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Abstract

Topic modeling seeks to uncover latent seman-
tic structure in text, with LDA providing a foun-
dational probabilistic framework. While re-
cent methods often incorporate external knowl-
edge (e.g., pre-trained embeddings), such re-
liance limits applicability in emerging or un-
derexplored domains. We introduce PRISM, a
corpus-intrinsic method that derives a Dirichlet
parameter from word co-occurrence statistics
to initialize LDA without altering its genera-
tive process. Experiments on text and single
cell RNA-seq data show that PRISM improves
topic coherence and interpretability, rivaling
models that rely on external knowledge. These
results underscore the value of corpus-driven
initialization for topic modeling in resource-
constrained settings.

Code will be released upon acceptance.

1 Introduction

Topic modeling is a cornerstone technique in Nat-
ural Language Processing (NLP) for uncovering
latent semantic structures in text. It infers the
thematic composition of a corpus by representing
each topic as a probability distribution over words.
The versatility of topic modeling is evidenced by
its application across a spectrum of disciplines -
from analyzing customer feedback in e-commerce
platforms to modeling gene expression patterns
in biology by treating genes as "vocabulary" and
samples as "documents". Such cross-disciplinary
utility underscores topic modeling’s broad rele-
vance in both applied and scientific contexts.

Since its inception, among topic modeling tech-
niques, Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) remains a foundation model, leverag-
ing Bayesian inference to estimate document-topic
and topic-word distributions while inspiring
numerous generative extensions. Topic modeling
research has since evolved along many directions,

which can be broadly categorized into two main
paradigms. The first follows LDA’s corpus-
intrinsic approach, relying solely on statistical
patterns within the target corpus through methods
including graph-based and neural models that
enhance semantic representation and topic coher-
ence. The second paradigm incorporates external
knowledge—such as pre-trained embeddings from
large-scale language models or domain-specific
priors—to guide topic discovery beyond the
statistical patterns available in the input corpus
alone.

Corpus-intrinsic topic modeling offers clear
advantages for knowledge discovery in emerging
scientific domains, where foundation models
are underdeveloped and existing knowledge is
often fragmented. In fields like biology, key
regulatory genes or functional proteins may be
undiscovered or poorly characterized, limiting
the reliability of external knowledge sources.
While pre-trained models excel in established
domains, they often fall short in data-scarce
settings. In contrast, corpus-intrinsic methods
enable unbiased pattern discovery directly from
domain-specific data, supporting systematic
exploration in knowledge-limited environments.

In this work, we introduce PRISM—a PRIor
from corpus Statistics for topic Modeling—which
enhances LDA solely through corpus-intrinsic
initialization (Figure 1). PRISM shapes the
model’s "initial perspective” by deriving informed
topic-word distributions from statistical patterns
in the data, serving as prior-like guidance, which
leads to higher topic quality. Empirical results
across five text corpora and a single-cell RNA
sequencing dataset show that PRISM significantly
improves topic coherence and interpretability,
often matching or exceeding externally guided
methods.
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Figure 1: Overview of PRISM framework. Given a corpus D, we construct a second-order word similarity graph
using PPMI and cosine similarity. Diffusion maps are applied to obtain low-dimensional word embeddings, which
are then soft-clustered into K topics. From the resulting multinomial topic—word distributions, a Dirichlet parameter
3 is estimated and used to initialize the LDA model without altering it’s generative process.

2 Related Work

This section reviews key advancements in topic
modeling, focusing on two broad paradigms intro-
duced earlier: (1) methods that incorporate exter-
nal knowledge, and (2) methods that rely solely on
corpus-internal information.

2.1 Methods Using External Knowledge

A prominent line of work enhances topic mod-
eling by integrating external semantic resources.
One strategy augments LDA with auxiliary super-
vision: SeedLDA (Watanabe, 2020) guides topic
assignment using predefined seed words, while
GHLDA (Yoshida et al., 2023) injects pre-trained
word embeddings into the generative process. An-
other strategy relies on neural architectures built
atop contextual embeddings. ETM (Dieng et al.,
2020) integrates word2vec-like embeddings into a
probabilistic model, whereas CTM (Bianchi et al.,
2021) combines transformer-based document rep-
resentations with variational inference.

Recent approaches, leverage pre-trained seman-
tic representations. While differing in architecture
and strategy, all rely on external embeddings to
induce topic structure. BERTopic (Grootendorst,
2022) uses sentence-level transformer embeddings
(BERT) for document clustering. Top2Vec (An-
gelov, 2024) embeds both documents and words

into a shared semantic space using unsupervised
word embeddings. FASTopic (Nguyen et al., 2024)
further adopts this paradigm with quantization tech-
niques for scalable inference, while still relying on
pre-trained models for semantic guidance.

2.2 Methods Using no External Knowledge

Topic models in this category aim to improve
topic modeling while relying exclusively on corpus-
internal signals. LDA (Blei et al., 2003), espe-
cially when trained with Collapsed Gibbs Sam-
pling (Darling, 2019), remains a strong probabilis-
tic baseline. NeuralLDA (Terragni et al., 2021)
and ProdLLDA (Srivastava and Sutton, 2017) apply
variational inference to LDA, with ProdLDA us-
ing a VAE framework for greater scalability and
flexibility. Deep NMF (Wang and Zhang, 2021)
employs a multi-layer non-negative matrix factor-
ization architecture to capture hierarchical structure
in document-term matrices while preserving inter-
pretability. Recently, GINopic (Liu et al., 2024)
introduced a graph neural network framework that
refines topic assignments by modeling both seman-
tic similarity and document-word co-occurrence
within a unified GNN architecture.

