place for factual completion
situations (Haviv et al., 2023).

2.2 Random guesswork

The second criterion is confident prediction —
whether the prediction is robust across insignifi-
cant perturbations to the query. Since LMs cannot
abstain from answering, we may end up in situa-
tions when a LM makes the correct prediction by
chance while it has a near-uniform output distribu-
tion. Stored model knowledge should correspond
to confident and robust predictions for prompts that
request the stored knowledge.

Based on the prediction confidence criterion we
define our second prediction mechanism — random
guesswork — corresponding to unconfident model
predictions in fact completion situations. These
predictions can be accurate or inaccurate.

2.3 Heuristics and exact fact recall

The final criterion is no dependence on heuristics —
indicating the prediction is based on the exact fac-
tual information expressed in the prompt (subject
and relation) rather than only on partial signals. Po-
erner et al. (2020) and Cao et al. (2021) found that
accurate fact completion may stem from surface
level artifacts, such as lexical overlap, person name
bias or prompt bias. As can be seen from Figure 1,
for example, where the synthetically generated per-
son name “Kye Ji-Su” is predicted to be a citizen
of “South Korea” probably due to the structure of
the name (name bias). Such predictions indicate
an over-reliance on unintended correlations in the
training dataset based on surface forms of names
or prompts, and are therefore unreliable (Cao et al.,
2021; McCoy et al., 2019). Recalling information
that is disputable and overgeneralizing (that is, cap-
turing some statistical pattern that is only partially
correct) is not equivalent to recalling the exact fact
requested by a prompt.

Based on this final criterion, we separate exact
fact recall from heuristics recall. Both mechanisms

denote when the LM makes use of stored informa-
tion for its prediction, i.e. performs a recall. The
difference lies in what type of information is re-
called and what the recall is based on. Heuristics
recall occurs for predictions based on learned over-
generalized heuristics triggered by surface level
artifacts. Exact fact recall corresponds to situations
for which a LM has memorized the full fact tu-
ple expressed by the prompt and fetches this from
memory for the prediction. We assume the pre-
diction mechanisms for these two instances to be
different due to their fundamental differences in the
information used. Furthermore, since predictions
based on heuristics are far less reliable compared
to predictions based on exact fact recall, it is im-
portant that we analyze them separately.

2.4 Detecting prediction mechanisms

Here, we outline our choice of detection methods
for the criteria described above. We also use these
methods to inspect a dataset frequently used for the
interpretation of LMs performing fact completion,
namely, the 1,209 known samples from Counter-
Fact for which GPT-2 XL is accurate (Meng et al.,
2022; Geva et al., 2023).

Fact completion To ensure we study fact com-
pletion, we follow previous work (Petroni et al.,
2019; Meng et al., 2022; Geva et al., 2023) and
limit ourselves to simple queries that express an in-
complete fact tuple subject—relation, with the intent
to let the LM generate the object as the next token.
Each of our samples thus consists of a query and
the corresponding model output. The authors of
CounterFact Meng et al. (2022) let the model gen-
erate freely until it produces an entity, but this may
distort the original meaning of the template, e.g.,
by adding negation (Appendix L.4). Therefore, we
only retain (query, prediction) samples for which
the next token corresponds to an entity or concept
that can be considered relevant for fact completion.
This excludes tokens such as “the”, “a” and “with”.
The known CounterFact examples also fulfill the
criterion on fact completion.

Confident prediction There is a wide variety of
methods proposed for estimating model confidence.
Research on model calibration (Jiang et al., 2021;
Vasudevan et al., 2019) has shown that token proba-
bility does not align with performance and as such
cannot be used as a good approximation of con-
fidence. Some research has suggested, however,



that other internal model states may encode infor-
mation related to model confidence (Burns et al.,
2023). However, different extraction methods have
varying success and are model as well as dataset
dependent (Yoshikawa and Okazaki, 2023). Ad-
ditionally, most of this work is from the field of
model calibration, and uses accuracy as the single
measure of performance.

In this paper, we opt for a definition of confi-
dence grounded in desirable model behavior. We
proxy model confidence by consistency in the face
of semantically equivalent queries (Elazar et al.,
2021; Portillo Wightman et al., 2023) and use para-
phrases from the ParaRel dataset (Elazar et al.,
2021). More specifically, we classify a prediction
as confident if it occurs among the top 3 predictions
for at least 5 paraphrased queries. A prediction that
only appears for one of the rephrased queries is
deemed unconfident. We cannot estimate confi-
dence for the known CounterFact samples since the
dataset only provides one prompt per fact.

No Heuristics To detect surface-level signals in-
dicating the potential use of heuristics, we use fil-
ters based on prompting the LM under investiga-
tion, as proposed by Poerner et al. (2020); Cao
et al. (2021). We also complement this approach
with memorization estimations based on work by
Mallen et al. (2023) and Kandpal et al. (2023).

For the surface-level filters, we make use of per-
son name bias and lexical overlap filters by Poerner
et al. (2020). Person name bias can only be de-
tected for relations where the subject is a person
name and the object is a location. We also build
a prompt bias filter based on the findings by Cao
et al. (2021). Lexical overlap is detected if there is
a string match between subject and object. Prompt
and person name bias are detected by querying the
model with the partial fact — i.e. expressing only
the relation with a generic subject, or querying for
a typical location associated with the name with-
out specifying how that location is related to the
subject. The templates used for prompting can be
found in Appendix G. These filters only reveal the
possibility of heuristics recall taking place.

