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Abstract

Recent work in mechanistic interpretability of001
language models (LMs) has established that002
fact completion is mediated by localized com-003
putations. However, these findings rely on the004
assumption that the same computations occur005
for all predictions, as long as the model is ac-006
curate, and aggregate results for these. Mean-007
while, a parallel body of work has shown that008
accurate fact completions can result from vari-009
ous inference processes, including predictions010
based on superficial properties of the query or011
even pure guesswork. In this paper, we present012
a taxonomy of relevant prediction mechanisms013
and observe that a well-known dataset for inter-014
preting the inference process of LMs for fact015
completion misses important distinctions in this016
taxonomy. With this in mind, we propose a017
model-specific recipe for constructing precise018
testing data, which we call PREPMECH. We019
use this data to investigate the sensitivity of020
a popular interpretability method, causal trac-021
ing (CT), to different prediction mechanisms.022
We find that while CT produces different re-023
sults for different mechanisms, aggregations024
are only representative of the mechanism that025
corresponds to the strongest signal. In sum-026
mary, we contribute tools for a more granular027
study of fact completion in language models028
and analyses that provide a more nuanced un-029
derstanding of the underlying mechanisms.030

1 Introduction031

Improving our understanding of how language032

models process and respond to factual queries can033

inform a safer and more efficient use of these sys-034

tems. One field that aims to examine and explain035

model behavior is mechanistic interpretability (El-036

hage et al., 2021; Geiger et al., 2021). Recent work037

by Meng et al. (2022); Geva et al. (2023); Haviv038

et al. (2023) has focused on the inference process039

of LMs for fact completion for simple (subject, re-040

lation, object) fact tuples, illustrated in Figure 1.041

This body of work hypothesizes that LMs follow042

Figure 1: Prediction mechanisms and fact completion
examples. Words in code font indicate model pre-
dictions for the missing object and words in [brackets]
indicate the gold label. Subjects are underlined and
dashed underlines signify synthetic subjects.

a distinct process when producing accurate fact 043

completions, namely that LMs recall information 044

stored in middle range MLP layers. 045

Meanwhile, research into model performance 046

on factual benchmarks has shed light on different 047

factors affecting a prediction. Work by Poerner 048

et al. (2020); Cao et al. (2021); Ladhak et al. (2023) 049

found that accurate LM predictions in fact comple- 050

tion situations may stem from shallow heuristics, 051

such as lexical overlap, person name bias or prompt 052

bias. Work on fact editing (De Cao et al., 2021) as 053

well as probing for factual knowledge (Elazar et al., 054

2021), has illustrated issues with consistency (i.e. a 055

model switching its prediction when the prompt is 056

rephrased), while other knowledge probing investi- 057

gations (Kandpal et al., 2023) have demonstrated 058

that models struggle more with facts rarely seen 059

during training, suggesting a correlation between 060

training data frequency and memorization. 061

By assuming that accurate predictions corre- 062

spond to one distinct process, previous interpre- 063

tations of LMs disregard fine-grained factors that 064

influence LM predictions. In this work we provide 065

an approach for exploring these nuances and ana- 066

lyze how they may affect the model and interpreta- 067
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tions of it. Our contributions can be summarized068

as follows:069

• We present a detailed taxonomy of different types070

of inference processes, referred to as prediction071

mechanisms, related to factual queries (see Fig-072

ure 1) and explore these for a dataset previously073

used to study fact completion, showing the need074

for a more precise dataset.075

• We propose a method for creating model-specific076

datasets that contain examples of each separate077

mechanism in our taxonomy. We create and re-078

lease the datasets PREPMECH for GPT-2 XL and079

Llama 2 7B, respectively.080

• Using PREPMECH, we evaluate the sensitivity of081

a popular interpretability method – causal trac-082

ing (CT) – for detecting and measuring different083

prediction mechanisms. We observe how this084

method yields distinctive results for each predic-085

tion mechanism in isolation, while results based086

on aggregations over multiple prediction mecha-087

nisms are imprecise and dominated by the char-088

acteristics of only one mechanism.1089

2 Prediction mechanisms090

Mechanistic interpretability aims to explain model091

behavior by investigating the underlying computa-092

tions (Conmy et al., 2023). Results are typically093

validated on datasets with examples that can be094

assumed to trigger the computation under consider-095

ation. Therefore, ensuring a close match between096

the dataset and the targeted phenomenon is crucial.097

Such a close match may not hold for previous stud-098

ies of LMs for fact completion, which distinguish099

between queries that do recall factual associations100

and those that do not based on the models’ accu-101

racy when responding to these queries (Meng et al.,102

2022; Geva et al., 2023). Some authors even go so103

far as to define the model “knowing a fact” as its104

ability to elicit the correct answer through a prompt105

(Petroni et al., 2019). This perspective yields a106

very coarse categorization of model behavior and107

does not align well with previous studies showing108

that accurate predictions may result from different109

prediction mechanisms with varying levels of reli-110

ability, such as predictions based on surface-level111

artifacts in the query (Poerner et al., 2020; Cao112

et al., 2021; Ladhak et al., 2023). Therefore, in113

1All of our code and data will be open-sourced once the
anonymity period is over.

Mechanism
Fact

compl
Confi-
dent

No
heuristics

Generic LM ✗ - -
Guesswork ✓ ✗ -
Heuristics recall ✓ ✓ ✗

Exact fact recall ✓ ✓ ✓

Table 1: Our four identified prediction mechanisms and
their corresponding three criteria. A ‘-’ denotes that
the mechanism does not differentiate between ✓ and ✗
cases. Generic LM refers to generic language modeling,
and fact compl to fact completion.

this paper, we aim to introduce a precise and com- 114

prehensive conceptual framework of different LM 115

inference processes for fact completion. We refer 116

to them as prediction mechanisms. 117

We define three fine-grained criteria important 118

for a precise evaluation of model prediction mech- 119

anisms in fact completion. By exploring the fac- 120

tors affecting accuracy rather than working with 121

accuracy directly, we can disentangle the under- 122

lying phenomena. Specifically, our criteria are 123

(1) whether the prediction actually represents fact 124

completion rather than generic language model- 125

ing (Section 2.1); (2) whether the prediction is 126

confident and robust to insignificant signals in the 127

prompt (Section 2.2); and (3) whether the predic- 128

tion is based on the exact factual information ex- 129

pressed in the query or on heuristics triggered by 130

surface-level artifacts (Section 2.3). Based on rele- 131

vant combinations of these criteria, we define four 132

prediction mechanisms, as indicated in Table 1 and 133

discussed in the sections below. We argue that these 134

mechanisms should be studied in separation since 135

they rely on disparate signals with varying degrees 136

of soundness and correctness for fact completion 137

situations. 138

We conclude the section with a description of 139

how we implement the criteria in practice and in- 140

vestigate them for a dataset previously used for the 141

study of fact completion – the known samples from 142

CounterFact (Section 2.4). These are the 1,209 143

examples from the data for which GPT-2 XL pro- 144

duces a correct completion for the prompt. 145

2.1 Generic language modeling 146

The first criterion we consider is fact completion 147

– whether a prompt and the corresponding predic- 148

tion exemplify the setting of a model completing 149

a fact. A precise study of model behavior in fact- 150
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intensive situations relies on only studying queries151

