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Abstract

Topic modeling seeks to uncover latent seman-001
tic structure in text, with LDA providing a foun-002
dational probabilistic framework. While re-003
cent methods often incorporate external knowl-004
edge (e.g., pre-trained embeddings), such re-005
liance limits applicability in emerging or un-006
derexplored domains. We introduce PRISM, a007
corpus-intrinsic method that derives a Dirichlet008
parameter from word co-occurrence statistics009
to initialize LDA without altering its genera-010
tive process. Experiments on text and single011
cell RNA-seq data show that PRISM improves012
topic coherence and interpretability, rivaling013
models that rely on external knowledge. These014
results underscore the value of corpus-driven015
initialization for topic modeling in resource-016
constrained settings.017
Code will be released upon acceptance.018

1 Introduction019

Topic modeling is a cornerstone technique in Nat-020

ural Language Processing (NLP) for uncovering021

latent semantic structures in text. It infers the022

thematic composition of a corpus by representing023

each topic as a probability distribution over words.024

The versatility of topic modeling is evidenced by025

its application across a spectrum of disciplines -026

from analyzing customer feedback in e-commerce027

platforms to modeling gene expression patterns028

in biology by treating genes as "vocabulary" and029

samples as "documents". Such cross-disciplinary030

utility underscores topic modeling’s broad rele-031

vance in both applied and scientific contexts.032

033

Since its inception, among topic modeling tech-034

niques, Latent Dirichlet Allocation (LDA) (Blei035

et al., 2003) remains a foundation model, leverag-036

ing Bayesian inference to estimate document-topic037

and topic-word distributions while inspiring038

numerous generative extensions. Topic modeling039

research has since evolved along many directions,040

which can be broadly categorized into two main 041

paradigms. The first follows LDA’s corpus- 042

intrinsic approach, relying solely on statistical 043

patterns within the target corpus through methods 044

including graph-based and neural models that 045

enhance semantic representation and topic coher- 046

ence. The second paradigm incorporates external 047

knowledge—such as pre-trained embeddings from 048

large-scale language models or domain-specific 049

priors—to guide topic discovery beyond the 050

statistical patterns available in the input corpus 051

alone. 052

053

Corpus-intrinsic topic modeling offers clear 054

advantages for knowledge discovery in emerging 055

scientific domains, where foundation models 056

are underdeveloped and existing knowledge is 057

often fragmented. In fields like biology, key 058

regulatory genes or functional proteins may be 059

undiscovered or poorly characterized, limiting 060

the reliability of external knowledge sources. 061

While pre-trained models excel in established 062

domains, they often fall short in data-scarce 063

settings. In contrast, corpus-intrinsic methods 064

enable unbiased pattern discovery directly from 065

domain-specific data, supporting systematic 066

exploration in knowledge-limited environments. 067

068

In this work, we introduce PRISM—a PRIor 069

from corpus Statistics for topic Modeling—which 070

enhances LDA solely through corpus-intrinsic 071

initialization (Figure 1). PRISM shapes the 072

model’s "initial perspective" by deriving informed 073

topic-word distributions from statistical patterns 074

in the data, serving as prior-like guidance, which 075

leads to higher topic quality. Empirical results 076

across five text corpora and a single-cell RNA 077

sequencing dataset show that PRISM significantly 078

improves topic coherence and interpretability, 079

often matching or exceeding externally guided 080

methods. 081
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Figure 1: Overview of PRISM framework. Given a corpus D, we construct a second-order word similarity graph
using PPMI and cosine similarity. Diffusion maps are applied to obtain low-dimensional word embeddings, which
are then soft-clustered into K topics. From the resulting multinomial topic–word distributions, a Dirichlet parameter
β is estimated and used to initialize the LDA model without altering it’s generative process.

2 Related Work082

This section reviews key advancements in topic083

modeling, focusing on two broad paradigms intro-084

duced earlier: (1) methods that incorporate exter-085

nal knowledge, and (2) methods that rely solely on086

corpus-internal information.087

2.1 Methods Using External Knowledge088

A prominent line of work enhances topic mod-089

eling by integrating external semantic resources.090

One strategy augments LDA with auxiliary super-091

vision: SeedLDA (Watanabe, 2020) guides topic092

assignment using predefined seed words, while093

GHLDA (Yoshida et al., 2023) injects pre-trained094

word embeddings into the generative process. An-095

other strategy relies on neural architectures built096

atop contextual embeddings. ETM (Dieng et al.,097

2020) integrates word2vec-like embeddings into a098

probabilistic model, whereas CTM (Bianchi et al.,099

2021) combines transformer-based document rep-100

resentations with variational inference.101

Recent approaches, leverage pre-trained seman-102

tic representations. While differing in architecture103

and strategy, all rely on external embeddings to104

induce topic structure. BERTopic (Grootendorst,105

2022) uses sentence-level transformer embeddings106

(BERT) for document clustering. Top2Vec (An-107

gelov, 2024) embeds both documents and words108

into a shared semantic space using unsupervised 109

word embeddings. FASTopic (Nguyen et al., 2024) 110

further adopts this paradigm with quantization tech- 111

niques for scalable inference, while still relying on 112

pre-trained models for semantic guidance. 113

2.2 Methods Using no External Knowledge 114

Topic models in this category aim to improve 115

topic modeling while relying exclusively on corpus- 116

internal signals. LDA (Blei et al., 2003), espe- 117

cially when trained with Collapsed Gibbs Sam- 118

pling (Darling, 2019), remains a strong probabilis- 119

tic baseline. NeuralLDA (Terragni et al., 2021) 120

and ProdLDA (Srivastava and Sutton, 2017) apply 121

variational inference to LDA, with ProdLDA us- 122

ing a VAE framework for greater scalability and 123

flexibility. Deep NMF (Wang and Zhang, 2021) 124

employs a multi-layer non-negative matrix factor- 125

ization architecture to capture hierarchical structure 126

in document-term matrices while preserving inter- 127

pretability. Recently, GINopic (Liu et al., 2024) 128

introduced a graph neural network framework that 129

refines topic assignments by modeling both seman- 130

tic similarity and document-word co-occurrence 131

within a unified GNN architecture. 132

These approaches demonstrate the value of 133

corpus-internal signals for enhancing topic mod- 134

els without external supervision. Building on this, 135

PRISM introduces a ‘corpus-derived prior‘ as a 136
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data-driven initialization for LDA—offering a more137