For exact fact recall, we also complement our
detection method with LM knowledge estimations.
Previous work in this field indicates that queries
asking for fact tuples rarely found in the LM train-
ing data are less likely to be known by the model
(Mallen et al., 2023; Kandpal et al., 2023). If we
know that the LM does not know the fact requested

by a prompt but still makes a confident prediction,
we can assume that it corresponds to some form of
heuristics recall. Similarly, if we know with high
certainty that the LM ought to know a particular
fact, we have higher reason to believe that the cor-
rect prediction for a query asking for this fact corre-
sponds to exact fact recall. Following Mallen et al.
(2023), we use fact popularity to approximate fre-
quency in training data. Similarly to their approach
we measure fact popularity by Wikipedia page
views and collect the average monthly Wikipedia
page views for year 2019 for each query subject
and object using the Pageview API.> Mallen et al.
(2023) found queries with popularity scores be-
low 1000 unlikely to have been memorized, unless
surface-level artifacts were present. We label a pre-
diction as corresponding to a known fact only if it
is accurate and the fact corresponds to an average
page view above 1000.

For heuristics recall, we ensure no exact fact
memorization is taking place by using synthetic
data. If a model has a highly confident predic-
tion, we can assume it has identified some heuris-
tics to guide that decision. We combine this with
prompt-based bias detection and only select syn-
thetically generated facts that have been detected
by the bias filter. This provides assurances that the
model could not have performed exact fact recall
and we have evidence that specific types of surface
level signals were present instead, making it most
likely that those were used to provide a prediction.

Analysis of known CounterFact samples We
check for predictions based on shallow heuristics
for the known CounterFact samples. We find 335
samples that may correspond to prompt bias, 155
to name bias and 20 to both name and prompt bias.
There are a total of 205 samples corresponding to
person names for which we can check for name
bias, meaning that we detect name bias in 175 of
a total 205 samples. No lexical overlap between
sample subject and object is found. Some examples
marked for bias can be found in Appendix L.1.
Using fact popularity, we also evaluate the
known CounterFact samples through the lens of
LM knowledge estimation. Appendix L.2 lists the
popularity scores distribution for the dataset. We
find approximately 365 known CounterFact sam-
ples with popularity scores below 1000. These are
unlikely to have been memorized by the model and

https://wikitech.wikimedia.org/wiki/
Analytics/AQS/Pageviews
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GPT-2 XL Llama 2 7B
. #samples #samples
Mechanism (#fact tuples)  (#fact tuples)
Exact fact 1322 (191) 5481 (580)
Heuristics 8352 (1868) 8414 (1960)
Guesswork 3282 (3181) 2917 (2846)
Generic LM 1000 (-) 1000 (-)

Table 2: Statistics for our PREPMECH dataset for each
LM considered in our study.

are therefore unlikely to correspond to exact fact
recall. Moreover, we find that around 50% of these
samples (172 samples) have been detected by our
heuristics filters (Appendix L.2), indicating that
the remaining samples may also contain surface
level signals not detected by our filters. This sup-
ports our claim that popularity metadata can serve
as a complement for separating exact fact recall
samples from heuristics recall samples.

Apart from the analysis described above, we
also scrutinize the known CounterFact samples
with respect to the total effect of perturbing the
subject (Appendix L.3) and negated queries (Ap-
pendix L.4). Our results indicate an additional set
of potentially problematic samples that may hinder
a precise study of prediction mechanisms.

3 PREPMECH: a dataset for precise
studies of prediction mechanisms

To facilitate precise interpretations of prediction
mechanisms, we develop the dataset PREPMECH
(PRecise Examples of MECHanisms) with samples
that separately trigger each mechanism identified
in Section 2. The dataset and our subsequent anal-
ysis is focused on the English language. This sec-
tion describes our sampling methods for queries
corresponding to exact fact recall (Section 3.1),
heuristics recall (Section 3.2), random guesswork
(Section 3.3) and generic language modeling (Sec-
tion 3.4). PREPMECH is model-specific since it
indicates samples learned by a model and predic-
tions based on model biases, which differ between
LMs. We develop a dataset for GPT-2 XL (Radford
et al., 2019) and Llama 2 7B (Touvron et al., 2023),
respectively. General statistics for PREPMECH can
be found in Table 2. Appendix K includes exam-
ples corresponding to each prediction mechanism.

3.1 Exact fact recall samples

To get queries for which the LM performs exact
fact recall, we first build a dataset based on LAMA
and ParaRel query templates (Petroni et al., 2019;
Elazar et al., 2021). We then extract exact fact
recall predictions from this dataset based on the
criteria and methods described in Section 2.4. Ex-
tracted exact fact recall predictions are 1) not la-
belled as corresponding to any bias, 2) correct, 3)
corresponding to a fact known by the LM and 4)
confident. It is not a problem if this excludes sam-
ples corresponding to exact fact recall, as we prior-
itize precision for these samples. A more detailed
description of our sampling process for the exact
fact recall samples can be found in Appendix D.

The composition of the relations that make up
the exact fact recall samples is further analyzed
in Appendix H. We note that the majority of the
samples in the dataset are based on the relations
P740 location of formation and P1376 capital of.

3.2 Heuristics recall samples

To provide a testing ground for comparing results to
a baseline case where we can be certain the model
is performing recall of heuristics, we use synthetic
tuples in place of LAMA tuples. Since the fact
tuples represented by the samples are synthetic,
they cannot have been memorized by the model
(Liu et al., 2023; Basmov et al., 2024). Confident
predictions for these samples should therefore cor-
respond to heuristics recall.

To obtain the relevant data and labels, we first
build a dataset based on synthetic fact tuples and
ParaRel query templates. We then apply our criteria
as described in Section 2.4. Confident predictions
for which a single type of bias is identified form our
heuristics recall samples. A more detailed descrip-
tion of our sampling process and deeper analysis
of the heuristics recall samples can be found in
Appendix E and Appendix I, respectively.

