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Abstract

Large Language Models (LLMs) have demon-001
strated impressive capabilities in many tasks002
such as code generation and automated pro-003
gram repair. However, code LLMs have ig-004
nored another important task in programmers’005
daily development work, which is to improve006
the maintainability, readability, and scalability007
of the program. All of these characteristics008
are related to code smells and we study how009
to improve them by detecting and removing010
code smells. Most works on code smells still011
rely on using measures formulated by experts012
as features, but lack of use of the rich prior013
knowledge contained in code LLMs. In this014
paper, we propose SmellDetector, a compre-015
hensive model for both code smell detection016
and refactoring opportunities detection in Java.017
We train the model with the designed prompt018
which contains both code smells of class-level019
and method-level in the same code snippet, in-020
cluding more than 20 types. We achieve state-021
of-the-art performance on the code smell detec-022
tion task and change the basic paradigm of code023
smell detection from binary classification prob-024
lem to multi-label classification. Finally, it has025
been verified through experiments that good026
code smell detection helps to detect refactoring027
opportunities.028

1 Introduction029

Recently, Large Language Models (LLMs) have030

achieved impressive performance in code genera-031

tion (Roziere et al., 2023), especially in the scene032

of algorithm competitions, and there are many033

commercial code models available on the market.034

When it comes to daily development of software035

engineers, it is an important but often overlooked is-036

sue that how to keep system maintainability (Löwe037

and Panas, 2005), or reduce the code smell. Code038

smells usually appear in object-oriented program-039

ming scenarios that use a large number of class040

structures and long codes, bring technical dept to041

Figure 1: Example of Code Smell Detection Dataset.We
added the definition and description of predicted code
smells as output supervision, with the purpose of en-
hancing the model’s understanding of code smells.

a software system (Foster et al., 2012) and harm- 042

ing its maintainability and evolution (Sjøberg et al., 043

2012). In other words, code smell does not cur- 044

rently affect the running of the program and output 045

correct results, but it hinders its further develop- 046

ment and iteration.introduction 1 As early as the 047

millennium, many researchers paid attention to the 048

problem of code smell (Fowler and Beck, 1997). 049

1We present a example dataset for code smell
detection and refactoring in anonymous github:
https://anonymous.4open.science/r/paper_example_dataset-
8293, and due to the space limit we only present 200
examples.
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Figure 2: Flowchart of code smell detection work.(a) shows the SOTA method(Ho et al., 2023) of traditional code
smell detection while (b) shows the main process of our work.