informed starting point, a prism through which the138

model better captures semantic structure, while pre-139

serving its generative foundations.140

3 Preliminaries141

This section introduces the key mathematical tools142

underpinning our approach.143

3.1 Latent Dirichlet Allocation (LDA)144

LDA (Blei et al., 2003) is a generative probabilistic145

model in which each document is a mixture overK146

latent topics, and each topic is a distribution over147

words. For each document d, topic proportions θd148

are drawn from a Dirichlet distribution with pa-149

rameter α. Each word wdn is then generated by150

first sampling a topic zdn ∼ Multinomial(θd), fol-151

lowed by sampling the word from the correspond-152

ing topic-word distribution, drawn from a Dirichlet153

distribution with parameter β.154

Inference is commonly performed using Col-155

lapsed Gibbs Sampling (Darling, 2019), which sam-156

ples topic assignments zdn based on current token157

counts and priors - α and β. This method, imple-158

mented efficiently in MALLET (McCallum, 2002),159

is a widely adopted baseline.160

3.2 Pointwise Mutual Information and161

Variants162

Pointwise Mutual Information (PMI) (Church and163

Hanks, 1990) quantifies the strength of association164

between two words wi and wj by comparing their165

joint probability to the product of their marginal166

probabilities. To remove noisy or uninformative167

associations, Positive PMI (PPMI) retains only non-168

negative values.169

Rather than focusing solely on direct co-170

occurrence, prior work has shown that apply-171

ing similarity metrics—such as cosine similar-172

ity—over PPMI-based word vectors effectively cap-173

tures second-order semantic similarity (Bullinaria174

and Levy, 2012; Schütze, 1998). This approach175

enables the identification of semantically related176

words that may not co-occur directly, based on177

the similarity of their distributional contexts. This178

approach enables the model to estimate semantic179

relatedness between words that do not co-occur di-180

rectly by leveraging overlapping associations. For181

example, while surgeon and physician may not co-182

occur, both co-occur with patient, hospital, and183

diagnosis.184

3.3 Diffusion Maps 185

Diffusion Maps (Coifman and Lafon, 2006) pro- 186

vides a nonlinear dimensionality reduction tech- 187

nique that captures the intrinsic geometry of data 188

represented as a similarity graph. Given an undi- 189

rected word-word similarity graph W , the method 190

constructs a Markov transition matrix P according 191

the following formulation: P = D−1W, where D 192

is the diagonal degree matrix with entries Dii = 193∑
j Wij . Then, it performs eigen-decomposition 194

over P to obtain the diffusion embedding. Each 195

word is then embedded as a vector: 196

Ψt(wi) =
(
λt1ψ1(i), λ

t
2ψ2(i), . . . , λ

t
mψm(i)

)
, 197

where λk and ψk are the k-th eigenvalue and eigen- 198

vector of the transition matrix, respectively; m is 199

the embedding dimension, and t is the diffusion 200

time controlling the decay. 201

4 Proposed Method: Effective LDA 202

Initialization 203

We introduce PRISM, a corpus-intrinsic method 204

for improving topic modeling by providing a data- 205

driven initialization for LDA. The approach con- 206

sists of two main stages: (1) constructing word 207

embeddings based solely on corpus statistics, and 208

(2) estimating a Dirichlet parameter β over topic- 209

word distributions derived from these embeddings. 210

The resulting prior is used to initialize LDA, of- 211

fering a principled way to guide inference without 212

altering the model’s generative process. 213

4.1 Rationale 214

While contemporary models benefit significantly 215

from pre-trained word embeddings that capture se- 216

mantic relationships, we sought to harness similar 217

advantages without relying on external knowledge 218

sources. To achieve this, we propose to derive 219

our own word embeddings directly from the target 220

corpus. Our key insight is to derive dense word 221

embeddings from corpus-internal statistics using 222

a semantic similarity graph constructed from PMI 223

variants, followed by diffusion maps to capture 224

global semantic structure embeddings. These em- 225

beddings are then softly clustered to produce a 226

probabilistic topic-word distribution, from which 227

we estimate a Dirichlet parameter that guides LDA 228

initialization. 229
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4.2 Constructing Word Embeddings230

4.2.1 Similarity Graph231

To capture semantic similarity between words, we232

construct an undirected graph W based on Posi-233

tive PMI (PPMI), as described in Section 3.2. The234

PPMI matrix is computed using document-level235

co-occurrence, treating each document as a con-236

text window. Each word wi is represented by its237

corresponding row vector vi from the PPMI ma-238

trix, encoding its distributional context. We then239

define pairwise similarity using cosine similarity as240

Wi,j = cos(vi,vj), where vi and vj are the PPMI241

vectors of words wi and wj , respectively. The re-242

sulting similarity graph W captures both direct and243

indirect semantic associations by leveraging the244

principle that words appearing in similar contexts245

tend to have similar vector representations.246

4.2.2 From Graph to Embeddings247

To obtain dense word representations from the sim-248

ilarity graph, we apply diffusion maps, as defined249

in Section 3.3. This spectral embedding technique250

captures high-order semantic relationships by mod-251

eling multi-step transitions over the graph. Intu-252

itively, if a diffusion process is initiated at two253

semantically similar words, their transition proba-254

bilities over time will be similar, reflecting shared255

contextual neighborhoods.256

We embed each word using the top m diffu-257

sion components—i.e., the leading eigenvectors258

of the transition matrix scaled by their correspond-259

ing eigenvalues. Empirically, we find that selecting260

between 80 and 130 components yields the best se-261

mantic representation, with the optimal m chosen262

based on the highest topic coherence score for each263

dataset and topic configuration.264

The resulting vectors serve as our corpus-265

specific word embeddings, encoding semantic266

structure without relying on any external resources.267

4.3 Estimating Dirichlet parameter β268

4.3.1 Topic-Word Distributions269

To compute empirical topic-word distributions270

from the learned word embeddings, we apply a271

Gaussian Mixture Model (GMM) (Reynolds, 2009)272

with K components to softly cluster the word rep-273

resentations. The GMM yields the posterior proba-274

bility p(z | w) of each word w belonging to topic275

z, along with the topic priors p(z).276

However, our goal is to obtain p(w | z)—the277

probability of a word given a topic—as required to278

estimate the Dirichlet parameter β over topic-word 279

distributions. To do so, we apply Bayes’ Rule: 280

p(w | z) = p(z | w)p(w)
p(z)