These approaches demonstrate the value of
corpus-internal signals for enhancing topic mod-
els without external supervision. Building on this,
PRISM introduces a ‘corpus-derived prior‘ as a



data-driven initialization for LDA—offering a more
informed starting point, a prism through which the
model better captures semantic structure, while pre-
serving its generative foundations.

3 Preliminaries

This section introduces the key mathematical tools
underpinning our approach.

3.1 Latent Dirichlet Allocation (LDA)

LDA (Blei et al., 2003) is a generative probabilistic
model in which each document is a mixture over K
latent topics, and each topic is a distribution over
words. For each document d, topic proportions 6y
are drawn from a Dirichlet distribution with pa-
rameter «. Each word wy, is then generated by
first sampling a topic zg4, ~ Multinomial(6,), fol-
lowed by sampling the word from the correspond-
ing topic-word distribution, drawn from a Dirichlet
distribution with parameter (.

Inference is commonly performed using Col-
lapsed Gibbs Sampling (Darling, 2019), which sam-
ples topic assignments 24, based on current token
counts and priors - « and 8. This method, imple-
mented efficiently in MALLET (McCallum, 2002),
is a widely adopted baseline.

3.2 Pointwise Mutual Information and
Variants

Pointwise Mutual Information (PMI) (Church and
Hanks, 1990) quantifies the strength of association
between two words w; and w; by comparing their
joint probability to the product of their marginal
probabilities. To remove noisy or uninformative
associations, Positive PMI (PPMI) retains only non-
negative values.

Rather than focusing solely on direct co-
occurrence, prior work has shown that apply-
ing similarity metrics—such as cosine similar-
ity—over PPMI-based word vectors effectively cap-
tures second-order semantic similarity (Bullinaria
and Levy, 2012; Schiitze, 1998). This approach
enables the identification of semantically related
words that may not co-occur directly, based on
the similarity of their distributional contexts. This
approach enables the model to estimate semantic
relatedness between words that do not co-occur di-
rectly by leveraging overlapping associations. For
example, while surgeon and physician may not co-
occur, both co-occur with patient, hospital, and
diagnosis.

3.3 Diffusion Maps

Diffusion Maps (Coifman and Lafon, 2006) pro-
vides a nonlinear dimensionality reduction tech-
nique that captures the intrinsic geometry of data
represented as a similarity graph. Given an undi-
rected word-word similarity graph W, the method
constructs a Markov transition matrix P according
the following formulation: P = D~!'W, where D
is the diagonal degree matrix with entries D;; =
> ; Wij. Then, it performs eigen-decomposition
over P to obtain the diffusion embedding. Each
word is then embedded as a vector:

where \; and 1y, are the k-th eigenvalue and eigen-
vector of the transition matrix, respectively; m is
the embedding dimension, and ¢ is the diffusion
time controlling the decay.

4 Proposed Method: Effective LDA
Initialization

We introduce PRISM, a corpus-intrinsic method
for improving topic modeling by providing a data-
driven initialization for LDA. The approach con-
sists of two main stages: (1) constructing word
embeddings based solely on corpus statistics, and
(2) estimating a Dirichlet parameter 3 over topic-
word distributions derived from these embeddings.
The resulting prior is used to initialize LDA, of-
fering a principled way to guide inference without
altering the model’s generative process.

4.1 Rationale

While contemporary models benefit significantly
from pre-trained word embeddings that capture se-
mantic relationships, we sought to harness similar
advantages without relying on external knowledge
sources. To achieve this, we propose to derive
our own word embeddings directly from the target
corpus. Our key insight is to derive dense word
embeddings from corpus-internal statistics using
a semantic similarity graph constructed from PMI
variants, followed by diffusion maps to capture
global semantic structure embeddings. These em-
beddings are then softly clustered to produce a
probabilistic topic-word distribution, from which
we estimate a Dirichlet parameter that guides LDA
initialization.



4.2 Constructing Word Embeddings
4.2.1 Similarity Graph

To capture semantic similarity between words, we
construct an undirected graph W based on Posi-
tive PMI (PPMI), as described in Section 3.2. The
PPMI matrix is computed using document-level
co-occurrence, treating each document as a con-
text window. Each word w; is represented by its
corresponding row vector v; from the PPMI ma-
trix, encoding its distributional context. We then
define pairwise similarity using cosine similarity as
W; j = cos(vy, vj), where v; and v; are the PPMI
vectors of words w; and wj, respectively. The re-
sulting similarity graph W captures both direct and
indirect semantic associations by leveraging the
principle that words appearing in similar contexts
tend to have similar vector representations.

4.2.2 From Graph to Embeddings

To obtain dense word representations from the sim-
ilarity graph, we apply diffusion maps, as defined
in Section 3.3. This spectral embedding technique
captures high-order semantic relationships by mod-
eling multi-step transitions over the graph. Intu-
itively, if a diffusion process is initiated at two
semantically similar words, their transition proba-
bilities over time will be similar, reflecting shared
contextual neighborhoods.

We embed each word using the top m diffu-
sion components—i.e., the leading eigenvectors
of the transition matrix scaled by their correspond-
ing eigenvalues. Empirically, we find that selecting
between 80 and 130 components yields the best se-
mantic representation, with the optimal m chosen
based on the highest topic coherence score for each
dataset and topic configuration.

The resulting vectors serve as our corpus-
specific word embeddings, encoding semantic
structure without relying on any external resources.

4.3 Estimating Dirichlet parameter 5
4.3.1 Topic-Word Distributions

To compute empirical topic-word distributions
from the learned word embeddings, we apply a
Gaussian Mixture Model (GMM) (Reynolds, 2009)
with K components to softly cluster the word rep-
resentations. The GMM yields the posterior proba-
bility p(z | w) of each word w belonging to topic
z, along with the topic priors p(z).