that necessitate the processing of a fact. One way152

to ensure this is to work with queries corresponding153

to fact completion, exemplified in Figure 1.154

Based on the fact completion criterion, we de-155

fine one of our four prediction mechanisms – the156

generic language modeling mechanism – important157

for baseline comparisons. This mechanism is as-158

sumed to take place for generic model predictions,159

illustrated in Figure 1, and to be different from160

mechanisms taking place for factual completion161

situations (Haviv et al., 2023).162

2.2 Random guesswork163

The second criterion is confident prediction –164

whether the prediction is robust across insignifi-165

cant perturbations to the query. Since LMs cannot166

abstain from answering, we may end up in situa-167

tions when a LM makes the correct prediction by168

chance while it has a near-uniform output distribu-169

tion. Stored model knowledge should correspond170

to confident and robust predictions for prompts that171

request the stored knowledge.172

Based on the prediction confidence criterion we173

define our second prediction mechanism – random174

guesswork – corresponding to unconfident model175

predictions in fact completion situations. These176

predictions can be accurate or inaccurate.177

2.3 Heuristics and exact fact recall178

The final criterion is no dependence on heuristics –179

indicating the prediction is based on the exact fac-180

tual information expressed in the prompt (subject181

and relation) rather than only on partial signals. Po-182

erner et al. (2020) and Cao et al. (2021) found that183

accurate fact completion may stem from surface184

level artifacts, such as lexical overlap, person name185

bias or prompt bias. As can be seen from Figure 1,186

for example, where the synthetically generated per-187

son name “Kye Ji-Su” is predicted to be a citizen188

of “South Korea” probably due to the structure of189

the name (name bias). Such predictions indicate190

an over-reliance on unintended correlations in the191

training dataset based on surface forms of names192

or prompts, and are therefore unreliable (Cao et al.,193

2021; McCoy et al., 2019). Recalling information194

that is disputable and overgeneralizing (that is, cap-195

turing some statistical pattern that is only partially196

correct) is not equivalent to recalling the exact fact197

requested by a prompt.198

Based on this final criterion, we separate exact199

fact recall from heuristics recall. Both mechanisms200

denote when the LM makes use of stored informa- 201

tion for its prediction, i.e. performs a recall. The 202

difference lies in what type of information is re- 203

called and what the recall is based on. Heuristics 204

recall occurs for predictions based on learned over- 205

generalized heuristics triggered by surface level 206

artifacts. Exact fact recall corresponds to situations 207

for which a LM has memorized the full fact tu- 208

ple expressed by the prompt and fetches this from 209

memory for the prediction. We assume the pre- 210

diction mechanisms for these two instances to be 211

different due to their fundamental differences in the 212

information used. Furthermore, since predictions 213

based on heuristics are far less reliable compared 214

to predictions based on exact fact recall, it is im- 215

portant that we analyze them separately. 216

2.4 Detecting prediction mechanisms 217

Here, we outline our choice of detection methods 218

for the criteria described above. We also use these 219

methods to inspect a dataset frequently used for the 220

interpretation of LMs performing fact completion, 221

namely, the 1,209 known samples from Counter- 222

Fact for which GPT-2 XL is accurate (Meng et al., 223

2022; Geva et al., 2023). 224

Fact completion To ensure we study fact com- 225

pletion, we follow previous work (Petroni et al., 226

2019; Meng et al., 2022; Geva et al., 2023) and 227

limit ourselves to simple queries that express an in- 228

complete fact tuple subject–relation, with the intent 229

to let the LM generate the object as the next token. 230

Each of our samples thus consists of a query and 231

the corresponding model output. The authors of 232

CounterFact Meng et al. (2022) let the model gen- 233

erate freely until it produces an entity, but this may 234

distort the original meaning of the template, e.g., 235

by adding negation (Appendix L.4). Therefore, we 236

only retain (query, prediction) samples for which 237

the next token corresponds to an entity or concept 238

that can be considered relevant for fact completion. 239

This excludes tokens such as “the”, “a” and “with”. 240

The known CounterFact examples also fulfill the 241

criterion on fact completion. 242

Confident prediction There is a wide variety of 243

methods proposed for estimating model confidence. 244

Research on model calibration (Jiang et al., 2021; 245

Vasudevan et al., 2019) has shown that token proba- 246

bility does not align with performance and as such 247

cannot be used as a good approximation of con- 248

fidence. Some research has suggested, however, 249
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that other internal model states may encode infor-250