, 281

where p(z | w) is given by the GMM, p(z) is 282

the mixture weight for component z, and p(w) is 283

taken from unigram distribution, computed as the 284

frequency of word w in the corpus divided by the 285

total number of tokens. 286

This yields multinomial topic-word distribu- 287

tions matrix X ∈ RK×V , where each row cor- 288

responds to p(w | z) for a given topic. The ma- 289

trix is grounded entirely in corpus-derived sig- 290

nals—capturing both contextual similarity and 291

token-level frequency—used to estimate the Dirich- 292

let parameter β. 293

4.3.2 Parameter β Estimation 294

To estimate a Dirichlet parameter β ∈ RV over the 295

vocabulary, we apply the method of moments (Mc- 296

Callum, 2002), a classical statistical technique used 297

for parameter estimation. The core idea is to match 298

the theoretical moments of the Dirichlet distribu- 299

tion to empirical moments computed from data. 300

Let X(1), . . . ,X(k) ∈ ∆V−1 be k observed sam- 301

ples from a Dirichlet(β1 . . .βV ) distribution 302

over the (V −1)− probability simplex. The method 303

of moments estimator for β is given by 304

β̂i = E[Xi]

(
E[Xj ](1− E[Xj ])

V[Xj ]
− 1

)
, 305

where 306

E[Xi] ≈
1

k

k∑
ℓ=1

X
(ℓ)
i , 307

and 308

V[Xi] ≈
1

k − 1

k∑
ℓ=1

(
X

(ℓ)
i − E[Xi]

)2
. 309

4.3.3 Initializing LDA with β̂ 310

The estimated vector β̂ is then used to initialize 311

the LDA model, replacing the standard uniform 312

or fixed scalar prior. We modified the MALLET 313

implementation to support a vector valued β̂ pa- 314

rameter, enabling topic-word distributions to re- 315

flect corpus-specific semantic structure from the 316

outset. Apart from this change, the rest of the LDA 317

inference pipeline in MALLET remains unaltered. 318
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5 Experiments319