The traditional method is to calculate various indi-050

cators of the code, such as LCOM (lack of method051

cohesion) and NMD (number of declared meth-052

ods), and judge whether the code has a certain code053

smell based on the threshold. When deep learning054

algorithms became popular, many researchers used055

indicators of code smell as features, or input code056

text features into the model for training to avoid057

the instability caused by directly selecting thresh-058

olds (Jha et al., 2019; Sharma et al., 2021). In addi-059

tion, in the study of code refactoring, an important060

research direction is to find refactoring opportu-061

nities and simplify the refactoring task to predict062

whether a specific refactoring method should be063

used, which is similar to smell detection in terms064

of method (Aniche et al., 2020).065

However, some of the above methods have short-066

comings: the information they use to identify code067

smells usually comes from indicators and labels de-068

signed by experts, and they do not consider using069

LLM to generate additional smell knowledge and070

utilize the human-like reasoning ability of LLM.071

Most methods treat it as a binary classification prob-072

lem, and N models need to be trained for N types073

of code smells, which increases the time cost. In074

addition, although code refactoring opportunity de-075

tection and code smell detection are essentially076

information-complementary tasks, previous meth-077

ods often lack the ability to explore the connection078

between them and make them mutually reinforcing.079

We hope to introduce the text generation abil-080

ity of LLM to generate description knowledge for081

different code smells, and combine it with code 082

text by reasoning during fine-tuning, thereby skip- 083

ping the process of designing feature engineering 084

for each smell separately and making code smell 085

detection more unified. 086

In this paper, we present SmellDetector, a com- 087

prehensive code smell detection and elimination 088

model, aiming to provide adapters based on LLM 089

for detecting code smells’ types and find refactor- 090

ing opportunities. 091

We summarize our contributions below: 092

• We propose the first model based on code 093

LLM fine-tuning for code smell detection and 094

refactoring opportunities detection. Our train- 095

ing dataset and method is general and can 096

be easily applied to other LLMs with greater 097

capabilities. The model has achieved the state- 098

of-arts in code smell detection task. 099

• We collected and organized the first hierarchi- 100

cal code smell dataset from previous datasets, 101

which actually helps to complete the coarse 102

localization of code smell detection. It con- 103

tains multiple code smells in the same code 104

snippet, including 212,612 code smells and 105

20 types. 106

• We have experimentally proven that effective 107

code smell detection is helpful in detecting 108

code refactoring opportunities, and provides 109

researchers with research ideas that the two 110

tasks should be reasonably combined. 111
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2 Related Work112