3.3 Random guesswork samples

To collect samples corresponding to random guess-
work, we start from the same source data as Sec-
tion 3.1 and filter for samples that are 1) unconfi-
dent, 2) found in the gold label set (correspond to a
fact completion situation) and 3) not corresponding
to a fact known by the LM.



3.4 Generic language modeling

To get samples corresponding to generic language
modeling we use Wikipedia®, following an ap-
proach similar to that of Haviv et al. (2023), and
collect sentences that start with the subject of the
article. The extraction is done by sampling subject-
first examples in order to mirror the fact completion
setting, while exploring the role of the subject in
a natural, but not fact completion setting (see Ap-
pendix F for details).

4 Sensitivity of causal tracing to different
prediction mechanisms

To illustrate the importance of precise interpreta-
tions of LMs, we investigate the sensitivity of a pop-
ular mechanistic interpretability approach — causal
tracing (CT) — to different prediction mechanisms
and their aggregations.

CT is a mechanistic interpretability method that
has been highly influential and provided interpre-
tations of LMs (Stolfo et al., 2023; Monea et al.,
2023). The method works by first recording in-
termediate model representations during normal
generation (clean run). Then noise is added to
the query subject embeddings to obtain corrupted
intermediate model representations (noised run).
By restoring corrupted representations at different
token-layer positions it is possible to infer what
parts of the network are important for assigning a
high probability to the predicted token with respect
to the subject (patched run). The measured signal
is referred to as indirect effect and defined as

IEh(l) (o) =P, — Proised(0) (1)

hgl) , patched <0)

is the probability for token

o after patching state hgl) at layer [ for the input

token at position ¢ and P, piseq(0) is the probability
of o for the noised run. To reason about the general
process of generating a prediction, results for im-
portant states are averaged over several samples to
get the average indirect effect (AIE).

Our sensitivity analysis of CT is centered around
two questions: (1) Are aggregation plots of CT re-
sults representative of the whole sample? and (2)
Do the CT results and corresponding conclusions
change with the underlying prediction mechanism?
To answer these questions, we concretize the con-
clusions reached by previous CT studies in Sec-

where Ph§z>7 patched(o)

*We use 20220301 . en from HuggingFace at https:
//huggingface.co/datasets/wikipedia

tion 4.1, perform an aggregation analysis described
in Section 4.2, and present results in Section 4.3.

4.1 Conclusions from previous CT studies

Based on aggregations of CT results for accurate
fact completions, Meng et al. (2022) conclude that
MLP modules at mid model layers at the last sub-
ject token have a decisive role for fact completion.
In this work, we refer to this conclusion as the de-
cisive role conclusion. Based on this conclusion,
Meng et al. (2022) reason that MLP module com-
putations at middle layers have an essential role
when recalling a fact and that their results reveal
the location of MLP key—value mappings capable
of recalling facts about a subject. As this conclu-
sion is a central part of original CT studies, we
focus our investigations on whether results for dif-
ferent prediction mechanisms lead to it. If results
for all mechanisms lead to the same conclusion, it
would indicate that CT is not sensitive to different
prediction mechanisms. CT results leading to the
decisive role conclusion are defined as results for
which MLP states at (last subject token, mid-layers)
are decisive, i.e. yield an AIE with a lower confi-
dence bound higher than the AIE upper confidence
bound for any other (token, layer) state.

4.2 Aggregation analysis

Meng et al. (2022) averaged CT results over 1000
samples in order to reason about the general pat-
tern of recall of factual associations. Since these
results are dependent on the absolute values of
the probability of the traced (predicted) token, we
hypothesize that the result could be driven by a
few high-probability samples and not representa-
tive of the low-probability* strata of the data. To
test this, we take inspiration from work by Hase
et al. (2023) and compare the IE results to their
normalized counterpart. We define the normalized
indirect effect as

P hl(l)vpatched(o) — Proised (0)
|Pclean(0) - Pnoised(0)|

where Pejean (0) — Proised (0) is the total effect (TE)
defined as the difference between the clean and
the noised runs. The normalized IE measures the
percentage of recoverable probability that was re-

covered by patching state hgl).

NIEh(z) (0) = 2)

*With probability, we here refer to the probability corre-
sponding to the clean run prediction.
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For some samples, predominantly low-
probability predictions, the division by the TE
may result in unnatural NIE, o) (0) values above

1 or below -1. The state patcfling should not be
able to restore more than the clean run probability
and we therefore cap the NIEh<_l) (0) to a range of

[—1, 1]. With this approach, each sample is valued
on the same scale. Plots for homogeneous datasets
should therefore yield normalized CT results that
are similar to their non-normalized counterparts.

4.3 Results

Figure 2 shows average indirect effects of different
states in GPT-2 XL for 1000 samples composed
of 400 exact fact recall, 400 heuristics recall and
200 guesswork samples from PREPMECH.? This
figure also indicates the results for samples corre-
sponding to each prediction mechanism in isolation,
allowing us to study the effect of aggregation. The
corresponding results for Llama 2 7B can be found
in Appendix M.1. We use the same hyperparame-
ters as Meng et al. (2022) for our CT analysis. Our
aforementioned questions are answered, as follows.

Are aggregated CT results representative of
each studied sample? The results for the non-
normalized plot in Figure 2a are dominated by
the exact fact recall samples with larger non-
normalized indirect effects. The exact fact recall
samples clearly lead to the decisive role conclusion
and the same holds for the non-normalized results,
even though subsets of the included data (heuristics
recall and guesswork samples) do not lead to the
same conclusion with as high certainty.

For the normalized results in Figure 2b we find
that equal weights for all evaluated samples yield a
different pattern compared to the non-normalized
results, with a weaker peak for the last subject to-
ken. Moreover, we find that normalization yields
the same pattern when applied to samples of iso-
lated mechanisms (e.g. Figure 2c¢ and Figure 2f).
We conclude that aggregations of CT results across
multiple prediction mechanisms are not represen-
tative of each studied sample. Also, comparisons
between non-normalized and normalized results
may reveal nonhomogeneous datasets with respect
to prediction mechanism. The results for Llama 2
7B in Figure 3 support the same conclusions.