We evaluate the effectiveness of our corpus-320

informed Dirichlet parameter by assessing its im-321

pact on standard LDA. Our goal is to determine322

whether data-driven initialization can substantially323

improve topic quality and bring LDA closer to, or324

even surpass, state-of-the-art topic modeling meth-325

ods. Experiments are conducted on five diverse text326

corpora, using three complementary metrics.327

Datasets. To ensure a fair and objective eval-328

uation, we use pre-processed datasets from the329

OCTIS framework (Terragni et al., 2021), thereby330

avoiding model-specific tuning of the preprocess-331

ing pipeline. Specifically, we experiment with four332

diverse OCTIS datasets: 20NEWSGROUP, BBC333

NEWS, M10, and DBLP, covering a range of do-334

mains and document styles.335

In addition, following BERTopic (Grooten-336

dorst, 2022), we include the TRUMPTWEETS (TT)337

dataset to test model performance on informal,338

short-form text. Since this dataset is not included339

in OCTIS, we apply OCTIS’s preprocessing mod-340

ule with standard, commonly used filtering (see341

Appendix A for details). This setup allows us to342

evaluate our method both under standardized pre-343

processing and in a setting closer to real-world344

social media text. The statistical details can be345

seen in Appendix A.346

Baselines. We evaluate our approach against a347

diverse set of topic models. For classical and348

neural baselines implemented in OCTIS (Terrone349

et al., 2021), we include LDA (Blei et al., 2003),350

NMF (Zhao et al., 2017), ProdLDA (Srivastava and351

Sutton, 2017), NeuralLDA (Srivastava and Sutton,352

2017), and the ETM (Dieng et al., 2020). These353

models rely solely on corpus-internal signals and354

do not incorporate any external knowledge.355

We further compare against recent embedding-356

based methods that leverage pretrained rep-357

resentations: BERTopic (Grootendorst, 2022),358

FASTopic (Nguyen et al., 2024), and Top2Vec (An-359

gelov, 2024). These models utilize external knowl-360

edge, typically through pretrained sentence embed-361

dings such as MiniLM or the Universal Sentence362

Encoder. We follow each method’s official im-363

plementation and recommended configuration as364

provided in their respective GitHub repositories.365

Additionally, we include MALLET (McCal-366

lum, 2002), a highly optimized Gibbs-sampling-367

based LDA implementation, and our proposed368

model, PRISM. Both were run using the MAL- 369

LET framework with default hyperparameters, 370

enabling internal parameter optimization (e.g., 371

optimizeInterval). For PRISM, we further sup- 372

plied the model with estimated β̂ as described in 373

Section 4. 374

Metrics. We evaluate topic models using statisti- 375

cal and human-aligned metrics that capture differ- 376

ent dimensions of quality: cv Coherence, normal- 377

ized pointwise mutual information (NPMI) and the 378

word intrusion detection (WID) task. Formal defini- 379

tions appear in Appendix B. cv Coherence (Röder 380

et al., 2015) and NPMI (Bouma, 2009) measure 381

the semantic relatedness of top words within a 382

topic, based on co-occurrence statistics. While 383

both are widely used, we tend to favor cv due to its 384

empirically stronger correlation with human judg- 385

ments. WID (Chang et al., 2009) evaluates topic 386

interpretability via the identification of an out-of- 387

place word among a topic’s top words. To scale this 388

human-centric task, we follow Garg et al. (2023) 389

and use large language models (LLMs) as auto- 390

mated judges. WID implementation details are 391

provided in Appendix B.2. 392

Setup. To enable fair and robust comparison, we 393

evaluate all models under a unified protocol. For 394

each dataset, we select three values of K near the 395

reference number of ground-truth topics, along 396

with slightly larger values to support finer-grained 397

topic discovery. For TRUMPTWEETS, which lacks 398

labels, we use comparable K values to those in la- 399

beled datasets (See Table 4). This protocol reflects 400

a weakly-supervised topic modeling paradigm, in 401

which coarse supervision guides model behavior 402

without enforcing strict topic-label alignment, fol- 403

lowing the principles outlined by Zhao et al. (2017). 404

All models are evaluated using the top 10 words 405

per topic, and each configuration is run 10 times 406

to account for stochastic variation; final scores are 407

averaged across runs and topic counts. 408

Models with adaptive topic selection are evaluated 409

accordingly. For BERTopic, we report the best re- 410

sult across runs with and without a fixed K; for 411

Top2Vec, which infers K automatically, we eval- 412

uate its output as-is. This Further implementation 413

details appear in Appendix C. 414

Our Results. We evaluate PRISM across five 415

benchmark datasets, focusing on two key questions: 416

(1) whether it provides consistent improvements 417

over classical LDA as implemented in MALLET, 418
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Model 20NG BBC News M10 DBLP TrumpTweets
CV NPMI CV NPMI CV NPMI CV NPMI CV NPMI

ProdLDA .5976 (.0216) .0569 (.0057) .6427 (.0059) -.0046 (.0110) .4218 (.0336) -.0951 (.0954) .4733 (.0196) .0072 (.0464) .5373 (.0099) .0758 (.0029)
NeuralLDA .5339 (.0049) .0425 (.0010) .5720 (.0234) -.0532 (.0274) .4179 (.0183) -.1950 (.0459) .3833 (.1022) -.0207 (.0768) .4252 (.0159) -.0249 (.0037)
LDA .5321 (.0078) .0457 (.0033) .4924 (.0150) -.0409 (.0153) .3833 (.0116) -.1602 (.0455) .3647 (.0148) -.0273 (.0262) .4188 (.0196) -.0109 (.0041)
ETM .5242 (.0079) .0433 (.0049) .4963 (.0062) -.0176 (.0103) .3659 (.0150) -.1255 (.0384) .2828 (.0581) -.0389 (.0152) .4133 (.0338) .0203 (.0136)
NMF .5497 (.0087) .0550 (.0029) .4564 (.0369) -.0037 (.0110) .3536 (.0019) -.0943 (.0487) .3663 (.0213) .0102 (.0188) .4358 (.0103) .0326 (.0120)

BERTopic .5557 (.0155) .0887 (.0113) .7124 (.0073) .1694 (.0022) .4030 (.0131) .1310 (.0095) .3862 (.0075) -.0039 (.0051) .4461 (.0025) -.0287 (.0043)
Top2Vec .5632 (.0327) .0682 (.0152) .5108 (.0484) -.5750 (.0262) .3543 (.0033) -.1675 (.0036) .3185 (.0005) -.1328 (.0019) .3653 (.0028) -.2349 (.0045)
FASTopic .5744 (.0258) .0223 (.0078) .6572 (.0314) .0236 (.0136) .4473 (.0081) -.2065 (.0172) .3239 (.0027) .0012 (.0102) .3804 (.0243) -.1319 (.0380)

Mallet .6381 (.0015) .1106 (.0081) .6371 (.0047) .1128 (.0104) .4639 (.0080) .0718 (.0026) .4394 (.0175) .0443 (.0082) .5044 (.0122) .0721 (.0057)
PRISM (Ours) .6581 (.0073) .1169 (.0050) .6763 (.0149) .1309 (.0186) .5269 (.0021) .0831 (.0128) .4638 (.0156) .0736 (.0110) .5557 (.0046) .0952 (.0104)

Table 1: Evaluation of models performance across datasets. Each value shows the avg score over three topic settings.
Yellow and orange shadings denote cv and NPMI scores, respectively. Colored values indicate the best-performing
model per metric, while lighter shades highlight the second-best. Bolded values indicate cases where PRISM
outperforms MALLET.

Model 20NewsGroup BBC M10 DBLP TrumpTweets

ProdLDA .4561 (.0165) .4556 (.0681) .2232 (.0322) .2528 (.0638) .2759 (.0722)
NeuralLDA .2533 (.0518) .3259 (.0060) .1194 (.0211) .1667 (.0667) .1296 (.0414)
LDA .1472 (.0202) .1333 (.3615) .1139 (.4885) .0833 (.9211) .1611 (.5625)
ETM .3422 (.0301) .4592 (.0726) .0889 (.3713) .1194 (.6224) .1130 (.9177)
NMF .1411 (.0196) .0630 (.3148) .0010 (.8161) .0010 (.8161) .2426 (.3977)

BERTopic .3811 (.0452) .5537 (.0092) .4907 (.0227) .3584 (.0118) .3139 (.0103)
Top2Vec .6022 (.0309) .5915 (.0618) .3875 (.0188) .4928 (.0356) .3554 (.1016)
FASTopic .5844 (.0265) .6315 (.0500) .3379 (.0442) .2722 (.0278) .2352 (.0466)

Mallet .5744 (.0305) .4667 (.0330) .3750 (.0276) .3111 (.0788) .2741 (.0226)
PRISM (Ours) .6078 (.0374) .6137 (.0453) .3915 (.0176) .3361 (.0742) .3028 (.0410)