However, our goal is to obtain p(w | z)—the
probability of a word given a topic—as required to

estimate the Dirichlet parameter 3 over topic-word
distributions. To do so, we apply Bayes’ Rule:

p(z | w)p(w)

plw|2) =P

where p(z | w) is given by the GMM, p(z) is
the mixture weight for component z, and p(w) is
taken from unigram distribution, computed as the
frequency of word w in the corpus divided by the
total number of tokens.

This yields multinomial topic-word distribu-
tions matrix X € RX*V where each row cor-
responds to p(w | z) for a given topic. The ma-
trix is grounded entirely in corpus-derived sig-
nals—capturing both contextual similarity and
token-level frequency—used to estimate the Dirich-
let parameter 3.

4.3.2 Parameter 3 Estimation

To estimate a Dirichlet parameter 3 € R over the
vocabulary, we apply the method of moments (Mc-
Callum, 2002), a classical statistical technique used
for parameter estimation. The core idea is to match
the theoretical moments of the Dirichlet distribu-
tion to empirical moments computed from data.
Let XM ... X®) ¢ AV~ be k observed sam-
ples from a Dirichlet(B;...3y ) distribution
over the (V' —1)— probability simplex. The method
of moments estimator for /3 is given by

where
L~ 0
E[X] ~ - > X7,
=1
and

k
1 © 2
VIXi]~ — > (Xi - E[Xi]> :

=1
4.3.3 Initializing LDA with 3
The estimated vector ﬁ is then used to initialize
the LDA model, replacing the standard uniform
or fixed scalar prior. We modified the MALLET
implementation to support a vector valued 3 pa-
rameter, enabling topic-word distributions to re-
flect corpus-specific semantic structure from the

outset. Apart from this change, the rest of the LDA
inference pipeline in MALLET remains unaltered.



S Experiments

We evaluate the effectiveness of our corpus-
informed Dirichlet parameter by assessing its im-
pact on standard LDA. Our goal is to determine
whether data-driven initialization can substantially
improve topic quality and bring LDA closer to, or
even surpass, state-of-the-art topic modeling meth-
ods. Experiments are conducted on five diverse text
corpora, using three complementary metrics.

Datasets. To ensure a fair and objective eval-
uation, we use pre-processed datasets from the
OCTIS framework (Terragni et al., 2021), thereby
avoiding model-specific tuning of the preprocess-
ing pipeline. Specifically, we experiment with four
diverse OCTIS datasets: 20NEWSGROUP, BBC
NEWS, M10, and DBLP, covering a range of do-
mains and document styles.

In addition, following BERTopic (Grooten-
dorst, 2022), we include the TRUMPTWEETS (TT)
dataset to test model performance on informal,
short-form text. Since this dataset is not included
in OCTIS, we apply OCTIS’s preprocessing mod-
ule with standard, commonly used filtering (see
Appendix A for details). This setup allows us to
evaluate our method both under standardized pre-
processing and in a setting closer to real-world
social media text. The statistical details can be
seen in Appendix A.

Baselines. We evaluate our approach against a
diverse set of topic models. For classical and
neural baselines implemented in OCTIS (Terrone
et al., 2021), we include LDA (Blei et al., 2003),
NMF (Zhao et al., 2017), ProdLDA (Srivastava and
Sutton, 2017), NeuralLDA (Srivastava and Sutton,
2017), and the ETM (Dieng et al., 2020). These
models rely solely on corpus-internal signals and
do not incorporate any external knowledge.

We further compare against recent embedding-
based methods that leverage pretrained rep-
resentations: BERTopic (Grootendorst, 2022),
FASTopic (Nguyen et al., 2024), and Top2Vec (An-
gelov, 2024). These models utilize external knowl-
edge, typically through pretrained sentence embed-
dings such as MiniLM or the Universal Sentence
Encoder. We follow each method’s official im-
plementation and recommended configuration as
provided in their respective GitHub repositories.

Additionally, we include MALLET (McCal-
lum, 2002), a highly optimized Gibbs-sampling-
based LDA implementation, and our proposed

model, PRISM. Both were run using the MAL-
LET framework with default hyperparameters,
enabling internal parameter optimization (e.g.,
optimizeInterval). For PRISM, we further sup-
plied the model with estimated ,@ as described in
Section 4.

Metrics. We evaluate topic models using statisti-
cal and human-aligned metrics that capture differ-
ent dimensions of quality: ¢, Coherence, normal-
ized pointwise mutual information (NPMI) and the
word intrusion detection (WID) task. Formal defini-
tions appear in Appendix B. ¢, Coherence (Réder
et al., 2015) and NPMI (Bouma, 2009) measure
the semantic relatedness of top words within a
topic, based on co-occurrence statistics. While
both are widely used, we tend to favor c,, due to its
empirically stronger correlation with human judg-
ments. WID (Chang et al., 2009) evaluates topic
interpretability via the identification of an out-of-
place word among a topic’s top words. To scale this
human-centric task, we follow Garg et al. (2023)
and use large language models (LLMs) as auto-
mated judges. WID implementation details are
provided in Appendix B.2.

Setup. To enable fair and robust comparison, we
evaluate all models under a unified protocol. For
each dataset, we select three values of K near the
reference number of ground-truth topics, along
with slightly larger values to support finer-grained
topic discovery. For TRUMPTWEETS, which lacks
labels, we use comparable K values to those in la-
beled datasets (See Table 4). This protocol reflects
a weakly-supervised topic modeling paradigm, in
which coarse supervision guides model behavior
without enforcing strict topic-label alignment, fol-
lowing the principles outlined by Zhao et al. (2017).
All models are evaluated using the top 10 words
per topic, and each configuration is run 10 times
to account for stochastic variation; final scores are
averaged across runs and topic counts.