5 Appendix M.3 includes normalized CT plots for each
prediction mechanism for GPT-2 XL and Llama 2 7B. Results
for the subsets are found to be representative of the larger sets.

Do the CT results and corresponding con-
clusions change with the underlying predic-
tion mechanisms? For samples corresponding
to each prediction mechanism in isolation, we find
distinct differences between the normalized CT re-
sults for each mechanism. For the exact fact recall
samples, the significance of the last subject token
state at early to middle layers is profound compared
to all other (token, layer) states. Evidently, the LM
relies heavily on information from MLP mid-layers
for the exact fact recall prediction mechanism. For
the heuristics recall samples, the importance of the
last subject token state is downplayed and the im-
portance of the last token state is increased as well
as the importance of all subject tokens in early lay-
ers. The heuristics recall results still lead to the
decisive role conclusion, but with a small margin.
For the guesswork samples, the last token state is
decisive and the results do not lead to the decisive
role conclusion. The Llama 2 7B results in Fig-
ure 3 show similar trends: while both the heuristics
recall and guesswork samples lead to the decisive
role conclusion, they do so with a smaller margin
compared to the exact fact recall samples.

Additional analysis. We already noted that CT
is sensitive to prediction probabilities. This also
holds when the underlying prediction mechanism
is kept constant. Appendix M.2 includes the same
plot as in Figure 2 but for samples corresponding to
the lowest model probabilities for each prediction
mechanism in PREPMECH. For these samples, the
last token state is assigned a higher importance with
all prediction mechanisms. Normalized CT results
for generic language modeling in Appendix M.3
do not indicate a decisive role for any MLP state
corresponding to the last subject token.

Appendix M.4 presents normalized CT results
for the heuristics recall samples partitioned by
prompt bias and person name bias. The prompt
bias results suggest a higher importance of the last
token state, compared to the last subject token state,
when compared to the person name bias results.

We conclude that CT is sensitive to different pre-
diction mechanisms, and therefore CT results yield
different interpretations depending on the selection
of samples. We find normalization of results to
be a feasible approach to indicate sample nonho-
mogeneity. Furthermore, we find alignment with
previous work regarding the importance of mid-
dle MLP layers of the last subject token in our
exact fact recall sub-sample. However, our results
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Figure 2: CT results with GPT-2 XL for 1000 samples from PREPMECH of which 400 samples correspond to exact
fact recall, 400 to heuristics recall and 200 to guesswork. Shaded regions indicate 95% confidence intervals.

suggest there might be other processes at play for
heuristics recall and guesswork that warrant further
investigation. Finally, CT results are sensitive to
prediction probabilities, even when the prediction
mechanism is held constant. This potentially in-
dicates room for improvement with respect to our
metrics for prediction confidence.

5 Conclusion

Based on a set of basic criteria, we identify four
prediction mechanisms that are fundamentally dif-
ferent and of differing reliability. These are exact
fact recall, heuristics recall, guesswork and generic
language modeling. We show that previous inter-
pretability work for fact completion situations treat
many of these mechanisms as equivalent by using
accuracy as the sole criterion for differentiating be-
tween prediction mechanisms. Our analysis of a
dataset frequently used by previous interpretability

work — known examples from CounterFact — re-
veals samples that may trigger heuristics recall as
opposed to exact fact recall and other problematic
phenomena. To facilitate precise interpretations
of prediction mechanisms, we present a method
for creating a model-specific dataset PREPMECH
with samples that separately trigger each of our
identified prediction mechanisms. We produce a
version of this datasets for each of GPT-2 XL and
Llama 2 7B, and use it to test the prediction mech-
anism sensitivity of an influential interpretability
method, causal tracing (CT). We find that different
prediction mechanisms yield distinct CT results if
studied in isolation. Consequently, CT results are
not representative of the dataset as a whole if it con-
tains examples of different prediction mechanisms.
Our results highlight the importance of studying
different prediction mechanisms in isolation and
provide a method for doing this.



Limitations

Our results are limited to auto-regressive models
and subject-first template queries. Using the meth-
ods described in this paper, PREPMECH datasets
can be constructed for other types of LMs, such
as encoder-based models, while we leave this for
future work.

Moreover, the heuristics filters used for our
dataset creation can only reveal the possibility of
shallow heuristics being used by the LM. We also
observe some suspicious samples that go unde-
tected by the filters, indicating that the filters are
leaky. Furthermore, we find signs of name based
heuristics for non-person subjects for which we
have no applicable filters. The detection of these
cases would rely on more advanced detection meth-
ods and is left for future work. By complementing
our dataset creation with knowledge estimations
and sampling of synthetic fact tuples, we should
avoid most filter failures, while we cannot com-
pletely rule out the possibility of there being some
problematic samples in PREPMECH.

Even though we partition the PREPMECH sam-
ples based on whether the prediction is confident,
we find that our results are sensitive to whether
we investigate predictions with high or low prob-
abilities from each partition. This indicates room
for improvement for our method of detecting confi-
dent predictions, for which we already have noted a
lack of comprehensive studies of model confidence
metrics.

Lastly, we note that multiple interpretability
methods would need to be applied to validate the
exact underlying computation used by our LMs for
the different mechanisms in our taxonomy. When
applying only CT, we cannot with certainty distin-
guish between effects of different prediction mech-
anisms being used by the LM, as opposed to effects
of data-sensitive quality issues of the CT method.