Table 2: Word Intrusion Detection accuracy across five datasets. Each value reflects the avg accuracy over three
topic settings. Yellow shading indicates the best-performing model per dataset, and lighter yellow indicates the
second-best. Bolded values highlight cases where PRISM outperforms MALLET.

and (2) how it compares to recent topic models, in-419

cluding both corpus-intrinsic approaches and those420

that leverage external semantic knowledge. The fol-421

lowing results address both aspects. Models above422

the dashed line are direct baselines; those below423

use external embeddings and represent an upper424

bound (Table 1, Table 2).425

Quantitative Results. As shown in Table 1,426

PRISM consistently outperforms the original MAL-427

LET implementation, achieving substantial gains428

in both cv and NPMI. Beyond improving upon429

MALLET, PRISM frequently closes the gap to,430

or even surpasses, recent embedding-based meth-431

ods. This is particularly evident on the BBC432

News, M10, and TrumpTweets datasets, where433

PRISM not only significantly outperforms MAL-434

LET but also achieves the best or second-best435

scores across both metrics—demonstrating com-436

petitiveness with SOTA methods. PRISM obtains437

the best cv score on three out of five datasets438

(20NG, M10, TrumpTweets), and ranks second439

on BBC News and DBLP. Given that cv is widely440

regarded as more reflective of human topic judg-441

ments, these results suggest that PRISM produces442

more interpretable and semantically coherent top- 443

ics across diverse domains. While NPMI im- 444

provements are somewhat more modest, PRISM 445

still achieves the best scores on 20NewsGroup, 446

M10 and TrumpTweets and remains competitive 447

throughout. To further assess topic interpretability, 448

we employ the Word Intrusion Detection (WID) 449

task (detailed in Appendix B.2). As shown in 450

Table 2, PRISM ranks among the top two mod- 451

els on three out of five datasets and remains 452

highly competitive on the remaining two. Among 453

corpus-intrinsic models (above the dashed line), 454

PRISM consistently achieves the highest accu- 455

racy—outperforming MALLET and all other clas- 456

sical baselines. It also competes strongly with 457

embedding-based methods (below the dashed line), 458

outperforming all of them on 20NG and several 459

on BBC and M10. Overall, these results show 460

that PRISM not only dominates traditional mod- 461

els in both coherence and interpretability but also 462

matches—and at times exceeds—the performance 463

of state-of-the-art models that rely on external 464

knowledge. 465
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(a) BERTopic Top 10 words. (b) ProdLDA Top 10 words. (c) PRISM Top 10 words.

Figure 2: Top 10 words per topic over the BBC dataset inferred by three models - BERTopic (a), ProdLDA (b),
and PRISM (c) - with K = 5. Each column represents a distinct topic. Colors denote manually interpreted topic
categories: politicspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspolitics, entertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainment, businessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusiness, sportssportssportssportssportssportssportssportssportssportssportssportssportssportssportssportssports, and technologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnology. Lighter shades indicate weaker relevance to
the topic, while white denotes no clear association.

Figure 3: Top 10 words in M10 dataset, extracted by
(a) BERTopic, (b) PRISM, and (c) MALLET. The
topics pertain to biology, with faded shading indicating
lower relative importance. BERTopic merges gene- and
protein-related terms into a single topic, while PRISM
and MALLET separate them into two distinct topics.

Qualitative Analysis. Over BBC dataset, we466

show a comparison of PRISM to BERTopic, which467

achieved the highest cv and NPMI scores, and to468

ProdLDA, the strongest corpus-intrinsic baseline469

in cv (Table 1) over BBC. The dataset contains470

five ground-truth topic labels. As shown in Fig-471

ure 2, PRISM successfully recovers all five top-472

ics—politics, business, sports, technology, and en-473

tertainment—with minimal off-topic words. In474

contrast, BERTopic fails to recover the business475

category and exhibits redundancy across two over-476

lapping technology topics. ProdLDA clearly cap-477

tures politics and business, while entertainment and478

technology are only partially distinguishable, and479

sports is entirely missing. These observations align480

with the WID results (Table 2), where PRISM ranks481

second overall, while BERTopic and ProdLDA rank482

fourth and seventh, respectively. This suggests483

that PRISM produces more coherent and uniquely484

identifiable topics. A supplementary example is485

included in Appendix E.486

On M10, we compare PRISM to BERTopic and487

Figure 4: Top 10 words in M10 dataset, extracted by (a)
BERTopic, (b) PRISM, and (c) MALLET. The topic
appears to relate to climate and agriculture, with faded
shading indicating lower relative importance.

MALLET. PRISM achieves the highest cv and 488

second-best WID score, while BERTopic leads in 489

WID and NPMI, and MALLET ranks second in 490

cv (Table 1, Table 2). As shown in Figure 3, all 491

models capture biologically meaningful themes, 492

though MALLET includes a few less relevant terms 493

(e.g., “paper,” “network”). BERTopic merges gene- 494

related and protein-related concepts into a single 495

broad topic, whereas both PRISM and MALLET 496

separate them into two distinct but related topics, 497

one focused on gene expression and microarray, 498

the other on protein structure and binding. This 499

finer-grained separation reflects PRISM’s stronger 500

topical coherence and is also evident in its rank- 501

ing of more meaningful terms (e.g., “microarray,” 502

“regulatory,” “structure”) with higher probability 503

than MALLET. Interestingly, BERTopic’s broader 504

topic structure may contribute to its higher WID 505

score: in the WID task, intruder words are sam- 506

pled from other high-probability topics (details in 507

Appendix B.2), and when topics overlap seman- 508

tically, as with genes and proteins, intruders may 509

feel topically adjacent rather than clearly out of 510

place. PRISM’s more specific topics make intruder 511
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detection more challenging, which may explain512