mation related to model confidence (Burns et al.,251

2023). However, different extraction methods have252

varying success and are model as well as dataset253

dependent (Yoshikawa and Okazaki, 2023). Ad-254

ditionally, most of this work is from the field of255

model calibration, and uses accuracy as the single256

measure of performance.257

In this paper, we opt for a definition of confi-258

dence grounded in desirable model behavior. We259

proxy model confidence by consistency in the face260

of semantically equivalent queries (Elazar et al.,261

2021; Portillo Wightman et al., 2023) and use para-262

phrases from the ParaRel dataset (Elazar et al.,263

2021). More specifically, we classify a prediction264

as confident if it occurs among the top 3 predictions265

for at least 5 paraphrased queries. A prediction that266

only appears for one of the rephrased queries is267

deemed unconfident. We cannot estimate confi-268

dence for the known CounterFact samples since the269

dataset only provides one prompt per fact.270

No Heuristics To detect surface-level signals in-271

dicating the potential use of heuristics, we use fil-272

ters based on prompting the LM under investiga-273

tion, as proposed by Poerner et al. (2020); Cao274

et al. (2021). We also complement this approach275

with memorization estimations based on work by276

Mallen et al. (2023) and Kandpal et al. (2023).277

For the surface-level filters, we make use of per-278

son name bias and lexical overlap filters by Poerner279

et al. (2020). Person name bias can only be de-280

tected for relations where the subject is a person281

name and the object is a location. We also build282

a prompt bias filter based on the findings by Cao283

et al. (2021). Lexical overlap is detected if there is284

a string match between subject and object. Prompt285

and person name bias are detected by querying the286

model with the partial fact – i.e. expressing only287

the relation with a generic subject, or querying for288

a typical location associated with the name with-289

out specifying how that location is related to the290

subject. The templates used for prompting can be291

found in Appendix G. These filters only reveal the292

possibility of heuristics recall taking place.293

For exact fact recall, we also complement our294

detection method with LM knowledge estimations.295

Previous work in this field indicates that queries296

asking for fact tuples rarely found in the LM train-297

ing data are less likely to be known by the model298

(Mallen et al., 2023; Kandpal et al., 2023). If we299

know that the LM does not know the fact requested300

by a prompt but still makes a confident prediction, 301

we can assume that it corresponds to some form of 302

heuristics recall. Similarly, if we know with high 303

certainty that the LM ought to know a particular 304

fact, we have higher reason to believe that the cor- 305

rect prediction for a query asking for this fact corre- 306

sponds to exact fact recall. Following Mallen et al. 307

(2023), we use fact popularity to approximate fre- 308

quency in training data. Similarly to their approach 309

we measure fact popularity by Wikipedia page 310

views and collect the average monthly Wikipedia 311

page views for year 2019 for each query subject 312

and object using the Pageview API.2 Mallen et al. 313

(2023) found queries with popularity scores be- 314

low 1000 unlikely to have been memorized, unless 315

surface-level artifacts were present. We label a pre- 316

diction as corresponding to a known fact only if it 317

is accurate and the fact corresponds to an average 318

page view above 1000. 319

For heuristics recall, we ensure no exact fact 320

memorization is taking place by using synthetic 321

data. If a model has a highly confident predic- 322

tion, we can assume it has identified some heuris- 323

tics to guide that decision. We combine this with 324

prompt-based bias detection and only select syn- 325

thetically generated facts that have been detected 326

by the bias filter. This provides assurances that the 327

model could not have performed exact fact recall 328

and we have evidence that specific types of surface 329

level signals were present instead, making it most 330

likely that those were used to provide a prediction. 331

Analysis of known CounterFact samples We 332

check for predictions based on shallow heuristics 333

for the known CounterFact samples. We find 335 334

samples that may correspond to prompt bias, 155 335

to name bias and 20 to both name and prompt bias. 336

There are a total of 205 samples corresponding to 337

person names for which we can check for name 338

bias, meaning that we detect name bias in 175 of 339

a total 205 samples. No lexical overlap between 340

sample subject and object is found. Some examples 341

marked for bias can be found in Appendix L.1. 342

Using fact popularity, we also evaluate the 343

known CounterFact samples through the lens of 344

LM knowledge estimation. Appendix L.2 lists the 345

popularity scores distribution for the dataset. We 346

find approximately 365 known CounterFact sam- 347

ples with popularity scores below 1000. These are 348

unlikely to have been memorized by the model and 349

2https://wikitech.wikimedia.org/wiki/
Analytics/AQS/Pageviews
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GPT-2 XL Llama 2 7B

Mechanism
#samples
(#fact tuples)

#samples
(#fact tuples)

Exact fact 1322 (191) 5481 (580)
Heuristics 8352 (1868) 8414 (1960)
Guesswork 3282 (3181) 2917 (2846)
Generic LM 1000 (-) 1000 (-)

Table 2: Statistics for our PREPMECH dataset for each
LM considered in our study.

are therefore unlikely to correspond to exact fact350

recall. Moreover, we find that around 50% of these351

samples (172 samples) have been detected by our352

heuristics filters (Appendix L.2), indicating that353

the remaining samples may also contain surface354

level signals not detected by our filters. This sup-355

ports our claim that popularity metadata can serve356

as a complement for separating exact fact recall357

samples from heuristics recall samples.358

Apart from the analysis described above, we359

also scrutinize the known CounterFact samples360

with respect to the total effect of perturbing the361

subject (Appendix L.3) and negated queries (Ap-362

pendix L.4). Our results indicate an additional set363

of potentially problematic samples that may hinder364

a precise study of prediction mechanisms.365

3 PREPMECH: a dataset for precise366

studies of prediction mechanisms367

To facilitate precise interpretations of prediction368

mechanisms, we develop the dataset PREPMECH369

(PRecise Examples of MECHanisms) with samples370

that separately trigger each mechanism identified371

in Section 2. The dataset and our subsequent anal-372

ysis is focused on the English language. This sec-373

tion describes our sampling methods for queries374

corresponding to exact fact recall (Section 3.1),375

heuristics recall (Section 3.2), random guesswork376

(Section 3.3) and generic language modeling (Sec-377

tion 3.4). PREPMECH is model-specific since it378

indicates samples learned by a model and predic-379

tions based on model biases, which differ between380

LMs. We develop a dataset for GPT-2 XL (Radford381

et al., 2019) and Llama 2 7B (Touvron et al., 2023),382

respectively. General statistics for PREPMECH can383

be found in Table 2. Appendix K includes exam-384

ples corresponding to each prediction mechanism.385

3.1 Exact fact recall samples 386

To get queries for which the LM performs exact 387

fact recall, we first build a dataset based on LAMA 388

and ParaRel query templates (Petroni et al., 2019; 389

Elazar et al., 2021). We then extract exact fact 390

recall predictions from this dataset based on the 391

criteria and methods described in Section 2.4. Ex- 392

tracted exact fact recall predictions are 1) not la- 393

belled as corresponding to any bias, 2) correct, 3) 394

corresponding to a fact known by the LM and 4) 395

confident. It is not a problem if this excludes sam- 396

ples corresponding to exact fact recall, as we prior- 397

itize precision for these samples. A more detailed 398

description of our sampling process for the exact 399

fact recall samples can be found in Appendix D. 400

The composition of the relations that make up 401

the exact fact recall samples is further analyzed 402

in Appendix H. We note that the majority of the 403

samples in the dataset are based on the relations 404

P740 location of formation and P1376 capital of. 405

3.2 Heuristics recall samples 406

To provide a testing ground for comparing results to 407

a baseline case where we can be certain the model 408

is performing recall of heuristics, we use synthetic 409

tuples in place of LAMA tuples. Since the fact 410

tuples represented by the samples are synthetic, 411

they cannot have been memorized by the model 412

(Liu et al., 2023; Basmov et al., 2024). Confident 413

predictions for these samples should therefore cor- 414

respond to heuristics recall. 415

To obtain the relevant data and labels, we first 416

build a dataset based on synthetic fact tuples and 417

ParaRel query templates. We then apply our criteria 418

as described in Section 2.4. Confident predictions 419

for which a single type of bias is identified form our 420

heuristics recall samples. A more detailed descrip- 421

tion of our sampling process and deeper analysis 422

of the heuristics recall samples can be found in 423

Appendix E and Appendix I, respectively. 424

3.3 Random guesswork samples 425

To collect samples corresponding to random guess- 426

work, we start from the same source data as Sec- 427

tion 3.1 and filter for samples that are 1) unconfi- 428

dent, 2) found in the gold label set (correspond to a 429

fact completion situation) and 3) not corresponding 430

to a fact known by the LM. 431
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3.4 Generic language modeling432

To get samples corresponding to generic language433

modeling we use Wikipedia3, following an ap-434

proach similar to that of Haviv et al. (2023), and435

collect sentences that start with the subject of the436

article. The extraction is done by sampling subject-437

first examples in order to mirror the fact completion438

setting, while exploring the role of the subject in439

a natural, but not fact completion setting (see Ap-440

pendix F for details).441

4 Sensitivity of causal tracing to different442

prediction mechanisms443

To illustrate the importance of precise interpreta-444

tions of LMs, we investigate the sensitivity of a pop-445

ular mechanistic interpretability approach – causal446

tracing (CT) – to different prediction mechanisms447

and their aggregations.448

CT is a mechanistic interpretability method that449

has been highly influential and provided interpre-450

tations of LMs (Stolfo et al., 2023; Monea et al.,451

2023). The method works by first recording in-452

termediate model representations during normal453

generation (clean run). Then noise is added to454

the query subject embeddings to obtain corrupted455

intermediate model representations (noised run).456

By restoring corrupted representations at different457

token-layer positions it is possible to infer what458

parts of the network are important for assigning a459

high probability to the predicted token with respect460

to the subject (patched run). The measured signal461

is referred to as indirect effect and defined as462

IE
h
(l)
i

(o) = P
h
(l)
i , patched

(o)− Pnoised(o) (1)463

where P
h
(l)
i ,patched

(o) is the probability for token464

o after patching state h
(l)
i at layer l for the input465

token at position i and Pnoised(o) is the probability466

of o for the noised run. To reason about the general467

process of generating a prediction, results for im-468

portant states are averaged over several samples to469

get the average indirect effect (AIE).470

Our sensitivity analysis of CT is centered around471

two questions: (1) Are aggregation plots of CT re-472

sults representative of the whole sample? and (2)473

Do the CT results and corresponding conclusions474

change with the underlying prediction mechanism?475

To answer these questions, we concretize the con-476

clusions reached by previous CT studies in Sec-477

3We use 20220301.en from HuggingFace at https:
//huggingface.co/datasets/wikipedia