Ethics Statement

Interpretability methods for fact completion situ-
ations are not directly associated with any ethical
concerns. Neither is the LAMA dataset or synthetic
fact tuples used in this work.
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A Computational resources

Experiments in this work are done on T4, A40 and
A100 NVIDIA GPUs. Models used are GPT-2 XL,
which has 1.5B parameters and Llama 2 7B which
has 7B parameters.

B Selection process of LAMA relations

The LAMA relations included in our PREPMECH
dataset have been selected based on the following
criteria:

1. We only include relations that have multiple
templates for which 1) the object comes last
in order to fit the autoregressive setting and 2)
the subject comes first in order to simplify the
causal reasoning of intervening on the subject;

2. We exclude relations with a lot of overlap be-
tween the subject and object and relations for
which the answers are highly imbalanced to-
ward only a few alternatives.

This corresponds to the relations P19 place of birth,
P20 place of death, P27 country of citizenship,
P101 field of work, P495 country of origin, P740
location of formation and P1376 capital of.

C ParaRel templates

We use the templates as described in Tables 3 and 4
for the creation of PREPMECH queries.

D Creation process for exact fact recall
samples

To get queries for which the LM performs exact fact
recall, we follow an iterative process as described
below:

1. Take all fact tuples from LAMAS correspond-
ing to the relations P19 place of birth, P20
place of death, P27 country of citizenship,
P101 field of work, P495 country of origin,
P740 location of formation and P1376 capital
of. Our relations selection process is further
described in Appendix B.

. Create paraphrased queries for the fact tuples
using the ParaRel templates described in Ap-
pendix C (Elazar et al., 2021).

*https://github.com/facebookresearch/
LAMA
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. Collect LM predictions for the queries. Keep
all top 3 tokens and store the corresponding
softmaxed logits as metadata. We now have a
dataset with query and prediction pairs, plus
some additional metadata.

. Collect estimations of LM knowledge for the
prompts following the approach described in
Section 2.4.

. Collect estimations of whether each given pre-
diction is based on surface level artifacts in
the query following the approach described in
Section 2.4.

. Label predictions corresponding to trivial to-
kens and add as metadata to our dataset.

. Categorize the predictions into “correct” or
“incorrect” using the LAMA gold labels. For
Llama 2 7B we say that the prediction is cor-
rect if it has more than 3 characters and fully
matches the start of the gold label. This was
necessary since the tokenizer for this model is
more prone to split the gold labels into small
tokens.

. Add confidence metadata following the ap-
proach described in Section 2.4. Biased pre-
dictions are separated from predictions with-
out any potential bias before we count the
number of consistent predictions. A biased
prediction that is consistent with an unbiased
prediction does not count for the unbiased pre-
diction and vice versa.

. Extract samples that should correspond to ex-
act fact recall from the dataset above. Exact
fact recall samples should correspond to pre-
dictions that are 1) not labelled as correspond-
ing to any bias, 2) correct, 3) corresponding
to a fact known by the LM and 4) confident.
It is not a problem if this excludes samples
corresponding to exact fact recall, as we are
only interested in precision and not recall for
these samples.

E Creation process for heuristics recall

samples

The heuristics recall samples are constructed to
align with the format of the exact fact recall sam-
ples. Therefore, we create this partition based on
the same relations as used in Appendix D. To ob-
tain the relevant data and labels, we perform the
following steps:


https://github.com/facebookresearch/LAMA
https://github.com/facebookresearch/LAMA

. Identify subject type distributions for the se-
lected relations.

. Generate subjects of the re-
quired types using
fantasynamegenerators.com.

For relations P19, P20, P27 and P101 the
only allowed subject type is person, so
the generated subjects are human names.
For P1376 the subject type is city, and the
generated data is city names. Relations P495
and P740 have a variety of allowed subject
types. For these, we produce a distribution
over the original LAMA data and match that
as closely as possible with the available name

generators.

. Perform de-duplication and check against
Wikidata that no subject corresponds to a real
entity. The Wikidata check is performed on
a label level, since the generated names are
pure strings. This limits our ability to check
for a subject’s existence, as we can only find
exact matches.

. Generate prompts corresponding to each re-
lation by applying the ParaRel templates de-
scribed in Appendix C to the synthetic sub-
jects.

. Collect LM predictions by extracting the top
3 tokens.

. Identify non-trivial answers. This is carried
out by querying the Wikidata database and
suffers from the same limitations as discussed
above — we are limited to exact matching
strings. This can result in additional chal-
lenges due to e.g. tokenization truncating the
full entity.

. Filter on confidence. We only keep predic-
tions marked as confident and apply the same
definition of confidence as described in Sec-
tion 2.4.

. Add metadata on: prompt bias, name bias,
subject-object string overlap. The distribu-
tion of these flags is presented in Appendix J.
The samples for which a single type of bias is
identified form our heuristics recall samples.

Creation process for generic language
modeling samples

Data is sampled from Wikipedia extraction
20220301.en from HuggingFace at https: //
huggingface.co/datasets/wikipedia.

https://www.
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We randomly select an entry from the data. For
each, we select a single sentence from the page
that begins with any part of the title name (i.e. it
could be the surname, if the subject is a person).
If the sentence is longer than 10 words, we cap it.
We do not select sentences if they are: 1) shorter
than 5 words, 2) with more than 3 capitalized
words (likely to be section headings), and 3)
whose natural continuation begins with a capital or
number (indicating this could be an entity and thus
potentially fact completion). We repeat this until
we have 1000 datapoints (for 1000 unique entries
in the data). For CT experiments, we trace the next
token, freely predicted by the model.

G Detection filters for heuristics

Our detection of heuristics is based on model pre-
dictions for prompts expressing only a part of the
requested fact. For person name bias, we query
with the following prompts: “[X] is a common
name in the following city:” and “[X] is a common
name in the following country:”. Where “[X]” is
replaced with the subject name to check for bias.
If any of the top 10 token predictions for these
queries matches the model prediction for the full
fact query, we mark that (query, prediction) pair
as corresponding to person name bias. We can de-
tect person name bias for relations P19, P20, P27,
used in PREPMECH and additionally for P103 and
P1412, present in CounterFact.