2.1 Code Smell Detection113

Code Smell is considered as inadequate implemen-114

tation and design in code (Fowler and Beck, 1997),115

bringing various hazards, such as damaging code116

readability and maintainability. Beck et al. pro-117

vide a detailed definition of 22 code smells through118

natural language. In order to automate the detec-119

tion of code smell in batches, Moha et al. pro-120

posed a method of calculating program metrics and121

determining whether they have reached a preset122

threshold. Additionally, Palomba et al. use history123

information to detect the code smells and inspire124

the ideas of many researchers.125

Traditional metric based methods may not be126

as accurate in distinguishing some fuzzy and com-127

plex code smells because of threshold. Therefore,128

some researchers (Fernandes et al., 2016) use ma-129

chine learning methods to solve this problem, such130

as Bayesian (Khomh et al., 2011), SVM (Maiga131

et al., 2012) and Random Forest (Hall et al., 2011).132

Although ML algorithms perform well in smell de-133

tection, experts are still needed to perform feature134

extraction. On the contrary, deep learning algo-135

rithms can autonomously learn advanced features.136

Some researcher (Guo et al., 2019) use LSTM and137

CNN to extract text and metric information sepa-138

rately while White use RtNN and RvNN to cap-139

ture features in source code and abstract syntax140

tree (White et al., 2016). DeepSmell (Ho et al.,141

2023) has reached the state-of-art performance be-142

fore, but it still has a serious flaw: it needs to train a143

separate model for each type of code smell, which144

increases training and deployment costs.145

2.2 Code Refactoring146

When Beck et al. purposed the definitions of 22147

code smells, corresponding refactoring methods148

have been proposed at the same time, such as Ex-149

tract (method, variable...), Rename(method, vari-150

able...), Move method and so on, which are still the151

most commonly used (Al Dallal and Abdin, 2017).152

Refactoring methods and code smells have some153

semantic connections and they are not one-to-one154

correspondences and one refactoring can mitigate155

multiple code smells, such as Extracting Class is156

useful for duplicate code/clones, god classes and157

data blocks (Lacerda et al., 2020).158

Since the usable code refactoring methods re-159

main largely unchanged, finding an opportunity160

for refactoring means completing one refactoring.161

Many researchers use metric to search code snip- 162

pets suitable for a certain type of refactoring, like 163

the cohesion metric (Al Dallal and Briand, 2012), 164

in-class semantic similarities metric (Bavota et al., 165

2014) and between-class cohesion metric (Bavota 166

et al., 2010). Other researchers proved the effective- 167

ness of using machine learning algorithms (Aniche 168

et al., 2020) and neural networks (Alenezi et al., 169

2020) to find refactoring opportunities. When more 170

and more reliable refactoring datasets are being 171

proposed by integration of manual annotation and 172

detection tools (Tsantalis et al., 2020; Moghadam 173

et al., 2021), LLM may be a new method to help 174

break through code refactoring. 175

2.3 Code Large Language Models 176

Recently, Large Language Models (LLMs) have 177

achieved excellent performance in code generation 178

tasks, such as codellama (Roziere et al., 2023), Al- 179

phacode (Li et al., 2022), InCoder (Fried et al., 180

2022) and GPT-3 (Brown et al., 2020). Thanks to 181

the large model’s massive training data and genera- 182

tion capabilities brought by huge parameters, the 183

large code model has the ability to generate code 184

that meets the needs of the problem under the input 185

of natural language prompts. In addition, it can 186

also correct erroneous codes (Silva et al., 2023) 187

According to review of code smell (Malhotra et al., 188

2023), the use of LLM for code smell detection is 189

still a blank area currently. 190

3 Methodology 191

3.1 Overview 192

We provide an overview of the SmellDetector 193

pipeline in Figure 2. The SmellDetector consists of 194

two parts: two fine-tuned adapters can be plug-and- 195

played with LLM to complete code smell detection 196

and refactoring. In the following subsections, we 197

will show how the it works through dataset con- 198

struction, adapter training and conversations round. 199

3.2 Dataset Construction 200

We built a detection dataset consists of 97,316 files 201

and 212,612 code smells including 20 types in class 202

level and method level. For refactoring, we built 203

a dataset consists of 16,000 refactoring program 204

fragments pairs. 205

Detetion. Through literature research, we have se- 206

lected two publicly available code smell datasets 207

as the first step: QScore (Sharma and Kessentini, 208

2021) and MLCQ (Madeyski and Lewowski, 2020). 209
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Class smell Number Method Smell Number
Feature Envy 8,337 Magic Number 32,157
Insufficient Modularization 575 Long Parameter List 8,296
Deficient Encapsulation 19,943 Complex Method 16,900
Unnecessary Abstraction 8,662 Empty catch clause 7,953
Rebellious Hierarchy 1,173 Long Method 6,366
Multifaceted Abstraction 2,325 Long Statement 34,240
Broken Modularization 8,524 Long Identifier 8,313
Cyclic Hierarchy 2,060 Complex Conditional 9,919
Missing Hierarchy 2,320 Missing default 8,348
Blob 293 / /
Data Class 356 / /
Class clean 14,631 Method Clean 12,261

Table 1: The specific number of various code smells’ categories in our detection dataset

These datasets have been verified for their reliabil-210

ity by automatic detection and expert certification,211

but they usually retain the relationship between a212

code snippet and a code smell. We clone the source213

code from Github and check for different code214

smells that share the same code snippets. When a215

class has multiple member methods, we will mark216

its class smell and method smell respectively based217

on the collected data. Since different code repos-218

itories may reference the same third-party code,219

when splitting the training and testing data, we220

need pairwise matching to filter out repeated iden-221

tical fragments.222

Considering the lack of negative examples in223

the dataset, we upsample the negative examples by224

traversing other methods and classes in the direc-225

tory where the positive examples are located and226

use them as negative examples (clean).227

For ith Code, clean(i) indicates whether to treat228

it as a clean smell sample:229

clean(i) =


1 if Smell(i) =∅ and

∃j ∈ Nbr(i)st.Smell(j) ̸= ∅
0 else

230

while Smell(i) represents the set of code smells231

that exist in code i.232

Nbr(i) =

{
Package(i)′s classes if i ∈ Class

Class(i)′s methods if i ∈ Method
233

In addition, there is an obvious class imbalance in234

the dataset. We use undersampling to solve this235

problem: choose(i) indicates whether to add the ith236

code to our dataset.237

choose(i) =

{
1 if minN(x)|x ∈ Smell(i) < K

0 else
238

Based on the mean of the less frequent categories, 239

we set K to 10000. The specific number of code 240

smells can be found in Table 1. Refactoring. 241

Through literature research, we choose (Aniche 242

et al., 2020) as source data, which consists of 243

Apache,F-Droid, and GitHub’s repositories. If it is 244

a refactoring of the class, then we extract the class 245

code pairs as training data, or use string matching to 246

detect member methods whose content has changed 247

while it is a refactoring of the method. Consider- 248

ing the lack of negative labeling in Aniche’s open 249

dataset, we firstly collect manually labeled nega- 250

tive examples from Refactoring Miner2 (Tsantalis 251

et al., 2020). Since the number of collected nega- 252

tive examples is still relatively small, we use some 253

successfully refactored program fragments as nega- 254

tive examples, which means this type of refactoring 255

is no longer needed. 256

3.3 Adapter Training 257

3.3.1 Base Model Selection 258

We hope that in addition to having the ability to 259

finish traditional code smell work (classification 260

of a single smell or classification of a single level 261

such as method or variable), the SmellDetector 262

also has strongr generalization, which means per- 263

form better in few-shot scenarios. Therefore, we 264

prefer to choose a base model that has both con- 265

text understanding and code generation capabili- 266

ties. We first selected LLMs that have performed 267

well recently as the first step, like CodeLLama- 268

7B (Roziere et al., 2023), Baichuan-7B (Baichuan, 269

2023) and Qwen-7B (Bai et al., 2023). Then, 270

we use Chain-of-Thought(COT) to test the perfor- 271

mance of the model on code smell detection when 272

it is not trained. Specifically, we provide the defi- 273

nition of a certain code smell, positive examples, 274

and negative examples as prompts, let the model 275
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Model Name
Feature Envy Data Class Long Method