tion 4.1, perform an aggregation analysis described 478

in Section 4.2, and present results in Section 4.3. 479

4.1 Conclusions from previous CT studies 480

Based on aggregations of CT results for accurate 481

fact completions, Meng et al. (2022) conclude that 482

MLP modules at mid model layers at the last sub- 483

ject token have a decisive role for fact completion. 484

In this work, we refer to this conclusion as the de- 485

cisive role conclusion. Based on this conclusion, 486

Meng et al. (2022) reason that MLP module com- 487

putations at middle layers have an essential role 488

when recalling a fact and that their results reveal 489

the location of MLP key–value mappings capable 490

of recalling facts about a subject. As this conclu- 491

sion is a central part of original CT studies, we 492

focus our investigations on whether results for dif- 493

ferent prediction mechanisms lead to it. If results 494

for all mechanisms lead to the same conclusion, it 495

would indicate that CT is not sensitive to different 496

prediction mechanisms. CT results leading to the 497

decisive role conclusion are defined as results for 498

which MLP states at (last subject token, mid-layers) 499

are decisive, i.e. yield an AIE with a lower confi- 500

dence bound higher than the AIE upper confidence 501

bound for any other (token, layer) state. 502

4.2 Aggregation analysis 503

Meng et al. (2022) averaged CT results over 1000 504

samples in order to reason about the general pat- 505

tern of recall of factual associations. Since these 506

results are dependent on the absolute values of 507

the probability of the traced (predicted) token, we 508

hypothesize that the result could be driven by a 509

few high-probability samples and not representa- 510

tive of the low-probability4 strata of the data. To 511

test this, we take inspiration from work by Hase 512

et al. (2023) and compare the IE results to their 513

normalized counterpart. We define the normalized 514

indirect effect as 515

NIE
h
(l)
i

(o) =
P
h
(l)
i , patched

(o)− Pnoised(o)

|Pclean(o)− Pnoised(o)|
(2) 516

where Pclean(o)−Pnoised(o) is the total effect (TE) 517

defined as the difference between the clean and 518

the noised runs. The normalized IE measures the 519

percentage of recoverable probability that was re- 520

covered by patching state h
(l)
i . 521

4With probability, we here refer to the probability corre-
sponding to the clean run prediction.

6

https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia


For some samples, predominantly low-522

probability predictions, the division by the TE523

may result in unnatural NIE
h
(l)
i

(o) values above524

1 or below -1. The state patching should not be525

able to restore more than the clean run probability526

and we therefore cap the NIE
h
(l)
i

(o) to a range of527

[−1, 1]. With this approach, each sample is valued528

on the same scale. Plots for homogeneous datasets529

should therefore yield normalized CT results that530

are similar to their non-normalized counterparts.531

4.3 Results532

Figure 2 shows average indirect effects of different533

states in GPT-2 XL for 1000 samples composed534

of 400 exact fact recall, 400 heuristics recall and535

200 guesswork samples from PREPMECH.5 This536

figure also indicates the results for samples corre-537

sponding to each prediction mechanism in isolation,538

allowing us to study the effect of aggregation. The539

corresponding results for Llama 2 7B can be found540

in Appendix M.1. We use the same hyperparame-541

ters as Meng et al. (2022) for our CT analysis. Our542

aforementioned questions are answered, as follows.543

Are aggregated CT results representative of544

each studied sample? The results for the non-545

normalized plot in Figure 2a are dominated by546

the exact fact recall samples with larger non-547

normalized indirect effects. The exact fact recall548

samples clearly lead to the decisive role conclusion549

and the same holds for the non-normalized results,550

even though subsets of the included data (heuristics551

recall and guesswork samples) do not lead to the552

same conclusion with as high certainty.553

For the normalized results in Figure 2b we find554

that equal weights for all evaluated samples yield a555

different pattern compared to the non-normalized556

results, with a weaker peak for the last subject to-557

ken. Moreover, we find that normalization yields558

the same pattern when applied to samples of iso-559

lated mechanisms (e.g. Figure 2c and Figure 2f).560

We conclude that aggregations of CT results across561

multiple prediction mechanisms are not represen-562

tative of each studied sample. Also, comparisons563

between non-normalized and normalized results564

may reveal nonhomogeneous datasets with respect565

to prediction mechanism. The results for Llama 2566

7B in Figure 3 support the same conclusions.567

5Appendix M.3 includes normalized CT plots for each
prediction mechanism for GPT-2 XL and Llama 2 7B. Results
for the subsets are found to be representative of the larger sets.

Do the CT results and corresponding con- 568

clusions change with the underlying predic- 569

tion mechanisms? For samples corresponding 570

to each prediction mechanism in isolation, we find 571

distinct differences between the normalized CT re- 572

sults for each mechanism. For the exact fact recall 573

samples, the significance of the last subject token 574

state at early to middle layers is profound compared 575

to all other (token, layer) states. Evidently, the LM 576

relies heavily on information from MLP mid-layers 577

for the exact fact recall prediction mechanism. For 578

the heuristics recall samples, the importance of the 579

last subject token state is downplayed and the im- 580

portance of the last token state is increased as well 581

as the importance of all subject tokens in early lay- 582

ers. The heuristics recall results still lead to the 583

decisive role conclusion, but with a small margin. 584

For the guesswork samples, the last token state is 585

decisive and the results do not lead to the decisive 586

role conclusion. The Llama 2 7B results in Fig- 587

ure 3 show similar trends: while both the heuristics 588

recall and guesswork samples lead to the decisive 589

role conclusion, they do so with a smaller margin 590

compared to the exact fact recall samples. 591

Additional analysis. We already noted that CT 592

is sensitive to prediction probabilities. This also 593

holds when the underlying prediction mechanism 594

is kept constant. Appendix M.2 includes the same 595

plot as in Figure 2 but for samples corresponding to 596

the lowest model probabilities for each prediction 597

mechanism in PREPMECH. For these samples, the 598

last token state is assigned a higher importance with 599

all prediction mechanisms. Normalized CT results 600

for generic language modeling in Appendix M.3 601

do not indicate a decisive role for any MLP state 602

corresponding to the last subject token. 603

Appendix M.4 presents normalized CT results 604

for the heuristics recall samples partitioned by 605

prompt bias and person name bias. The prompt 606

bias results suggest a higher importance of the last 607

token state, compared to the last subject token state, 608

when compared to the person name bias results. 609

We conclude that CT is sensitive to different pre- 610

diction mechanisms, and therefore CT results yield 611

different interpretations depending on the selection 612

of samples. We find normalization of results to 613

be a feasible approach to indicate sample nonho- 614

mogeneity. Furthermore, we find alignment with 615

previous work regarding the importance of mid- 616

dle MLP layers of the last subject token in our 617

exact fact recall sub-sample. However, our results 618

7
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(b) Normalized 1000 combined samples.
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(c) 400 exact recall samples.

0 10 20 30 40
Layer number in GPT-2-XL

0.1

0.0

0.1

0.2

0.3

0.4

0.5
No

rm
al

ize
d 

AI
E

(d) 400 heuristics recall samples.
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(e) 200 guesswork samples.
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(g) 400 heuristics recall samples.
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(h) 200 guesswork samples.