Models with adaptive topic selection are evaluated
accordingly. For BERTopic, we report the best re-
sult across runs with and without a fixed K; for
Top2Vec, which infers K automatically, we eval-
uate its output as-is. This Further implementation
details appear in Appendix C.

Our Results. We evaluate PRISM across five
benchmark datasets, focusing on two key questions:

(1) whether it provides consistent improvements
over classical LDA as implemented in MALLET,



Model 20NG BBC News M10 DBLP TrumpTweets
Ccv NPMI CcvV NPMI NPMI CcvV NPMI CcvV NPMI

ProdLDA 5976 (.0216)  .0569 (.0057) | .6427 (.0059) -.0046 (.0110) | 4218 (.0336) -.0951 (.0954) | 4733 (.0196) .0072 (.0464) | .5373 (.0099) .0758 (.0029)
NeuralLDA .5339 (.0049)  .0425 (.0010) | .5720(.0234) -.0532(.0274) | 4179 (.0183) -.1950 (.0459) | .3833 (.1022) -.0207 (.0768) | .4252(.0159) -.0249 (.0037)
LDA .5321 (.0078)  .0457 (.0033) | .4924 (.0150) -.0409 (.0153) | .3833 (.0116) -.1602 (.0455) | .3647 (.0148) -.0273 (.0262) | .4188 (.0196) -.0109 (.0041)
ETM .5242(.0079)  .0433 (.0049) | .4963 (.0062) -.0176 (.0103) | .3659 (.0150) -.1255(.0384) | .2828 (.0581) -.0389 (.0152) | .4133(.0338) .0203 (.0136)
NMF .5497 (.0087)  .0550 (.0029) | .4564 (.0369) -.0037 (.0110) | .3536 (.0019) -.0943 (.0487) | .3663 (.0213) .0102 (.0188) | .4358 (.0103)  .0326 (.0120)
BERTopic 5557 (.0155)  .0887 (.0113) | .7124 (.0073) [.1694 (.0022) | .4030 (.0131) [.1310 (.0095) | .3862 (.0075) -.0039 (.0051) | .4461 (.0025) -.0287 (.0043)
Top2Vec 5632 (.0327)  .0682 (.0152) | .5108 (.0484) -.5750 (.0262) | .3543 (.0033) -.1675(.0036) | .3185(.0005) -.1328 (.0019) | .3653 (.0028) -.2349 (.0045)
FASTopic 5744 (.0258)  .0223 (.0078) | .6572(.0314)  .0236 (.0136) | .4473 (.0081) -.2065 (.0172) | .3239 (.0027) .0012(.0102) | .3804 (.0243) -.1319 (.0380)
Mallet .6381 (.0015) .1106 (.0081) | .6371 (.0047) .1128 (.0104) | .4639 (.0080) .0718 (.0026) | .4394 (.0175) .0443 (.0082) | .5044 (.0122) .0721 (.0057)
PRISM (Ours) .6581 (.0073) |.1169 (.0050) | .6763 (.0149) .1309 (.0186) | .5269 (.0021) .0831 (.0128) | .4638 (.0156) [.0736 (.0110) | .5557 (.0046) .0952 (.0104)

Table 1: Evaluation of models performance across datasets. Each value shows the avg score over three topic settings.
Yellow and orange shadings denote c,, and NPMI scores, respectively. Colored values indicate the best-performing
model per metric, while lighter shades highlight the second-best. Bolded values indicate cases where PRISM

outperforms MALLET.
Model 20NewsGroup BBC M10 DBLP TrumpTweets
ProdLDA 4561 (.0165) 4556 (.0681) 2232 (.0322) .2528 (.0638) .2759 (.0722)
NeuralLDA 2533 (.0518) .3259 (.0060) 1194 (.0211) 1667 (.0667) 1296 (.0414)
LDA 1472 (.0202) 1333 (.3615) 1139 (.4885) .0833 (.9211) 1611 (.5625)
ETM .3422 (.0301) 4592 (.0726) .0889 (.3713) 1194 (.6224) 1130 (9177)
NMF 1411 (.0196) .0630 (.3148) .0010 (.8161) .0010 (.8161) 2426 (.3977)
BERTopic 3811 (.0452) .5537 (.0092) 4907 (.0227) 3584 (.0118)  .3139 (.0103)
Top2Vec 6022 (.0309)  .5915 (.0618) .3875 (.0188) 4928 (.0356)  .3554 (.1016)
FASTopic .5844 (.0265) 6315 (.0500)  .3379 (.0442) 2722 (.0278) .2352 (.0466)
Mallet .5744 (.0305) 4667 (.0330) .3750 (.0276) 3111 (.0788) 2741 (.0226)
PRISM (Ours)  .6078 (.0374)  .6137 (.0453) .3915 (.0176)  .3361 (.0742) .3028 (.0410)

Table 2: Word Intrusion Detection accuracy across five datasets. Each value reflects the avg accuracy over three
topic settings. Yellow shading indicates the best-performing model per dataset, and lighter yellow indicates the
second-best. Bolded values highlight cases where PRISM outperforms MALLET.

and (2) how it compares to recent topic models, in-
cluding both corpus-intrinsic approaches and those
that leverage external semantic knowledge. The fol-
lowing results address both aspects. Models above
the dashed line are direct baselines; those below
use external embeddings and represent an upper
bound (Table 1, Table 2).