F1 F1 F1 AvgF1

CodeLLama-7B 12.50 34.99 15.94 21.14
Baichuan2-7B 15.45 33.77 12.20 20.47

Qwen-7B 15.16 33.61 9.16 19.31

Table 2: Results of few-shot tests of three base models on the MLCQ partitioned data set

imitate and generate predictions and reasons for276

code smells, and evaluate its generation quality by277

calculating f1 metric. The experimental result is278

in Table 2 and we choose CodeLLama as our base279

model.280

3.3.2 Prompt Design281

Since our application scenario is different from the282

pre-training scenario of general code models: the283

input is code and the output is natural language,284

including the classification and explanation of code285

smells, we conducted some preliminary experi-286

ments using different prompts to verify the training287

effect, and finally selected the following prompts,288

and specific examples can be seen in Figure 1.289

In code smell detection, the input and output290

prompt format is that:291

Detection Input:[Analyze Instruction] + [Java292

code]293

Detection Output: [Class Name] + [Class294

Smell 1,2,...n] + [Method1 Name] + [Method1295

Smell 1,2...m1] + [Method2 Name] + [Method2296

Smell 1,2...m2] + ... + [Definition of Smell1,297

Smell2..Smellk].298

The design of output prompt helps the model to299

have the ability to output multiple smells of multi-300

ple fragments of code under a class-method struc-301

ture after fine-tuning. Since there are too many302

types of code smells, it is not feasible to put the303

description of code smells as knowledge in the in-304

put prompt like the traditional COT idea, which305

will exceed the pre-training length limit of the most306

model. Therefore, we extract the code smells in-307

volved in each sample’s description and put them308

into the output term as supervision.309

In code smell refactoring, the input and output310

prompt format is that:311

Refactoring Input:[Refactor Instruction] + [Java312

code]313

Refactoring Output:[Refactoring Name] + [Refac-314

toring code]315

The output prompt is designed to make the316

model have the ability to identify application refac- 317

toring opportunities and specific refactoring at the 318

same time. 319

Based on the conjecture that correct code smell 320

information helps the refactoring model predict 321

refactoring opportunities, we use the smell detec- 322

tion model trained previously to perform smell de- 323

tection on the samples in the training set of the 324

refactoring model, and add the smell information 325

to the refactoring model.The input prompt is ad- 326

justed to: 327

Refactoring Adjusted Input:[Refactor Instruc- 328

tion] + [Name of Smell1, Smell2..Smellk] + 329

[Java code] 330

3.4 Advice for Refactoring 331

In addition to directly adding smell names to fine- 332

tune the refactoring opportunity detection model, 333

we also considered another way to utilize code 334

smell detection. Specifically, we use a code smell 335

detection model to detect the code of each refac- 336

tored example and classify it into three levels: 337

f(i) represents the smell level of code i: 338

f(i) =


0 ifPredSmell(i) = ∅
1 ifPredSmell(i) ⊆ MethodSmell

2 ifPredSmell(i) ∩ ClassSmell ̸= ∅
339

For each predicted refactoring method, we ob- 340

tain the code smell level it can solve through its 341

definition. We tested the performance of the refac- 342

toring opportunity detection model on 6 methods in 343

total. The classification suggestions for refactoring 344

methods based on the three code smell levels are: 345

0: Rename Parameter, Rename Variable, Rename 346

Method and none. 347

1: Extract Method and Extract Variable. 348

2: Extract Class and Extract Method. 349

We only consider examples for which the actual 350

prediction matches the opinion on the refactor, i.e., 351

we ignore examples for which the actual predicted 352
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CodeSmellType Model
Detect Metric