its slightly lower WID despite better topic distinc-513

tiveness. Figure 4 presents another M10 topic,514

likely related to climate and agriculture. PRISM515

and BERTopic show high overlap in top-ranked516

words (“soil,” “water,” “crop,” “yield,” etc.), with517

strong topic focus. In contrast, MALLET’s out-518

put contains generic or loosely related terms (“en-519

gine,” “fuel,” “model”), leading to reduced coher-520

ence. These results support the quantitative find-521

ings, where PRISM outperforms MALLET across522

all metrics and approaches the interpretability of523

BERTopic without using external knowledge.524

6 Biological Experiments525

Motivation and Analogy. We investigate the ap-526

plicability of PRISM to biological data, aiming to527

uncover latent Biological Processes (BPs) from528

single-cell RNA sequencing (scRNA-seq) data.529

This task naturally parallels topic modeling: cells530

correspond to documents, genes to words, and BPs531

to topics. As in text, where documents often span532

multiple topics and words can take on different533

meanings depending on context, each cell may be534

involved in multiple BPs, and individual genes may535

participate in several biological functions, reflect-536

ing the many-to-many relationships captured by537

topic models. Furthermore, scRNA-seq data is or-538

ganized as a count matrix, where each entry denotes539

the expression level of a gene in a cell, directly anal-540

ogous to the word-document count matrix in LDA.541

Dataset. We evaluate on a scRNA-seq dataset of542

human breast cancer tissue, generously shared with543

us by a collaborating research lab in pre-processed544

form1.545

Baselines. As a proof-of-concept, we compare546

PRISM to original MALLET, to assess whether547

our corpus-intrinsic initialization can enhance bi-548

ological processes interpretability in a biological549

context.550

Evaluation Metric. To assess the biological plau-551

sibility of discovered topics, we adopt a GPT-552

4-based evaluation method inspired by Hu et al.553

(2025). For each model, we extract the top 20554

genes per topic and query GPT-4 to estimate how555

likely these genes are to co-participate in a known556

BP, effectively yielding a confidence score. This557

metric serves as a proxy for the biological coher-558

ence of gene sets (details in Appendix D).559

1https://zenodo.org/records/10620607

Experimental Setup. We run both PRISM and 560

MALLET on the same scRNA-seq dataset (de- 561

tails in Appendix D), using the same configuration 562

across models: 10 runs for each setting of 10, 20, 563

30 topics. For PRISM, we estimated a β parameter 564

in the same framework as done for textual corpora. 565

Results. As shown in Table 3, PRISM consis- 566

tently outperforms MALLET in GPT-4-based confi- 567

dence scores across all topic settings, indicating im- 568

proved alignment with known Biological Processes 569

(BPs). Prior work by Hu et al. (2025) has shown 570

that GPT-4 confidence scores correlate with bio- 571

logical plausibility: low-confidence gene sets often 572

failed to correspond to coherent BPs, while high- 573

scoring sets typically aligned with well-established 574

biological functions. Based on this, PRISM’s con- 575

sistently higher scores, suggest that the corpus- 576

derived prior helps steer the model toward more 577

accurate and biologically meaningful topic assign- 578

ments. Although MALLET also performs reason- 579

ably well, PRISM’s integration of corpus-intrinsic 580

semantic structure offers a clear advantage in this 581

biological setting. 582

Table 3: Comparison of GPT-4 confidence scores on the
Breast Cancer dataset. Results averaged over 10 runs.

Model 10 BP 20 BP 30 BP

MALLET .8721 (.0102) .8831 (.0147) .8701 (.0213)
PRISM (Ours) .9106 (.0138) .9112 (.0114) .8922 (.0207)

7 Conclusion 583

We introduced PRISM, a corpus-driven initial- 584

ization method for LDA that integrates seman- 585

tic structure derived directly from the data, with- 586

out relying on external embeddings. Across five 587

diverse datasets—spanning news, social media, 588

and biomedical texts—PRISM consistently im- 589

proves coherence and interpretability over clas- 590

sical baselines and rivals embedding-based mod- 591

els. Its strong performance, despite operating en- 592

tirely on corpus-internal signals, highlights the 593

underexplored potential of structure-aware initial- 594

ization in probabilistic models. This work opens 595

new directions for enhancing topic models through 596

data-intrinsic semantics—bridging the gap between 597

classical transparency and modern representational 598

strength. 599
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Limitations600

Our approach requires the number of topics K to601

be specified a priori, rather than inferred automati-602

cally. This design choice, common among classical603

topic models, necessitates treating K as a tunable604

hyperparameter. While this may limit full automa-605

tion and scalability across diverse corpora, our em-606

pirical results suggest that PRISM remains robust607

across a range of K values.608

Future Work609

Future work could extend the data-driven initializa-610

tion approach to the α parameter in LDA, which611

controls the document-topic distribution. Incor-612

porating corpus-based statistical techniques for α613

may further improve topic sparsity and enhance614

document-level interpretability.615
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A Datasets 744

As described in Section 5, we evaluate our method 745

on five benchmark datasets. Four of these are stan- 746

dard corpora included in the octis library, already 747

preprocessed according to its internal pipeline. In 748

addition, we include the TrumpTweets dataset, fol- 749

lowing its use in prior work by BERTopic (Groo- 750

tendorst, 2022), to assess performance on short, 751

noisy social media text. For statistics details view 752

Table 4. 753

Dataset # Docs Vocab Size Avg. Len. # Labels Topic Counts (K)

20NG 16,309 1,612 48.0 20 20, 25, 50
BBC 2,225 2,949 120.1 5 5, 10, 15
M10 8,355 1,696 5.9 10 10, 15, 20
DBLP 54,595 1,513 5.4 4 4, 10, 15
TT 18,239 1,988 9.0 – 10, 15, 20

Table 4: Statistics summary of the datasets used in our
experiments.