Figure 2: CT results with GPT-2 XL for 1000 samples from PREPMECH of which 400 samples correspond to exact
fact recall, 400 to heuristics recall and 200 to guesswork. Shaded regions indicate 95% confidence intervals.

suggest there might be other processes at play for619

heuristics recall and guesswork that warrant further620

investigation. Finally, CT results are sensitive to621

prediction probabilities, even when the prediction622

mechanism is held constant. This potentially in-623

dicates room for improvement with respect to our624

metrics for prediction confidence.625

5 Conclusion626

Based on a set of basic criteria, we identify four627

prediction mechanisms that are fundamentally dif-628

ferent and of differing reliability. These are exact629

fact recall, heuristics recall, guesswork and generic630

language modeling. We show that previous inter-631

pretability work for fact completion situations treat632

many of these mechanisms as equivalent by using633

accuracy as the sole criterion for differentiating be-634

tween prediction mechanisms. Our analysis of a635

dataset frequently used by previous interpretability636

work – known examples from CounterFact – re- 637

veals samples that may trigger heuristics recall as 638

opposed to exact fact recall and other problematic 639

phenomena. To facilitate precise interpretations 640

of prediction mechanisms, we present a method 641

for creating a model-specific dataset PREPMECH 642

with samples that separately trigger each of our 643

identified prediction mechanisms. We produce a 644

version of this datasets for each of GPT-2 XL and 645

Llama 2 7B, and use it to test the prediction mech- 646

anism sensitivity of an influential interpretability 647

method, causal tracing (CT). We find that different 648

prediction mechanisms yield distinct CT results if 649

studied in isolation. Consequently, CT results are 650

not representative of the dataset as a whole if it con- 651

tains examples of different prediction mechanisms. 652

Our results highlight the importance of studying 653

different prediction mechanisms in isolation and 654

provide a method for doing this. 655
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Limitations656

Our results are limited to auto-regressive models657

and subject-first template queries. Using the meth-658

ods described in this paper, PREPMECH datasets659

can be constructed for other types of LMs, such660

as encoder-based models, while we leave this for661

future work.662

Moreover, the heuristics filters used for our663

dataset creation can only reveal the possibility of664

shallow heuristics being used by the LM. We also665

observe some suspicious samples that go unde-666

tected by the filters, indicating that the filters are667

leaky. Furthermore, we find signs of name based668

heuristics for non-person subjects for which we669

have no applicable filters. The detection of these670

cases would rely on more advanced detection meth-671

ods and is left for future work. By complementing672

our dataset creation with knowledge estimations673

and sampling of synthetic fact tuples, we should674

avoid most filter failures, while we cannot com-675

pletely rule out the possibility of there being some676

problematic samples in PREPMECH.677

Even though we partition the PREPMECH sam-678

ples based on whether the prediction is confident,679

we find that our results are sensitive to whether680

we investigate predictions with high or low prob-681

abilities from each partition. This indicates room682

for improvement for our method of detecting confi-683

dent predictions, for which we already have noted a684

lack of comprehensive studies of model confidence685

metrics.686

Lastly, we note that multiple interpretability687

methods would need to be applied to validate the688

exact underlying computation used by our LMs for689

the different mechanisms in our taxonomy. When690

applying only CT, we cannot with certainty distin-691

guish between effects of different prediction mech-692

anisms being used by the LM, as opposed to effects693

of data-sensitive quality issues of the CT method.694

Ethics Statement695

Interpretability methods for fact completion situ-696

ations are not directly associated with any ethical697

concerns. Neither is the LAMA dataset or synthetic698

fact tuples used in this work.699
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A Computational resources868

Experiments in this work are done on T4, A40 and869

A100 NVIDIA GPUs. Models used are GPT-2 XL,870

which has 1.5B parameters and Llama 2 7B which871

has 7B parameters.872

B Selection process of LAMA relations873

The LAMA relations included in our PREPMECH874

dataset have been selected based on the following875

criteria:876

1. We only include relations that have multiple877

templates for which 1) the object comes last878

in order to fit the autoregressive setting and 2)879

the subject comes first in order to simplify the880

causal reasoning of intervening on the subject;881

2. We exclude relations with a lot of overlap be-882

tween the subject and object and relations for883

which the answers are highly imbalanced to-884

ward only a few alternatives.885

This corresponds to the relations P19 place of birth,886

P20 place of death, P27 country of citizenship,887

P101 field of work, P495 country of origin, P740888

location of formation and P1376 capital of.889

C ParaRel templates890

We use the templates as described in Tables 3 and 4891

for the creation of PREPMECH queries.892

D Creation process for exact fact recall893

samples894

To get queries for which the LM performs exact fact895

recall, we follow an iterative process as described896

below:897

1. Take all fact tuples from LAMA6 correspond-898

ing to the relations P19 place of birth, P20899

place of death, P27 country of citizenship,900

P101 field of work, P495 country of origin,901

P740 location of formation and P1376 capital902

of. Our relations selection process is further903

described in Appendix B.904

2. Create paraphrased queries for the fact tuples905

using the ParaRel templates described in Ap-906

pendix C (Elazar et al., 2021).907

6https://github.com/facebookresearch/
LAMA

3. Collect LM predictions for the queries. Keep 908

all top 3 tokens and store the corresponding 909

softmaxed logits as metadata. We now have a 910

dataset with query and prediction pairs, plus 911

some additional metadata. 912

4. Collect estimations of LM knowledge for the 913

prompts following the approach described in 914

Section 2.4. 915

5. Collect estimations of whether each given pre- 916

diction is based on surface level artifacts in 917

the query following the approach described in 918

Section 2.4. 919

6. Label predictions corresponding to trivial to- 920

kens and add as metadata to our dataset. 921

7. Categorize the predictions into “correct” or 922

“incorrect” using the LAMA gold labels. For 923

Llama 2 7B we say that the prediction is cor- 924

rect if it has more than 3 characters and fully 925

matches the start of the gold label. This was 926

necessary since the tokenizer for this model is 927

more prone to split the gold labels into small 928

tokens. 929

8. Add confidence metadata following the ap- 930

proach described in Section 2.4. Biased pre- 931

dictions are separated from predictions with- 932

out any potential bias before we count the 933

number of consistent predictions. A biased 934

prediction that is consistent with an unbiased 935

prediction does not count for the unbiased pre- 936

diction and vice versa. 937

9. Extract samples that should correspond to ex- 938

act fact recall from the dataset above. Exact 939

fact recall samples should correspond to pre- 940

dictions that are 1) not labelled as correspond- 941

ing to any bias, 2) correct, 3) corresponding 942

to a fact known by the LM and 4) confident. 943

It is not a problem if this excludes samples 944

corresponding to exact fact recall, as we are 945

only interested in precision and not recall for 946

these samples. 947

E Creation process for heuristics recall 948

samples 949

The heuristics recall samples are constructed to 950

align with the format of the exact fact recall sam- 951

ples. Therefore, we create this partition based on 952

the same relations as used in Appendix D. To ob- 953

tain the relevant data and labels, we perform the 954

following steps: 955
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1. Identify subject type distributions for the se-956