Quantitative Results. As shown in Table 1,
PRISM consistently outperforms the original MAL-
LET implementation, achieving substantial gains
in both ¢, and NPMI. Beyond improving upon
MALLET, PRISM frequently closes the gap to,
or even surpasses, recent embedding-based meth-
ods. This is particularly evident on the BBC
News, M10, and TrumpTweets datasets, where
PRISM not only significantly outperforms MAL-
LET but also achieves the best or second-best
scores across both metrics—demonstrating com-
petitiveness with SOTA methods. PRISM obtains
the best ¢, score on three out of five datasets
(20NG, M10, TrumpTweets), and ranks second
on BBC News and DBLP. Given that ¢, is widely
regarded as more reflective of human topic judg-
ments, these results suggest that PRISM produces

more interpretable and semantically coherent top-
ics across diverse domains. While NPMI im-
provements are somewhat more modest, PRISM
still achieves the best scores on 20NewsGroup,
M10 and TrumpTweets and remains competitive
throughout. To further assess topic interpretability,
we employ the Word Intrusion Detection (WID)
task (detailed in Appendix B.2). As shown in
Table 2, PRISM ranks among the top two mod-
els on three out of five datasets and remains
highly competitive on the remaining two. Among
corpus-intrinsic models (above the dashed line),
PRISM consistently achieves the highest accu-
racy—outperforming MALLET and all other clas-
sical baselines. It also competes strongly with
embedding-based methods (below the dashed line),
outperforming all of them on 20NG and several
on BBC and M10. Overall, these results show
that PRISM not only dominates traditional mod-
els in both coherence and interpretability but also
matches—and at times exceeds—the performance
of state-of-the-art models that rely on external
knowledge.
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(a) BERTopic Top 10 words.

(b) ProdLLDA Top 10 words.

(c) PRISM Top 10 words.

Figure 2: Top 10 words per topic over the BBC dataset inferred by three models - BERTopic (a), ProdLDA (b),
and PRISM (c) - with K = 5. Each column represents a distinct topic. Colors denote manually interpreted topic
categories: polifics, entertainment, business, sports, and technology. Lighter shades indicate weaker relevance to

the topic, while white denotes no clear association.
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Figure 3: Top 10 words in M 10 dataset, extracted by
(a) BERTopic, (b) PRISM, and (c) MALLET. The
topics pertain to biology, with faded shading indicating
lower relative importance. BERTopic merges gene- and
protein-related terms into a single topic, while PRISM
and MALLET separate them into two distinct topics.

Qualitative Analysis. Over BBC dataset, we
show a comparison of PRISM to BERTopic, which
achieved the highest ¢, and NPMI scores, and to
ProdLLDA, the strongest corpus-intrinsic baseline
in ¢, (Table 1) over BBC. The dataset contains
five ground-truth topic labels. As shown in Fig-
ure 2, PRISM successfully recovers all five top-
ics—politics, business, sports, technology, and en-
tertainment—with minimal off-topic words. In
contrast, BERTopic fails to recover the business
category and exhibits redundancy across two over-
lapping technology topics. ProdLDA clearly cap-
tures politics and business, while entertainment and
technology are only partially distinguishable, and
sports is entirely missing. These observations align
with the WID results (Table 2), where PRISM ranks
second overall, while BERTopic and ProdLDA rank
fourth and seventh, respectively. This suggests
that PRISM produces more coherent and uniquely
identifiable topics. A supplementary example is
included in Appendix E.

On M10, we compare PRISM to BERTopic and

soil soil water

water water soil
crop crop diesel
yield yield change
climate change engine
irrigation area model
remote climate climate
change effect effect

pr pr
p i remote fuel
(a) BERTopic (b) PRISM (c) MALLET

Figure 4: Top 10 words in M10 dataset, extracted by (a)
BERTopic, (b) PRISM, and (c) MALLET. The topic
appears to relate to climate and agriculture, with faded
shading indicating lower relative importance.

MALLET. PRISM achieves the highest ¢, and
second-best WID score, while BERTopic leads in
WID and NPMI, and MALLET ranks second in
¢y (Table 1, Table 2). As shown in Figure 3, all
models capture biologically meaningful themes,
though MALLET includes a few less relevant terms
(e.g., “paper,” “network’). BERTopic merges gene-
related and protein-related concepts into a single
broad topic, whereas both PRISM and MALLET
separate them into two distinct but related topics,
one focused on gene expression and microarray,
the other on protein structure and binding. This
finer-grained separation reflects PRISM’s stronger
topical coherence and is also evident in its rank-
ing of more meaningful terms (e.g., “microarray,”
“regulatory,” “structure”) with higher probability
than MALLET. Interestingly, BERTopic’s broader
topic structure may contribute to its higher WID
score: in the WID task, intruder words are sam-
pled from other high-probability topics (details in
Appendix B.2), and when topics overlap seman-
tically, as with genes and proteins, intruders may
feel topically adjacent rather than clearly out of
place. PRISM’s more specific topics make intruder



detection more challenging, which may explain
its slightly lower WID despite better topic distinc-
tiveness. Figure 4 presents another M10 topic,
likely related to climate and agriculture. PRISM
and BERTopic show high overlap in top-ranked
words (‘“‘soil,” “water,” “crop,” “yield,” etc.), with
strong topic focus. In contrast, MALLET’s out-
put contains generic or loosely related terms (“‘en-
gine,” “fuel,” “model”), leading to reduced coher-
ence. These results support the quantitative find-
ings, where PRISM outperforms MALLET across
all metrics and approaches the interpretability of
BERTopic without using external knowledge.