Precision Recall F1

Complex Method
DeepSmell 0.731 0.779 0.754
AE-Dense 0.483 0.630 0.547

SmellDetector(not tuned) 0.934 0.366 0.526
SmellDetector(tuned) 0.995 0.925 0.956

Complex Conditional
DeepSmell 0.575 0.604 0.589
AE-Dense 0.170 0.387 0.237

SmellDetector(not tuned) 0.999 0.519 0.683
SmellDetector(tuned) 0.998 0.989 0.994

Multifaceted Abstraction
DeepSmell 0.287 0.272 0.279
AE-Dense 0.031 0.747 0.060

SmellDetector(not tuned) 0.167 0.005 0.009
SmellDetector(tuned) 0.995 0.710 0.831

Feature Envy
DeepSmell 0.341 0.258 0.294
AE-Dense 0.170 0.387 0.237

SmellDetector(not tuned) 0.959 0.079 0.146
SmellDetector(tuned) 0.988 0.899 0.936

Table 3: Comparison of our approach with other 2 baseline code smell detection methods (DeepSmell, AE-Dense)
under 4 kinds of code smells. The precision, recall and f1 score of the baseline are from their paper because they
trained binary-classification model for each type when we conduct experiment with a multi-classification model.

reconstruction method is not in the refactoring set353

corresponding to the code smell levels.354

3.4.1 Model Training355

We use QLora-tuning (Dettmers et al., 2023) to356

train SmellDetector, which means inserting several357

new parameters, called adapters, to the base of the358

original model. During training, the parameters of359

the original model are frozen and only the param-360

eters of the adapter are updated. Instead of fine-361

tuning the LLM, lora-based method can achieve362

good performance on relatively small datasets.363

4 Experiment364

We conducted the following experiments, including365

two different topics and corresponding data sets:366

code smell detection and refactoring opportunity367

detection. The purpose of the experiment is to ex-368

plore the following questions: (1) How well does369

the adapter fine-tuned from a large code model370

perform in code smell detection and code refac-371

toring opportunity detection when combined with372

the designed hints. (2) How does this compare to373

traditional code smell research work? (3) Does374

appropriate smell detection help refactoring oppor-375

tunity detection?376

4.1 Experiment Setup377

Dataset. In addition to testing on the dataset we378

created, we conduct code smell detection experi-379

ment on the benchmark created by (Sharma et al.,380

2021). Considering that the original benchmark381

had four types of code smells, with significant dis- 382

tribution imbalance and excessive negative exam- 383

ples, we set the maximum number of positive and 384

negative examples for each type of code smell to 385

10000 and after shuffling the order, divide it into 386

25% as the test set. In terms of refactoring op- 387

portunity detection, we conduct experiment on the 388

benchmark created by (Aniche et al., 2020). Con- 389

sidering that our current method mainly processes 390

a single file, we selected 6 types of refactoring 391

operations that basically complete the refactoring 392

operation within a single file for detection. 393

Baseline.For the code smell detection task, we 394

have chosen DeepSmells (Ho et al., 2023) and 395

AE-Dense (Sharma et al., 2021) as the baseline. 396

At the same time, we evaluate the performance 397

of SmellDetector without secondary fine-tuning 398

(only fine-tuned on the dataset we created) and af- 399

ter secondary fine-tuning (also fine-tuned on the 400

benchmark training set). For the refactoring op- 401

portunity detection task, we have chosen (Aniche 402

et al., 2020) as the baseline. 403

Metric. The two tasks of code smell detection and 404

refactoring opportunities are actually classification 405

problems. The SOTA work mentioned in the base- 406

line all handles it as a binary classification problem, 407

which means training a separate classifier for each 408

code smell. On the contrary, we handle it as a multi- 409

classification problem, because this is more in line 410

with people’s usage habits and can significantly re- 411

duce training and deployment costs. For each type, 412

we report and compare the mean precision, recall 413
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Class Smell
Detect Metric

Precision Recall F1

Feature Envy 0.864 0.845 0.855
Insufficient Modularization 0.659 0.346 0.454
Deficient Encapsulation 0.990 0.995 0.992
Unnecessary Abstraction 0.995 0.985 0.990
Rebellious Hierarchy 0.905 0.830 0.866
Multifaceted Abstraction 0.910 0.619 0.737
Broken Modularization 0.996 0.990 0.993
Cyclic Hierarchy 0.868 0.800 0.833
Missing Hierarchy 0.922 0.858 0.889
Blob 0.833 0.897 0.864
Data Class 0.913 0.824 0.866
clean 0.916 0.953 0.934