For the detection of prompt bias we use the orig-
inal prompt templates as defined by ParaRel and
replace the subject placeholder with generic sub-
stitutions. We use the substitutions described in
Table 5 for each relation. We also remedy basic cap-
italization and grammar errors that might surface
from this automated prompt creation. An example
of a prompt for detecting prompt bias for “Tokyo
is the capital city of [Y]” is “It is the captial city of
[Y]”. If the top prediction for the former query is
found among the top 10 token predictions for the
latter query, the former query and corresponding
prediction is marked as based on prompt bias.

H Analysis of the exact fact recall
samples in PREPMECH

The composition of the relations that make up the
exact fact recall queries in PREPMECH is shown in
Table 6.


https://www.fantasynamegenerators.com
https://www.fantasynamegenerators.com
https://www.fantasynamegenerators.com
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia

I Analysis of the heuristics recall samples
in PREPMECH

Our final heuristics recall set, described in Sec-
tion 3.2, contains 1,771 examples where no bias
was identified. This can be counter intuitive, as
we do not expect the model to be able to make
confident prediction when it has no bias to guide
it. We therefore perform a deeper analysis of these
samples.

These include 6 instances that identify the loca-
tion of formation (P740) of “Oasis of Prejudice” as
“London” (not identified as prompt bias, since the
prompt bias check produces mostly years, indicat-
ing time to be the more natural interpretation of the
queries). Two examples from P101 (field of work)
show the model potentially ignoring part of the
query, by connecting ‘“Nina Schopenhauer” with
“philosophy” and “Roch Chagnon” with ‘““anthro-
pology” (in total 9 rephrased samples). Another
23 examples of relation P495 show association of
5 fictional entities with Japan (3 of these contain
the word “Berserk” — a possible conflating pattern
with the manga of the same name). Further 790
examples come from relations P19 (born in) and
P27 (citizen of). Some of these could be examples
of a stronger association overwriting the expressed
tuple (e.g. “Adolphe Trudeau” born in “Quebec”),
others may point to weaknesses of our name bias
detection method. Finally, the most represented
relation is P1376 with 938 examples. This rela-
tion does not lend itself to our subject name bias
filter, however, we suspect a linguistic correlation
between city names and countries may exist and
those surface level signals can potentially explain
some of the predictions.

This analysis confirms our concerns related to
the coverage of the implemented heuristics recall
filters. Evidently, there are some heuristics that
go undetected by our filters. This highlights the
strength of our method based on sampling synthetic
data for the heuristics recall detection and filtering
for popularity for the exact fact recall detection.

J Bias and predicate distribution for
synthetic data

Table 7 shows the distribution of bias in the syn-
thetic data. Most samples have name bias detected.
Table 8 shows the relation distribution of samples
that have at least one confident non-trivial predic-
tion. The most represented predicate is P27 citizen-
of. This is inline with the name bias prevalence that
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K Examples from PREPMECH

Here, we include a few examples to illustrate the
content of PREPMECH for different prediction
mechanisms. See Tables 9 to 12.



Relation Template

P19

P20

P27

P101

P495

[X] was born in [Y]

[X] is originally from [Y]

[X] was originally from [Y]

[X] originated from [Y]

[X] originates from [Y]

[X] died in [Y]

[X] died at [Y]

[X] passed away in [Y]

[X] passed away at [Y]

[X] expired at [Y]

[X] lost their life at [Y]

[X]’s life ended in [ Y]

[X] succumbed at [Y]

[X] is a citizen of [Y]

[X], a citizen of [Y]

[X], who is a citizen of [Y]

[X] holds a citizenship of [Y]

X] has a citizenship of [Y]

X], who holds a citizenship of [Y]
X], who has a citizenship of [Y]
X] works in the field of [Y]

[X] specializes in [Y]

The expertise of [X] is [Y]

The domain of activity of [X] is [Y]
The domain of work of [X] is [Y]
[X]’s area of work is [Y]

[X]’s domain of work is [Y]

[X]’s domain of activity is [Y]
[X]’s expertise is [ Y]

[X] works in the area of [Y]

[X] was created in [Y]
[
[

[
[
[
[

X], that was created in [Y]
X], created in [Y]

[X], that originated in [Y]
[X] originated in [Y]

[X] formed in [Y]

[X] was formed in [Y]

[X], that was formed in [Y]
[X] was formulated in [Y]
[X], formulated in [Y]

[X], that was formulated in [Y]
[X] was from [Y]

[X], from [Y]

[X], that was developed in [Y]
[X] was developed in [Y]

[X], developed in [Y]

Table 3: ParaRel templates used for the relations P19-

P495 in our dataset creation.

Relation Template

P740 [X] was founded in [Y]
[X], founded in [Y]

[X] that was founded in [Y]

[X], that was started in [Y]

[X] started in [Y]

[X] was started in [Y]

[X], that was created in [Y]

[X], created in [Y]

[X] was created in [Y]

[X], that originated in [Y]

[X] originated in [Y]
]
]
]
]
]
]
]
]
]

[X] formed in [Y]

[X] was formed in [Y]

[X], that was formed in [Y]
P1376 [X] is the capital of [Y]

[X] is the capital city of [Y]

[X], the capital of [Y]

[X], the capital city of [Y]

[X], that is the capital of [Y]

[X], that is the capital city of [Y]

Table 4: ParaRel templates used for the relations P740
and P1376 in our dataset creation.