The TrumpTweets dataset was obtained from the 754

same source cited by BERTopic2. To ensure consis- 755

tency across datasets, we applied the octis prepro- 756

cessing module with basic filtering settings. The 757

preprocessing configuration was as follows: 758

Preprocessing( 759

vocabulary=None, 760

lowercase=True, 761

remove_numbers=True, 762

min_words_docs=3, 763

min_chars=3, 764

min_df=0.01, 765

max_df=0.9, 766

max_features=2000, 767

remove_punctuation=True, 768

lemmatize=True, 769

stopword_list="english" 770

) 771

This preprocessing configuration was selected to 772

balance document retention with vocabulary qual- 773

ity, a trade-off particularly relevant when modeling 774

short texts such as tweets. 775

B Metrics 776

We assess topic model quality using both statistical 777

coherence metrics and a language-model-assisted 778

interpretability evaluation. Below we describe each 779

in detail. 780

2https://www.thetrumparchive.com/faq
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B.1 Standard Topic Modeling Metrics781

We report two standard automated metrics: cv co-782

herence and normalized pointwise mutual informa-783

tion (NPMI). These corpus-intrinsic metrics assess784

semantic consistency within topics and lexical dis-785

tinctiveness across topics.786

cv Coherence. The cv metric (Röder et al., 2015)787

combines pairwise NPMI scores with cosine simi-788

larity over context vectors derived from a sliding789

window over the corpus. Formally:790

Cv =
1

|W |(|W | − 1)

∑
i<j

NPMI(wi, wj)·cos(vi,vj),791

where W is the set of top-N words in a topic. Each792

vector vi ∈ R|C| encodes co-occurrence statistics793

of wordwi across the document setC. We compute794

cv using Gensim’s CoherenceModel with default795

parameters.796

NPMI. We also report standalone NPMI (Bouma,797

2009), defined as:798

NPMI(wi, wj) =
log

P (wi,wj)
P (wi)P (wj)

− logP (wi, wj)
,799

where P (wi, wj) is the empirical co-occurrence800

probability of words wi and wj . This metric nor-801

malizes PMI to the range [−1, 1], enabling fairer802

comparison across corpora.803

B.2 Word Intrusion Detection (WID)804

To complement statistical metrics with a proxy for805

human interpretability, we use the Word Intrusion806

Detection (WID) task. General framework of the807

metric can be viewed in Figure 5.808

The Word Intrusion Detection (WID)809

task (Chang et al., 2009) is a widely adopted810

human-centered evaluation method for assessing811

topic interpretability. In this task, annotators are812

shown the top-N words of a topic, one of which is813

an intruder—i.e., a word drawn from another topic814

that appears with low probability in the target topic815

but is prominent elsewhere. The annotator is asked816

to identify the word that does not semantically817

belong. Higher topic coherence typically results in818

easier and more consistent intruder identification,819

making WID an indirect yet effective proxy for820

human interpretability.821

Recent studies have proposed leveraging large822

language models (LLMs) to automate WID (Garg823

et al., 2023), enabling scalable, consistent, and824

Figure 5: Illustration of the Word Intrusion Detection
(WID) framework. A large language model is prompted
to identify the word that does not belong in a list of top
topic words (a.k.a. the intruder). The prompt shown
here is illustrative; actual prompts used in our experi-
ments follow a more structured format.

human-aligned evaluation. We adopt this paradigm 825

by employing a LLM as an automatic evaluator 826

within our WID framework (see Figure 5). This 827

model is prompted to identify the intruder from 828

each modified topic word list, effectively simulat- 829

ing human judgment without the need for manual 830

annotation. 831

Pipline. Our pipeline leverages HuggingFace’s 832

transformers library. We initialize the to- 833

kenizer via AutoTokenizer.from_pretrained, 834

explicitly setting the end-of-sequence (eos) to- 835

ken as the padding token to ensure consis- 836

tent handling of short text inputs. The LLM 837

is integrated with the pipeline API using 838

device_map="auto" for efficient hardware map- 839

ping and torch_dtype=torch.bfloat16 to re- 840

duce memory overhead. 841

During inference, each topic’s word list is modi- 842

fied by injecting one intruder word. The model is 843

then prompted to identify the semantic outlier. Its 844

success in this task reflects the semantic cohesion 845

of the topic, thus serving as an indirect interpretabil- 846

ity metric that complements statistical scores. 847

The task involves identifying an intruder word 848

inserted into an otherwise coherent topic word list. 849

We evaluate performance using the Meta-LLaMA- 850

3.3-70B-Instruct model (AI, 2024), which demon- 851

strates strong alignment with human judgment. 852

Prompt Engineering. Inspired by Chain-of- 853

Thought prompting (Wei et al., 2022) and role-play 854

prompting (Kong et al., 2023), we crafted prompts 855

to guide the LLM. The prompt included two exam- 856

11



Figure 6: The prompt template used for the Word Intrusion Detection task provides clear instructions, illustrative
examples, and a structured response format to assist the model in identifying the intruder word. The input variable
numbered_word_list is dynamically integrated into the prompt during the evaluation process, enabling the model
to process different word sets effectively.

ples to illustrate both the identification of intruder857

words and the expected response format as can be858

found in Figure 6.859

Evaluation Metric. Accuracy was calculated as860

the proportion of correct intruder identifications:861

Accuracy =
Count(LLM Response = Real Intruder)

K
,862

where K is the number of topics. Accuracy was863

reported separately for top-10, top-15, and top-20864

word lists.865

Full Pipeline. We present the pipeline for the866

Word Intrusion Detection task, following the con-867

figuration of all necessary settings.868

Algorithm 1 Word Intrusion Detection Pipeline
Input: List of topic modelsM and Prompt Template
Output: Saved LLM Outputs, Model Accuracy Scores

for each model M inM do
for each topic T in M.topics do

for each words W in {T10, T15, T20} do
Windex ← AddIndices(W )
prompt← FormatPrompt(Wnum)
result← QueryLLM(prompt)
SaveOutput(result)

end for
end for

end for
EvaluateAccuracy(M)