6 Biological Experiments

Motivation and Analogy. We investigate the ap-
plicability of PRISM to biological data, aiming to
uncover latent Biological Processes (BPs) from
single-cell RNA sequencing (scRNA-seq) data.
This task naturally parallels topic modeling: cells
correspond to documents, genes to words, and BPs
to topics. As in text, where documents often span
multiple topics and words can take on different
meanings depending on context, each cell may be
involved in multiple BPs, and individual genes may
participate in several biological functions, reflect-
ing the many-to-many relationships captured by
topic models. Furthermore, sScRNA-seq data is or-
ganized as a count matrix, where each entry denotes
the expression level of a gene in a cell, directly anal-
ogous to the word-document count matrix in LDA.

Dataset. We evaluate on a scRNA-seq dataset of
human breast cancer tissue, generously shared with
us by a collaborating research lab in pre-processed
form!.

Baselines. As a proof-of-concept, we compare
PRISM to original MALLET, to assess whether
our corpus-intrinsic initialization can enhance bi-
ological processes interpretability in a biological
context.

Evaluation Metric. To assess the biological plau-
sibility of discovered topics, we adopt a GPT-
4-based evaluation method inspired by Hu et al.
(2025). For each model, we extract the top 20
genes per topic and query GPT-4 to estimate how
likely these genes are to co-participate in a known
BP, effectively yielding a confidence score. This
metric serves as a proxy for the biological coher-
ence of gene sets (details in Appendix D).

"https://zenodo.org/records/10620607

Experimental Setup. We run both PRISM and
MALLET on the same scRNA-seq dataset (de-
tails in Appendix D), using the same configuration
across models: 10 runs for each setting of 10, 20,
30 topics. For PRISM, we estimated a (3 parameter
in the same framework as done for textual corpora.

Results. As shown in Table 3, PRISM consis-
tently outperforms MALLET in GPT-4-based confi-
dence scores across all topic settings, indicating im-
proved alignment with known Biological Processes
(BPs). Prior work by Hu et al. (2025) has shown
that GPT-4 confidence scores correlate with bio-
logical plausibility: low-confidence gene sets often
failed to correspond to coherent BPs, while high-
scoring sets typically aligned with well-established
biological functions. Based on this, PRISM’s con-
sistently higher scores, suggest that the corpus-
derived prior helps steer the model toward more
accurate and biologically meaningful topic assign-
ments. Although MALLET also performs reason-
ably well, PRISM’s integration of corpus-intrinsic
semantic structure offers a clear advantage in this
biological setting.

Table 3: Comparison of GPT-4 confidence scores on the
Breast Cancer dataset. Results averaged over 10 runs.

Model 10 BP 20 BP 30 BP
MALLET .8721 (.0102) .8831 (.0147) .8701 (.0213)
PRISM (Ours) .9106 (.0138) .9112 (.0114) .8922 (.0207)

7 Conclusion

We introduced PRISM, a corpus-driven initial-
ization method for LDA that integrates seman-
tic structure derived directly from the data, with-
out relying on external embeddings. Across five
diverse datasets—spanning news, social media,
and biomedical texts—PRISM consistently im-
proves coherence and interpretability over clas-
sical baselines and rivals embedding-based mod-
els. Its strong performance, despite operating en-
tirely on corpus-internal signals, highlights the
underexplored potential of structure-aware initial-
ization in probabilistic models. This work opens
new directions for enhancing topic models through
data-intrinsic semantics—bridging the gap between
classical transparency and modern representational
strength.


https://zenodo.org/records/10620607

Limitations

Our approach requires the number of topics K to
be specified a priori, rather than inferred automati-
cally. This design choice, common among classical
topic models, necessitates treating K as a tunable
hyperparameter. While this may limit full automa-
tion and scalability across diverse corpora, our em-
pirical results suggest that PRISM remains robust
across a range of K values.

Future Work

Future work could extend the data-driven initializa-
tion approach to the o parameter in LDA, which
controls the document-topic distribution. Incor-
porating corpus-based statistical techniques for «
may further improve topic sparsity and enhance
document-level interpretability.
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A Datasets

As described in Section 5, we evaluate our method
on five benchmark datasets. Four of these are stan-
dard corpora included in the octis library, already
preprocessed according to its internal pipeline. In
addition, we include the TrumpTweets dataset, fol-
lowing its use in prior work by BERTopic (Groo-
tendorst, 2022), to assess performance on short,
noisy social media text. For statistics details view
Table 4.

Dataset # Docs Vocab Size Avg. Len. # Labels Topic Counts (K)
20NG 16,309 1,612 48.0 20 20, 25, 50
BBC 2,225 2,949 120.1 5 5,10, 15
MI10 8,355 1,696 59 10 10, 15,20
DBLP 54,595 1,513 5.4 4 4,10, 15
TT 18,239 1,988 9.0 - 10, 15, 20

Table 4: Statistics summary of the datasets used in our
experiments.

The TrumpTiveets dataset was obtained from the
same source cited by BERTopic?. To ensure consis-
tency across datasets, we applied the octis prepro-
cessing module with basic filtering settings. The
preprocessing configuration was as follows:

Preprocessing(
vocabulary=None,
lowercase=True,
remove_numbers=True,
min_words_docs=3,
min_chars=3,
min_df=0.01,
max_df=0.9,
max_features=2000,
remove_punctuation=True,
lemmatize=True,
stopword_list="english"

)

This preprocessing configuration was selected to
balance document retention with vocabulary qual-
ity, a trade-off particularly relevant when modeling
short texts such as tweets.