Relation  Subject substitutions

P19 [He, She]
P20 [He, She]
P27 [He, She]
P101 [He, She]
P495 [1t]

P740 [It, The organisation]
P1376 [It, The city]

Table 5: Subject substitutions used for constructing
prompts to detect prompt bias.

Relation #unique tuples

P19 0
P20 0
P27 77
P101 18
P495 406
P740 95
P1376 726

Table 6: The number of unique tuples corresponding to
each relation of the exact fact recall samples in PREP-
MECH.
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prompt string ~ name

#samples

bias match  bias
FALSE FALSE FALSE 1771
TRUE 7066
TRUE FALSE 34
TRUE 8
TRUE FALSE FALSE 1252
TRUE 4775
TRUE FALSE 6
TRUE 7

Table 7: Distribution of detected bias in confident non-
trivial predictions in the synthetic data of the PREP-

MECH dataset.

Relation # samples

P101 9
P1376 1754
P19 2674
P20 5

P27 10436
P495 33
P740 8

Table 8: Distribution of relations in the synthetic data of
the PREPMECH dataset that have a confident non-trivial

prediction.

15



Model Query Prediction Subject popularity  Gold label

GPT-2 XL  Thomas Ong is a citizen of Singapore 1418 Singapore
Shibuya-kei, that was created in  Japan 5933 Japan
Palermo is the capital of Sicily 34273 Sicily

Llama 2 7B  Disco Biscuits was created in Philadelphia 3719 Philadelphia
Don Broco, that was started in Bed 6984 Bedford
Nikephoros III Botaneiates Constantin 1859 Constantinople

passed away in

Table 9: (query, prediction) exact fact recall samples from PREPMECH for GPT-2 XL and Llama 2 7B.

Model Query Prediction Rank Gold label

GPT-2 XL  Sonar Kollektiv originated in Russia 1 Berlin
Haydn Bendall is originally from England 2 Essex
Joseph Clay was originally from Ohio 2 Philadelphia

Llama2 7B Jean Trembley originated from France 2 Geneva
Dansez pentru tine, that originated in  France 2 Romania
Milton Wright is originally from Chicago 2 Georgia

Table 10: (query, prediction) random guesswork samples from PREPMECH for GPT-2 XL and Llama 2 7B.

Model Query Prediction Bias

GPT-2 XL  Hirashima Hideyoshi, who has a citizenship of Japan name
Balo Windhair has a citizenship of Canada prompt
Olre Hellspirit was originally from Hell lexical

Llama?2 7B Ha Songmin, who has a citizenship of South (Korea) name
Wanda Hagel holds a citizenship of Canada prompt
Limanaga, the capital city of Lim lexical

Table 11: (query, prediction) heuristics recall samples from PREPMECH for GPT-2 XL and Llama 2 7B.

Model Query Prediction  Gold label

GPT-2 XL  Dexmedetomidine is notable for its ability to provide sedation and without
Solomon also defended the network’s choice of games to air broadcast
Walker added an immense amount of material to the book collections

Llama2 7B Dexmedetomidine is notable for its ability to provide sedation and without
Solomon also defended the network’s choice of games to air broadcast
Walker added an immense amount of material to the original collections

Table 12: (query, prediction) generic language samples from PREPMECH for GPT-2 XL and Llama 2 7B.
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L Prediction mechanisms represented by
CounterFact

Here, we include additional information related to
the study of prediction mechanisms used by GPT-2
XL when evaluated on known CounterFact sam-
ples.

L.1 Surface level artifacts

Examples of predictions marked for bias can be
found in Table 13.

L.2 LM knowledge

The popularity score distribution for the known
CounterFact samples can be found in Table 14.

It is highly unlikely that fact tuples correspond-
ing to subjects with popularity scores below 100
have been stored by the LM. 17 of these 61 samples
correspond to either prompt or person name bias.
Closer inspection of the 44 samples not marked for
bias reveal 4 potential issues with the case sensitiv-
ity of the Wikipedia pageview API for the subjects
“macOS”, “iPhone 3GS”, “iTunes” and “iPhone”
that lead to incorrect popularity score estimations.

Another 12 samples correspond to queries about
the continent of which a subject is a part of for
subjects that contain the word “Glacier”, where
the correct answer is “Antarctica”. Our name bias
filter cannot detect these cases as it is limited to per-
son names. We observe additional samples among
the 61 low popularity samples with similar issues,
where the subject might have a very french sound-
ing name like for the query “Galerie des Machines,
in the heart of [Paris]”.

Samples with popularity scores between (100,
1000] are also less likely to have been memorized.
For this subset, 155 samples have been marked for
prompt or person name bias. For the remaining 149
samples we again find potential issues with name
bias that have gone undetected, such as “Si la vie
est cadeau is written in [French]”.

L.3 Total effects

We measure the total effect of perturbing the sub-
ject on the probability of the output prediction. This
provides an alternative way of checking for signs
of lack of exact fact recall. The method was in-
troduced by Meng et al. (2022) and used to find
model states important for the model prediction.
By adding noise to the word embeddings corre-
sponding to the subject of the query, the subject
is perturbed. The idea is that the perturbation of
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the query makes the model incapable of perform-
ing the necessary recall of factual associations that
resulted in the original prediction, thus lowering
the model probability for the original prediction.
We hypothesize that samples for which the added
perturbation does not sufficiently lower the corre-
sponding prediction probability are less likely to
correspond to exact fact recall.

Method The total effect is measured as TE(0) =
Pean(0) — Proised (0), where Prjean (0) denotes the
probability of emitting token o for a clean run and
Ppoised(0) denotes the probability of emitting to-
ken o when the subject has been perturbed. For all
our investigations, o is given by the prediction cor-
responding to the query stored in the dataset. We
note that negative total effects imply that the per-
turbation of the subject increased the probability of
the original prediction and that low positive effects
potentially indicate that perturbing the subject had
a small effect on the model prediction.