This pipeline evaluates topic coherence by identify-869

ing intruder words—terms that do not semantically870

fit within topic-based word lists—using a LLM. For871

each topic model, the pipeline processes topics and 872

their top-10, top-15, and top-20 word lists, adding 873

indices to the words (AddIndices), formatting 874

them into a structured prompt (FormatPrompt), 875

and querying the LLM (QueryLLM) to detect 876

the intruder. The model’s outputs are saved 877

(SaveOutput) and compared against the true in- 878

truders to calculate accuracy (EvaluateAccuracy), 879

providing a quantitative measure of the topic 880

model’s coherence. 881

C Setup 882

To ensure a fair and reproducible comparison, we 883

evaluated a diverse set of topic modeling baselines 884

using their publicly available implementations and 885

recommended configurations. 886

OCTIS Models. We ran the following models 887

through the octis framework: LDA, NMF, ETM, 888

ProdLDA, and NeuralLDA. All models were exe- 889

cuted with default hyperparameters as defined in 890

the octis documentation, using the library’s stan- 891

dardized preprocessing pipeline. 892

For ETM, we evaluated two configurations: 893

Without pre-trained embeddings : the default 894

octis configuration was used. 895

With pre-trained embeddings : we used GloVe 896

embeddings with the following parameters: 897

ETM(num_topics=TOPICS_NUM, 898

embeddings_path="filtered_glove.100d.vec", 899

embedding_size=100) 900

12



This setup allows us to compare corpus-only901

training versus external semantic initialization. We902

got similar results with no detect improvement,903

thus we provided only the version without external904

knowledge.905

BERTopic. We ran BERTopic using its official906

implementation3 with default parameters, except907

for the number of topics. We explicitly set the num-908

ber of topics to match the experimental setup and909

report the better result between the auto-detected910

and fixed-topic configurations.911

Top2Vec. We ran Top2Vec in contextual embed-912

ding mode with the following configuration:913

Top2Vec(914

documents,915

split_documents=True,916

contextual_top2vec=True,917

embedding_model="all-MiniLM-L6-v2",918

speed="deep-learn",919

workers=2920

)921

This follows the recommended usage from the of-922

ficial repository4. We also experimented with sup-923

plying a custom tokenizer, but it did not improve924

performance; thus, default tokenization was used925

in all reported results.926

FASTopic. We used the FASTopic implementa-927

tion from topmost5, using the Preprocess utility928

as recommended. Each model was initialized as:929

preprocessing =930

Preprocess(stopwords="English")931

model =932

FASTopic(num_topics=topic_num,933

preprocess=preprocessing)934

All hyperparameters followed the defaults in the935

official github6, and no additional tuning was per-936

formed.937

D Biological Experiments938

Setup for Biological Data Experiments939

To enable the use of raw gene expression ma-940

trices—analogous to document-term matrices in941

text—we adapted the MALLET input format to ac-942

cept direct count data. Specifically, we constructed943

3https://github.com/MaartenGr/BERTopic
4https://github.com/ddangelov/Top2Vec
5https://github.com/yfsong0709/TopMost
6https://github.com/bobxwu/FASTopic

a serialized input object compatible with MAL- 944

LET’s internal representation, containing both the 945

corpus alphabet (gene identifiers) and the expres- 946

sion counts per sample (document). This object 947

was passed to MALLET via the inputFile ar- 948

gument, leveraging native support in the original 949

MALLET codebase. 950

All models were trained within the same frame- 951

work, with our estimated β̂ supplied as an external 952

input. This ensured a consistent inference pipeline 953

across experiments, isolating the effect of our ini- 954

tialization from the generative process or hyperpa- 955

rameter settings. 956

Biological Evaluation via LLM Confidence 957

To assess the biological relevance of gene sets 958

derived from topic models, we follow the LLM- 959

based evaluation protocol introduced by (Hu et al., 960

2025).7 The core idea is to query a large language 961

model (GPT-4) with each gene set and evaluate 962

whether it can (1) identify a coherent biological 963

process (BP) associated with the gene set, and (2) 964

express high confidence in that association. 965

Prompt Design. Each gene set is presented in 966

a natural language prompt, instructing the model 967

to infer a shared biological process based on the 968

listed genes. Prompts are carefully crafted to be 969

neutral and avoid leading the model toward specific 970

functions. The model is then asked to (i) name the 971

most likely BP, and (ii) rate its confidence on a 972

scale from 0 to 1. 973

Scoring. The model’s textual output is manually 974

inspected to verify whether the inferred BP matches 975

a plausible biological function supported by exter- 976

nal evidence (e.g., GO annotations). Confidence 977

scores are recorded for each gene set and aggre- 978

gated to assess overall coherence across topics. 979

Interpretation. As shown in prior work, gene 980

sets yielding low confidence often correspond to 981

functionally inconsistent or noisy groups, whereas 982

high-confidence predictions align with known bio- 983

logical pathways. Thus, the LLM confidence score 984

serves as a proxy for functional coherence and in- 985

terpretability of the gene sets. 986

E More Qualitative Findings 987

To complement the qualitative findings presented in 988

the main paper, we include additional quantitative 989

7https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC11725441
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(a) MALLET Top 10 words (b) PRISM Top 10 words

Figure 7: Top 10 words per topic over the BBC dataset inferred by MALLET (a) and PRISM (b), withK = 5. Each
column represents a distinct topic. Colors denote manually interpreted topic categories: politicspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspoliticspolitics, entertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainmententertainment,
businessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusinessbusiness, sportssportssportssportssportssportssportssportssportssportssportssportssportssportssportssportssports, and technologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnologytechnology. Lighter shades indicate weaker relevance to the topic, while white denotes no
clear association.

analysis for BBC dataset here.990

BBC Dataset. Figure 7a (MALLET) and Fig-991

ure 7b (PRISM) display the top words for each992

topic on the BBC dataset with 5 topics. While993

MALLET produces reasonable topics, it redun-994

dantly captures politics in two separate themes995

and fails to isolate the entertainment domain. In996

contrast, PRISM yields distinct and semantically997

meaningful topics, effectively covering all major998

themes in the corpus. These results suggest that999

while MALLET offers a solid inference framework,1000

our initialization method pushes the model further1001

toward more coherent and semantically distinct1002

topics, indicating that the observed improvements1003

stem from our approach rather than the base model1004

alone.1005
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