B Metrics

We assess topic model quality using both statistical
coherence metrics and a language-model-assisted
interpretability evaluation. Below we describe each
in detail.

2ht’cps: //www . thetrumparchive.com/faq
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B.1 Standard Topic Modeling Metrics

We report two standard automated metrics: ¢, co-
herence and normalized pointwise mutual informa-
tion (NPMI). These corpus-intrinsic metrics assess
semantic consistency within topics and lexical dis-
tinctiveness across topics.

¢y, Coherence. The ¢, metric (Roder et al., 2015)
combines pairwise NPMI scores with cosine simi-
larity over context vectors derived from a sliding
window over the corpus. Formally:

o1

W[~ 1) 4
where W is the set of top-/V words in a topic. Each
vector v; € RICl encodes co-occurrence statistics
of word w; across the document set C. We compute
¢y using Gensim’s CoherenceModel with default
parameters.

NPMI. We also report standalone NPMI (Bouma,
2009), defined as:

NPMI(QUZ', wj) =

where P(w;,w;) is the empirical co-occurrence
probability of words w; and w;. This metric nor-
malizes PMI to the range [—1, 1], enabling fairer
comparison across corpora.

B.2 Word Intrusion Detection (WID)

To complement statistical metrics with a proxy for
human interpretability, we use the Word Intrusion
Detection (WID) task. General framework of the
metric can be viewed in Figure 5.

The Word Intrusion Detection (WID)
task (Chang et al., 2009) is a widely adopted
human-centered evaluation method for assessing
topic interpretability. In this task, annotators are
shown the top-/NV words of a topic, one of which is
an intruder—i.e., a word drawn from another topic
that appears with low probability in the target topic
but is prominent elsewhere. The annotator is asked
to identify the word that does not semantically
belong. Higher topic coherence typically results in
easier and more consistent intruder identification,
making WID an indirect yet effective proxy for
human interpretability.

Recent studies have proposed leveraging large
language models (LLMs) to automate WID (Garg
et al., 2023), enabling scalable, consistent, and

Z NPMI(w;, w;)-cos(Vi, V),
<j
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Prompt:
“From the following list of words,
find the intruder word.”

Player
Team Model’s Response:
Apple

LLM

Season
Football
Coach
Ball
Game

“Apple”.

Figure 5: Illustration of the Word Intrusion Detection
(WID) framework. A large language model is prompted
to identify the word that does not belong in a list of top
topic words (a.k.a. the intruder). The prompt shown
here is illustrative; actual prompts used in our experi-
ments follow a more structured format.

human-aligned evaluation. We adopt this paradigm
by employing a LLLM as an automatic evaluator
within our WID framework (see Figure 5). This
model is prompted to identify the intruder from
each modified topic word list, effectively simulat-
ing human judgment without the need for manual
annotation.

Pipline. Our pipeline leverages HuggingFace’s
transformers library. We initialize the to-
kenizer via AutoTokenizer.from_pretrained,
explicitly setting the end-of-sequence (eos) to-
ken as the padding token to ensure consis-
tent handling of short text inputs. The LLM
is integrated with the pipeline API using
device_map="auto” for efficient hardware map-
ping and torch_dtype=torch.bfloat16 to re-
duce memory overhead.

During inference, each topic’s word list is modi-
fied by injecting one intruder word. The model is
then prompted to identify the semantic outlier. Its
success in this task reflects the semantic cohesion
of the topic, thus serving as an indirect interpretabil-
ity metric that complements statistical scores.

The task involves identifying an intruder word
inserted into an otherwise coherent topic word list.
We evaluate performance using the Meta-LLaMA-
3.3-70B-Instruct model (AI, 2024), which demon-
strates strong alignment with human judgment.

Prompt Engineering. Inspired by Chain-of-
Thought prompting (Wei et al., 2022) and role-play
prompting (Kong et al., 2023), we crafted prompts
to guide the LLM. The prompt included two exam-



numbered_word_list

len(words_list)

Figure 6: The prompt template used for the Word Intrusion Detection task provides clear instructions, illustrative
examples, and a structured response format to assist the model in identifying the intruder word. The input variable
numbered_word_list is dynamically integrated into the prompt during the evaluation process, enabling the model

to process different word sets effectively.

ples to illustrate both the identification of intruder
words and the expected response format as can be
found in Figure 6.

Evaluation Metric. Accuracy was calculated as
the proportion of correct intruder identifications:

Count(LLM Response = Real Intruder)
Accuracy = )

K

where K is the number of topics. Accuracy was
reported separately for top-10, top-15, and top-20
word lists.

Full Pipeline. We present the pipeline for the
Word Intrusion Detection task, following the con-
figuration of all necessary settings.

Algorithm 1 Word Intrusion Detection Pipeline

Input: List of topic models M and Prompt Template
Output: Saved LLM Outputs, Model Accuracy Scores

for each model M in M do
for each topic 7" in M.topics do
for each words W in {7'10,7'15,720} do
Windez < AddIndices(W)
prompt < FormatPrompt(Wp,um,)
result <— QueryLLM(prompt)
SaveOutput(result)
end for
end for
end for

EvaluateAccuracy(M)

This pipeline evaluates topic coherence by identify-
ing intruder words—terms that do not semantically
fit within topic-based word lists—using a LLM. For
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each topic model, the pipeline processes topics and
their top-10, top-15, and top-20 word lists, adding
indices to the words (AddIndices), formatting
them into a structured prompt (FormatPrompt),
and querying the LLM (QueryLLM) to detect
the intruder. The model’s outputs are saved
(SaveOutput) and compared against the true in-
truders to calculate accuracy (EvaluateAccuracy),
providing a quantitative measure of the topic
model’s coherence.