lected relations.957

2. Generate subjects of the re-958

quired types using https://www.959

fantasynamegenerators.com.960

For relations P19, P20, P27 and P101 the961

only allowed subject type is person, so962

the generated subjects are human names.963

For P1376 the subject type is city, and the964

generated data is city names. Relations P495965

and P740 have a variety of allowed subject966

types. For these, we produce a distribution967

over the original LAMA data and match that968

as closely as possible with the available name969

generators.970

3. Perform de-duplication and check against971

Wikidata that no subject corresponds to a real972

entity. The Wikidata check is performed on973

a label level, since the generated names are974

pure strings. This limits our ability to check975

for a subject’s existence, as we can only find976

exact matches.977

4. Generate prompts corresponding to each re-978

lation by applying the ParaRel templates de-979

scribed in Appendix C to the synthetic sub-980

jects.981

5. Collect LM predictions by extracting the top982

3 tokens.983

6. Identify non-trivial answers. This is carried984

out by querying the Wikidata database and985

suffers from the same limitations as discussed986

above – we are limited to exact matching987

strings. This can result in additional chal-988

lenges due to e.g. tokenization truncating the989

full entity.990

7. Filter on confidence. We only keep predic-991

tions marked as confident and apply the same992

definition of confidence as described in Sec-993

tion 2.4.994

8. Add metadata on: prompt bias, name bias,995

subject-object string overlap. The distribu-996

tion of these flags is presented in Appendix J.997

The samples for which a single type of bias is998

identified form our heuristics recall samples.999

F Creation process for generic language1000

modeling samples1001

Data is sampled from Wikipedia extraction1002

20220301.en from HuggingFace at https://1003

huggingface.co/datasets/wikipedia.1004

We randomly select an entry from the data. For 1005

each, we select a single sentence from the page 1006

that begins with any part of the title name (i.e. it 1007

could be the surname, if the subject is a person). 1008

If the sentence is longer than 10 words, we cap it. 1009

We do not select sentences if they are: 1) shorter 1010

than 5 words, 2) with more than 3 capitalized 1011

words (likely to be section headings), and 3) 1012

whose natural continuation begins with a capital or 1013

number (indicating this could be an entity and thus 1014

potentially fact completion). We repeat this until 1015

we have 1000 datapoints (for 1000 unique entries 1016

in the data). For CT experiments, we trace the next 1017

token, freely predicted by the model. 1018

G Detection filters for heuristics 1019

Our detection of heuristics is based on model pre- 1020

dictions for prompts expressing only a part of the 1021

requested fact. For person name bias, we query 1022

with the following prompts: “[X] is a common 1023

name in the following city:” and “[X] is a common 1024

name in the following country:”. Where “[X]” is 1025

replaced with the subject name to check for bias. 1026

If any of the top 10 token predictions for these 1027

queries matches the model prediction for the full 1028

fact query, we mark that (query, prediction) pair 1029

as corresponding to person name bias. We can de- 1030

tect person name bias for relations P19, P20, P27, 1031

used in PREPMECH and additionally for P103 and 1032

P1412, present in CounterFact. 1033

For the detection of prompt bias we use the orig- 1034

inal prompt templates as defined by ParaRel and 1035

replace the subject placeholder with generic sub- 1036

stitutions. We use the substitutions described in 1037

Table 5 for each relation. We also remedy basic cap- 1038

italization and grammar errors that might surface 1039

from this automated prompt creation. An example 1040

of a prompt for detecting prompt bias for “Tokyo 1041

is the capital city of [Y]” is “It is the captial city of 1042

[Y]”. If the top prediction for the former query is 1043

found among the top 10 token predictions for the 1044

latter query, the former query and corresponding 1045

prediction is marked as based on prompt bias. 1046

H Analysis of the exact fact recall 1047

samples in PREPMECH 1048

The composition of the relations that make up the 1049

exact fact recall queries in PREPMECH is shown in 1050

Table 6. 1051
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I Analysis of the heuristics recall samples1052

in PREPMECH1053

Our final heuristics recall set, described in Sec-1054

tion 3.2, contains 1,771 examples where no bias1055

was identified. This can be counter intuitive, as1056

we do not expect the model to be able to make1057

confident prediction when it has no bias to guide1058

it. We therefore perform a deeper analysis of these1059

samples.1060

These include 6 instances that identify the loca-1061

tion of formation (P740) of “Oasis of Prejudice” as1062

“London” (not identified as prompt bias, since the1063

prompt bias check produces mostly years, indicat-1064

ing time to be the more natural interpretation of the1065

queries). Two examples from P101 (field of work)1066

show the model potentially ignoring part of the1067

query, by connecting “Nina Schopenhauer” with1068

“philosophy” and “Roch Chagnon” with “anthro-1069

pology” (in total 9 rephrased samples). Another1070

23 examples of relation P495 show association of1071

5 fictional entities with Japan (3 of these contain1072

the word “Berserk” – a possible conflating pattern1073

with the manga of the same name). Further 7901074

examples come from relations P19 (born in) and1075

P27 (citizen of). Some of these could be examples1076

of a stronger association overwriting the expressed1077

tuple (e.g. “Adolphe Trudeau” born in “Quebec”),1078

others may point to weaknesses of our name bias1079

detection method. Finally, the most represented1080

relation is P1376 with 938 examples. This rela-1081

tion does not lend itself to our subject name bias1082

filter, however, we suspect a linguistic correlation1083

between city names and countries may exist and1084

those surface level signals can potentially explain1085

some of the predictions.1086

This analysis confirms our concerns related to1087

the coverage of the implemented heuristics recall1088

filters. Evidently, there are some heuristics that1089

go undetected by our filters. This highlights the1090

strength of our method based on sampling synthetic1091

data for the heuristics recall detection and filtering1092

for popularity for the exact fact recall detection.1093

J Bias and predicate distribution for1094

synthetic data1095

Table 7 shows the distribution of bias in the syn-1096

thetic data. Most samples have name bias detected.1097

Table 8 shows the relation distribution of samples1098

that have at least one confident non-trivial predic-1099

tion. The most represented predicate is P27 citizen-1100

of. This is inline with the name bias prevalence that1101

we see. 1102

K Examples from PREPMECH 1103

Here, we include a few examples to illustrate the 1104

content of PREPMECH for different prediction 1105

mechanisms. See Tables 9 to 12. 1106
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Relation Template

P19 [X] was born in [Y]
[X] is originally from [Y]
[X] was originally from [Y]
[X] originated from [Y]
[X] originates from [Y]

P20 [X] died in [Y]
[X] died at [Y]
[X] passed away in [Y]
[X] passed away at [Y]
[X] expired at [Y]
[X] lost their life at [Y]
[X]’s life ended in [Y]
[X] succumbed at [Y]

P27 [X] is a citizen of [Y]
[X], a citizen of [Y]
[X], who is a citizen of [Y]
[X] holds a citizenship of [Y]
[X] has a citizenship of [Y]
[X], who holds a citizenship of [Y]
[X], who has a citizenship of [Y]

P101 [X] works in the field of [Y]
[X] specializes in [Y]
The expertise of [X] is [Y]
The domain of activity of [X] is [Y]
The domain of work of [X] is [Y]
[X]’s area of work is [Y]
[X]’s domain of work is [Y]
[X]’s domain of activity is [Y]
[X]’s expertise is [Y]
[X] works in the area of [Y]

P495 [X] was created in [Y]
[X], that was created in [Y]
[X], created in [Y]
[X], that originated in [Y]
[X] originated in [Y]
[X] formed in [Y]
[X] was formed in [Y]
[X], that was formed in [Y]
[X] was formulated in [Y]
[X], formulated in [Y]
[X], that was formulated in [Y]
[X] was from [Y]
[X], from [Y]
[X], that was developed in [Y]
[X] was developed in [Y]
[X], developed in [Y]

Table 3: ParaRel templates used for the relations P19-
P495 in our dataset creation.