Similarly to Meng et al. (2022) we perturb the
subject embeddings with noise € ~ N(0, ) where
v is set to be 3 times larger than the empirical stan-
dard deviation of all embeddings corresponding to
the subjects of the dataset. We measure total effects
for the known CounterFact samples as the average
total effect of 10 runs with perturbed subjects.

TE results For the 1209 known CounterFact sam-
ples we find 22 samples with negative total effects,
i.e. perturbing the subject increased the prediction
probability, of which 18 potentially correspond to
prompt bias and 2 to name bias. Inspection of the
samples marked for prompt bias reveal prompt pat-
terns such as “In [X], the language spoken is a
mixture of” where the corresponding prediction is
“English” or “German”. Another pattern we detect
is “[X] is affiliated with the religion of” for which
the prediction always is “Islam”. We hypothesize
that some prompts reveal the correct prediction
even when the subject is occluded, resulting in neg-
ative TE values.

Deeper study of TE results A deeper study of
the TE values reveal an additional 37 samples for
which the perturbation of the query subject de-
creased the original probability by less than 40%.
For some of these samples we identify queries
that potentially reveal the correct prediction even
when the subject is perturbed. Two identified sam-
ples are “[X] professionally plays the sport of ice
[hockey]” or “[X]’s expertise is in the field of quan-



Query

Prediction Bias type

MacApp, a product created by
Giuseppe Angeli, who has a citizenship of

The original language of La Fontaine’s Fables is a mixture of French

Apple Prompt
Italy Person name
Prompt

Table 13: Examples of queries and predictions from the known CounterFact dataset that potentially correspond to
bias. The predictions and analysis has been performed for GPT-2 XL.

Popularity score ~ # of samples

(0,100] 61

(100, 1000] 304
(1000, 10000] 379
(10000, 1176235] 437

Table 14: The popularity scores for the known Counter-
Fact samples. The maximum popularity score measured
was 1,176,235.

tum [physics]”. Prompt bias was detected for all
of these queries. We measure a spearman correla-
tion of -0.41 between normalized TE (Equation (3))
and the binary prompt bias metric over all known
CounterFact samples. It is clear that the effect of
perturbing the subject is smaller when the predic-
tion is likely based on prompt bias, versus when it
is not.

Pican(0) — Proised (0)
P clean(o)

TEnorm(O) = 3)

L.4 Negated queries

We identify a total of 8 samples in the dataset that
contain the word “not” in the query. Two exam-
ples are “The language used by Louis Bonaparte
is not the language of the [French]” or “The ex-
pertise of medical association is not in the field
of [medicine]”. These samples are problematic as
they are marked as correct since they contain the
correct label, while they express the opposite of the
fact represented by the data sample. This problem
is a consequence of the sampling technique used
by Meng et al. (2022) in letting the LM generate a
fluent continuation to a given query before making
the prediction for the missing object. For the major-
ity of the known CounterFact samples this leads to
more fluent queries for which the LM might work
better, but for some samples it results in reversed
or revealing prompts.
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M Additional results from the CT

sensitivity analysis

This section contains additional results from the
analysis in Section 4.

M.1 Llama 2 7B results

The results in Figure 3 correspond to the results in
Figure 2 but here for Llama 2 7B instead of GPT-
2 XL. We find that the Llama results essentially
support the same conclusions as the results for GPT-
2 XL.

M.2 Low-probability split

The results in Figures 2 and 3 correspond to a sam-
ple of top-ranked prediction probabilities. The re-
sults in Figures 4 and 5 correspond to a sample
of bottom-ranked prediction probabilities. We ob-
serve qualitative differences between the two figure
pairs, where bottom-ranked probability set corre-
sponds to larger effects for the last token state.

M.3 Per prediction mechanism

CT results for 1000 samples from PREPMECH de-
signed to exemplify each of our identified predic-
tion mechanisms can be found in Figures 6 and 7.
We conclude that the subsets used for Figures 2
and 3 are representative of these larger sets. More-
over, we observe that the results for the generic
language modelling mechanism in Figure 7 do not
indicate a decisive role for the last subject token
MLP state at middle layers.

M.4 Deeper study of heuristics recall

We analyze the CT results of each of the main
heuristics recall categories, prompt bias and person
name bias, in separation for GPT-2 XL and Llama
2 7B. The corresponding results can be found in
Figure 8. These results suggest a higher importance
of the last token state, compared to the last subject
token state, for the prompt bias subset compared to
the person name bias subset. Potentially, it makes
sense that prompt biased predictions that should be
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Figure 3: CT results on 1000 samples from PREPMECH of which 400 samples correspond to exact fact recall, 400
to heuristics recall and 200 to guesswork. These are the results for Llama 2 7B.

less sensitive to subject information attribute less
importance to states corresponding to the subject.
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Figure 4: CT results on 1000 low-probability samples from PREPMECH of which 400 samples correspond to exact
fact recall, 400 to heuristics recall and 200 to guesswork. These are the results for GPT-2 XL.
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Figure 5: CT results on 1000 low-probability samples from PREPMECH of which 400 samples correspond to exact
fact recall, 400 to heuristics recall and 200 to guesswork. These are the results for Llama 2 7B.
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Figure 6: Normalized CT results for 1000 samples from PREPMECH designed to exemplify each of the prediction

mechanisms exact fact recall, heuristics recall and guesswork. Results are reported for both GPT-2 XL and Llama 2
7B.
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Figure 7: Normalized CT results for 1000 samples from PREPMECH designed to exemplify generic language
modelling. Results are reported for both GPT-2 XL and Llama 2 7B.
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Figure 8: Normalized CT results for sets of 1000 samples designed to exemplify each of the two main categories of

the heuristics recall mechanism.