C Setup

To ensure a fair and reproducible comparison, we
evaluated a diverse set of topic modeling baselines
using their publicly available implementations and
recommended configurations.

OCTIS Models. We ran the following models
through the octis framework: LDA, NMF, ETM,
ProdLDA, and NeurallLDA. All models were exe-
cuted with default hyperparameters as defined in
the octis documentation, using the library’s stan-
dardized preprocessing pipeline.

For ETM, we evaluated two configurations:

Without pre-trained embeddings : the default

octis configuration was used.

With pre-trained embeddings : we used GloVe
embeddings with the following parameters:

ETM(num_topics=TOPICS_NUM,

embeddings_path="filtered_glove.100d.vec",

embedding_size=100)



This setup allows us to compare corpus-only
training versus external semantic initialization. We
got similar results with no detect improvement,
thus we provided only the version without external
knowledge.

BERTopic. We ran BERTopic using its official
implementation’® with default parameters, except
for the number of topics. We explicitly set the num-
ber of topics to match the experimental setup and
report the better result between the auto-detected
and fixed-topic configurations.

Top2Vec. We ran Top2Vec in contextual embed-
ding mode with the following configuration:

Top2Vec(
documents,
split_documents=True,
contextual_top2vec=True,
embedding_model="all-MinilLM-L6-v2",
speed="deep-learn”,
workers=2

)

This follows the recommended usage from the of-
ficial repository*. We also experimented with sup-
plying a custom tokenizer, but it did not improve
performance; thus, default tokenization was used
in all reported results.

FASTopic. We used the FASTopic implementa-
tion from topmost?, using the Preprocess utility
as recommended. Each model was initialized as:

preprocessing =
Preprocess(stopwords="English")
model =
FASTopic(num_topics=topic_num,
preprocess=preprocessing)

All hyperparameters followed the defaults in the
official github®, and no additional tuning was per-
formed.

D Biological Experiments

Setup for Biological Data Experiments

To enable the use of raw gene expression ma-
trices—analogous to document-term matrices in
text—we adapted the MALLET input format to ac-
cept direct count data. Specifically, we constructed

3https://github.
*https://github.
Shttps://github.
https://github.

com/MaartenGr/BERTopic
com/ddangelov/Top2Vec
com/yfsong@709/TopMost
com/bobxwu/FASTopic

13

a serialized input object compatible with MAL-
LET’s internal representation, containing both the
corpus alphabet (gene identifiers) and the expres-
sion counts per sample (document). This object
was passed to MALLET via the inputFile ar-
gument, leveraging native support in the original
MALLET codebase.

All models were trained within the same frame-
work, with our estimated ﬁ supplied as an external
input. This ensured a consistent inference pipeline
across experiments, isolating the effect of our ini-
tialization from the generative process or hyperpa-
rameter settings.

Biological Evaluation via LLM Confidence

To assess the biological relevance of gene sets
derived from topic models, we follow the LLM-
based evaluation protocol introduced by (Hu et al.,
2025).7 The core idea is to query a large language
model (GPT-4) with each gene set and evaluate
whether it can (1) identify a coherent biological
process (BP) associated with the gene set, and (2)
express high confidence in that association.

Prompt Design. Each gene set is presented in
a natural language prompt, instructing the model
to infer a shared biological process based on the
listed genes. Prompts are carefully crafted to be
neutral and avoid leading the model toward specific
functions. The model is then asked to (i) name the
most likely BP, and (ii) rate its confidence on a
scale from O to 1.

Scoring. The model’s textual output is manually
inspected to verify whether the inferred BP matches
a plausible biological function supported by exter-
nal evidence (e.g., GO annotations). Confidence
scores are recorded for each gene set and aggre-
gated to assess overall coherence across topics.

Interpretation. As shown in prior work, gene
sets yielding low confidence often correspond to
functionally inconsistent or noisy groups, whereas
high-confidence predictions align with known bio-
logical pathways. Thus, the LLM confidence score
serves as a proxy for functional coherence and in-
terpretability of the gene sets.

E More Qualitative Findings

To complement the qualitative findings presented in
the main paper, we include additional quantitative

7https://www.ncbi.nlm.nih.gov/pmc/ar‘ticles/
PMC11725441
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company |technology law win election government film company win technology
market phone case good  |government election good market game computer
rise mobile court play party party award firm play phone
sale game [government| game labour labour music rise player mobile
firm service rule film plan plan win sale good service
price music claim award tory tory show price back user
share user legal player public law include | economy match game
growth computer charge back country issue star share team firm
economy net police show work public top growth club net
month firm ban world minister minister actor month final music
(a) MALLET Top 10 words (b) PRISM Top 10 words

Figure 7: Top 10 words per topic over the BBC dataset inferred by MALLET (a) and PRISM (b), with K = 5. Each
column represents a distinct topic. Colors denote manually interpreted topic categories: politics, entertainment,
business, sports, and technology. Lighter shades indicate weaker relevance to the topic, while white denotes no
clear association.

analysis for BBC dataset here.

BBC Dataset. Figure 7a (MALLET) and Fig-
ure 7b (PRISM) display the top words for each
topic on the BBC dataset with 5 topics. While
MALLET produces reasonable topics, it redun-
dantly captures politics in two separate themes
and fails to isolate the entertainment domain. In
contrast, PRISM yields distinct and semantically
meaningful topics, effectively covering all major
themes in the corpus. These results suggest that
while MALLET offers a solid inference framework,
our initialization method pushes the model further
toward more coherent and semantically distinct
topics, indicating that the observed improvements
stem from our approach rather than the base model
alone.
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