Relation Template

P740 [X] was founded in [Y]
[X], founded in [Y]
[X] that was founded in [Y]
[X], that was started in [Y]
[X] started in [Y]
[X] was started in [Y]
[X], that was created in [Y]
[X], created in [Y]
[X] was created in [Y]
[X], that originated in [Y]
[X] originated in [Y]
[X] formed in [Y]
[X] was formed in [Y]
[X], that was formed in [Y]

P1376 [X] is the capital of [Y]
[X] is the capital city of [Y]
[X], the capital of [Y]
[X], the capital city of [Y]
[X], that is the capital of [Y]
[X], that is the capital city of [Y]

Table 4: ParaRel templates used for the relations P740
and P1376 in our dataset creation.

Relation Subject substitutions

P19 [He, She]
P20 [He, She]
P27 [He, She]
P101 [He, She]
P495 [It]
P740 [It, The organisation]
P1376 [It, The city]

Table 5: Subject substitutions used for constructing
prompts to detect prompt bias.

Relation #unique tuples

P19 0
P20 0
P27 77
P101 18
P495 406
P740 95
P1376 726

Table 6: The number of unique tuples corresponding to
each relation of the exact fact recall samples in PREP-
MECH.
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prompt string name #samples
bias match bias

FALSE FALSE FALSE 1771
TRUE 7066

TRUE FALSE 34
TRUE 8

TRUE FALSE FALSE 1252
TRUE 4775

TRUE FALSE 6
TRUE 7

Table 7: Distribution of detected bias in confident non-
trivial predictions in the synthetic data of the PREP-
MECH dataset.

Relation # samples

P101 9
P1376 1754
P19 2674
P20 5
P27 10436
P495 33
P740 8

Table 8: Distribution of relations in the synthetic data of
the PREPMECH dataset that have a confident non-trivial
prediction.
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Model Query Prediction Subject popularity Gold label

GPT-2 XL Thomas Ong is a citizen of Singapore 1418 Singapore
Shibuya-kei, that was created in Japan 5933 Japan
Palermo is the capital of Sicily 34273 Sicily

Llama 2 7B Disco Biscuits was created in Philadelphia 3719 Philadelphia
Don Broco, that was started in Bed 6984 Bedford
Nikephoros III Botaneiates Constantin 1859 Constantinople

passed away in

Table 9: (query, prediction) exact fact recall samples from PREPMECH for GPT-2 XL and Llama 2 7B.

Model Query Prediction Rank Gold label

GPT-2 XL Sonar Kollektiv originated in Russia 1 Berlin
Haydn Bendall is originally from England 2 Essex
Joseph Clay was originally from Ohio 2 Philadelphia

Llama 2 7B Jean Trembley originated from France 2 Geneva
Dansez pentru tine, that originated in France 2 Romania
Milton Wright is originally from Chicago 2 Georgia

Table 10: (query, prediction) random guesswork samples from PREPMECH for GPT-2 XL and Llama 2 7B.

Model Query Prediction Bias

GPT-2 XL Hirashima Hideyoshi, who has a citizenship of Japan name
Balo Windhair has a citizenship of Canada prompt
Olre Hellspirit was originally from Hell lexical

Llama 2 7B Ha Songmin, who has a citizenship of South (Korea) name
Wanda Hagel holds a citizenship of Canada prompt
Limanaga, the capital city of Lim lexical

Table 11: (query, prediction) heuristics recall samples from PREPMECH for GPT-2 XL and Llama 2 7B.

Model Query Prediction Gold label

GPT-2 XL Dexmedetomidine is notable for its ability to provide sedation and without
Solomon also defended the network’s choice of games to air broadcast
Walker added an immense amount of material to the book collections

Llama 2 7B Dexmedetomidine is notable for its ability to provide sedation and without
Solomon also defended the network’s choice of games to air broadcast
Walker added an immense amount of material to the original collections

Table 12: (query, prediction) generic language samples from PREPMECH for GPT-2 XL and Llama 2 7B.
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L Prediction mechanisms represented by1107

CounterFact1108

Here, we include additional information related to1109

the study of prediction mechanisms used by GPT-21110

XL when evaluated on known CounterFact sam-1111

ples.1112

L.1 Surface level artifacts1113

Examples of predictions marked for bias can be1114

found in Table 13.1115

L.2 LM knowledge1116

The popularity score distribution for the known1117

CounterFact samples can be found in Table 14.1118

It is highly unlikely that fact tuples correspond-1119

ing to subjects with popularity scores below 1001120

have been stored by the LM. 17 of these 61 samples1121

correspond to either prompt or person name bias.1122

Closer inspection of the 44 samples not marked for1123

bias reveal 4 potential issues with the case sensitiv-1124

ity of the Wikipedia pageview API for the subjects1125

“macOS”, “iPhone 3GS”, “iTunes” and “iPhone”1126

that lead to incorrect popularity score estimations.1127

Another 12 samples correspond to queries about1128

the continent of which a subject is a part of for1129

subjects that contain the word “Glacier”, where1130

the correct answer is “Antarctica”. Our name bias1131

filter cannot detect these cases as it is limited to per-1132

son names. We observe additional samples among1133

the 61 low popularity samples with similar issues,1134

where the subject might have a very french sound-1135

ing name like for the query “Galerie des Machines,1136

in the heart of [Paris]”.1137

Samples with popularity scores between (100,1138

1000] are also less likely to have been memorized.1139

For this subset, 155 samples have been marked for1140

prompt or person name bias. For the remaining 1491141

samples we again find potential issues with name1142

bias that have gone undetected, such as “Si la vie1143

est cadeau is written in [French]”.1144

L.3 Total effects1145

We measure the total effect of perturbing the sub-1146

ject on the probability of the output prediction. This1147

provides an alternative way of checking for signs1148

of lack of exact fact recall. The method was in-1149

troduced by Meng et al. (2022) and used to find1150

model states important for the model prediction.1151

By adding noise to the word embeddings corre-1152

sponding to the subject of the query, the subject1153

is perturbed. The idea is that the perturbation of1154

the query makes the model incapable of perform- 1155

ing the necessary recall of factual associations that 1156

resulted in the original prediction, thus lowering 1157

the model probability for the original prediction. 1158

We hypothesize that samples for which the added 1159

perturbation does not sufficiently lower the corre- 1160

sponding prediction probability are less likely to 1161

correspond to exact fact recall. 1162

Method The total effect is measured as TE(o) = 1163

Pclean(o)−Pnoised(o), where Pclean(o) denotes the 1164

probability of emitting token o for a clean run and 1165

Pnoised(o) denotes the probability of emitting to- 1166

ken o when the subject has been perturbed. For all 1167

our investigations, o is given by the prediction cor- 1168

responding to the query stored in the dataset. We 1169

note that negative total effects imply that the per- 1170

turbation of the subject increased the probability of 1171

the original prediction and that low positive effects 1172

potentially indicate that perturbing the subject had 1173

a small effect on the model prediction. 1174

Similarly to Meng et al. (2022) we perturb the 1175

subject embeddings with noise ϵ ∼ N(0, ν) where 1176

ν is set to be 3 times larger than the empirical stan- 1177

dard deviation of all embeddings corresponding to 1178

the subjects of the dataset. We measure total effects 1179

for the known CounterFact samples as the average 1180

total effect of 10 runs with perturbed subjects. 1181

TE results For the 1209 known CounterFact sam- 1182

ples we find 22 samples with negative total effects, 1183

i.e. perturbing the subject increased the prediction 1184

probability, of which 18 potentially correspond to 1185

prompt bias and 2 to name bias. Inspection of the 1186

samples marked for prompt bias reveal prompt pat- 1187

terns such as “In [X], the language spoken is a 1188

mixture of” where the corresponding prediction is 1189

“English” or “German”. Another pattern we detect 1190

is “[X] is affiliated with the religion of” for which 1191

the prediction always is “Islam”. We hypothesize 1192

that some prompts reveal the correct prediction 1193

even when the subject is occluded, resulting in neg- 1194

ative TE values. 1195

Deeper study of TE results A deeper study of 1196

the TE values reveal an additional 37 samples for 1197

which the perturbation of the query subject de- 1198

creased the original probability by less than 40%. 1199

For some of these samples we identify queries 1200

that potentially reveal the correct prediction even 1201

when the subject is perturbed. Two identified sam- 1202

ples are “[X] professionally plays the sport of ice 1203

[hockey]” or “[X]’s expertise is in the field of quan- 1204
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Query Prediction Bias type