Method Smell
Detect Metric

Precision Recall F1

Magic Number 0.944 0.868 0.904
Long Parameter List 0.951 0.918 0.934
Complex Method 0.946 0.909 0.927
Empty catch clause 0.947 0.945 0.946
Long Method 0.922 0.855 0.888
Long Statement 0.892 0.826 0.858
Long Identifier 0.970 0.762 0.853
Complex Conditional 0.945 0.895 0.919
Missing default 0.957 0.926 0.941
clean 0.634 0.789 0.703

Table 4: The results of testing the code smell detection
task on the dataset we organized. We treat it as a multi-
label classification problem.

and F1 score. We use classification report tools414

to calculate the metric in multi-label classification415

scene (Pedregosa et al., 2011).416

Training/Inference Settings.For SmellDetector417

training, we set max sequence length to 6000 to418

handle situations where the code is particularly419

long, and use 2 epoch and a learning rate with 1e-4420

to train the adapter. For the training parameters421

of qlora, we set lora rank to 64, lora alpha to 16422

and lora dropout to 0.05. For SmellDetector infer-423

ence, we set top p to 0.9, temperature to 0.35 and424

repetition penalty to 1.0.425

4.2 Result of Code Smell Detection426

Comparison with baselines.The result of com-427

parison with other baselines is in Table 3. AE-428

dense (Sharma et al., 2021) propose the benchmark429

what we use for testing and DeepSmell (Ho et al.,430

2023), which consists of fusion of deep convolu-431

tional and LSTM recurrent neural networks, is a432

state-of-the-art method on the benchmark. Due to433

performance limitations, the code smell detection434

task is treated as multiple binary classification prob-435

lems, and multiple binary classification models are 436

trained to exchange space and cost for higher clas- 437

sification accuracy. 438

From experimental data, we can see that our 439

SmellDetector achieved better results, and we es- 440

sentially tested a multi-class model on a binary 441

dataset. The three code smell types except Multi- 442

faceted Abstraction are actually relatively common 443

in our data set, so SmellDetector without secondary 444

fine-tuning also achieved good precision in this 445

benchmark, The reason why recall performs poorly 446

is that SmellDetector(not tuned) is a classifier with 447

more than 20 categories and treats other categories 448

that do not belong to this benchmark as negative ex- 449

amples, so the recall rate is significantly lower than 450

the accuracy rate. This experiment can show that 451

SmellDetector which is based on LLM has made 452

great progress on the task of code smell detection. 453

Testing in our dataset including 20 types. The 454

result of testing in our dataset is in Table 4. Consid- 455

ering the paradigm of the data set we organized, a 456

code snippet may have multiple code smells, which 457

is a multi-label classification problem. For the sake 458

of convenience, we do not consider the correctness 459

judgment of the predicted cause of code smell for 460

the time being. We only consider whether the code 461

smell itself occurs or not, and extract the predicted 462

classification items through string matching. In ad- 463

dition, a sample may contain predictions for a class 464

and multiple member methods at the same time, so 465

we match the predictions with the class names and 466

method names in the real labels, and use the match- 467

ing code snippets as a more fine-grained calculation 468

metric. the basic unit. Finally, we use the scikit- 469

learn tool library to calculate the precision, recall 470

and f1-score of multi-label classification. From ex- 471

perimental data, we find that classification perfor- 472

mance is basically positively related to the amount 473

of data and some categories with relatively clear 474

and concise definitions are exceptions, such as blob 475

and data class. 476

4.3 Result of Refactoring Opportunities 477

Detection 478

Comparison with baselines. The result of com- 479

parison with other baseline is in Table 5. Aniche 480

has proposed the benchmark consisting of Class- 481

level, Method-level and Variable-level refactoring 482

and Random Forest achieved the best performance 483

in this benchmark (Aniche et al., 2020). When 484

we fine-tune a binary-classification model for each 485

class of refactoring method like the baseline, we 486

7



Refactor Method
Random Forest Binary Classification(Ours)
P R F1 P R F1

Rename Parameter 0.99 0.99 0.99 0.98 0.99 0.98
Rename Variable 1.00 0.99 0.99 0.98 0.98 0.97
Rename Method 0.79 0.85 0.81 0.98 0.99 0.98
Extract Variable 0.90 0.83 0.87 0.98 0.87 0.92
Extract Method 0.80 0.92 0.84 0.99 0.95 0.97
Extract Class 0.85 0.93 0.89 0.89 0.93 0.91
Avg 0.89 0.92 0.90 0.97 0.95 0.96