MacApp, a product created by Apple Prompt
Giuseppe Angeli, who has a citizenship of Italy Person name
The original language of La Fontaine’s Fables is a mixture of French Prompt

Table 13: Examples of queries and predictions from the known CounterFact dataset that potentially correspond to
bias. The predictions and analysis has been performed for GPT-2 XL.

Popularity score # of samples

(0, 100] 61
(100, 1000] 304
(1000, 10000] 379
(10000, 1176235] 437

Table 14: The popularity scores for the known Counter-
Fact samples. The maximum popularity score measured
was 1,176,235.

tum [physics]”. Prompt bias was detected for all1205

of these queries. We measure a spearman correla-1206

tion of -0.41 between normalized TE (Equation (3))1207

and the binary prompt bias metric over all known1208

CounterFact samples. It is clear that the effect of1209

perturbing the subject is smaller when the predic-1210

tion is likely based on prompt bias, versus when it1211

is not.1212

TEnorm(o) =
Pclean(o)− Pnoised(o)

Pclean(o)
(3)1213

L.4 Negated queries1214

We identify a total of 8 samples in the dataset that1215

contain the word “not” in the query. Two exam-1216

ples are “The language used by Louis Bonaparte1217

is not the language of the [French]” or “The ex-1218

pertise of medical association is not in the field1219

of [medicine]”. These samples are problematic as1220

they are marked as correct since they contain the1221

correct label, while they express the opposite of the1222

fact represented by the data sample. This problem1223

is a consequence of the sampling technique used1224

by Meng et al. (2022) in letting the LM generate a1225

fluent continuation to a given query before making1226

the prediction for the missing object. For the major-1227

ity of the known CounterFact samples this leads to1228

more fluent queries for which the LM might work1229

better, but for some samples it results in reversed1230

or revealing prompts.1231

M Additional results from the CT 1232

sensitivity analysis 1233

This section contains additional results from the 1234

analysis in Section 4. 1235

M.1 Llama 2 7B results 1236

The results in Figure 3 correspond to the results in 1237

Figure 2 but here for Llama 2 7B instead of GPT- 1238

2 XL. We find that the Llama results essentially 1239

support the same conclusions as the results for GPT- 1240

2 XL. 1241

M.2 Low-probability split 1242

The results in Figures 2 and 3 correspond to a sam- 1243

ple of top-ranked prediction probabilities. The re- 1244

sults in Figures 4 and 5 correspond to a sample 1245

of bottom-ranked prediction probabilities. We ob- 1246

serve qualitative differences between the two figure 1247

pairs, where bottom-ranked probability set corre- 1248

sponds to larger effects for the last token state. 1249

M.3 Per prediction mechanism 1250

CT results for 1000 samples from PREPMECH de- 1251

signed to exemplify each of our identified predic- 1252

tion mechanisms can be found in Figures 6 and 7. 1253

We conclude that the subsets used for Figures 2 1254

and 3 are representative of these larger sets. More- 1255

over, we observe that the results for the generic 1256

language modelling mechanism in Figure 7 do not 1257

indicate a decisive role for the last subject token 1258

MLP state at middle layers. 1259

M.4 Deeper study of heuristics recall 1260

We analyze the CT results of each of the main 1261

heuristics recall categories, prompt bias and person 1262

name bias, in separation for GPT-2 XL and Llama 1263

2 7B. The corresponding results can be found in 1264

Figure 8. These results suggest a higher importance 1265

of the last token state, compared to the last subject 1266

token state, for the prompt bias subset compared to 1267

the person name bias subset. Potentially, it makes 1268

sense that prompt biased predictions that should be 1269
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(b) Normalized 1000 combined samples.
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(c) 400 exact recall samples.
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(d) 400 heuristics recall samples.
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(e) 200 guesswork samples.
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(g) 400 heuristics recall samples.
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(h) 200 guesswork samples.

Figure 3: CT results on 1000 samples from PREPMECH of which 400 samples correspond to exact fact recall, 400
to heuristics recall and 200 to guesswork. These are the results for Llama 2 7B.

less sensitive to subject information attribute less1270

importance to states corresponding to the subject.1271
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(b) Normalized 1000 combined samples.

0 10 20 30 40
Layer number in GPT-2-XL

0.1

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
AI

E

First subject token
Middle subject tokens
Last subject token
First subsequent token
Further tokens
Last token

0 10 20 30 40
Layer number in GPT-2-XL

0.1

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
AI

E

(c) 400 exact recall samples.
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(d) 400 heuristics recall samples.
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(e) 200 guesswork samples.
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(g) 400 heuristics recall samples.
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(h) 200 guesswork samples.

Figure 4: CT results on 1000 low-probability samples from PREPMECH of which 400 samples correspond to exact
fact recall, 400 to heuristics recall and 200 to guesswork. These are the results for GPT-2 XL.
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(a) 1000 combined samples.
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(b) Normalized 1000 combined samples.
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(c) 400 exact recall samples.
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(d) 400 heuristics recall samples.
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(e) 200 guesswork samples.
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(f) 400 exact recall samples.
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(g) 400 heuristics recall samples.
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(h) 200 guesswork samples.

Figure 5: CT results on 1000 low-probability samples from PREPMECH of which 400 samples correspond to exact
fact recall, 400 to heuristics recall and 200 to guesswork. These are the results for Llama 2 7B.
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(a) GPT-2 XL on exact fact recall samples.
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(b) Llama 2 7B on exact fact recall samples.

0 10 20 30 40
Layer number in GPT-2-XL

0.1

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
AI

E

(c) GPT-2 XL on heuristics recall samples.
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(d) Llama 2 7B on heuristics recall samples.
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(e) GPT-2 XL on guesswork samples.
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(f) Llama 2 7B on guesswork samples.

Figure 6: Normalized CT results for 1000 samples from PREPMECH designed to exemplify each of the prediction
mechanisms exact fact recall, heuristics recall and guesswork. Results are reported for both GPT-2 XL and Llama 2
7B.
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(a) GPT-2 XL on generic language modelling samples.
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(b) Llama 2 7B on generic language modelling samples.

Figure 7: Normalized CT results for 1000 samples from PREPMECH designed to exemplify generic language
modelling. Results are reported for both GPT-2 XL and Llama 2 7B.
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(a) Prompt bias for GPT-2 XL.
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(b) Prompt bias for Llama 2 7B.
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(c) Person name bias for GPT-2 XL.
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(d) Person name bias for Llama 2 7B.

Figure 8: Normalized CT results for sets of 1000 samples designed to exemplify each of the two main categories of
the heuristics recall mechanism.
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