Table 5: The results of testing the refactoring opportunities detection task on the benchmark created by the previous
SOTA method , when Random Forest is the previous SOTA method, and Binary Classification is the method that
finetuning a binary-classification model for each class, just like Random Forest.

Refactor Method
Base +trained with smell +advice

P R F1 P R F1 P R F1

Rename Parameter 0.56 0.48 0.51 0.50 0.59 0.54 0.53 0.53 0.53
Rename Variable 0.36 0.39 0.37 0.37 0.31 0.34 0.34 0.37 0.36
Rename Method 0.74 0.38 0.50 0.54 0.44 0.49 0.73 0.47 0.57
Extract Variable 0.63 0.52 0.57 0.70 0.43 0.53 0.63 0.47 0.53
Extract Method 0.45 0.26 0.33 0.44 0.18 0.26 0.43 0.42 0.43
Extract Class 0.73 0.41 0.53 0.76 0.30 0.43 0.76 0.41 0.53
none 0.37 0.93 0.52 0.35 0.91 0.51 0.46 0.93 0.62
Avg 0.54 0.48 0.48 0.52 0.46 0.45 0.56 0.52 0.51

Table 6: The results of testing the refactoring opportunities detection task on the dataset we organized, when Base is
the lora-tuning method in Chapter 3.3.2, +trained with smell is the lora-tuning method with code smell name as
additional input information, and +advice is selecting examples that comply with advice in the Base method.

achieve the state-of-the-art performance.487

Testing about our refactoring methods. The re-488

sult of testing about our refactoring methods is in489

Table 6. When we treat refactoring opportunities490

detection as a multi-class classification problem491

and output the refactor code at the same time, the492

classification performance is much lower than the493

data in Table 5. We try to treat code smell name494

as additional input information and the test result495

shows that it fails. In our inference, the reason why496

it can not make sense is that the given information497

of code smell is too little and LLM lacks enough498

prior knowledge of individual code smells to judge499

at present. Therefore, we added analysis based on500

expert prior knowledge and changed the method501

of directly using code smell names as additional502

input to recommended refactoring methods based503

on detected code smells. For details, please refer to504

Chapter 3.4 .The experimental data shows its effec-505

tiveness. How to reasonably combine the two tasks506

of code smell detection and refactoring opportunity507

detection is worth further research. 508

5 Conclusion 509

In this paper, we proposed SmellDetector, a com- 510

prehensive code smell detection and elimination 511

model. We collect and organize the first hierar- 512

chical code smell dataset from previous datasets, 513

which contains multiple code smells in the same 514

code snippet, including 212,612 code smells and 515

20 types of class level and method level. By testing 516

on the benchmark built by previous SOTA method, 517

our model has achieved the state-of-art in code 518

smell detection and we can detect four times the 519

number of smell types than before, changing the 520

basic paradigm of code smell detection from binary 521

classification problem to multi-label classification. 522

We have experimentally demonstrated that effec- 523

tive code smell detection helps detect opportunities 524

for code refactoring and provide researchers with 525

ideas for a reasonable combination of two tasks. 526
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Limitations527

In this paper, we followed the previous research528

paradigm on code smell, which focused on the two529

tasks of code smell detection and refactoring oppor-530

tunity detection. However, we lack further attempts531

at specific reconstruction to eliminate smells. Al-532

though we have fine-tuned the refactoring model to533

output refactored code, we lack powerful tools to534

judge whether the refactored code is effective. Sim-535

ply applying natural language generated metrics,536

such as calculating the BLEU or ROUGE of label-537

ing refactoring code and predicting reconstructed538

code, is of little significance. In the future, we539

should solve this problem by establishing bench-540

marks or proposing new metrics, so as to establish541

a more direct research paradigm for code smell542

refactoring.543
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